forked from OSchip/llvm-project
1682 lines
64 KiB
C++
1682 lines
64 KiB
C++
//===-------------- PPCMIPeephole.cpp - MI Peephole Cleanups -------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===---------------------------------------------------------------------===//
|
|
//
|
|
// This pass performs peephole optimizations to clean up ugly code
|
|
// sequences at the MachineInstruction layer. It runs at the end of
|
|
// the SSA phases, following VSX swap removal. A pass of dead code
|
|
// elimination follows this one for quick clean-up of any dead
|
|
// instructions introduced here. Although we could do this as callbacks
|
|
// from the generic peephole pass, this would have a couple of bad
|
|
// effects: it might remove optimization opportunities for VSX swap
|
|
// removal, and it would miss cleanups made possible following VSX
|
|
// swap removal.
|
|
//
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
#include "MCTargetDesc/PPCMCTargetDesc.h"
|
|
#include "MCTargetDesc/PPCPredicates.h"
|
|
#include "PPC.h"
|
|
#include "PPCInstrBuilder.h"
|
|
#include "PPCInstrInfo.h"
|
|
#include "PPCMachineFunctionInfo.h"
|
|
#include "PPCTargetMachine.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachinePostDominators.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "ppc-mi-peepholes"
|
|
|
|
STATISTIC(RemoveTOCSave, "Number of TOC saves removed");
|
|
STATISTIC(MultiTOCSaves,
|
|
"Number of functions with multiple TOC saves that must be kept");
|
|
STATISTIC(NumTOCSavesInPrologue, "Number of TOC saves placed in the prologue");
|
|
STATISTIC(NumEliminatedSExt, "Number of eliminated sign-extensions");
|
|
STATISTIC(NumEliminatedZExt, "Number of eliminated zero-extensions");
|
|
STATISTIC(NumOptADDLIs, "Number of optimized ADD instruction fed by LI");
|
|
STATISTIC(NumConvertedToImmediateForm,
|
|
"Number of instructions converted to their immediate form");
|
|
STATISTIC(NumFunctionsEnteredInMIPeephole,
|
|
"Number of functions entered in PPC MI Peepholes");
|
|
STATISTIC(NumFixedPointIterations,
|
|
"Number of fixed-point iterations converting reg-reg instructions "
|
|
"to reg-imm ones");
|
|
STATISTIC(NumRotatesCollapsed,
|
|
"Number of pairs of rotate left, clear left/right collapsed");
|
|
STATISTIC(NumEXTSWAndSLDICombined,
|
|
"Number of pairs of EXTSW and SLDI combined as EXTSWSLI");
|
|
STATISTIC(NumX2FoundForPCRel, "Number of times the X2 TOC pointer has been "
|
|
"found when PC relative NOTOC is being used.");
|
|
|
|
static cl::opt<bool>
|
|
FixedPointRegToImm("ppc-reg-to-imm-fixed-point", cl::Hidden, cl::init(true),
|
|
cl::desc("Iterate to a fixed point when attempting to "
|
|
"convert reg-reg instructions to reg-imm"));
|
|
|
|
static cl::opt<bool>
|
|
ConvertRegReg("ppc-convert-rr-to-ri", cl::Hidden, cl::init(true),
|
|
cl::desc("Convert eligible reg+reg instructions to reg+imm"));
|
|
|
|
static cl::opt<bool>
|
|
EnableSExtElimination("ppc-eliminate-signext",
|
|
cl::desc("enable elimination of sign-extensions"),
|
|
cl::init(false), cl::Hidden);
|
|
|
|
static cl::opt<bool>
|
|
EnableZExtElimination("ppc-eliminate-zeroext",
|
|
cl::desc("enable elimination of zero-extensions"),
|
|
cl::init(false), cl::Hidden);
|
|
|
|
namespace {
|
|
|
|
struct PPCMIPeephole : public MachineFunctionPass {
|
|
|
|
static char ID;
|
|
const PPCInstrInfo *TII;
|
|
MachineFunction *MF;
|
|
MachineRegisterInfo *MRI;
|
|
|
|
PPCMIPeephole() : MachineFunctionPass(ID) {
|
|
initializePPCMIPeepholePass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
private:
|
|
MachineDominatorTree *MDT;
|
|
MachinePostDominatorTree *MPDT;
|
|
MachineBlockFrequencyInfo *MBFI;
|
|
uint64_t EntryFreq;
|
|
|
|
// Initialize class variables.
|
|
void initialize(MachineFunction &MFParm);
|
|
|
|
// Perform peepholes that cannot be skipped.
|
|
// Some peephole simplifications are required for correctness and will not
|
|
// be skipped even if skipFunction(MF.getFunction()) returns true.
|
|
void unskipableSimplifyCode(void);
|
|
|
|
// Perform peepholes.
|
|
bool simplifyCode(void);
|
|
|
|
// Perform peepholes.
