forked from OSchip/llvm-project
488 lines
16 KiB
C++
488 lines
16 KiB
C++
//===-- RISCVISelDAGToDAG.cpp - A dag to dag inst selector for RISCV ------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines an instruction selector for the RISCV target.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "RISCVISelDAGToDAG.h"
|
|
#include "MCTargetDesc/RISCVMCTargetDesc.h"
|
|
#include "Utils/RISCVMatInt.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/Support/Alignment.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "riscv-isel"
|
|
|
|
void RISCVDAGToDAGISel::PostprocessISelDAG() {
|
|
doPeepholeLoadStoreADDI();
|
|
}
|
|
|
|
static SDNode *selectImm(SelectionDAG *CurDAG, const SDLoc &DL, int64_t Imm,
|
|
MVT XLenVT) {
|
|
RISCVMatInt::InstSeq Seq;
|
|
RISCVMatInt::generateInstSeq(Imm, XLenVT == MVT::i64, Seq);
|
|
|
|
SDNode *Result = nullptr;
|
|
SDValue SrcReg = CurDAG->getRegister(RISCV::X0, XLenVT);
|
|
for (RISCVMatInt::Inst &Inst : Seq) {
|
|
SDValue SDImm = CurDAG->getTargetConstant(Inst.Imm, DL, XLenVT);
|
|
if (Inst.Opc == RISCV::LUI)
|
|
Result = CurDAG->getMachineNode(RISCV::LUI, DL, XLenVT, SDImm);
|
|
else
|
|
Result = CurDAG->getMachineNode(Inst.Opc, DL, XLenVT, SrcReg, SDImm);
|
|
|
|
// Only the first instruction has X0 as its source.
|
|
SrcReg = SDValue(Result, 0);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
// Returns true if the Node is an ISD::AND with a constant argument. If so,
|
|
// set Mask to that constant value.
|
|
static bool isConstantMask(SDNode *Node, uint64_t &Mask) {
|
|
if (Node->getOpcode() == ISD::AND &&
|
|
Node->getOperand(1).getOpcode() == ISD::Constant) {
|
|
Mask = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void RISCVDAGToDAGISel::Select(SDNode *Node) {
|
|
// If we have a custom node, we have already selected.
|
|
if (Node->isMachineOpcode()) {
|
|
LLVM_DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << "\n");
|
|
Node->setNodeId(-1);
|
|
return;
|
|
}
|
|
|
|
// Instruction Selection not handled by the auto-generated tablegen selection
|
|
// should be handled here.
|
|
unsigned Opcode = Node->getOpcode();
|
|
MVT XLenVT = Subtarget->getXLenVT();
|
|
SDLoc DL(Node);
|
|
EVT VT = Node->getValueType(0);
|
|
|
|
switch (Opcode) {
|
|
case ISD::ADD: {
|
|
// Optimize (add r, imm) to (addi (addi r, imm0) imm1) if applicable. The
|
|
// immediate must be in specific ranges and have a single use.
|
|
if (auto *ConstOp = dyn_cast<ConstantSDNode>(Node->getOperand(1))) {
|
|
if (!(ConstOp->hasOneUse()))
|
|
break;
|
|
// The imm must be in range [-4096,-2049] or [2048,4094].
|
|
int64_t Imm = ConstOp->getSExtValue();
|
|
if (!(-4096 <= Imm && Imm <= -2049) && !(2048 <= Imm && Imm <= 4094))
|
|
break;
|
|
// Break the imm to imm0+imm1.
