forked from OSchip/llvm-project
187 lines
5.4 KiB
C++
187 lines
5.4 KiB
C++
//===-- Floating-point manipulation functions -------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_LIBC_UTILS_FPUTIL_MANIPULATION_FUNCTIONS_H
|
|
#define LLVM_LIBC_UTILS_FPUTIL_MANIPULATION_FUNCTIONS_H
|
|
|
|
#include "FPBits.h"
|
|
#include "NearestIntegerOperations.h"
|
|
#include "NormalFloat.h"
|
|
#include "PlatformDefs.h"
|
|
|
|
#include "utils/CPP/TypeTraits.h"
|
|
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
|
|
namespace __llvm_libc {
|
|
namespace fputil {
|
|
|
|
template <typename T,
|
|
cpp::EnableIfType<cpp::IsFloatingPointType<T>::Value, int> = 0>
|
|
static inline T frexp(T x, int &exp) {
|
|
FPBits<T> bits(x);
|
|
if (bits.isInfOrNaN())
|
|
return x;
|
|
if (bits.isZero()) {
|
|
exp = 0;
|
|
return x;
|
|
}
|
|
|
|
NormalFloat<T> normal(bits);
|
|
exp = normal.exponent + 1;
|
|
normal.exponent = -1;
|
|
return normal;
|
|
}
|
|
|
|
template <typename T,
|
|
cpp::EnableIfType<cpp::IsFloatingPointType<T>::Value, int> = 0>
|
|
static inline T modf(T x, T &iptr) {
|
|
FPBits<T> bits(x);
|
|
if (bits.isZero() || bits.isNaN()) {
|
|
iptr = x;
|
|
return x;
|
|
} else if (bits.isInf()) {
|
|
iptr = x;
|
|
return bits.encoding.sign ? T(FPBits<T>::negZero()) : T(FPBits<T>::zero());
|
|
} else {
|
|
iptr = trunc(x);
|
|
if (x == iptr) {
|
|
// If x is already an integer value, then return zero with the right
|
|
// sign.
|
|
return bits.encoding.sign ? T(FPBits<T>::negZero())
|
|
: T(FPBits<T>::zero());
|
|
} else {
|
|
return x - iptr;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T,
|
|
cpp::EnableIfType<cpp::IsFloatingPointType<T>::Value, int> = 0>
|
|
static inline T copysign(T x, T y) {
|
|
FPBits<T> xbits(x);
|
|
xbits.encoding.sign = FPBits<T>(y).encoding.sign;
|
|
return T(xbits);
|
|
}
|
|
|
|
template <typename T,
|
|
cpp::EnableIfType<cpp::IsFloatingPointType<T>::Value, int> = 0>
|
|
static inline int ilogb(T x) {
|
|
// TODO: Raise appropriate floating point exceptions and set errno to the
|
|
// an appropriate error value wherever relevant.
|
|
FPBits<T> bits(x);
|
|
if (bits.isZero()) {
|
|
return FP_ILOGB0;
|
|
} else if (bits.isNaN()) {
|
|
return FP_ILOGBNAN;
|
|
} else if (bits.isInf()) {
|
|
return INT_MAX;
|
|
}
|
|
|
|
NormalFloat<T> normal(bits);
|
|
// The C standard does not specify the return value when an exponent is
|
|
// out of int range. However, XSI conformance required that INT_MAX or
|
|
// INT_MIN are returned.
|
|
// NOTE: It is highly unlikely that exponent will be out of int range as
|
|
// the exponent is only 15 bits wide even for the 128-bit floating point
|
|
// format.
|
|
if (normal.exponent > INT_MAX)
|
|
return INT_MAX;
|
|
else if (normal.exponent < INT_MIN)
|
|
return INT_MIN;
|
|
else
|
|
return normal.exponent;
|
|
}
|
|
|
|
template <typename T,
|
|
cpp::EnableIfType<cpp::IsFloatingPointType<T>::Value, int> = 0>
|
|
static inline T logb(T x) {
|
|
FPBits<T> bits(x);
|
|
if (bits.isZero()) {
|
|
// TODO(Floating point exception): Raise div-by-zero exception.
|
|
// TODO(errno): POSIX requires setting errno to ERANGE.
|
|
return T(FPBits<T>::negInf());
|
|
} else if (bits.isNaN()) {
|
|
return x;
|
|
} else if (bits.isInf()) {
|
|
// Return positive infinity.
|
|
return T(FPBits<T>::inf());
|
|
}
|
|
|
|
NormalFloat<T> normal(bits);
|
|
return normal.exponent;
|
|
}
|
|
|
|
template <typename T,
|
|
cpp::EnableIfType<cpp::IsFloatingPointType<T>::Value, int> = 0>
|
|
static inline T ldexp(T x, int exp) {
|
|
FPBits<T> bits(x);
|
|
if (bits.isZero() || bits.isInfOrNaN() || exp == 0)
|
|
return x;
|
|
|
|
// NormalFloat uses int32_t to store the true exponent value. We should ensure
|
|
// that adding |exp| to it does not lead to integer rollover. But, if |exp|
|
|
// value is larger the exponent range for type T, then we can return infinity
|
|
// early. Because the result of the ldexp operation can be a subnormal number,
|
|
// we need to accommodate the (mantissaWidht + 1) worth of shift in
|
|
// calculating the limit.
|
|
int expLimit = FPBits<T>::maxExponent + MantissaWidth<T>::value + 1;
|
|
if (exp > expLimit)
|
|
return bits.encoding.sign ? T(FPBits<T>::negInf()) : T(FPBits<T>::inf());
|
|
|
|
// Similarly on the negative side we return zero early if |exp| is too small.
|
|
if (exp < -expLimit)
|
|
return bits.encoding.sign ? T(FPBits<T>::negZero()) : T(FPBits<T>::zero());
|
|
|
|
// For all other values, NormalFloat to T conversion handles it the right way.
|
|
NormalFloat<T> normal(bits);
|
|
normal.exponent += exp;
|
|
return normal;
|
|
}
|
|
|
|
template <typename T,
|
|
cpp::EnableIfType<cpp::IsFloatingPointType<T>::Value, int> = 0>
|
|
static inline T nextafter(T from, T to) {
|
|
FPBits<T> fromBits(from);
|
|
if (fromBits.isNaN())
|
|
return from;
|
|
|
|
FPBits<T> toBits(to);
|
|
if (toBits.isNaN())
|
|
return to;
|
|
|
|
if (from == to)
|
|
return to;
|
|
|
|
using UIntType = typename FPBits<T>::UIntType;
|
|
UIntType intVal = fromBits.uintval();
|
|
UIntType signMask = (UIntType(1) << (sizeof(T) * 8 - 1));
|
|
if (from != T(0.0)) {
|
|
if ((from < to) == (from > T(0.0))) {
|
|
++intVal;
|
|
} else {
|
|
--intVal;
|
|
}
|
|
} else {
|
|
intVal = (toBits.uintval() & signMask) + UIntType(1);
|
|
}
|
|
|
|
return *reinterpret_cast<T *>(&intVal);
|
|
// TODO: Raise floating point exceptions as required by the standard.
|
|
}
|
|
|
|
} // namespace fputil
|
|
} // namespace __llvm_libc
|
|
|
|
#ifdef SPECIAL_X86_LONG_DOUBLE
|
|
#include "NextAfterLongDoubleX86.h"
|
|
#endif // SPECIAL_X86_LONG_DOUBLE
|
|
|
|
#endif // LLVM_LIBC_UTILS_FPUTIL_MANIPULATION_FUNCTIONS_H
|