|
|
bool eliminateRedundantCompare(void);
|
|
bool eliminateRedundantTOCSaves(std::map<MachineInstr *, bool> &TOCSaves);
|
|
bool combineSEXTAndSHL(MachineInstr &MI, MachineInstr *&ToErase);
|
|
bool emitRLDICWhenLoweringJumpTables(MachineInstr &MI);
|
|
void UpdateTOCSaves(std::map<MachineInstr *, bool> &TOCSaves,
|
|
MachineInstr *MI);
|
|
|
|
public:
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<MachineDominatorTree>();
|
|
AU.addRequired<MachinePostDominatorTree>();
|
|
AU.addRequired<MachineBlockFrequencyInfo>();
|
|
AU.addPreserved<MachineDominatorTree>();
|
|
AU.addPreserved<MachinePostDominatorTree>();
|
|
AU.addPreserved<MachineBlockFrequencyInfo>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
// Main entry point for this pass.
|
|
bool runOnMachineFunction(MachineFunction &MF) override {
|
|
initialize(MF);
|
|
// FIXME: This introduces another complete traversal of the instructions
|
|
// in the function in the common case (function is not skipped). Although
|
|
// this is less than ideal for compile time, this code will go away once
|
|
// our PC-Rel implementation is complete.
|
|
unskipableSimplifyCode();
|
|
if (skipFunction(MF.getFunction()))
|
|
return false;
|
|
return simplifyCode();
|
|
}
|
|
};
|
|
|
|
// Initialize class variables.
|
|
void PPCMIPeephole::initialize(MachineFunction &MFParm) {
|
|
MF = &MFParm;
|
|
MRI = &MF->getRegInfo();
|
|
MDT = &getAnalysis<MachineDominatorTree>();
|
|
MPDT = &getAnalysis<MachinePostDominatorTree>();
|
|
MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
|
|
EntryFreq = MBFI->getEntryFreq();
|
|
TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
|
|
LLVM_DEBUG(dbgs() << "*** PowerPC MI peephole pass ***\n\n");
|
|
LLVM_DEBUG(MF->dump());
|
|
}
|
|
|
|
static MachineInstr *getVRegDefOrNull(MachineOperand *Op,
|
|
MachineRegisterInfo *MRI) {
|
|
assert(Op && "Invalid Operand!");
|
|
if (!Op->isReg())
|
|
return nullptr;
|
|
|
|
Register Reg = Op->getReg();
|
|
if (!Register::isVirtualRegister(Reg))
|
|
return nullptr;
|
|
|
|
return MRI->getVRegDef(Reg);
|
|
}
|
|
|
|
// This function returns number of known zero bits in output of MI
|
|
// starting from the most significant bit.
|
|
static unsigned
|
|
getKnownLeadingZeroCount(MachineInstr *MI, const PPCInstrInfo *TII) {
|
|
unsigned Opcode = MI->getOpcode();
|
|
if (Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec ||
|
|
Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec)
|
|
return MI->getOperand(3).getImm();
|
|
|
|
if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) &&
|
|
MI->getOperand(3).getImm() <= 63 - MI->getOperand(2).getImm())
|
|
return MI->getOperand(3).getImm();
|
|
|
|
if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
|
|
Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec ||
|
|
Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
|
|
MI->getOperand(3).getImm() <= MI->getOperand(4).getImm())
|
|
return 32 + MI->getOperand(3).getImm();
|
|
|
|
if (Opcode == PPC::ANDI_rec) {
|
|
uint16_t Imm = MI->getOperand(2).getImm();
|
|
return 48 + countLeadingZeros(Imm);
|
|
}
|
|
|
|
if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec ||
|
|
Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec ||
|
|
Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8)
|
|
// The result ranges from 0 to 32.
|
|
return 58;
|
|
|
|
if (Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec ||
|
|
Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec)
|
|
// The result ranges from 0 to 64.
|
|
return 57;
|
|
|
|
if (Opcode == PPC::LHZ || Opcode == PPC::LHZX ||
|
|
Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 ||
|
|
Opcode == PPC::LHZU || Opcode == PPC::LHZUX ||
|
|
Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8)
|
|
return 48;
|
|
|
|
if (Opcode == PPC::LBZ || Opcode == PPC::LBZX ||
|
|
Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 ||
|
|
Opcode == PPC::LBZU || Opcode == PPC::LBZUX ||
|
|
Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8)
|
|
return 56;
|
|
|
|
if (TII->isZeroExtended(*MI))
|
|
return 32;
|
|
|
|
return 0;
|
|
}
|
|
|
|
// This function maintains a map for the pairs <TOC Save Instr, Keep>
|
|
// Each time a new TOC save is encountered, it checks if any of the existing
|
|
// ones are dominated by the new one. If so, it marks the existing one as
|
|
// redundant by setting it's entry in the map as false. It then adds the new
|
|
// instruction to the map with either true or false depending on if any
|
|
// existing instructions dominated the new one.
