llvm-project/compiler-rt/lib/xray/xray_x86_64.cc

347 lines
11 KiB
C++

#include "cpuid.h"
#include "sanitizer_common/sanitizer_common.h"
#include "xray_defs.h"
#include "xray_interface_internal.h"
#if SANITIZER_FREEBSD || SANITIZER_NETBSD || SANITIZER_OPENBSD || SANITIZER_MAC
#include <sys/types.h>
#if SANITIZER_OPENBSD
#include <sys/time.h>
#include <machine/cpu.h>
#endif
#include <sys/sysctl.h>
#endif
#include <atomic>
#include <cstdint>
#include <errno.h>
#include <fcntl.h>
#include <iterator>
#include <limits>
#include <tuple>
#include <unistd.h>
namespace __xray {
#if SANITIZER_LINUX
static std::pair<ssize_t, bool>
retryingReadSome(int Fd, char *Begin, char *End) XRAY_NEVER_INSTRUMENT {
auto BytesToRead = std::distance(Begin, End);
ssize_t BytesRead;
ssize_t TotalBytesRead = 0;
while (BytesToRead && (BytesRead = read(Fd, Begin, BytesToRead))) {
if (BytesRead == -1) {
if (errno == EINTR)
continue;
Report("Read error; errno = %d\n", errno);
return std::make_pair(TotalBytesRead, false);
}
TotalBytesRead += BytesRead;
BytesToRead -= BytesRead;
Begin += BytesRead;
}
return std::make_pair(TotalBytesRead, true);
}
static bool readValueFromFile(const char *Filename,
long long *Value) XRAY_NEVER_INSTRUMENT {
int Fd = open(Filename, O_RDONLY | O_CLOEXEC);
if (Fd == -1)
return false;
static constexpr size_t BufSize = 256;
char Line[BufSize] = {};
ssize_t BytesRead;
bool Success;
std::tie(BytesRead, Success) = retryingReadSome(Fd, Line, Line + BufSize);
close(Fd);
if (!Success)
return false;
const char *End = nullptr;
long long Tmp = internal_simple_strtoll(Line, &End, 10);
bool Result = false;
if (Line[0] != '\0' && (*End == '\n' || *End == '\0')) {
*Value = Tmp;
Result = true;
}
return Result;
}
uint64_t getTSCFrequency() XRAY_NEVER_INSTRUMENT {
long long TSCFrequency = -1;
if (readValueFromFile("/sys/devices/system/cpu/cpu0/tsc_freq_khz",
&TSCFrequency)) {
TSCFrequency *= 1000;
} else if (readValueFromFile(
"/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq",
&TSCFrequency)) {
TSCFrequency *= 1000;
} else {
Report("Unable to determine CPU frequency for TSC accounting.\n");
}
return TSCFrequency == -1 ? 0 : static_cast<uint64_t>(TSCFrequency);
}
#elif SANITIZER_FREEBSD || SANITIZER_NETBSD || SANITIZER_OPENBSD || SANITIZER_MAC
uint64_t getTSCFrequency() XRAY_NEVER_INSTRUMENT {
long long TSCFrequency = -1;
size_t tscfreqsz = sizeof(TSCFrequency);
#if SANITIZER_OPENBSD
int Mib[2] = { CTL_MACHDEP, CPU_TSCFREQ };
if (sysctl(Mib, 2, &TSCFrequency, &tscfreqsz, NULL, 0) != -1) {
#elif SANITIZER_MAC
if (sysctlbyname("machdep.tsc.frequency", &TSCFrequency, &tscfreqsz,
NULL, 0) != -1 ) {
#else
if (sysctlbyname("machdep.tsc_freq", &TSCFrequency, &tscfreqsz,
NULL, 0) != -1) {
#endif
return static_cast<uint64_t>(TSCFrequency);
} else {
Report("Unable to determine CPU frequency for TSC accounting.\n");
}
return 0;
}
#else
uint64_t getTSCFrequency() XRAY_NEVER_INSTRUMENT {
/* Not supported */
return 0;
}
#endif
static constexpr uint8_t CallOpCode = 0xe8;
static constexpr uint16_t MovR10Seq = 0xba41;
static constexpr uint16_t Jmp9Seq = 0x09eb;
static constexpr uint16_t Jmp20Seq = 0x14eb;
static constexpr uint16_t Jmp15Seq = 0x0feb;
static constexpr uint8_t JmpOpCode = 0xe9;
static constexpr uint8_t RetOpCode = 0xc3;
static constexpr uint16_t NopwSeq = 0x9066;
static constexpr int64_t MinOffset{std::numeric_limits<int32_t>::min()};
static constexpr int64_t MaxOffset{std::numeric_limits<int32_t>::max()};
bool patchFunctionEntry(const bool Enable, const uint32_t FuncId,
const XRaySledEntry &Sled,
void (*Trampoline)()) XRAY_NEVER_INSTRUMENT {
// Here we do the dance of replacing the following sled:
//
// xray_sled_n:
// jmp +9
// <9 byte nop>
//
// With the following:
//
// mov r10d, <function id>
// call <relative 32bit offset to entry trampoline>
//
// We need to do this in the following order:
//
// 1. Put the function id first, 2 bytes from the start of the sled (just
// after the 2-byte jmp instruction).
