forked from OSchip/llvm-project
820 lines
24 KiB
C++
820 lines
24 KiB
C++
|
|
#include "polly/Support/SCEVValidator.h"
|
|
#include "polly/ScopDetection.h"
|
|
#include "llvm/Analysis/RegionInfo.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace llvm;
|
|
using namespace polly;
|
|
|
|
#define DEBUG_TYPE "polly-scev-validator"
|
|
|
|
namespace SCEVType {
|
|
/// The type of a SCEV
|
|
///
|
|
/// To check for the validity of a SCEV we assign to each SCEV a type. The
|
|
/// possible types are INT, PARAM, IV and INVALID. The order of the types is
|
|
/// important. The subexpressions of SCEV with a type X can only have a type
|
|
/// that is smaller or equal than X.
|
|
enum TYPE {
|
|
// An integer value.
|
|
INT,
|
|
|
|
// An expression that is constant during the execution of the Scop,
|
|
// but that may depend on parameters unknown at compile time.
|
|
PARAM,
|
|
|
|
// An expression that may change during the execution of the SCoP.
|
|
IV,
|
|
|
|
// An invalid expression.
|
|
INVALID
|
|
};
|
|
} // namespace SCEVType
|
|
|
|
/// The result the validator returns for a SCEV expression.
|
|
class ValidatorResult {
|
|
/// The type of the expression
|
|
SCEVType::TYPE Type;
|
|
|
|
/// The set of Parameters in the expression.
|
|
ParameterSetTy Parameters;
|
|
|
|
public:
|
|
/// The copy constructor
|
|
ValidatorResult(const ValidatorResult &Source) {
|
|
Type = Source.Type;
|
|
Parameters = Source.Parameters;
|
|
}
|
|
|
|
/// Construct a result with a certain type and no parameters.
|
|
ValidatorResult(SCEVType::TYPE Type) : Type(Type) {
|
|
assert(Type != SCEVType::PARAM && "Did you forget to pass the parameter");
|
|
}
|
|
|
|
/// Construct a result with a certain type and a single parameter.
|
|
ValidatorResult(SCEVType::TYPE Type, const SCEV *Expr) : Type(Type) {
|
|
Parameters.insert(Expr);
|
|
}
|
|
|
|
/// Get the type of the ValidatorResult.
|
|
SCEVType::TYPE getType() { return Type; }
|
|
|
|
/// Is the analyzed SCEV constant during the execution of the SCoP.
|
|
bool isConstant() { return Type == SCEVType::INT || Type == SCEVType::PARAM; }
|
|
|
|
/// Is the analyzed SCEV valid.
|
|
bool isValid() { return Type != SCEVType::INVALID; }
|
|
|
|
/// Is the analyzed SCEV of Type IV.
|
|
bool isIV() { return Type == SCEVType::IV; }
|
|
|
|
/// Is the analyzed SCEV of Type INT.
|
|
bool isINT() { return Type == SCEVType::INT; }
|
|
|
|
/// Is the analyzed SCEV of Type PARAM.
|
|
bool isPARAM() { return Type == SCEVType::PARAM; }
|
|
|
|
/// Get the parameters of this validator result.
|
|
const ParameterSetTy &getParameters() { return Parameters; }
|
|
|
|
/// Add the parameters of Source to this result.
|
|
void addParamsFrom(const ValidatorResult &Source) {
|
|
Parameters.insert(Source.Parameters.begin(), Source.Parameters.end());
|
|
}
|
|
|
|
/// Merge a result.
|
|
///
|
|
/// This means to merge the parameters and to set the Type to the most
|
|
/// specific Type that matches both.
|
|
void merge(const ValidatorResult &ToMerge) {
|
|
Type = std::max(Type, ToMerge.Type);
|
|
addParamsFrom(ToMerge);
|
|
}
|
|
|
|
void print(raw_ostream &OS) {
|
|
switch (Type) {
|
|
case SCEVType::INT:
|
|
OS << "SCEVType::INT";
|
|
break;
|
|
case SCEVType::PARAM:
|
|
OS << "SCEVType::PARAM";
|
|
break;
|
|
case SCEVType::IV:
|
|
OS << "SCEVType::IV";
|
|
break;
|
|
case SCEVType::INVALID:
|
|
OS << "SCEVType::INVALID";
|
|
break;
|
|
}
|
|
}
|
|
};
|
|
|
|
raw_ostream &operator<<(raw_ostream &OS, class ValidatorResult &VR) {
|
|
VR.print(OS);
|
|
return OS;
|
|
}
|
|
|
|
bool polly::isConstCall(llvm::CallInst *Call) {
|
|
if (Call->mayReadOrWriteMemory())
|
|
return false;
|
|
|
|
for (auto &Operand : Call->arg_operands())
|
|
if (!isa<ConstantInt>(&Operand))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Check if a SCEV is valid in a SCoP.
