llvm-project/lld/COFF/PDB.cpp

904 lines
34 KiB
C++

//===- PDB.cpp ------------------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "PDB.h"
#include "Chunks.h"
#include "Config.h"
#include "Error.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "Writer.h"
#include "llvm/DebugInfo/CodeView/CVDebugRecord.h"
#include "llvm/DebugInfo/CodeView/DebugSubsectionRecord.h"
#include "llvm/DebugInfo/CodeView/LazyRandomTypeCollection.h"
#include "llvm/DebugInfo/CodeView/RecordName.h"
#include "llvm/DebugInfo/CodeView/SymbolDeserializer.h"
#include "llvm/DebugInfo/CodeView/SymbolSerializer.h"
#include "llvm/DebugInfo/CodeView/TypeDeserializer.h"
#include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h"
#include "llvm/DebugInfo/CodeView/TypeIndexDiscovery.h"
#include "llvm/DebugInfo/CodeView/TypeStreamMerger.h"
#include "llvm/DebugInfo/CodeView/TypeTableBuilder.h"
#include "llvm/DebugInfo/MSF/MSFBuilder.h"
#include "llvm/DebugInfo/MSF/MSFCommon.h"
#include "llvm/DebugInfo/PDB/GenericError.h"
#include "llvm/DebugInfo/PDB/Native/DbiModuleDescriptorBuilder.h"
#include "llvm/DebugInfo/PDB/Native/DbiStream.h"
#include "llvm/DebugInfo/PDB/Native/DbiStreamBuilder.h"
#include "llvm/DebugInfo/PDB/Native/GSIStreamBuilder.h"
#include "llvm/DebugInfo/PDB/Native/InfoStream.h"
#include "llvm/DebugInfo/PDB/Native/InfoStreamBuilder.h"
#include "llvm/DebugInfo/PDB/Native/NativeSession.h"
#include "llvm/DebugInfo/PDB/Native/PDBFile.h"
#include "llvm/DebugInfo/PDB/Native/PDBFileBuilder.h"
#include "llvm/DebugInfo/PDB/Native/PDBStringTableBuilder.h"
#include "llvm/DebugInfo/PDB/Native/TpiHashing.h"
#include "llvm/DebugInfo/PDB/Native/TpiStream.h"
#include "llvm/DebugInfo/PDB/Native/TpiStreamBuilder.h"
#include "llvm/DebugInfo/PDB/PDB.h"
#include "llvm/Object/COFF.h"
#include "llvm/Support/BinaryByteStream.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/FileOutputBuffer.h"
#include "llvm/Support/JamCRC.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/ScopedPrinter.h"
#include <memory>
using namespace lld;
using namespace lld::coff;
using namespace llvm;
using namespace llvm::codeview;
using llvm::object::coff_section;
static ExitOnError ExitOnErr;
namespace {
/// Map from type index and item index in a type server PDB to the
/// corresponding index in the destination PDB.
struct CVIndexMap {
SmallVector<TypeIndex, 0> TPIMap;
SmallVector<TypeIndex, 0> IPIMap;
bool IsTypeServerMap = false;
};
class PDBLinker {
public:
PDBLinker(SymbolTable *Symtab)
: Alloc(), Symtab(Symtab), Builder(Alloc), TypeTable(Alloc),
IDTable(Alloc) {}
/// Emit the basic PDB structure: initial streams, headers, etc.
void initialize(const llvm::codeview::DebugInfo &BuildId);
/// Link CodeView from each object file in the symbol table into the PDB.
void addObjectsToPDB();
/// Link CodeView from a single object file into the PDB.
void addObjFile(ObjFile *File);
/// Produce a mapping from the type and item indices used in the object
/// file to those in the destination PDB.
///
/// If the object file uses a type server PDB (compiled with /Zi), merge TPI
/// and IPI from the type server PDB and return a map for it. Each unique type
/// server PDB is merged at most once, so this may return an existing index
/// mapping.
///
/// If the object does not use a type server PDB (compiled with /Z7), we merge
/// all the type and item records from the .debug$S stream and fill in the
/// caller-provided ObjectIndexMap.
const CVIndexMap &mergeDebugT(ObjFile *File, CVIndexMap &ObjectIndexMap);
const CVIndexMap &maybeMergeTypeServerPDB(ObjFile *File,
TypeServer2Record &TS);
/// Add the section map and section contributions to the PDB.
void addSections(ArrayRef<OutputSection *> OutputSections,
ArrayRef<uint8_t> SectionTable);
void addSectionContrib(pdb::DbiModuleDescriptorBuilder &LinkerModule,
OutputSection *OS, Chunk *C);
/// Write the PDB to disk.
void commit();
private:
BumpPtrAllocator Alloc;
SymbolTable *Symtab;
pdb::PDBFileBuilder Builder;
/// Type records that will go into the PDB TPI stream.