|
|
void PPCMIPeephole::UpdateTOCSaves(
|
|
std::map<MachineInstr *, bool> &TOCSaves, MachineInstr *MI) {
|
|
assert(TII->isTOCSaveMI(*MI) && "Expecting a TOC save instruction here");
|
|
assert(MF->getSubtarget<PPCSubtarget>().isELFv2ABI() &&
|
|
"TOC-save removal only supported on ELFv2");
|
|
PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
|
|
|
|
MachineBasicBlock *Entry = &MF->front();
|
|
uint64_t CurrBlockFreq = MBFI->getBlockFreq(MI->getParent()).getFrequency();
|
|
|
|
// If the block in which the TOC save resides is in a block that
|
|
// post-dominates Entry, or a block that is hotter than entry (keep in mind
|
|
// that early MachineLICM has already run so the TOC save won't be hoisted)
|
|
// we can just do the save in the prologue.
|
|
if (CurrBlockFreq > EntryFreq || MPDT->dominates(MI->getParent(), Entry))
|
|
FI->setMustSaveTOC(true);
|
|
|
|
// If we are saving the TOC in the prologue, all the TOC saves can be removed
|
|
// from the code.
|
|
if (FI->mustSaveTOC()) {
|
|
for (auto &TOCSave : TOCSaves)
|
|
TOCSave.second = false;
|
|
// Add new instruction to map.
|
|
TOCSaves[MI] = false;
|
|
return;
|
|
}
|
|
|
|
bool Keep = true;
|
|
for (auto It = TOCSaves.begin(); It != TOCSaves.end(); It++ ) {
|
|
MachineInstr *CurrInst = It->first;
|
|
// If new instruction dominates an existing one, mark existing one as
|
|
// redundant.
|
|
if (It->second && MDT->dominates(MI, CurrInst))
|
|
It->second = false;
|
|
// Check if the new instruction is redundant.
|
|
if (MDT->dominates(CurrInst, MI)) {
|
|
Keep = false;
|
|
break;
|
|
}
|
|
}
|
|
// Add new instruction to map.
|
|
TOCSaves[MI] = Keep;
|
|
}
|
|
|
|
void PPCMIPeephole::unskipableSimplifyCode(void) {
|
|
// If this function has no uses of R2 there is nothing to do here.
|
|
if(MF->getRegInfo().use_empty(PPC::X2))
|
|
return;
|
|
|
|
// This is only for PCRelative calls.
|
|
if (!MF->getSubtarget<PPCSubtarget>().isUsingPCRelativeCalls()) {
|
|
return;
|
|
}
|
|
|
|
// This function has R2 so we need to mark an implicit def for it.
|
|
PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
|
|
FuncInfo->setUsesTOCBasePtr();
|
|
for (MachineBasicBlock &MBB : *MF) {
|
|
for (MachineInstr &MI : MBB) {
|
|
if (MI.getOpcode() == PPC::BL8_NOTOC) {
|
|
// At this point the BL8_NOTOC instruction is not really safe because it
|
|
// assumes that the caller does not need the TOC. It will be safe
|
|
// later once the full PC relative implementation is complete but it is
|
|
// not now.
|
|
// Here we are looking for X2. Since this is Pre-RA the only uses of X2
|
|
// would indicate the use of the TOC. We want to detect all uses of the
|
|
// TOC. Once the work is done we should not see any uses of the TOC.
|
|
// TODO: Once the implementation is complete this should be turned into
|
|
// an assert
|
|
Register Reg = MF->getSubtarget<PPCSubtarget>().getTOCPointerRegister();
|
|
MachineOperand MO = MachineOperand::CreateReg(Reg, false, true);
|
|
MI.addOperand(*MF, MO);
|
|
MI.setDesc(TII->get(PPC::BL8_NOP));
|
|
++NumX2FoundForPCRel;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Perform peephole optimizations.
|
|
bool PPCMIPeephole::simplifyCode(void) {
|
|
bool Simplified = false;
|
|
MachineInstr* ToErase = nullptr;
|
|
std::map<MachineInstr *, bool> TOCSaves;
|
|
const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
|
|
NumFunctionsEnteredInMIPeephole++;
|
|
if (ConvertRegReg) {
|
|
// Fixed-point conversion of reg/reg instructions fed by load-immediate
|
|
// into reg/imm instructions. FIXME: This is expensive, control it with
|
|
// an option.
|
|
bool SomethingChanged = false;
|
|
do {
|
|
NumFixedPointIterations++;
|
|
SomethingChanged = false;
|
|
for (MachineBasicBlock &MBB : *MF) {
|
|
for (MachineInstr &MI : MBB) {
|
|
if (MI.isDebugInstr())
|
|
continue;
|
|
|
|
if (TII->convertToImmediateForm(MI)) {
|
|
// We don't erase anything in case the def has other uses. Let DCE
|
|
// remove it if it can be removed.