|
|
struct SCEVValidator
|
|
: public SCEVVisitor<SCEVValidator, class ValidatorResult> {
|
|
private:
|
|
const Region *R;
|
|
Loop *Scope;
|
|
ScalarEvolution &SE;
|
|
InvariantLoadsSetTy *ILS;
|
|
|
|
public:
|
|
SCEVValidator(const Region *R, Loop *Scope, ScalarEvolution &SE,
|
|
InvariantLoadsSetTy *ILS)
|
|
: R(R), Scope(Scope), SE(SE), ILS(ILS) {}
|
|
|
|
class ValidatorResult visitConstant(const SCEVConstant *Constant) {
|
|
return ValidatorResult(SCEVType::INT);
|
|
}
|
|
|
|
class ValidatorResult visitZeroExtendOrTruncateExpr(const SCEV *Expr,
|
|
const SCEV *Operand) {
|
|
ValidatorResult Op = visit(Operand);
|
|
auto Type = Op.getType();
|
|
|
|
// If unsigned operations are allowed return the operand, otherwise
|
|
// check if we can model the expression without unsigned assumptions.
|
|
if (PollyAllowUnsignedOperations || Type == SCEVType::INVALID)
|
|
return Op;
|
|
|
|
if (Type == SCEVType::IV)
|
|
return ValidatorResult(SCEVType::INVALID);
|
|
return ValidatorResult(SCEVType::PARAM, Expr);
|
|
}
|
|
|
|
class ValidatorResult visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) {
|
|
return visit(Expr->getOperand());
|
|
}
|
|
|
|
class ValidatorResult visitTruncateExpr(const SCEVTruncateExpr *Expr) {
|
|
return visitZeroExtendOrTruncateExpr(Expr, Expr->getOperand());
|
|
}
|
|
|
|
class ValidatorResult visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
|
|
return visitZeroExtendOrTruncateExpr(Expr, Expr->getOperand());
|
|
}
|
|
|
|
class ValidatorResult visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
|
|
return visit(Expr->getOperand());
|
|
}
|
|
|
|
class ValidatorResult visitAddExpr(const SCEVAddExpr *Expr) {
|
|
ValidatorResult Return(SCEVType::INT);
|
|
|
|
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
|
|
ValidatorResult Op = visit(Expr->getOperand(i));
|
|
Return.merge(Op);
|
|
|
|
// Early exit.
|
|
if (!Return.isValid())
|
|
break;
|
|
}
|
|
|
|
return Return;
|
|
}
|
|
|
|
class ValidatorResult visitMulExpr(const SCEVMulExpr *Expr) {
|
|
ValidatorResult Return(SCEVType::INT);
|
|
|
|
bool HasMultipleParams = false;
|
|
|
|
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
|
|
ValidatorResult Op = visit(Expr->getOperand(i));
|
|
|
|
if (Op.isINT())
|
|
continue;
|
|
|
|
if (Op.isPARAM() && Return.isPARAM()) {
|
|
HasMultipleParams = true;
|
|
continue;
|
|
}
|
|
|
|
if ((Op.isIV() || Op.isPARAM()) && !Return.isINT()) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "INVALID: More than one non-int operand in MulExpr\n"
|
|
<< "\tExpr: " << *Expr << "\n"
|
|
<< "\tPrevious expression type: " << Return << "\n"
|
|
<< "\tNext operand (" << Op << "): " << *Expr->getOperand(i)
|
|
<< "\n");
|
|
|
|
return ValidatorResult(SCEVType::INVALID);
|
|
}
|
|
|
|
Return.merge(Op);
|
|
}
|
|
|
|
if (HasMultipleParams && Return.isValid())
|
|
return ValidatorResult(SCEVType::PARAM, Expr);
|
|
|
|
return Return;
|
|
}
|
|
|
|
class ValidatorResult visitAddRecExpr(const SCEVAddRecExpr *Expr) {
|
|
if (!Expr->isAffine()) {
|
|
LLVM_DEBUG(dbgs() << "INVALID: AddRec is not affine");
|
|