|
|
EVT VT = Node->getValueType(0);
|
|
const SDValue ImmOp0 = CurDAG->getTargetConstant(Imm - Imm / 2, DL, VT);
|
|
const SDValue ImmOp1 = CurDAG->getTargetConstant(Imm / 2, DL, VT);
|
|
auto *NodeAddi0 = CurDAG->getMachineNode(RISCV::ADDI, DL, VT,
|
|
Node->getOperand(0), ImmOp0);
|
|
auto *NodeAddi1 = CurDAG->getMachineNode(RISCV::ADDI, DL, VT,
|
|
SDValue(NodeAddi0, 0), ImmOp1);
|
|
ReplaceNode(Node, NodeAddi1);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case ISD::Constant: {
|
|
auto ConstNode = cast<ConstantSDNode>(Node);
|
|
if (VT == XLenVT && ConstNode->isNullValue()) {
|
|
SDValue New =
|
|
CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, RISCV::X0, XLenVT);
|
|
ReplaceNode(Node, New.getNode());
|
|
return;
|
|
}
|
|
int64_t Imm = ConstNode->getSExtValue();
|
|
if (XLenVT == MVT::i64) {
|
|
ReplaceNode(Node, selectImm(CurDAG, DL, Imm, XLenVT));
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case ISD::FrameIndex: {
|
|
SDValue Imm = CurDAG->getTargetConstant(0, DL, XLenVT);
|
|
int FI = cast<FrameIndexSDNode>(Node)->getIndex();
|
|
SDValue TFI = CurDAG->getTargetFrameIndex(FI, VT);
|
|
ReplaceNode(Node, CurDAG->getMachineNode(RISCV::ADDI, DL, VT, TFI, Imm));
|
|
return;
|
|
}
|
|
case ISD::SRL: {
|
|
if (!Subtarget->is64Bit())
|
|
break;
|
|
SDNode *Op0 = Node->getOperand(0).getNode();
|
|
uint64_t Mask;
|
|
// Match (srl (and val, mask), imm) where the result would be a
|
|
// zero-extended 32-bit integer. i.e. the mask is 0xffffffff or the result
|
|
// is equivalent to this (SimplifyDemandedBits may have removed lower bits
|
|
// from the mask that aren't necessary due to the right-shifting).
|
|
if (isa<ConstantSDNode>(Node->getOperand(1)) && isConstantMask(Op0, Mask)) {
|
|
uint64_t ShAmt = Node->getConstantOperandVal(1);
|
|
|
|
if ((Mask | maskTrailingOnes<uint64_t>(ShAmt)) == 0xffffffff) {
|
|
SDValue ShAmtVal = CurDAG->getTargetConstant(ShAmt, DL, XLenVT);
|
|
CurDAG->SelectNodeTo(Node, RISCV::SRLIW, XLenVT, Op0->getOperand(0),
|
|
ShAmtVal);
|
|
return;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Select the default instruction.
|
|
SelectCode(Node);
|
|
}
|
|
|
|
bool RISCVDAGToDAGISel::SelectInlineAsmMemoryOperand(
|
|
const SDValue &Op, unsigned ConstraintID, std::vector<SDValue> &OutOps) {
|
|
switch (ConstraintID) {
|
|
case InlineAsm::Constraint_m:
|
|
// We just support simple memory operands that have a single address
|
|
// operand and need no special handling.
|
|
OutOps.push_back(Op);
|
|
return false;
|
|
case InlineAsm::Constraint_A:
|
|
OutOps.push_back(Op);
|
|
return false;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool RISCVDAGToDAGISel::SelectAddrFI(SDValue Addr, SDValue &Base) {
|
|
if (auto FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
|
|
Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), Subtarget->getXLenVT());
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Check that it is a SLOI (Shift Left Ones Immediate). We first check that
|
|
// it is the right node tree:
|
|
//
|
|
// (OR (SHL RS1, VC2), VC1)
|
|
//
|
|
// and then we check that VC1, the mask used to fill with ones, is compatible
|
|
// with VC2, the shamt:
|
|
//
|
|
// VC1 == maskTrailingOnes<uint64_t>(VC2)
|
|
|
|
bool RISCVDAGToDAGISel::SelectSLOI(SDValue N, SDValue &RS1, SDValue &Shamt) {
|
|
MVT XLenVT = Subtarget->getXLenVT();
|
|
if (N.getOpcode() == ISD::OR) {
|
|
SDValue Or = N;
|
|
if (Or.getOperand(0).getOpcode() == ISD::SHL) {
|
|
SDValue Shl = Or.getOperand(0);
|
|