TypeTableBuilder TypeTable;
/// Item records that will go into the PDB IPI stream.
TypeTableBuilder IDTable;
/// PDBs use a single global string table for filenames in the file checksum
/// table.
DebugStringTableSubsection PDBStrTab;
llvm::SmallString<128> NativePath;
std::vector<pdb::SecMapEntry> SectionMap;
/// Type index mappings of type server PDBs that we've loaded so far.
std::map<GUID, CVIndexMap> TypeServerIndexMappings;
};
}
static SectionChunk *findByName(std::vector<SectionChunk *> &Sections,
StringRef Name) {
for (SectionChunk *C : Sections)
if (C->getSectionName() == Name)
return C;
return nullptr;
}
static ArrayRef<uint8_t> consumeDebugMagic(ArrayRef<uint8_t> Data,
StringRef SecName) {
// First 4 bytes are section magic.
if (Data.size() < 4)
fatal(SecName + " too short");
if (support::endian::read32le(Data.data()) != COFF::DEBUG_SECTION_MAGIC)
fatal(SecName + " has an invalid magic");
return Data.slice(4);
}
static ArrayRef<uint8_t> getDebugSection(ObjFile *File, StringRef SecName) {
if (SectionChunk *Sec = findByName(File->getDebugChunks(), SecName))
return consumeDebugMagic(Sec->getContents(), SecName);
return {};
}
static void addTypeInfo(pdb::TpiStreamBuilder &TpiBuilder,
TypeTableBuilder &TypeTable) {
// Start the TPI or IPI stream header.
TpiBuilder.setVersionHeader(pdb::PdbTpiV80);
// Flatten the in memory type table and hash each type.
TypeTable.ForEachRecord([&](TypeIndex TI, ArrayRef<uint8_t> Rec) {
assert(Rec.size() >= sizeof(RecordPrefix));
const RecordPrefix *P = reinterpret_cast<const RecordPrefix *>(Rec.data());
CVType Type(static_cast<TypeLeafKind>(unsigned(P->RecordKind)), Rec);
auto Hash = pdb::hashTypeRecord(Type);
if (auto E = Hash.takeError())
fatal("type hashing error");
TpiBuilder.addTypeRecord(Rec, *Hash);
});
}
static Optional<TypeServer2Record>
maybeReadTypeServerRecord(CVTypeArray &Types) {
auto I = Types.begin();
if (I == Types.end())
return None;
const CVType &Type = *I;
if (Type.kind() != LF_TYPESERVER2)
return None;
TypeServer2Record TS;
if (auto EC = TypeDeserializer::deserializeAs(const_cast<CVType &>(Type), TS))
fatal(EC, "error reading type server record");
return std::move(TS);
}
const CVIndexMap &PDBLinker::mergeDebugT(ObjFile *File,
CVIndexMap &ObjectIndexMap) {
ArrayRef<uint8_t> Data = getDebugSection(File, ".debug$T");
if (Data.empty())
return ObjectIndexMap;
BinaryByteStream Stream(Data, support::little);
CVTypeArray Types;
BinaryStreamReader Reader(Stream);
if (auto EC = Reader.readArray(Types, Reader.getLength()))
fatal(EC, "Reader::readArray failed");
// Look through type servers. If we've already seen this type server, don't
// merge any type information.
if (Optional<TypeServer2Record> TS = maybeReadTypeServerRecord(Types))
return maybeMergeTypeServerPDB(File, *TS);
// This is a /Z7 object. Fill in the temporary, caller-provided
// ObjectIndexMap.
if (auto Err = mergeTypeAndIdRecords(IDTable, TypeTable,
ObjectIndexMap.TPIMap, Types))
fatal(Err, "codeview::mergeTypeAndIdRecords failed");
return ObjectIndexMap;
}
static Expected<std::unique_ptr<pdb::NativeSession>>
tryToLoadPDB(const GUID &GuidFromObj, StringRef TSPath) {
std::unique_ptr<pdb::IPDBSession> ThisSession;
if (auto EC =
pdb::loadDataForPDB(pdb::PDB_ReaderType::Native, TSPath, ThisSession))
return std::move(EC);
std::unique_ptr<pdb::NativeSession> NS(
static_cast<pdb::NativeSession *>(ThisSession.release()));
pdb::PDBFile &File = NS->getPDBFile();
auto ExpectedInfo = File.getPDBInfoStream();
// All PDB Files should have an Info stream.
if (!ExpectedInfo)
return ExpectedInfo.takeError();
// Just because a file with a matching name was found and it was an actual
// PDB file doesn't mean it matches. For it to match the InfoStream's GUID
// must match the GUID specified in the TypeServer2 record.
if (ExpectedInfo->getGuid() != GuidFromObj)
return make_error<pdb::GenericError>(
pdb::generic_error_code::type_server_not_found, TSPath);
return std::move(NS);
}
const CVIndexMap &PDBLinker::maybeMergeTypeServerPDB(ObjFile *File,
TypeServer2Record &TS) {
// First, check if we already loaded a PDB with this GUID. Return the type
// index mapping if we have it.
auto Insertion = TypeServerIndexMappings.insert({TS.getGuid(), CVIndexMap()});
CVIndexMap &IndexMap = Insertion.first->second;
if (!Insertion.second)
return IndexMap;
// Mark this map as a type server map.