// 2. Put the call opcode 6 bytes from the start of the sled.
// 3. Put the relative offset 7 bytes from the start of the sled.
// 4. Do an atomic write over the jmp instruction for the "mov r10d"
// opcode and first operand.
//
// Prerequisite is to compute the relative offset to the trampoline's address.
int64_t TrampolineOffset = reinterpret_cast<int64_t>(Trampoline) -
(static_cast<int64_t>(Sled.Address) + 11);
if (TrampolineOffset < MinOffset || TrampolineOffset > MaxOffset) {
Report("XRay Entry trampoline (%p) too far from sled (%p)\n",
Trampoline, reinterpret_cast<void *>(Sled.Address));
return false;
}
if (Enable) {
*reinterpret_cast<uint32_t *>(Sled.Address + 2) = FuncId;
*reinterpret_cast<uint8_t *>(Sled.Address + 6) = CallOpCode;
*reinterpret_cast<uint32_t *>(Sled.Address + 7) = TrampolineOffset;
std::atomic_store_explicit(
reinterpret_cast<std::atomic<uint16_t> *>(Sled.Address), MovR10Seq,
std::memory_order_release);
} else {
std::atomic_store_explicit(
reinterpret_cast<std::atomic<uint16_t> *>(Sled.Address), Jmp9Seq,
std::memory_order_release);
// FIXME: Write out the nops still?
}
return true;
}
bool patchFunctionExit(const bool Enable, const uint32_t FuncId,
const XRaySledEntry &Sled) XRAY_NEVER_INSTRUMENT {
// Here we do the dance of replacing the following sled:
//
// xray_sled_n:
// ret
// <10 byte nop>
//
// With the following:
//
// mov r10d, <function id>
// jmp <relative 32bit offset to exit trampoline>
//
// 1. Put the function id first, 2 bytes from the start of the sled (just
// after the 1-byte ret instruction).
// 2. Put the jmp opcode 6 bytes from the start of the sled.
// 3. Put the relative offset 7 bytes from the start of the sled.
// 4. Do an atomic write over the jmp instruction for the "mov r10d"
// opcode and first operand.
//
// Prerequisite is to compute the relative offset fo the
// __xray_FunctionExit function's address.
int64_t TrampolineOffset = reinterpret_cast<int64_t>(__xray_FunctionExit) -
(static_cast<int64_t>(Sled.Address) + 11);
if (TrampolineOffset < MinOffset || TrampolineOffset > MaxOffset) {
Report("XRay Exit trampoline (%p) too far from sled (%p)\n",
__xray_FunctionExit, reinterpret_cast<void *>(Sled.Address));
return false;
}
if (Enable) {
*reinterpret_cast<uint32_t *>(Sled.Address + 2) = FuncId;
*reinterpret_cast<uint8_t *>(Sled.Address + 6) = JmpOpCode;
*reinterpret_cast<uint32_t *>(Sled.Address + 7) = TrampolineOffset;
std::atomic_store_explicit(
reinterpret_cast<std::atomic<uint16_t> *>(Sled.Address), MovR10Seq,
std::memory_order_release);
} else {
std::atomic_store_explicit(
reinterpret_cast<std::atomic<uint8_t> *>(Sled.Address), RetOpCode,
std::memory_order_release);
// FIXME: Write out the nops still?