return ValidatorResult(SCEVType::INVALID);
|
|
}
|
|
|
|
ValidatorResult Start = visit(Expr->getStart());
|
|
ValidatorResult Recurrence = visit(Expr->getStepRecurrence(SE));
|
|
|
|
if (!Start.isValid())
|
|
return Start;
|
|
|
|
if (!Recurrence.isValid())
|
|
return Recurrence;
|
|
|
|
auto *L = Expr->getLoop();
|
|
if (R->contains(L) && (!Scope || !L->contains(Scope))) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "INVALID: Loop of AddRec expression boxed in an a "
|
|
"non-affine subregion or has a non-synthesizable exit "
|
|
"value.");
|
|
return ValidatorResult(SCEVType::INVALID);
|
|
}
|
|
|
|
if (R->contains(L)) {
|
|
if (Recurrence.isINT()) {
|
|
ValidatorResult Result(SCEVType::IV);
|
|
Result.addParamsFrom(Start);
|
|
return Result;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "INVALID: AddRec within scop has non-int"
|
|
"recurrence part");
|
|
return ValidatorResult(SCEVType::INVALID);
|
|
}
|
|
|
|
assert(Recurrence.isConstant() && "Expected 'Recurrence' to be constant");
|
|
|
|
// Directly generate ValidatorResult for Expr if 'start' is zero.
|
|
if (Expr->getStart()->isZero())
|
|
return ValidatorResult(SCEVType::PARAM, Expr);
|
|
|
|
// Translate AddRecExpr from '{start, +, inc}' into 'start + {0, +, inc}'
|
|
// if 'start' is not zero.
|
|
const SCEV *ZeroStartExpr = SE.getAddRecExpr(
|
|
SE.getConstant(Expr->getStart()->getType(), 0),
|
|
Expr->getStepRecurrence(SE), Expr->getLoop(), Expr->getNoWrapFlags());
|
|
|
|
ValidatorResult ZeroStartResult =
|
|
ValidatorResult(SCEVType::PARAM, ZeroStartExpr);
|
|
ZeroStartResult.addParamsFrom(Start);
|
|
|
|
return ZeroStartResult;
|
|
}
|
|
|
|
class ValidatorResult visitSMaxExpr(const SCEVSMaxExpr *Expr) {
|
|
ValidatorResult Return(SCEVType::INT);
|
|
|
|
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
|
|
ValidatorResult Op = visit(Expr->getOperand(i));
|
|
|
|
if (!Op.isValid())
|
|
return Op;
|
|
|
|
Return.merge(Op);
|
|
}
|
|
|
|
return Return;
|
|
}
|
|
|
|
class ValidatorResult visitSMinExpr(const SCEVSMinExpr *Expr) {
|
|
ValidatorResult Return(SCEVType::INT);
|
|
|
|
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
|
|
ValidatorResult Op = visit(Expr->getOperand(i));
|
|
|
|
if (!Op.isValid())
|
|
return Op;
|
|
|
|
Return.merge(Op);
|
|
}
|
|
|
|
return Return;
|
|
}
|
|
|
|
class ValidatorResult visitUMaxExpr(const SCEVUMaxExpr *Expr) {
|
|
// We do not support unsigned max operations. If 'Expr' is constant during
|
|
// Scop execution we treat this as a parameter, otherwise we bail out.
|
|
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
|
|
ValidatorResult Op = visit(Expr->getOperand(i));
|
|
|
|
if (!Op.isConstant()) {
|
|
LLVM_DEBUG(dbgs() << "INVALID: UMaxExpr has a non-constant operand");
|
|
return ValidatorResult(SCEVType::INVALID);
|
|
}
|
|
}
|
|
|
|
return ValidatorResult(SCEVType::PARAM, Expr);
|
|
}
|
|
|
|
class ValidatorResult visitUMinExpr(const SCEVUMinExpr *Expr) {
|
|
// We do not support unsigned min operations. If 'Expr' is constant during
|
|
// Scop execution we treat this as a parameter, otherwise we bail out.