IndexMap.IsTypeServerMap = true;
// Check for a PDB at:
// 1. The given file path
// 2. Next to the object file or archive file
auto ExpectedSession = tryToLoadPDB(TS.getGuid(), TS.getName());
if (!ExpectedSession) {
consumeError(ExpectedSession.takeError());
StringRef LocalPath =
!File->ParentName.empty() ? File->ParentName : File->getName();
SmallString<128> Path = sys::path::parent_path(LocalPath);
sys::path::append(
Path, sys::path::filename(TS.getName(), sys::path::Style::windows));
ExpectedSession = tryToLoadPDB(TS.getGuid(), Path);
}
if (auto E = ExpectedSession.takeError())
fatal(E, "Type server PDB was not found");
// Merge TPI first, because the IPI stream will reference type indices.
auto ExpectedTpi = (*ExpectedSession)->getPDBFile().getPDBTpiStream();
if (auto E = ExpectedTpi.takeError())
fatal(E, "Type server does not have TPI stream");
if (auto Err = mergeTypeRecords(TypeTable, IndexMap.TPIMap,
ExpectedTpi->typeArray()))
fatal(Err, "codeview::mergeTypeRecords failed");
// Merge IPI.
auto ExpectedIpi = (*ExpectedSession)->getPDBFile().getPDBIpiStream();
if (auto E = ExpectedIpi.takeError())
fatal(E, "Type server does not have TPI stream");
if (auto Err = mergeIdRecords(IDTable, IndexMap.TPIMap, IndexMap.IPIMap,
ExpectedIpi->typeArray()))
fatal(Err, "codeview::mergeIdRecords failed");
return IndexMap;
}
static bool remapTypeIndex(TypeIndex &TI, ArrayRef<TypeIndex> TypeIndexMap) {
if (TI.isSimple())
return true;
if (TI.toArrayIndex() >= TypeIndexMap.size())
return false;
TI = TypeIndexMap[TI.toArrayIndex()];
return true;
}
static void remapTypesInSymbolRecord(ObjFile *File,
MutableArrayRef<uint8_t> Contents,
const CVIndexMap &IndexMap,
const TypeTableBuilder &IDTable,
ArrayRef<TiReference> TypeRefs) {
for (const TiReference &Ref : TypeRefs) {
unsigned ByteSize = Ref.Count * sizeof(TypeIndex);
if (Contents.size() < Ref.Offset + ByteSize)
fatal("symbol record too short");
// This can be an item index or a type index. Choose the appropriate map.
ArrayRef<TypeIndex> TypeOrItemMap = IndexMap.TPIMap;
if (Ref.Kind == TiRefKind::IndexRef && IndexMap.IsTypeServerMap)
TypeOrItemMap = IndexMap.IPIMap;
MutableArrayRef<TypeIndex> TIs(
reinterpret_cast<TypeIndex *>(Contents.data() + Ref.Offset), Ref.Count);
for (TypeIndex &TI : TIs) {
if (!remapTypeIndex(TI, TypeOrItemMap)) {
TI = TypeIndex(SimpleTypeKind::NotTranslated);
log("ignoring symbol record in " + File->getName() +
" with bad type index 0x" + utohexstr(TI.getIndex()));
continue;
}
}
}
}
static SymbolKind symbolKind(ArrayRef<uint8_t> RecordData) {
const RecordPrefix *Prefix =
reinterpret_cast<const RecordPrefix *>(RecordData.data());
return static_cast<SymbolKind>(uint16_t(Prefix->RecordKind));
}
/// MSVC translates S_PROC_ID_END to S_END, and S_[LG]PROC32_ID to S_[LG]PROC32
static void translateIdSymbols(MutableArrayRef<uint8_t> &RecordData,
const TypeTableBuilder &IDTable) {
RecordPrefix *Prefix = reinterpret_cast<RecordPrefix *>(RecordData.data());
SymbolKind Kind = symbolKind(RecordData);
if (Kind == SymbolKind::S_PROC_ID_END) {
Prefix->RecordKind = SymbolKind::S_END;
return;
}
// In an object file, GPROC32_ID has an embedded reference which refers to the
// single object file type index namespace. This has already been translated
// to the PDB file's ID stream index space, but we need to convert this to a
// symbol that refers to the type stream index space. So we remap again from
// ID index space to type index space.
