llvm-project/compiler-rt/lib/xray/xray_buffer_queue.cc

125 lines
3.6 KiB
C++

//===-- xray_buffer_queue.cc -----------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instruementation system.
//
// Defines the interface for a buffer queue implementation.
//
//===----------------------------------------------------------------------===//
#include "xray_buffer_queue.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_libc.h"
#include "sanitizer_common/sanitizer_posix.h"
#include "xray_allocator.h"
#include "xray_defs.h"
#include <memory>
#include <sys/mman.h>
using namespace __xray;
using namespace __sanitizer;
BufferQueue::BufferQueue(size_t B, size_t N,
bool &Success) XRAY_NEVER_INSTRUMENT
: BufferSize(B),
BufferCount(N),
Mutex(),
Finalizing{0},
BackingStore(allocateBuffer(B *N)),
Buffers(initArray<BufferQueue::BufferRep>(N)),
Next(Buffers),
First(Buffers),
LiveBuffers(0) {
if (BackingStore == nullptr) {
Success = false;
return;
}
if (Buffers == nullptr) {
deallocateBuffer(BackingStore, BufferSize * BufferCount);
Success = false;
return;
}
for (size_t i = 0; i < N; ++i) {
auto &T = Buffers[i];
auto &Buf = T.Buff;
Buf.Data = reinterpret_cast<char *>(BackingStore) + (BufferSize * i);
Buf.Size = B;
atomic_store(&Buf.Extents, 0, memory_order_release);
T.Used = false;
}
Success = true;
}
BufferQueue::ErrorCode BufferQueue::getBuffer(Buffer &Buf) {
if (atomic_load(&Finalizing, memory_order_acquire))
return ErrorCode::QueueFinalizing;
SpinMutexLock Guard(&Mutex);
if (LiveBuffers == BufferCount)
return ErrorCode::NotEnoughMemory;
auto &T = *Next;
auto &B = T.Buff;
auto Extents = atomic_load(&B.Extents, memory_order_acquire);
atomic_store(&Buf.Extents, Extents, memory_order_release);
Buf.Data = B.Data;
Buf.Size = B.Size;
T.Used = true;
++LiveBuffers;
if (++Next == (Buffers + BufferCount))
Next = Buffers;
return ErrorCode::Ok;
}
BufferQueue::ErrorCode BufferQueue::releaseBuffer(Buffer &Buf) {
// Check whether the buffer being referred to is within the bounds of the
// backing store's range.
if (Buf.Data < BackingStore ||
Buf.Data >
reinterpret_cast<char *>(BackingStore) + (BufferCount * BufferSize))
return ErrorCode::UnrecognizedBuffer;
SpinMutexLock Guard(&Mutex);
// This points to a semantic bug, we really ought to not be releasing more
// buffers than we actually get.
if (LiveBuffers == 0)
return ErrorCode::NotEnoughMemory;
// Now that the buffer has been released, we mark it as "used".
auto Extents = atomic_load(&Buf.Extents, memory_order_acquire);
atomic_store(&First->Buff.Extents, Extents, memory_order_release);
First->Buff.Data = Buf.Data;
First->Buff.Size = Buf.Size;
First->Used = true;
Buf.Data = nullptr;
Buf.Size = 0;
atomic_store(&Buf.Extents, 0, memory_order_release);
--LiveBuffers;
if (++First == (Buffers + BufferCount))
First = Buffers;
return ErrorCode::Ok;
}
BufferQueue::ErrorCode BufferQueue::finalize() {
if (atomic_exchange(&Finalizing, 1, memory_order_acq_rel))
return ErrorCode::QueueFinalizing;
return ErrorCode::Ok;
}
BufferQueue::~BufferQueue() {
for (auto B = Buffers, E = Buffers + BufferCount; B != E; ++B)
B->~BufferRep();
deallocateBuffer(Buffers, BufferCount);
deallocateBuffer(BackingStore, BufferSize * BufferCount);
}