|
|
LLVM_DEBUG(dbgs() << "Converted instruction to imm form: ");
|
|
LLVM_DEBUG(MI.dump());
|
|
NumConvertedToImmediateForm++;
|
|
SomethingChanged = true;
|
|
Simplified = true;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
} while (SomethingChanged && FixedPointRegToImm);
|
|
}
|
|
|
|
for (MachineBasicBlock &MBB : *MF) {
|
|
for (MachineInstr &MI : MBB) {
|
|
|
|
// If the previous instruction was marked for elimination,
|
|
// remove it now.
|
|
if (ToErase) {
|
|
ToErase->eraseFromParent();
|
|
ToErase = nullptr;
|
|
}
|
|
|
|
// Ignore debug instructions.
|
|
if (MI.isDebugInstr())
|
|
continue;
|
|
|
|
// Per-opcode peepholes.
|
|
switch (MI.getOpcode()) {
|
|
|
|
default:
|
|
break;
|
|
|
|
case PPC::STD: {
|
|
MachineFrameInfo &MFI = MF->getFrameInfo();
|
|
if (MFI.hasVarSizedObjects() ||
|
|
!MF->getSubtarget<PPCSubtarget>().isELFv2ABI())
|
|
break;
|
|
// When encountering a TOC save instruction, call UpdateTOCSaves
|
|
// to add it to the TOCSaves map and mark any existing TOC saves
|
|
// it dominates as redundant.
|
|
if (TII->isTOCSaveMI(MI))
|
|
UpdateTOCSaves(TOCSaves, &MI);
|
|
break;
|
|
}
|
|
case PPC::XXPERMDI: {
|
|
// Perform simplifications of 2x64 vector swaps and splats.
|
|
// A swap is identified by an immediate value of 2, and a splat
|
|
// is identified by an immediate value of 0 or 3.
|
|
int Immed = MI.getOperand(3).getImm();
|
|
|
|
if (Immed == 1)
|
|
break;
|
|
|
|
// For each of these simplifications, we need the two source
|
|
// regs to match. Unfortunately, MachineCSE ignores COPY and
|
|
// SUBREG_TO_REG, so for example we can see
|
|
// XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), immed.
|
|
// We have to look through chains of COPY and SUBREG_TO_REG
|
|
// to find the real source values for comparison.
|
|
unsigned TrueReg1 =
|
|
TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
|
|
unsigned TrueReg2 =
|
|
TRI->lookThruCopyLike(MI.getOperand(2).getReg(), MRI);
|
|
|
|
if (!(TrueReg1 == TrueReg2 && Register::isVirtualRegister(TrueReg1)))
|
|
break;
|
|
|
|
MachineInstr *DefMI = MRI->getVRegDef(TrueReg1);
|
|
|
|
if (!DefMI)
|
|
break;
|
|
|
|
unsigned DefOpc = DefMI->getOpcode();
|
|
|
|
// If this is a splat fed by a splatting load, the splat is
|
|
// redundant. Replace with a copy. This doesn't happen directly due
|
|
// to code in PPCDAGToDAGISel.cpp, but it can happen when converting
|
|
// a load of a double to a vector of 64-bit integers.
|
|
auto isConversionOfLoadAndSplat = [=]() -> bool {
|
|
if (DefOpc != PPC::XVCVDPSXDS && DefOpc != PPC::XVCVDPUXDS)
|
|
return false;
|
|
unsigned FeedReg1 =
|
|
TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
|
|
if (Register::isVirtualRegister(FeedReg1)) {
|
|
MachineInstr *LoadMI = MRI->getVRegDef(FeedReg1);
|
|
if (LoadMI && LoadMI->getOpcode() == PPC::LXVDSX)
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
if ((Immed == 0 || Immed == 3) &&
|
|
(DefOpc == PPC::LXVDSX || isConversionOfLoadAndSplat())) {
|
|
LLVM_DEBUG(dbgs() << "Optimizing load-and-splat/splat "
|
|
"to load-and-splat/copy: ");
|
|
LLVM_DEBUG(MI.dump());
|
|
BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
|
|
MI.getOperand(0).getReg())
|
|
.add(MI.getOperand(1));
|
|
ToErase = &MI;
|
|
Simplified = true;
|
|
}
|
|
|
|
// If this is a splat or a swap fed by another splat, we
|
|
// can replace it with a copy.
|
|
if (DefOpc == PPC::XXPERMDI) {
|
|
unsigned DefReg1 = DefMI->getOperand(1).getReg();
|
|
unsigned DefReg2 = DefMI->getOperand(2).getReg();
|
|
unsigned DefImmed = DefMI->getOperand(3).getImm();
|
|
|
|
// If the two inputs are not the same register, check to see if
|
|
// they originate from the same virtual register after only
|
|
// copy-like instructions.