if (Kind == SymbolKind::S_GPROC32_ID || Kind == SymbolKind::S_LPROC32_ID) {
SmallVector<TiReference, 1> Refs;
auto Content = RecordData.drop_front(sizeof(RecordPrefix));
CVSymbol Sym(Kind, RecordData);
discoverTypeIndicesInSymbol(Sym, Refs);
assert(Refs.size() == 1);
assert(Refs.front().Count == 1);
TypeIndex *TI =
reinterpret_cast<TypeIndex *>(Content.data() + Refs[0].Offset);
// `TI` is the index of a FuncIdRecord or MemberFuncIdRecord which lives in
// the IPI stream, whose `FunctionType` member refers to the TPI stream.
// Note that LF_FUNC_ID and LF_MEMFUNC_ID have the same record layout, and
// in both cases we just need the second type index.
if (!TI->isSimple() && !TI->isNoneType()) {
ArrayRef<uint8_t> FuncIdData = IDTable.records()[TI->toArrayIndex()];
SmallVector<TypeIndex, 2> Indices;
discoverTypeIndices(FuncIdData, Indices);
assert(Indices.size() == 2);
*TI = Indices[1];
}
Kind = (Kind == SymbolKind::S_GPROC32_ID) ? SymbolKind::S_GPROC32
: SymbolKind::S_LPROC32;
Prefix->RecordKind = uint16_t(Kind);
}
}
/// Copy the symbol record. In a PDB, symbol records must be 4 byte aligned.
/// The object file may not be aligned.
static MutableArrayRef<uint8_t> copySymbolForPdb(const CVSymbol &Sym,
BumpPtrAllocator &Alloc) {
size_t Size = alignTo(Sym.length(), alignOf(CodeViewContainer::Pdb));
assert(Size >= 4 && "record too short");
assert(Size <= MaxRecordLength && "record too long");
void *Mem = Alloc.Allocate(Size, 4);
// Copy the symbol record and zero out any padding bytes.
MutableArrayRef<uint8_t> NewData(reinterpret_cast<uint8_t *>(Mem), Size);
memcpy(NewData.data(), Sym.data().data(), Sym.length());
memset(NewData.data() + Sym.length(), 0, Size - Sym.length());
// Update the record prefix length. It should point to the beginning of the
// next record.
auto *Prefix = reinterpret_cast<RecordPrefix *>(Mem);
Prefix->RecordLen = Size - 2;
return NewData;
}
/// Return true if this symbol opens a scope. This implies that the symbol has
/// "parent" and "end" fields, which contain the offset of the S_END or
/// S_INLINESITE_END record.
static bool symbolOpensScope(SymbolKind Kind) {
switch (Kind) {
case SymbolKind::S_GPROC32:
case SymbolKind::S_LPROC32:
case SymbolKind::S_LPROC32_ID:
case SymbolKind::S_GPROC32_ID:
case SymbolKind::S_BLOCK32:
case SymbolKind::S_SEPCODE:
case SymbolKind::S_THUNK32:
case SymbolKind::S_INLINESITE:
case SymbolKind::S_INLINESITE2:
return true;
default:
break;
}
return false;
}
static bool symbolEndsScope(SymbolKind Kind) {
switch (Kind) {
case SymbolKind::S_END:
case SymbolKind::S_PROC_ID_END:
case SymbolKind::S_INLINESITE_END:
return true;
default:
break;
}
return false;
}
struct ScopeRecord {
ulittle32_t PtrParent;
ulittle32_t PtrEnd;
};
struct SymbolScope {
ScopeRecord *OpeningRecord;
uint32_t ScopeOffset;
};
static void scopeStackOpen(SmallVectorImpl<SymbolScope> &Stack,
uint32_t CurOffset, CVSymbol &Sym) {
assert(symbolOpensScope(Sym.kind()));
SymbolScope S;
S.ScopeOffset = CurOffset;
S.OpeningRecord = const_cast<ScopeRecord *>(
reinterpret_cast<const ScopeRecord *>(Sym.content().data()));
S.OpeningRecord->PtrParent = Stack.empty() ? 0 : Stack.back().ScopeOffset;
Stack.push_back(S);
}
static void scopeStackClose(SmallVectorImpl<SymbolScope> &Stack,
uint32_t CurOffset, ObjFile *File) {
if (Stack.empty()) {
warn("symbol scopes are not balanced in " + File->getName());
return;
}
SymbolScope S = Stack.pop_back_val();
S.OpeningRecord->PtrEnd = CurOffset;
}
static bool symbolGoesInModuleStream(const CVSymbol &Sym) {
switch (Sym.kind()) {
case SymbolKind::S_GDATA32:
case SymbolKind::S_CONSTANT:
case SymbolKind::S_UDT:
// We really should not be seeing S_PROCREF and S_LPROCREF in the first place
// since they are synthesized by the linker in response to S_GPROC32 and
// S_LPROC32, but if we do see them, don't put them in the module stream I
// guess.