}
return true;
}
bool patchFunctionTailExit(const bool Enable, const uint32_t FuncId,
const XRaySledEntry &Sled) XRAY_NEVER_INSTRUMENT {
// Here we do the dance of replacing the tail call sled with a similar
// sequence as the entry sled, but calls the tail exit sled instead.
int64_t TrampolineOffset =
reinterpret_cast<int64_t>(__xray_FunctionTailExit) -
(static_cast<int64_t>(Sled.Address) + 11);
if (TrampolineOffset < MinOffset || TrampolineOffset > MaxOffset) {
Report("XRay Tail Exit trampoline (%p) too far from sled (%p)\n",
__xray_FunctionTailExit, reinterpret_cast<void *>(Sled.Address));
return false;
}
if (Enable) {
*reinterpret_cast<uint32_t *>(Sled.Address + 2) = FuncId;
*reinterpret_cast<uint8_t *>(Sled.Address + 6) = CallOpCode;
*reinterpret_cast<uint32_t *>(Sled.Address + 7) = TrampolineOffset;
std::atomic_store_explicit(
reinterpret_cast<std::atomic<uint16_t> *>(Sled.Address), MovR10Seq,
std::memory_order_release);
} else {
std::atomic_store_explicit(
reinterpret_cast<std::atomic<uint16_t> *>(Sled.Address), Jmp9Seq,
std::memory_order_release);
// FIXME: Write out the nops still?
}
return true;
}
bool patchCustomEvent(const bool Enable, const uint32_t FuncId,
const XRaySledEntry &Sled) XRAY_NEVER_INSTRUMENT {
// Here we do the dance of replacing the following sled:
//
// In Version 0:
//
// xray_sled_n:
// jmp +20 // 2 bytes
// ...
//
// With the following:
//
// nopw // 2 bytes*
// ...
//
//
// The "unpatch" should just turn the 'nopw' back to a 'jmp +20'.
//
// ---
//
// In Version 1:
//
// The jump offset is now 15 bytes (0x0f), so when restoring the nopw back
// to a jmp, use 15 bytes instead.
//
if (Enable) {
std::atomic_store_explicit(
reinterpret_cast<std::atomic<uint16_t> *>(Sled.Address), NopwSeq,
std::memory_order_release);
} else {
switch (Sled.Version) {
case 1:
std::atomic_store_explicit(
reinterpret_cast<std::atomic<uint16_t> *>(Sled.Address), Jmp15Seq,
std::memory_order_release);
break;
case 0:
default:
std::atomic_store_explicit(
reinterpret_cast<std::atomic<uint16_t> *>(Sled.Address), Jmp20Seq,
std::memory_order_release);
break;
}
}
return false;
}
bool patchTypedEvent(const bool Enable, const uint32_t FuncId,
const XRaySledEntry &Sled) XRAY_NEVER_INSTRUMENT {
// Here we do the dance of replacing the following sled:
//
// xray_sled_n:
// jmp +20 // 2 byte instruction
// ...
//
// With the following:
//
// nopw // 2 bytes
// ...
//
//
// The "unpatch" should just turn the 'nopw' back to a 'jmp +20'.
// The 20 byte sled stashes three argument registers, calls the trampoline,
// unstashes the registers and returns. If the arguments are already in
// the correct registers, the stashing and unstashing become equivalently
// sized nops.
if (Enable) {
std::atomic_store_explicit(
reinterpret_cast<std::atomic<uint16_t> *>(Sled.Address), NopwSeq,
std::memory_order_release);
} else {
std::atomic_store_explicit(
reinterpret_cast<std::atomic<uint16_t> *>(Sled.Address), Jmp20Seq,
std::memory_order_release);
}
return false;
}
// We determine whether the CPU we're running on has the correct features we
// need. In x86_64 this will be rdtscp support.
bool probeRequiredCPUFeatures() XRAY_NEVER_INSTRUMENT {
unsigned int EAX, EBX, ECX, EDX;
// We check whether rdtscp support is enabled. According to the x86_64 manual,
// level should be set at 0x80000001, and we should have a look at bit 27 in
// EDX. That's 0x8000000 (or 1u << 27).
__asm__ __volatile__("cpuid" : "=a"(EAX), "=b"(EBX), "=c"(ECX), "=d"(EDX)
: "0"(0x80000001));
if (!(EDX & (1u << 27))) {
Report("Missing rdtscp support.\n");
return false;
}
// Also check whether we can determine the CPU frequency, since if we cannot,
// we should use the emulated TSC instead.
if (!getTSCFrequency()) {
Report("Unable to determine CPU frequency.\n");
return false;
}
return true;
}
} // namespace __xray