if (isa<ConstantSDNode>(Shl.getOperand(1)) &&
|
|
isa<ConstantSDNode>(Or.getOperand(1))) {
|
|
if (XLenVT == MVT::i64) {
|
|
uint64_t VC1 = Or.getConstantOperandVal(1);
|
|
uint64_t VC2 = Shl.getConstantOperandVal(1);
|
|
if (VC1 == maskTrailingOnes<uint64_t>(VC2)) {
|
|
RS1 = Shl.getOperand(0);
|
|
Shamt = CurDAG->getTargetConstant(VC2, SDLoc(N),
|
|
Shl.getOperand(1).getValueType());
|
|
return true;
|
|
}
|
|
}
|
|
if (XLenVT == MVT::i32) {
|
|
uint32_t VC1 = Or.getConstantOperandVal(1);
|
|
uint32_t VC2 = Shl.getConstantOperandVal(1);
|
|
if (VC1 == maskTrailingOnes<uint32_t>(VC2)) {
|
|
RS1 = Shl.getOperand(0);
|
|
Shamt = CurDAG->getTargetConstant(VC2, SDLoc(N),
|
|
Shl.getOperand(1).getValueType());
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Check that it is a SROI (Shift Right Ones Immediate). We first check that
|
|
// it is the right node tree:
|
|
//
|
|
// (OR (SRL RS1, VC2), VC1)
|
|
//
|
|
// and then we check that VC1, the mask used to fill with ones, is compatible
|
|
// with VC2, the shamt:
|
|
//
|
|
// VC1 == maskLeadingOnes<uint64_t>(VC2)
|
|
|
|
bool RISCVDAGToDAGISel::SelectSROI(SDValue N, SDValue &RS1, SDValue &Shamt) {
|
|
MVT XLenVT = Subtarget->getXLenVT();
|
|
if (N.getOpcode() == ISD::OR) {
|
|
SDValue Or = N;
|
|
if (Or.getOperand(0).getOpcode() == ISD::SRL) {
|
|
SDValue Srl = Or.getOperand(0);
|
|
if (isa<ConstantSDNode>(Srl.getOperand(1)) &&
|
|
isa<ConstantSDNode>(Or.getOperand(1))) {
|
|
if (XLenVT == MVT::i64) {
|
|
uint64_t VC1 = Or.getConstantOperandVal(1);
|
|
uint64_t VC2 = Srl.getConstantOperandVal(1);
|
|
if (VC1 == maskLeadingOnes<uint64_t>(VC2)) {
|
|
RS1 = Srl.getOperand(0);
|
|
Shamt = CurDAG->getTargetConstant(VC2, SDLoc(N),
|
|
Srl.getOperand(1).getValueType());
|
|
return true;
|
|
}
|
|
}
|
|
if (XLenVT == MVT::i32) {
|
|
uint32_t VC1 = Or.getConstantOperandVal(1);
|
|
uint32_t VC2 = Srl.getConstantOperandVal(1);
|
|
if (VC1 == maskLeadingOnes<uint32_t>(VC2)) {
|
|
RS1 = Srl.getOperand(0);
|
|
Shamt = CurDAG->getTargetConstant(VC2, SDLoc(N),
|
|
Srl.getOperand(1).getValueType());
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Check that it is a SLLIUW (Shift Logical Left Immediate Unsigned i32
|
|
// on RV64).
|
|
// SLLIUW is the same as SLLI except for the fact that it clears the bits
|
|
// XLEN-1:32 of the input RS1 before shifting.
|
|
// We first check that it is the right node tree:
|
|
//
|
|
// (AND (SHL RS1, VC2), VC1)
|
|
//
|
|
// We check that VC2, the shamt is less than 32, otherwise the pattern is
|
|
// exactly the same as SLLI and we give priority to that.
|
|
// Eventually we check that that VC1, the mask used to clear the upper 32 bits
|
|
// of RS1, is correct:
|
|
//
|
|
// VC1 == (0xFFFFFFFF << VC2)
|
|
|
|
bool RISCVDAGToDAGISel::SelectSLLIUW(SDValue N, SDValue &RS1, SDValue &Shamt) {
|
|
if (N.getOpcode() == ISD::AND && Subtarget->getXLenVT() == MVT::i64) {
|
|
SDValue And = N;
|
|
if (And.getOperand(0).getOpcode() == ISD::SHL) {
|
|
SDValue Shl = And.getOperand(0);
|
|
if (isa<ConstantSDNode>(Shl.getOperand(1)) &&
|
|
isa<ConstantSDNode>(And.getOperand(1))) {
|
|
uint64_t VC1 = And.getConstantOperandVal(1);
|
|
uint64_t VC2 = Shl.getConstantOperandVal(1);
|
|
if (VC2 < 32 && VC1 == ((uint64_t)0xFFFFFFFF << VC2)) {
|
|
RS1 = Shl.getOperand(0);
|
|
Shamt = CurDAG->getTargetConstant(VC2, SDLoc(N),
|
|
Shl.getOperand(1).getValueType());
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Check that it is a SLOIW (Shift Left Ones Immediate i32 on RV64).