case SymbolKind::S_PROCREF:
case SymbolKind::S_LPROCREF:
return false;
// S_GDATA32 does not go in the module stream, but S_LDATA32 does.
case SymbolKind::S_LDATA32:
default:
return true;
}
}
static bool symbolGoesInGlobalsStream(const CVSymbol &Sym) {
switch (Sym.kind()) {
case SymbolKind::S_CONSTANT:
case SymbolKind::S_GDATA32:
// S_LDATA32 goes in both the module stream and the globals stream.
case SymbolKind::S_LDATA32:
case SymbolKind::S_GPROC32:
case SymbolKind::S_LPROC32:
// We really should not be seeing S_PROCREF and S_LPROCREF in the first place
// since they are synthesized by the linker in response to S_GPROC32 and
// S_LPROC32, but if we do see them, copy them straight through.
case SymbolKind::S_PROCREF:
case SymbolKind::S_LPROCREF:
return true;
// FIXME: For now, we drop all S_UDT symbols (i.e. they don't go in the
// globals stream or the modules stream). These have special handling which
// needs more investigation before we can get right, but by putting them all
// into the globals stream WinDbg fails to display local variables of class
// types saying that it cannot find the type Foo *. So as a stopgap just to
// keep things working, we drop them.
case SymbolKind::S_UDT:
default:
return false;
}
}
static void addGlobalSymbol(pdb::GSIStreamBuilder &Builder, ObjFile &File,
const CVSymbol &Sym) {
switch (Sym.kind()) {
case SymbolKind::S_CONSTANT:
case SymbolKind::S_UDT:
case SymbolKind::S_GDATA32:
case SymbolKind::S_LDATA32:
case SymbolKind::S_PROCREF:
case SymbolKind::S_LPROCREF:
Builder.addGlobalSymbol(Sym);
break;
case SymbolKind::S_GPROC32:
case SymbolKind::S_LPROC32: {
SymbolRecordKind K = SymbolRecordKind::ProcRefSym;
if (Sym.kind() == SymbolKind::S_LPROC32)
K = SymbolRecordKind::LocalProcRef;
ProcRefSym PS(K);
PS.Module = static_cast<uint16_t>(File.ModuleDBI->getModuleIndex());
// For some reason, MSVC seems to add one to this value.
++PS.Module;
PS.Name = getSymbolName(Sym);
PS.SumName = 0;
PS.SymOffset = File.ModuleDBI->getNextSymbolOffset();
Builder.addGlobalSymbol(PS);
break;
}
default:
llvm_unreachable("Invalid symbol kind!");
}
}
static void mergeSymbolRecords(BumpPtrAllocator &Alloc, ObjFile *File,
pdb::GSIStreamBuilder &GsiBuilder,
const CVIndexMap &IndexMap,
const TypeTableBuilder &IDTable,
BinaryStreamRef SymData) {
// FIXME: Improve error recovery by warning and skipping records when
// possible.
CVSymbolArray Syms;
BinaryStreamReader Reader(SymData);
ExitOnErr(Reader.readArray(Syms, Reader.getLength()));
SmallVector<SymbolScope, 4> Scopes;
for (CVSymbol Sym : Syms) {
// Discover type index references in the record. Skip it if we don't know
// where they are.
SmallVector<TiReference, 32> TypeRefs;
if (!discoverTypeIndicesInSymbol(Sym, TypeRefs)) {
log("ignoring unknown symbol record with kind 0x" + utohexstr(Sym.kind()));
continue;
}
// Copy the symbol record so we can mutate it.
MutableArrayRef<uint8_t> NewData = copySymbolForPdb(Sym, Alloc);
// Re-map all the type index references.
MutableArrayRef<uint8_t> Contents =
NewData.drop_front(sizeof(RecordPrefix));
remapTypesInSymbolRecord(File, Contents, IndexMap, IDTable, TypeRefs);
// An object file may have S_xxx_ID symbols, but these get converted to
// "real" symbols in a PDB.
translateIdSymbols(NewData, IDTable);
SymbolKind NewKind = symbolKind(NewData);
// Fill in "Parent" and "End" fields by maintaining a stack of scopes.