|
|
if (DefReg1 != DefReg2) {
|
|
unsigned FeedReg1 = TRI->lookThruCopyLike(DefReg1, MRI);
|
|
unsigned FeedReg2 = TRI->lookThruCopyLike(DefReg2, MRI);
|
|
|
|
if (!(FeedReg1 == FeedReg2 &&
|
|
Register::isVirtualRegister(FeedReg1)))
|
|
break;
|
|
}
|
|
|
|
if (DefImmed == 0 || DefImmed == 3) {
|
|
LLVM_DEBUG(dbgs() << "Optimizing splat/swap or splat/splat "
|
|
"to splat/copy: ");
|
|
LLVM_DEBUG(MI.dump());
|
|
BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
|
|
MI.getOperand(0).getReg())
|
|
.add(MI.getOperand(1));
|
|
ToErase = &MI;
|
|
Simplified = true;
|
|
}
|
|
|
|
// If this is a splat fed by a swap, we can simplify modify
|
|
// the splat to splat the other value from the swap's input
|
|
// parameter.
|
|
else if ((Immed == 0 || Immed == 3) && DefImmed == 2) {
|
|
LLVM_DEBUG(dbgs() << "Optimizing swap/splat => splat: ");
|
|
LLVM_DEBUG(MI.dump());
|
|
MI.getOperand(1).setReg(DefReg1);
|
|
MI.getOperand(2).setReg(DefReg2);
|
|
MI.getOperand(3).setImm(3 - Immed);
|
|
Simplified = true;
|
|
}
|
|
|
|
// If this is a swap fed by a swap, we can replace it
|
|
// with a copy from the first swap's input.
|
|
else if (Immed == 2 && DefImmed == 2) {
|
|
LLVM_DEBUG(dbgs() << "Optimizing swap/swap => copy: ");
|
|
LLVM_DEBUG(MI.dump());
|
|
BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
|
|
MI.getOperand(0).getReg())
|
|
.add(DefMI->getOperand(1));
|
|
ToErase = &MI;
|
|
Simplified = true;
|
|
}
|
|
} else if ((Immed == 0 || Immed == 3) && DefOpc == PPC::XXPERMDIs &&
|
|
(DefMI->getOperand(2).getImm() == 0 ||
|
|
DefMI->getOperand(2).getImm() == 3)) {
|
|
// Splat fed by another splat - switch the output of the first
|
|
// and remove the second.
|
|
DefMI->getOperand(0).setReg(MI.getOperand(0).getReg());
|
|
ToErase = &MI;
|
|
Simplified = true;
|
|
LLVM_DEBUG(dbgs() << "Removing redundant splat: ");
|
|
LLVM_DEBUG(MI.dump());
|
|
}
|
|
break;
|
|
}
|
|
case PPC::VSPLTB:
|
|
case PPC::VSPLTH:
|
|
case PPC::XXSPLTW: {
|
|
unsigned MyOpcode = MI.getOpcode();
|
|
unsigned OpNo = MyOpcode == PPC::XXSPLTW ? 1 : 2;
|
|
unsigned TrueReg =
|
|
TRI->lookThruCopyLike(MI.getOperand(OpNo).getReg(), MRI);
|
|
if (!Register::isVirtualRegister(TrueReg))
|
|
break;
|
|
MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
|
|
if (!DefMI)
|
|
break;
|
|
unsigned DefOpcode = DefMI->getOpcode();
|
|
auto isConvertOfSplat = [=]() -> bool {
|
|
if (DefOpcode != PPC::XVCVSPSXWS && DefOpcode != PPC::XVCVSPUXWS)
|
|
return false;
|
|
Register ConvReg = DefMI->getOperand(1).getReg();
|
|
if (!Register::isVirtualRegister(ConvReg))
|
|
return false;
|
|
MachineInstr *Splt = MRI->getVRegDef(ConvReg);
|
|
return Splt && (Splt->getOpcode() == PPC::LXVWSX ||
|
|
Splt->getOpcode() == PPC::XXSPLTW);
|
|
};
|
|
bool AlreadySplat = (MyOpcode == DefOpcode) ||
|
|
(MyOpcode == PPC::VSPLTB && DefOpcode == PPC::VSPLTBs) ||
|
|
(MyOpcode == PPC::VSPLTH && DefOpcode == PPC::VSPLTHs) ||
|
|
(MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::XXSPLTWs) ||
|
|
(MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::LXVWSX) ||
|
|
(MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::MTVSRWS)||
|
|
(MyOpcode == PPC::XXSPLTW && isConvertOfSplat());
|
|
// If the instruction[s] that feed this splat have already splat
|
|
// the value, this splat is redundant.
|
|
if (AlreadySplat) {
|
|
LLVM_DEBUG(dbgs() << "Changing redundant splat to a copy: ");
|
|
LLVM_DEBUG(MI.dump());
|
|
BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
|
|
MI.getOperand(0).getReg())
|
|
.add(MI.getOperand(OpNo));
|
|
ToErase = &MI;
|
|
Simplified = true;
|
|
}
|
|
// Splat fed by a shift. Usually when we align value to splat into
|
|
// vector element zero.