|
|
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
|
|
ValidatorResult Op = visit(Expr->getOperand(i));
|
|
|
|
if (!Op.isConstant()) {
|
|
LLVM_DEBUG(dbgs() << "INVALID: UMinExpr has a non-constant operand");
|
|
return ValidatorResult(SCEVType::INVALID);
|
|
}
|
|
}
|
|
|
|
return ValidatorResult(SCEVType::PARAM, Expr);
|
|
}
|
|
|
|
ValidatorResult visitGenericInst(Instruction *I, const SCEV *S) {
|
|
if (R->contains(I)) {
|
|
LLVM_DEBUG(dbgs() << "INVALID: UnknownExpr references an instruction "
|
|
"within the region\n");
|
|
return ValidatorResult(SCEVType::INVALID);
|
|
}
|
|
|
|
return ValidatorResult(SCEVType::PARAM, S);
|
|
}
|
|
|
|
ValidatorResult visitCallInstruction(Instruction *I, const SCEV *S) {
|
|
assert(I->getOpcode() == Instruction::Call && "Call instruction expected");
|
|
|
|
if (R->contains(I)) {
|
|
auto Call = cast<CallInst>(I);
|
|
|
|
if (!isConstCall(Call))
|
|
return ValidatorResult(SCEVType::INVALID, S);
|
|
}
|
|
return ValidatorResult(SCEVType::PARAM, S);
|
|
}
|
|
|
|
ValidatorResult visitLoadInstruction(Instruction *I, const SCEV *S) {
|
|
if (R->contains(I) && ILS) {
|
|
ILS->insert(cast<LoadInst>(I));
|
|
return ValidatorResult(SCEVType::PARAM, S);
|
|
}
|
|
|
|
return visitGenericInst(I, S);
|
|
}
|
|
|
|
ValidatorResult visitDivision(const SCEV *Dividend, const SCEV *Divisor,
|
|
const SCEV *DivExpr,
|
|
Instruction *SDiv = nullptr) {
|
|
|
|
// First check if we might be able to model the division, thus if the
|
|
// divisor is constant. If so, check the dividend, otherwise check if
|
|
// the whole division can be seen as a parameter.
|
|
if (isa<SCEVConstant>(Divisor) && !Divisor->isZero())
|
|
return visit(Dividend);
|
|
|
|
// For signed divisions use the SDiv instruction to check for a parameter
|
|
// division, for unsigned divisions check the operands.
|
|
if (SDiv)
|
|
return visitGenericInst(SDiv, DivExpr);
|
|
|
|
ValidatorResult LHS = visit(Dividend);
|
|
ValidatorResult RHS = visit(Divisor);
|
|
if (LHS.isConstant() && RHS.isConstant())
|
|
return ValidatorResult(SCEVType::PARAM, DivExpr);
|
|
|
|
LLVM_DEBUG(
|
|
dbgs() << "INVALID: unsigned division of non-constant expressions");
|
|
return ValidatorResult(SCEVType::INVALID);
|
|
}
|
|
|
|
ValidatorResult visitUDivExpr(const SCEVUDivExpr *Expr) {
|
|
if (!PollyAllowUnsignedOperations)
|
|
return ValidatorResult(SCEVType::INVALID);
|
|
|
|
auto *Dividend = Expr->getLHS();
|
|
auto *Divisor = Expr->getRHS();
|
|
return visitDivision(Dividend, Divisor, Expr);
|
|
}
|
|
|
|
ValidatorResult visitSDivInstruction(Instruction *SDiv, const SCEV *Expr) {
|
|
assert(SDiv->getOpcode() == Instruction::SDiv &&
|
|
"Assumed SDiv instruction!");
|
|
|
|
auto *Dividend = SE.getSCEV(SDiv->getOperand(0));
|
|
auto *Divisor = SE.getSCEV(SDiv->getOperand(1));
|
|
return visitDivision(Dividend, Divisor, Expr, SDiv);
|
|
}
|
|
|
|
ValidatorResult visitSRemInstruction(Instruction *SRem, const SCEV *S) {
|
|
assert(SRem->getOpcode() == Instruction::SRem &&
|
|
"Assumed SRem instruction!");
|
|