CVSymbol NewSym(NewKind, NewData);
if (symbolOpensScope(NewKind))
scopeStackOpen(Scopes, File->ModuleDBI->getNextSymbolOffset(), NewSym);
else if (symbolEndsScope(NewKind))
scopeStackClose(Scopes, File->ModuleDBI->getNextSymbolOffset(), File);
// Add the symbol to the globals stream if necessary. Do this before adding
// the symbol to the module since we may need to get the next symbol offset,
// and writing to the module's symbol stream will update that offset.
if (symbolGoesInGlobalsStream(NewSym))
addGlobalSymbol(GsiBuilder, *File, NewSym);
// Add the symbol to the module.
if (symbolGoesInModuleStream(NewSym))
File->ModuleDBI->addSymbol(NewSym);
}
}
// Allocate memory for a .debug$S section and relocate it.
static ArrayRef<uint8_t> relocateDebugChunk(BumpPtrAllocator &Alloc,
SectionChunk *DebugChunk) {
uint8_t *Buffer = Alloc.Allocate<uint8_t>(DebugChunk->getSize());
assert(DebugChunk->OutputSectionOff == 0 &&
"debug sections should not be in output sections");
DebugChunk->writeTo(Buffer);
return consumeDebugMagic(makeArrayRef(Buffer, DebugChunk->getSize()),
".debug$S");
}
void PDBLinker::addObjFile(ObjFile *File) {
// Add a module descriptor for every object file. We need to put an absolute
// path to the object into the PDB. If this is a plain object, we make its
// path absolute. If it's an object in an archive, we make the archive path
// absolute.
bool InArchive = !File->ParentName.empty();
SmallString<128> Path = InArchive ? File->ParentName : File->getName();
sys::fs::make_absolute(Path);
sys::path::native(Path, sys::path::Style::windows);
StringRef Name = InArchive ? File->getName() : StringRef(Path);
File->ModuleDBI = &ExitOnErr(Builder.getDbiBuilder().addModuleInfo(Name));
File->ModuleDBI->setObjFileName(Path);
// Before we can process symbol substreams from .debug$S, we need to process
// type information, file checksums, and the string table. Add type info to
// the PDB first, so that we can get the map from object file type and item
// indices to PDB type and item indices.
CVIndexMap ObjectIndexMap;
const CVIndexMap &IndexMap = mergeDebugT(File, ObjectIndexMap);
// Now do all live .debug$S sections.
for (SectionChunk *DebugChunk : File->getDebugChunks()) {
if (!DebugChunk->isLive() || DebugChunk->getSectionName() != ".debug$S")
continue;
ArrayRef<uint8_t> RelocatedDebugContents =
relocateDebugChunk(Alloc, DebugChunk);
if (RelocatedDebugContents.empty())
continue;
DebugSubsectionArray Subsections;
BinaryStreamReader Reader(RelocatedDebugContents, support::little);
ExitOnErr(Reader.readArray(Subsections, RelocatedDebugContents.size()));
DebugStringTableSubsectionRef CVStrTab;
DebugChecksumsSubsectionRef Checksums;
for (const DebugSubsectionRecord &SS : Subsections) {
switch (SS.kind()) {
case DebugSubsectionKind::StringTable:
ExitOnErr(CVStrTab.initialize(SS.getRecordData()));
break;
case DebugSubsectionKind::FileChecksums:
ExitOnErr(Checksums.initialize(SS.getRecordData()));
break;
case DebugSubsectionKind::Lines:
// We can add the relocated line table directly to the PDB without
// modification because the file checksum offsets will stay the same.
File->ModuleDBI->addDebugSubsection(SS);
break;
case DebugSubsectionKind::Symbols:
mergeSymbolRecords(Alloc, File, Builder.getGsiBuilder(), IndexMap,
IDTable, SS.getRecordData());
break;
default:
// FIXME: Process the rest of the subsections.
break;
}
}
if (Checksums.valid()) {
// Make a new file checksum table that refers to offsets in the PDB-wide
// string table. Generally the string table subsection appears after the
// checksum table, so we have to do this after looping over all the
// subsections.
if (!CVStrTab.valid())
fatal(".debug$S sections must have both a string table subsection "
"and a checksum subsection table or neither");
auto NewChecksums = make_unique<DebugChecksumsSubsection>(PDBStrTab);
for (FileChecksumEntry &FC : Checksums) {
StringRef FileName = ExitOnErr(CVStrTab.getString(FC.FileNameOffset));
ExitOnErr(Builder.getDbiBuilder().addModuleSourceFile(*File->ModuleDBI,
FileName));
NewChecksums->addChecksum(FileName, FC.Kind, FC.Checksum);
}
File->ModuleDBI->addDebugSubsection(std::move(NewChecksums));
}
}
}
static PublicSym32 createPublic(Defined *Def) {
PublicSym32 Pub(SymbolKind::S_PUB32);
Pub.Name = Def->getName();
if (auto *D = dyn_cast<DefinedCOFF>(Def)) {
if (D->getCOFFSymbol().isFunctionDefinition())
Pub.Flags = PublicSymFlags::Function;
} else if (isa<DefinedImportThunk>(Def)) {
Pub.Flags = PublicSymFlags::Function;
}
OutputSection *OS = Def->getChunk()->getOutputSection();
assert(OS && "all publics should be in final image");
Pub.Offset = Def->getRVA() - OS->getRVA();
Pub.Segment = OS->SectionIndex;
return Pub;
}
// Add all object files to the PDB. Merge .debug$T sections into IpiData and
// TpiData.