|
|
if (DefOpcode == PPC::XXSLDWI) {
|
|
Register ShiftRes = DefMI->getOperand(0).getReg();
|
|
Register ShiftOp1 = DefMI->getOperand(1).getReg();
|
|
Register ShiftOp2 = DefMI->getOperand(2).getReg();
|
|
unsigned ShiftImm = DefMI->getOperand(3).getImm();
|
|
unsigned SplatImm = MI.getOperand(2).getImm();
|
|
if (ShiftOp1 == ShiftOp2) {
|
|
unsigned NewElem = (SplatImm + ShiftImm) & 0x3;
|
|
if (MRI->hasOneNonDBGUse(ShiftRes)) {
|
|
LLVM_DEBUG(dbgs() << "Removing redundant shift: ");
|
|
LLVM_DEBUG(DefMI->dump());
|
|
ToErase = DefMI;
|
|
}
|
|
Simplified = true;
|
|
LLVM_DEBUG(dbgs() << "Changing splat immediate from " << SplatImm
|
|
<< " to " << NewElem << " in instruction: ");
|
|
LLVM_DEBUG(MI.dump());
|
|
MI.getOperand(1).setReg(ShiftOp1);
|
|
MI.getOperand(2).setImm(NewElem);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case PPC::XVCVDPSP: {
|
|
// If this is a DP->SP conversion fed by an FRSP, the FRSP is redundant.
|
|
unsigned TrueReg =
|
|
TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
|
|
if (!Register::isVirtualRegister(TrueReg))
|
|
break;
|
|
MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
|
|
|
|
// This can occur when building a vector of single precision or integer
|
|
// values.
|
|
if (DefMI && DefMI->getOpcode() == PPC::XXPERMDI) {
|
|
unsigned DefsReg1 =
|
|
TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
|
|
unsigned DefsReg2 =
|
|
TRI->lookThruCopyLike(DefMI->getOperand(2).getReg(), MRI);
|
|
if (!Register::isVirtualRegister(DefsReg1) ||
|
|
!Register::isVirtualRegister(DefsReg2))
|
|
break;
|
|
MachineInstr *P1 = MRI->getVRegDef(DefsReg1);
|
|
MachineInstr *P2 = MRI->getVRegDef(DefsReg2);
|
|
|
|
if (!P1 || !P2)
|
|
break;
|
|
|
|
// Remove the passed FRSP/XSRSP instruction if it only feeds this MI
|
|
// and set any uses of that FRSP/XSRSP (in this MI) to the source of
|
|
// the FRSP/XSRSP.
|
|
auto removeFRSPIfPossible = [&](MachineInstr *RoundInstr) {
|
|
unsigned Opc = RoundInstr->getOpcode();
|
|
if ((Opc == PPC::FRSP || Opc == PPC::XSRSP) &&
|
|
MRI->hasOneNonDBGUse(RoundInstr->getOperand(0).getReg())) {
|
|
Simplified = true;
|
|
Register ConvReg1 = RoundInstr->getOperand(1).getReg();
|
|
Register FRSPDefines = RoundInstr->getOperand(0).getReg();
|
|
MachineInstr &Use = *(MRI->use_instr_begin(FRSPDefines));
|
|
for (int i = 0, e = Use.getNumOperands(); i < e; ++i)
|
|
if (Use.getOperand(i).isReg() &&
|
|
Use.getOperand(i).getReg() == FRSPDefines)
|
|
Use.getOperand(i).setReg(ConvReg1);
|
|
LLVM_DEBUG(dbgs() << "Removing redundant FRSP/XSRSP:\n");
|
|
LLVM_DEBUG(RoundInstr->dump());
|
|
LLVM_DEBUG(dbgs() << "As it feeds instruction:\n");
|
|
LLVM_DEBUG(MI.dump());
|
|
LLVM_DEBUG(dbgs() << "Through instruction:\n");
|
|
LLVM_DEBUG(DefMI->dump());
|
|
RoundInstr->eraseFromParent();
|
|
}
|
|
};
|
|
|
|
// If the input to XVCVDPSP is a vector that was built (even
|
|
// partially) out of FRSP's, the FRSP(s) can safely be removed
|
|
// since this instruction performs the same operation.
|
|
if (P1 != P2) {
|
|
removeFRSPIfPossible(P1);
|
|
removeFRSPIfPossible(P2);
|
|
break;
|
|
}
|
|
removeFRSPIfPossible(P1);
|
|
}
|
|
break;
|
|
}
|
|
case PPC::EXTSH:
|
|
case PPC::EXTSH8:
|
|
case PPC::EXTSH8_32_64: {
|
|
if (!EnableSExtElimination) break;
|
|
Register NarrowReg = MI.getOperand(1).getReg();
|
|
if (!Register::isVirtualRegister(NarrowReg))
|
|
break;
|
|
|
|
MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
|
|
// If we've used a zero-extending load that we will sign-extend,
|
|
// just do a sign-extending load.