|
|
// We first check that it is the right node tree:
|
|
//
|
|
// (SIGN_EXTEND_INREG (OR (SHL RS1, VC2), VC1))
|
|
//
|
|
// and then we check that VC1, the mask used to fill with ones, is compatible
|
|
// with VC2, the shamt:
|
|
//
|
|
// VC2 < 32
|
|
// VC1 == maskTrailingOnes<uint64_t>(VC2)
|
|
|
|
bool RISCVDAGToDAGISel::SelectSLOIW(SDValue N, SDValue &RS1, SDValue &Shamt) {
|
|
assert(Subtarget->is64Bit() && "SLOIW should only be matched on RV64");
|
|
if (N.getOpcode() != ISD::SIGN_EXTEND_INREG ||
|
|
cast<VTSDNode>(N.getOperand(1))->getVT() != MVT::i32)
|
|
return false;
|
|
|
|
SDValue Or = N.getOperand(0);
|
|
|
|
if (Or.getOpcode() != ISD::OR || !isa<ConstantSDNode>(Or.getOperand(1)))
|
|
return false;
|
|
|
|
SDValue Shl = Or.getOperand(0);
|
|
if (Shl.getOpcode() != ISD::SHL || !isa<ConstantSDNode>(Shl.getOperand(1)))
|
|
return false;
|
|
|
|
uint64_t VC1 = Or.getConstantOperandVal(1);
|
|
uint64_t VC2 = Shl.getConstantOperandVal(1);
|
|
|
|
if (VC2 >= 32 || VC1 != maskTrailingOnes<uint64_t>(VC2))
|
|
return false;
|
|
|
|
RS1 = Shl.getOperand(0);
|
|
Shamt = CurDAG->getTargetConstant(VC2, SDLoc(N),
|
|
Shl.getOperand(1).getValueType());
|
|
return true;
|
|
}
|
|
|
|
// Check that it is a SROIW (Shift Right Ones Immediate i32 on RV64).
|
|
// We first check that it is the right node tree:
|
|
//
|
|
// (OR (SRL RS1, VC2), VC1)
|
|
//
|
|
// and then we check that VC1, the mask used to fill with ones, is compatible
|
|
// with VC2, the shamt:
|
|
//
|
|
// VC2 < 32
|
|
// VC1 == maskTrailingZeros<uint64_t>(32 - VC2)
|
|
//
|
|
bool RISCVDAGToDAGISel::SelectSROIW(SDValue N, SDValue &RS1, SDValue &Shamt) {
|
|
assert(Subtarget->is64Bit() && "SROIW should only be matched on RV64");
|
|
if (N.getOpcode() != ISD::OR || !isa<ConstantSDNode>(N.getOperand(1)))
|
|
return false;
|
|
|
|
SDValue Srl = N.getOperand(0);
|
|
if (Srl.getOpcode() != ISD::SRL || !isa<ConstantSDNode>(Srl.getOperand(1)))
|
|
return false;
|
|
|
|
uint64_t VC1 = N.getConstantOperandVal(1);
|
|
uint64_t VC2 = Srl.getConstantOperandVal(1);
|
|
|
|
if (VC2 >= 32 || VC1 != maskTrailingZeros<uint64_t>(32 - VC2))
|
|
return false;
|
|
|
|
RS1 = Srl.getOperand(0);
|
|
Shamt = CurDAG->getTargetConstant(VC2, SDLoc(N),
|
|
Srl.getOperand(1).getValueType());
|
|
return true;
|
|
}
|
|
|
|
// Merge an ADDI into the offset of a load/store instruction where possible.
|
|
// (load (addi base, off1), off2) -> (load base, off1+off2)
|
|
// (store val, (addi base, off1), off2) -> (store val, base, off1+off2)
|
|
// This is possible when off1+off2 fits a 12-bit immediate.
|
|
void RISCVDAGToDAGISel::doPeepholeLoadStoreADDI() {
|
|
SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
|
|
++Position;
|
|
|
|
while (Position != CurDAG->allnodes_begin()) {
|
|
SDNode *N = &*--Position;
|
|
// Skip dead nodes and any non-machine opcodes.
|
|
if (N->use_empty() || !N->isMachineOpcode())
|
|
continue;
|
|
|
|
int OffsetOpIdx;
|
|
int BaseOpIdx;
|
|
|
|
// Only attempt this optimisation for I-type loads and S-type stores.