void PDBLinker::addObjectsToPDB() {
for (ObjFile *File : ObjFile::Instances)
addObjFile(File);
Builder.getStringTableBuilder().setStrings(PDBStrTab);
// Construct TPI stream contents.
addTypeInfo(Builder.getTpiBuilder(), TypeTable);
// Construct IPI stream contents.
addTypeInfo(Builder.getIpiBuilder(), IDTable);
// Compute the public and global symbols.
auto &GsiBuilder = Builder.getGsiBuilder();
std::vector<PublicSym32> Publics;
Symtab->forEachSymbol([&Publics](Symbol *S) {
// Only emit defined, live symbols that have a chunk.
auto *Def = dyn_cast<Defined>(S->body());
if (Def && Def->isLive() && Def->getChunk())
Publics.push_back(createPublic(Def));
});
if (!Publics.empty()) {
// Sort the public symbols and add them to the stream.
std::sort(Publics.begin(), Publics.end(),
[](const PublicSym32 &L, const PublicSym32 &R) {
return L.Name < R.Name;
});
for (const PublicSym32 &Pub : Publics)
GsiBuilder.addPublicSymbol(Pub);
}
}
static void addCommonLinkerModuleSymbols(StringRef Path,
pdb::DbiModuleDescriptorBuilder &Mod,
BumpPtrAllocator &Allocator) {
SymbolSerializer Serializer(Allocator, CodeViewContainer::Pdb);
ObjNameSym ONS(SymbolRecordKind::ObjNameSym);
Compile3Sym CS(SymbolRecordKind::Compile3Sym);
EnvBlockSym EBS(SymbolRecordKind::EnvBlockSym);
ONS.Name = "* Linker *";
ONS.Signature = 0;
CS.Machine = Config->is64() ? CPUType::X64 : CPUType::Intel80386;
// Interestingly, if we set the string to 0.0.0.0, then when trying to view
// local variables WinDbg emits an error that private symbols are not present.
// By setting this to a valid MSVC linker version string, local variables are
// displayed properly. As such, even though it is not representative of
// LLVM's version information, we need this for compatibility.
CS.Flags = CompileSym3Flags::None;
CS.VersionBackendBuild = 25019;
CS.VersionBackendMajor = 14;
CS.VersionBackendMinor = 10;
CS.VersionBackendQFE = 0;
// MSVC also sets the frontend to 0.0.0.0 since this is specifically for the
// linker module (which is by definition a backend), so we don't need to do
// anything here. Also, it seems we can use "LLVM Linker" for the linker name
// without any problems. Only the backend version has to be hardcoded to a
// magic number.
CS.VersionFrontendBuild = 0;
CS.VersionFrontendMajor = 0;
CS.VersionFrontendMinor = 0;
CS.VersionFrontendQFE = 0;
CS.Version = "LLVM Linker";
CS.setLanguage(SourceLanguage::Link);
ArrayRef<StringRef> Args = makeArrayRef(Config->Argv).drop_front();
std::string ArgStr = llvm::join(Args, " ");
EBS.Fields.push_back("cwd");
SmallString<64> cwd;
sys::fs::current_path(cwd);
EBS.Fields.push_back(cwd);
EBS.Fields.push_back("exe");
SmallString<64> exe = Config->Argv[0];
llvm::sys::fs::make_absolute(exe);
EBS.Fields.push_back(exe);
EBS.Fields.push_back("pdb");
EBS.Fields.push_back(Path);
EBS.Fields.push_back("cmd");
EBS.Fields.push_back(ArgStr);
Mod.addSymbol(codeview::SymbolSerializer::writeOneSymbol(
ONS, Allocator, CodeViewContainer::Pdb));
Mod.addSymbol(codeview::SymbolSerializer::writeOneSymbol(
CS, Allocator, CodeViewContainer::Pdb));
Mod.addSymbol(codeview::SymbolSerializer::writeOneSymbol(
EBS, Allocator, CodeViewContainer::Pdb));
}
static void addLinkerModuleSectionSymbol(pdb::DbiModuleDescriptorBuilder &Mod,
OutputSection &OS,
BumpPtrAllocator &Allocator) {
SectionSym Sym(SymbolRecordKind::SectionSym);
Sym.Alignment = 12; // 2^12 = 4KB
Sym.Characteristics = OS.getCharacteristics();
Sym.Length = OS.getVirtualSize();
Sym.Name = OS.getName();
Sym.Rva = OS.getRVA();
Sym.SectionNumber = OS.SectionIndex;
Mod.addSymbol(codeview::SymbolSerializer::writeOneSymbol(
Sym, Allocator, CodeViewContainer::Pdb));
}
// Creates a PDB file.