|
|
auto *Divisor = SRem->getOperand(1);
|
|
auto *CI = dyn_cast<ConstantInt>(Divisor);
|
|
if (!CI || CI->isZeroValue())
|
|
return visitGenericInst(SRem, S);
|
|
|
|
auto *Dividend = SRem->getOperand(0);
|
|
auto *DividendSCEV = SE.getSCEV(Dividend);
|
|
return visit(DividendSCEV);
|
|
}
|
|
|
|
ValidatorResult visitUnknown(const SCEVUnknown *Expr) {
|
|
Value *V = Expr->getValue();
|
|
|
|
if (!Expr->getType()->isIntegerTy() && !Expr->getType()->isPointerTy()) {
|
|
LLVM_DEBUG(dbgs() << "INVALID: UnknownExpr is not an integer or pointer");
|
|
return ValidatorResult(SCEVType::INVALID);
|
|
}
|
|
|
|
if (isa<UndefValue>(V)) {
|
|
LLVM_DEBUG(dbgs() << "INVALID: UnknownExpr references an undef value");
|
|
return ValidatorResult(SCEVType::INVALID);
|
|
}
|
|
|
|
if (Instruction *I = dyn_cast<Instruction>(Expr->getValue())) {
|
|
switch (I->getOpcode()) {
|
|
case Instruction::IntToPtr:
|
|
return visit(SE.getSCEVAtScope(I->getOperand(0), Scope));
|
|
case Instruction::Load:
|
|
return visitLoadInstruction(I, Expr);
|
|
case Instruction::SDiv:
|
|
return visitSDivInstruction(I, Expr);
|
|
case Instruction::SRem:
|
|
return visitSRemInstruction(I, Expr);
|
|
case Instruction::Call:
|
|
return visitCallInstruction(I, Expr);
|
|
default:
|
|
return visitGenericInst(I, Expr);
|
|
}
|
|
}
|
|
|
|
if (Expr->getType()->isPointerTy()) {
|
|
if (isa<ConstantPointerNull>(V))
|
|
return ValidatorResult(SCEVType::INT); // "int"
|
|
}
|
|
|
|
return ValidatorResult(SCEVType::PARAM, Expr);
|
|
}
|
|
};
|
|
|
|
class SCEVHasIVParams {
|
|
bool HasIVParams = false;
|
|
|
|
public:
|
|
SCEVHasIVParams() {}
|
|
|
|
bool follow(const SCEV *S) {
|
|
const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(S);
|
|
if (!Unknown)
|
|
return true;
|
|
|
|
CallInst *Call = dyn_cast<CallInst>(Unknown->getValue());
|
|
|
|
if (!Call)
|
|
return true;
|
|
|
|
if (isConstCall(Call)) {
|
|
HasIVParams = true;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool isDone() { return HasIVParams; }
|
|
bool hasIVParams() { return HasIVParams; }
|
|
};
|
|
|
|
/// Check whether a SCEV refers to an SSA name defined inside a region.
|
|
class SCEVInRegionDependences {
|
|
const Region *R;
|
|
Loop *Scope;
|
|
const InvariantLoadsSetTy &ILS;
|
|
bool AllowLoops;
|
|
bool HasInRegionDeps = false;
|
|
|
|
public:
|
|
SCEVInRegionDependences(const Region *R, Loop *Scope, bool AllowLoops,
|
|
const InvariantLoadsSetTy &ILS)
|
|
: R(R), Scope(Scope), ILS(ILS), AllowLoops(AllowLoops) {}
|
|
|
|
bool follow(const SCEV *S) {
|
|
if (auto Unknown = dyn_cast<SCEVUnknown>(S)) {
|
|
Instruction *Inst = dyn_cast<Instruction>(Unknown->getValue());
|
|
|
|
CallInst *Call = dyn_cast<CallInst>(Unknown->getValue());
|
|
|
|
if (Call && isConstCall(Call))
|
|
return false;
|
|
|
|
if (Inst) {
|
|
// When we invariant load hoist a load, we first make sure that there
|
|
// can be no dependences created by it in the Scop region. So, we should
|
|
// not consider scalar dependences to `LoadInst`s that are invariant
|
|
// load hoisted.