|
|
if (SrcMI->getOpcode() == PPC::LHZ ||
|
|
SrcMI->getOpcode() == PPC::LHZX) {
|
|
if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
|
|
break;
|
|
auto is64Bit = [] (unsigned Opcode) {
|
|
return Opcode == PPC::EXTSH8;
|
|
};
|
|
auto isXForm = [] (unsigned Opcode) {
|
|
return Opcode == PPC::LHZX;
|
|
};
|
|
auto getSextLoadOp = [] (bool is64Bit, bool isXForm) {
|
|
if (is64Bit)
|
|
if (isXForm) return PPC::LHAX8;
|
|
else return PPC::LHA8;
|
|
else
|
|
if (isXForm) return PPC::LHAX;
|
|
else return PPC::LHA;
|
|
};
|
|
unsigned Opc = getSextLoadOp(is64Bit(MI.getOpcode()),
|
|
isXForm(SrcMI->getOpcode()));
|
|
LLVM_DEBUG(dbgs() << "Zero-extending load\n");
|
|
LLVM_DEBUG(SrcMI->dump());
|
|
LLVM_DEBUG(dbgs() << "and sign-extension\n");
|
|
LLVM_DEBUG(MI.dump());
|
|
LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
|
|
SrcMI->setDesc(TII->get(Opc));
|
|
SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
|
|
ToErase = &MI;
|
|
Simplified = true;
|
|
NumEliminatedSExt++;
|
|
}
|
|
break;
|
|
}
|
|
case PPC::EXTSW:
|
|
case PPC::EXTSW_32:
|
|
case PPC::EXTSW_32_64: {
|
|
if (!EnableSExtElimination) break;
|
|
Register NarrowReg = MI.getOperand(1).getReg();
|
|
if (!Register::isVirtualRegister(NarrowReg))
|
|
break;
|
|
|
|
MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
|
|
// If we've used a zero-extending load that we will sign-extend,
|
|
// just do a sign-extending load.
|
|
if (SrcMI->getOpcode() == PPC::LWZ ||
|
|
SrcMI->getOpcode() == PPC::LWZX) {
|
|
if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
|
|
break;
|
|
auto is64Bit = [] (unsigned Opcode) {
|
|
return Opcode == PPC::EXTSW || Opcode == PPC::EXTSW_32_64;
|
|
};
|
|
auto isXForm = [] (unsigned Opcode) {
|
|
return Opcode == PPC::LWZX;
|
|
};
|
|
auto getSextLoadOp = [] (bool is64Bit, bool isXForm) {
|
|
if (is64Bit)
|
|
if (isXForm) return PPC::LWAX;
|
|
else return PPC::LWA;
|
|
else
|
|
if (isXForm) return PPC::LWAX_32;
|
|
else return PPC::LWA_32;
|
|
};
|
|
unsigned Opc = getSextLoadOp(is64Bit(MI.getOpcode()),
|
|
isXForm(SrcMI->getOpcode()));
|
|
LLVM_DEBUG(dbgs() << "Zero-extending load\n");
|
|
LLVM_DEBUG(SrcMI->dump());
|
|
LLVM_DEBUG(dbgs() << "and sign-extension\n");
|
|
LLVM_DEBUG(MI.dump());
|
|
LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
|
|
SrcMI->setDesc(TII->get(Opc));
|
|
SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
|
|
ToErase = &MI;
|
|
Simplified = true;
|
|
NumEliminatedSExt++;
|
|
} else if (MI.getOpcode() == PPC::EXTSW_32_64 &&
|
|
TII->isSignExtended(*SrcMI)) {
|
|
// We can eliminate EXTSW if the input is known to be already
|
|
// sign-extended.
|
|
LLVM_DEBUG(dbgs() << "Removing redundant sign-extension\n");
|
|
Register TmpReg =
|
|
MF->getRegInfo().createVirtualRegister(&PPC::G8RCRegClass);
|
|
BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::IMPLICIT_DEF),
|
|
TmpReg);
|
|
BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::INSERT_SUBREG),
|
|
MI.getOperand(0).getReg())
|
|
.addReg(TmpReg)
|
|
.addReg(NarrowReg)
|
|
.addImm(PPC::sub_32);
|
|
ToErase = &MI;
|
|
Simplified = true;
|
|
NumEliminatedSExt++;
|
|
}
|
|
break;
|
|
}
|
|
case PPC::RLDICL: {
|
|
// We can eliminate RLDICL (e.g. for zero-extension)
|
|
// if all bits to clear are already zero in the input.
|
|
// This code assume following code sequence for zero-extension.