|
|
switch (N->getMachineOpcode()) {
|
|
default:
|
|
continue;
|
|
case RISCV::LB:
|
|
case RISCV::LH:
|
|
case RISCV::LW:
|
|
case RISCV::LBU:
|
|
case RISCV::LHU:
|
|
case RISCV::LWU:
|
|
case RISCV::LD:
|
|
case RISCV::FLH:
|
|
case RISCV::FLW:
|
|
case RISCV::FLD:
|
|
BaseOpIdx = 0;
|
|
OffsetOpIdx = 1;
|
|
break;
|
|
case RISCV::SB:
|
|
case RISCV::SH:
|
|
case RISCV::SW:
|
|
case RISCV::SD:
|
|
case RISCV::FSH:
|
|
case RISCV::FSW:
|
|
case RISCV::FSD:
|
|
BaseOpIdx = 1;
|
|
OffsetOpIdx = 2;
|
|
break;
|
|
}
|
|
|
|
if (!isa<ConstantSDNode>(N->getOperand(OffsetOpIdx)))
|
|
continue;
|
|
|
|
SDValue Base = N->getOperand(BaseOpIdx);
|
|
|
|
// If the base is an ADDI, we can merge it in to the load/store.
|
|
if (!Base.isMachineOpcode() || Base.getMachineOpcode() != RISCV::ADDI)
|
|
continue;
|
|
|
|
SDValue ImmOperand = Base.getOperand(1);
|
|
uint64_t Offset2 = N->getConstantOperandVal(OffsetOpIdx);
|
|
|
|
if (auto Const = dyn_cast<ConstantSDNode>(ImmOperand)) {
|
|
int64_t Offset1 = Const->getSExtValue();
|
|
int64_t CombinedOffset = Offset1 + Offset2;
|
|
if (!isInt<12>(CombinedOffset))
|
|
continue;
|
|
ImmOperand = CurDAG->getTargetConstant(CombinedOffset, SDLoc(ImmOperand),
|
|
ImmOperand.getValueType());
|
|
} else if (auto GA = dyn_cast<GlobalAddressSDNode>(ImmOperand)) {
|
|
// If the off1 in (addi base, off1) is a global variable's address (its
|
|
// low part, really), then we can rely on the alignment of that variable
|
|
// to provide a margin of safety before off1 can overflow the 12 bits.
|
|
// Check if off2 falls within that margin; if so off1+off2 can't overflow.
|
|
const DataLayout &DL = CurDAG->getDataLayout();
|
|
Align Alignment = GA->getGlobal()->getPointerAlignment(DL);
|
|
if (Offset2 != 0 && Alignment <= Offset2)
|
|
continue;
|
|
int64_t Offset1 = GA->getOffset();
|
|
int64_t CombinedOffset = Offset1 + Offset2;
|
|
ImmOperand = CurDAG->getTargetGlobalAddress(
|
|
GA->getGlobal(), SDLoc(ImmOperand), ImmOperand.getValueType(),
|
|
CombinedOffset, GA->getTargetFlags());
|
|
} else if (auto CP = dyn_cast<ConstantPoolSDNode>(ImmOperand)) {
|
|
// Ditto.
|
|
Align Alignment = CP->getAlign();
|
|
if (Offset2 != 0 && Alignment <= Offset2)
|
|
continue;
|
|
int64_t Offset1 = CP->getOffset();
|
|
int64_t CombinedOffset = Offset1 + Offset2;
|
|
ImmOperand = CurDAG->getTargetConstantPool(
|
|
CP->getConstVal(), ImmOperand.getValueType(), CP->getAlign(),
|
|
CombinedOffset, CP->getTargetFlags());
|
|
} else {
|
|
continue;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase: ");
|
|
LLVM_DEBUG(Base->dump(CurDAG));
|
|
LLVM_DEBUG(dbgs() << "\nN: ");
|
|
LLVM_DEBUG(N->dump(CurDAG));
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
|
|
// Modify the offset operand of the load/store.
|
|
if (BaseOpIdx == 0) // Load
|
|
CurDAG->UpdateNodeOperands(N, Base.getOperand(0), ImmOperand,
|
|
N->getOperand(2));
|
|
else // Store
|
|
CurDAG->UpdateNodeOperands(N, N->getOperand(0), Base.getOperand(0),
|
|
ImmOperand, N->getOperand(3));
|
|
|
|
// The add-immediate may now be dead, in which case remove it.
|
|
if (Base.getNode()->use_empty())
|
|
CurDAG->RemoveDeadNode(Base.getNode());
|
|
}
|
|
}
|
|
|
|
// This pass converts a legalized DAG into a RISCV-specific DAG, ready
|
|
// for instruction scheduling.
|
|
FunctionPass *llvm::createRISCVISelDag(RISCVTargetMachine &TM) {
|
|
return new RISCVDAGToDAGISel(TM);
|
|
}
|