|
|
//
|
|
// If this check is not present, then we create data dependences which
|
|
// are strictly not necessary by tracking the invariant load as a
|
|
// scalar.
|
|
LoadInst *LI = dyn_cast<LoadInst>(Inst);
|
|
if (LI && ILS.count(LI) > 0)
|
|
return false;
|
|
}
|
|
|
|
// Return true when Inst is defined inside the region R.
|
|
if (!Inst || !R->contains(Inst))
|
|
return true;
|
|
|
|
HasInRegionDeps = true;
|
|
return false;
|
|
}
|
|
|
|
if (auto AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
|
|
if (AllowLoops)
|
|
return true;
|
|
|
|
auto *L = AddRec->getLoop();
|
|
if (R->contains(L) && !L->contains(Scope)) {
|
|
HasInRegionDeps = true;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
bool isDone() { return false; }
|
|
bool hasDependences() { return HasInRegionDeps; }
|
|
};
|
|
|
|
namespace polly {
|
|
/// Find all loops referenced in SCEVAddRecExprs.
|
|
class SCEVFindLoops {
|
|
SetVector<const Loop *> &Loops;
|
|
|
|
public:
|
|
SCEVFindLoops(SetVector<const Loop *> &Loops) : Loops(Loops) {}
|
|
|
|
bool follow(const SCEV *S) {
|
|
if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S))
|
|
Loops.insert(AddRec->getLoop());
|
|
return true;
|
|
}
|
|
bool isDone() { return false; }
|
|
};
|
|
|
|
void findLoops(const SCEV *Expr, SetVector<const Loop *> &Loops) {
|
|
SCEVFindLoops FindLoops(Loops);
|
|
SCEVTraversal<SCEVFindLoops> ST(FindLoops);
|
|
ST.visitAll(Expr);
|
|
}
|
|
|
|
/// Find all values referenced in SCEVUnknowns.
|
|
class SCEVFindValues {
|
|
ScalarEvolution &SE;
|
|
SetVector<Value *> &Values;
|
|
|
|
public:
|
|
SCEVFindValues(ScalarEvolution &SE, SetVector<Value *> &Values)
|
|
: SE(SE), Values(Values) {}
|
|
|
|
bool follow(const SCEV *S) {
|
|
const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(S);
|
|
if (!Unknown)
|
|
return true;
|
|
|
|
Values.insert(Unknown->getValue());
|
|
Instruction *Inst = dyn_cast<Instruction>(Unknown->getValue());
|
|
if (!Inst || (Inst->getOpcode() != Instruction::SRem &&
|
|
Inst->getOpcode() != Instruction::SDiv))
|
|
return false;
|
|
|
|
auto *Dividend = SE.getSCEV(Inst->getOperand(1));
|
|
if (!isa<SCEVConstant>(Dividend))
|
|
return false;
|
|
|
|
auto *Divisor = SE.getSCEV(Inst->getOperand(0));
|
|
SCEVFindValues FindValues(SE, Values);
|
|
SCEVTraversal<SCEVFindValues> ST(FindValues);
|
|
ST.visitAll(Dividend);
|
|
ST.visitAll(Divisor);
|
|
|
|
return false;
|
|
}
|
|
bool isDone() { return false; }
|
|
};
|
|
|
|
void findValues(const SCEV *Expr, ScalarEvolution &SE,
|
|
SetVector<Value *> &Values) {
|
|
SCEVFindValues FindValues(SE, Values);
|
|
SCEVTraversal<SCEVFindValues> ST(FindValues);
|
|
ST.visitAll(Expr);
|
|
}
|
|
|
|
bool hasIVParams(const SCEV *Expr) {
|
|
SCEVHasIVParams HasIVParams;
|
|
SCEVTraversal<SCEVHasIVParams> ST(HasIVParams);
|
|
ST.visitAll(Expr);
|
|
return HasIVParams.hasIVParams();
|
|
}
|
|
|
|
bool hasScalarDepsInsideRegion(const SCEV *Expr, const Region *R,
|
|