void coff::createPDB(SymbolTable *Symtab,
ArrayRef<OutputSection *> OutputSections,
ArrayRef<uint8_t> SectionTable,
const llvm::codeview::DebugInfo &BuildId) {
PDBLinker PDB(Symtab);
PDB.initialize(BuildId);
PDB.addObjectsToPDB();
PDB.addSections(OutputSections, SectionTable);
PDB.commit();
}
void PDBLinker::initialize(const llvm::codeview::DebugInfo &BuildId) {
ExitOnErr(Builder.initialize(4096)); // 4096 is blocksize
// Create streams in MSF for predefined streams, namely
// PDB, TPI, DBI and IPI.
for (int I = 0; I < (int)pdb::kSpecialStreamCount; ++I)
ExitOnErr(Builder.getMsfBuilder().addStream(0));
// Add an Info stream.
auto &InfoBuilder = Builder.getInfoBuilder();
InfoBuilder.setAge(BuildId.PDB70.Age);
GUID uuid;
memcpy(&uuid, &BuildId.PDB70.Signature, sizeof(uuid));
InfoBuilder.setGuid(uuid);
InfoBuilder.setSignature(time(nullptr));
InfoBuilder.setVersion(pdb::PdbRaw_ImplVer::PdbImplVC70);
// Add an empty DBI stream.
pdb::DbiStreamBuilder &DbiBuilder = Builder.getDbiBuilder();
DbiBuilder.setAge(BuildId.PDB70.Age);
DbiBuilder.setVersionHeader(pdb::PdbDbiV70);
ExitOnErr(DbiBuilder.addDbgStream(pdb::DbgHeaderType::NewFPO, {}));
}
void PDBLinker::addSectionContrib(pdb::DbiModuleDescriptorBuilder &LinkerModule,
OutputSection *OS, Chunk *C) {
pdb::SectionContrib SC;
memset(&SC, 0, sizeof(SC));
SC.ISect = OS->SectionIndex;
SC.Off = C->getRVA() - OS->getRVA();
SC.Size = C->getSize();
if (auto *SecChunk = dyn_cast<SectionChunk>(C)) {
SC.Characteristics = SecChunk->Header->Characteristics;
SC.Imod = SecChunk->File->ModuleDBI->getModuleIndex();
ArrayRef<uint8_t> Contents = SecChunk->getContents();
JamCRC CRC(0);
ArrayRef<char> CharContents = makeArrayRef(
reinterpret_cast<const char *>(Contents.data()), Contents.size());
CRC.update(CharContents);
SC.DataCrc = CRC.getCRC();
} else {
SC.Characteristics = OS->getCharacteristics();
// FIXME: When we start creating DBI for import libraries, use those here.
SC.Imod = LinkerModule.getModuleIndex();
}
SC.RelocCrc = 0; // FIXME
Builder.getDbiBuilder().addSectionContrib(SC);
}
void PDBLinker::addSections(ArrayRef<OutputSection *> OutputSections,
ArrayRef<uint8_t> SectionTable) {
// It's not entirely clear what this is, but the * Linker * module uses it.
pdb::DbiStreamBuilder &DbiBuilder = Builder.getDbiBuilder();
NativePath = Config->PDBPath;
sys::fs::make_absolute(NativePath);
sys::path::native(NativePath, sys::path::Style::windows);
uint32_t PdbFilePathNI = DbiBuilder.addECName(NativePath);
auto &LinkerModule = ExitOnErr(DbiBuilder.addModuleInfo("* Linker *"));
LinkerModule.setPdbFilePathNI(PdbFilePathNI);
addCommonLinkerModuleSymbols(NativePath, LinkerModule, Alloc);
// Add section contributions. They must be ordered by ascending RVA.
for (OutputSection *OS : OutputSections) {
addLinkerModuleSectionSymbol(LinkerModule, *OS, Alloc);
for (Chunk *C : OS->getChunks())
addSectionContrib(LinkerModule, OS, C);
}
// Add Section Map stream.
ArrayRef<object::coff_section> Sections = {
(const object::coff_section *)SectionTable.data(),
SectionTable.size() / sizeof(object::coff_section)};
SectionMap = pdb::DbiStreamBuilder::createSectionMap(Sections);
DbiBuilder.setSectionMap(SectionMap);
// Add COFF section header stream.
ExitOnErr(
DbiBuilder.addDbgStream(pdb::DbgHeaderType::SectionHdr, SectionTable));
}
void PDBLinker::commit() {
// Write to a file.
ExitOnErr(Builder.commit(Config->PDBPath));
}