llvm::Loop *Scope, bool AllowLoops,
|
|
const InvariantLoadsSetTy &ILS) {
|
|
SCEVInRegionDependences InRegionDeps(R, Scope, AllowLoops, ILS);
|
|
SCEVTraversal<SCEVInRegionDependences> ST(InRegionDeps);
|
|
ST.visitAll(Expr);
|
|
return InRegionDeps.hasDependences();
|
|
}
|
|
|
|
bool isAffineExpr(const Region *R, llvm::Loop *Scope, const SCEV *Expr,
|
|
ScalarEvolution &SE, InvariantLoadsSetTy *ILS) {
|
|
if (isa<SCEVCouldNotCompute>(Expr))
|
|
return false;
|
|
|
|
SCEVValidator Validator(R, Scope, SE, ILS);
|
|
LLVM_DEBUG({
|
|
dbgs() << "\n";
|
|
dbgs() << "Expr: " << *Expr << "\n";
|
|
dbgs() << "Region: " << R->getNameStr() << "\n";
|
|
dbgs() << " -> ";
|
|
});
|
|
|
|
ValidatorResult Result = Validator.visit(Expr);
|
|
|
|
LLVM_DEBUG({
|
|
if (Result.isValid())
|
|
dbgs() << "VALID\n";
|
|
dbgs() << "\n";
|
|
});
|
|
|
|
return Result.isValid();
|
|
}
|
|
|
|
static bool isAffineExpr(Value *V, const Region *R, Loop *Scope,
|
|
ScalarEvolution &SE, ParameterSetTy &Params) {
|
|
auto *E = SE.getSCEV(V);
|
|
if (isa<SCEVCouldNotCompute>(E))
|
|
return false;
|
|
|
|
SCEVValidator Validator(R, Scope, SE, nullptr);
|
|
ValidatorResult Result = Validator.visit(E);
|
|
if (!Result.isValid())
|
|
return false;
|
|
|
|
auto ResultParams = Result.getParameters();
|
|
Params.insert(ResultParams.begin(), ResultParams.end());
|
|
|
|
return true;
|
|
}
|
|
|
|
bool isAffineConstraint(Value *V, const Region *R, llvm::Loop *Scope,
|
|
ScalarEvolution &SE, ParameterSetTy &Params,
|
|
bool OrExpr) {
|
|
if (auto *ICmp = dyn_cast<ICmpInst>(V)) {
|
|
return isAffineConstraint(ICmp->getOperand(0), R, Scope, SE, Params,
|
|
true) &&
|
|
isAffineConstraint(ICmp->getOperand(1), R, Scope, SE, Params, true);
|
|
} else if (auto *BinOp = dyn_cast<BinaryOperator>(V)) {
|
|
auto Opcode = BinOp->getOpcode();
|
|
if (Opcode == Instruction::And || Opcode == Instruction::Or)
|
|
return isAffineConstraint(BinOp->getOperand(0), R, Scope, SE, Params,
|
|
false) &&
|
|
isAffineConstraint(BinOp->getOperand(1), R, Scope, SE, Params,
|
|
false);
|
|
/* Fall through */
|
|
}
|
|
|
|
if (!OrExpr)
|
|
return false;
|
|
|
|
return isAffineExpr(V, R, Scope, SE, Params);
|
|
}
|
|
|
|
ParameterSetTy getParamsInAffineExpr(const Region *R, Loop *Scope,
|
|
const SCEV *Expr, ScalarEvolution &SE) {
|
|
if (isa<SCEVCouldNotCompute>(Expr))
|
|
return ParameterSetTy();
|
|
|
|
InvariantLoadsSetTy ILS;
|
|
SCEVValidator Validator(R, Scope, SE, &ILS);
|
|
ValidatorResult Result = Validator.visit(Expr);
|
|
assert(Result.isValid() && "Requested parameters for an invalid SCEV!");
|
|
|
|
return Result.getParameters();
|
|
}
|
|
|
|
std::pair<const SCEVConstant *, const SCEV *>
|
|
extractConstantFactor(const SCEV *S, ScalarEvolution &SE) {
|
|
auto *ConstPart = cast<SCEVConstant>(SE.getConstant(S->getType(), 1));
|
|
|
|
if (auto *Constant = dyn_cast<SCEVConstant>(S))
|
|
return std::make_pair(Constant, SE.getConstant(S->getType(), 1));
|
|
|
|
auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
|
|
if (AddRec) {
|
|
auto *StartExpr = AddRec->getStart();
|
|
if (StartExpr->isZero()) {
|
|
auto StepPair = extractConstantFactor(AddRec->getStepRecurrence(SE), SE);
|
|
auto *LeftOverAddRec =
|
|
SE.getAddRecExpr(StartExpr, StepPair.second, AddRec->getLoop(),
|
|
AddRec->getNoWrapFlags());
|
|
return std::make_pair(StepPair.first, LeftOverAddRec);
|
|
}
|
|
return std::make_pair(ConstPart, S);
|
|
}
|
|
|
|
if (auto *Add = dyn_cast<SCEVAddExpr>(S)) {
|
|
SmallVector<const SCEV *, 4> LeftOvers;
|
|
auto Op0Pair = extractConstantFactor(Add->getOperand(0), SE);
|
|
auto *Factor = Op0Pair.first;
|
|
if (SE.isKnownNegative(Factor)) {
|
|
Factor = cast<SCEVConstant>(SE.getNegativeSCEV(Factor));
|
|
LeftOvers.push_back(SE.getNegativeSCEV(Op0Pair.second));
|
|
} else {
|
|
LeftOvers.push_back(Op0Pair.second);
|
|
}
|
|
|
|
for (unsigned u = 1, e = Add->getNumOperands(); u < e; u++) {
|
|
auto OpUPair = extractConstantFactor(Add->getOperand(u), SE);
|
|
// TODO: Use something smarter than equality here, e.g., gcd.
|
|
if (Factor == OpUPair.first)
|
|
LeftOvers.push_back(OpUPair.second);
|
|
else if (Factor == SE.getNegativeSCEV(OpUPair.first))
|
|
LeftOvers.push_back(SE.getNegativeSCEV(OpUPair.second));
|
|
else
|
|
return std::make_pair(ConstPart, S);
|
|
}
|
|
|
|
auto *NewAdd = SE.getAddExpr(LeftOvers, Add->getNoWrapFlags());
|
|
return std::make_pair(Factor, NewAdd);
|
|
}
|
|
|
|
auto *Mul = dyn_cast<SCEVMulExpr>(S);
|
|
if (!Mul)
|
|
return std::make_pair(ConstPart, S);
|
|
|
|
SmallVector<const SCEV *, 4> LeftOvers;
|
|
for (auto *Op : Mul->operands())
|
|
if (isa<SCEVConstant>(Op))
|
|
ConstPart = cast<SCEVConstant>(SE.getMulExpr(ConstPart, Op));
|
|
else
|
|
LeftOvers.push_back(Op);
|
|
|
|
return std::make_pair(ConstPart, SE.getMulExpr(LeftOvers));
|
|
}
|
|
|
|
const SCEV *tryForwardThroughPHI(const SCEV *Expr, Region &R,
|
|
ScalarEvolution &SE, LoopInfo &LI,
|
|
const DominatorTree &DT) {
|
|
if (auto *Unknown = dyn_cast<SCEVUnknown>(Expr)) {
|
|
Value *V = Unknown->getValue();
|
|
auto *PHI = dyn_cast<PHINode>(V);
|
|
if (!PHI)
|
|
return Expr;
|
|
|
|
Value *Final = nullptr;
|
|
|
|
for (unsigned i = 0; i < PHI->getNumIncomingValues(); i++) {
|
|
BasicBlock *Incoming = PHI->getIncomingBlock(i);
|
|
if (isErrorBlock(*Incoming, R, LI, DT) && R.contains(Incoming))
|
|
continue;
|
|
if (Final)
|
|
return Expr;
|
|
Final = PHI->getIncomingValue(i);
|
|
}
|
|
|
|
if (Final)
|
|
return SE.getSCEV(Final);
|
|
}
|
|
return Expr;
|
|
}
|
|
|
|
Value *getUniqueNonErrorValue(PHINode *PHI, Region *R, LoopInfo &LI,
|
|
const DominatorTree &DT) {
|
|
Value *V = nullptr;
|
|
for (unsigned i = 0; i < PHI->getNumIncomingValues(); i++) {
|
|
BasicBlock *BB = PHI->getIncomingBlock(i);
|
|
if (!isErrorBlock(*BB, *R, LI, DT)) {
|
|
if (V)
|
|
return nullptr;
|
|
V = PHI->getIncomingValue(i);
|
|
}
|
|
}
|
|
|
|
return V;
|
|
}
|
|
} // namespace polly
|