|
|
// %6 = COPY %5:sub_32; (optional)
|
|
// %8 = IMPLICIT_DEF;
|
|
// %7<def,tied1> = INSERT_SUBREG %8<tied0>, %6, sub_32;
|
|
if (!EnableZExtElimination) break;
|
|
|
|
if (MI.getOperand(2).getImm() != 0)
|
|
break;
|
|
|
|
Register SrcReg = MI.getOperand(1).getReg();
|
|
if (!Register::isVirtualRegister(SrcReg))
|
|
break;
|
|
|
|
MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
|
|
if (!(SrcMI && SrcMI->getOpcode() == PPC::INSERT_SUBREG &&
|
|
SrcMI->getOperand(0).isReg() && SrcMI->getOperand(1).isReg()))
|
|
break;
|
|
|
|
MachineInstr *ImpDefMI, *SubRegMI;
|
|
ImpDefMI = MRI->getVRegDef(SrcMI->getOperand(1).getReg());
|
|
SubRegMI = MRI->getVRegDef(SrcMI->getOperand(2).getReg());
|
|
if (ImpDefMI->getOpcode() != PPC::IMPLICIT_DEF) break;
|
|
|
|
SrcMI = SubRegMI;
|
|
if (SubRegMI->getOpcode() == PPC::COPY) {
|
|
Register CopyReg = SubRegMI->getOperand(1).getReg();
|
|
if (Register::isVirtualRegister(CopyReg))
|
|
SrcMI = MRI->getVRegDef(CopyReg);
|
|
}
|
|
|
|
unsigned KnownZeroCount = getKnownLeadingZeroCount(SrcMI, TII);
|
|
if (MI.getOperand(3).getImm() <= KnownZeroCount) {
|
|
LLVM_DEBUG(dbgs() << "Removing redundant zero-extension\n");
|
|
BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
|
|
MI.getOperand(0).getReg())
|
|
.addReg(SrcReg);
|
|
ToErase = &MI;
|
|
Simplified = true;
|
|
NumEliminatedZExt++;
|
|
}
|
|
break;
|
|
}
|
|
|
|
// TODO: Any instruction that has an immediate form fed only by a PHI
|
|
// whose operands are all load immediate can be folded away. We currently
|
|
// do this for ADD instructions, but should expand it to arithmetic and
|
|
// binary instructions with immediate forms in the future.
|
|
case PPC::ADD4:
|
|
case PPC::ADD8: {
|
|
auto isSingleUsePHI = [&](MachineOperand *PhiOp) {
|
|
assert(PhiOp && "Invalid Operand!");
|
|
MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
|
|
|
|
return DefPhiMI && (DefPhiMI->getOpcode() == PPC::PHI) &&
|
|
MRI->hasOneNonDBGUse(DefPhiMI->getOperand(0).getReg());
|
|
};
|
|
|
|
auto dominatesAllSingleUseLIs = [&](MachineOperand *DominatorOp,
|
|
MachineOperand *PhiOp) {
|
|
assert(PhiOp && "Invalid Operand!");
|
|
assert(DominatorOp && "Invalid Operand!");
|
|
MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
|
|
MachineInstr *DefDomMI = getVRegDefOrNull(DominatorOp, MRI);
|
|
|
|
// Note: the vregs only show up at odd indices position of PHI Node,
|
|
// the even indices position save the BB info.
|
|
for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
|
|
MachineInstr *LiMI =
|
|
getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
|
|
if (!LiMI ||
|
|
(LiMI->getOpcode() != PPC::LI && LiMI->getOpcode() != PPC::LI8)
|
|
|| !MRI->hasOneNonDBGUse(LiMI->getOperand(0).getReg()) ||
|
|
!MDT->dominates(DefDomMI, LiMI))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
};
|
|
|
|
MachineOperand Op1 = MI.getOperand(1);
|
|
MachineOperand Op2 = MI.getOperand(2);
|
|
if (isSingleUsePHI(&Op2) && dominatesAllSingleUseLIs(&Op1, &Op2))
|
|
std::swap(Op1, Op2);
|
|
else if (!isSingleUsePHI(&Op1) || !dominatesAllSingleUseLIs(&Op2, &Op1))
|
|
break; // We don't have an ADD fed by LI's that can be transformed
|
|
|
|
// Now we know that Op1 is the PHI node and Op2 is the dominator
|
|
Register DominatorReg = Op2.getReg();
|
|
|
|
const TargetRegisterClass *TRC = MI.getOpcode() == PPC::ADD8
|
|
? &PPC::G8RC_and_G8RC_NOX0RegClass
|
|
: &PPC::GPRC_and_GPRC_NOR0RegClass;
|
|
MRI->setRegClass(DominatorReg, TRC);
|
|
|
|
// replace LIs with ADDIs
|
|
MachineInstr *DefPhiMI = getVRegDefOrNull(&Op1, MRI);
|
|
for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
|
|
MachineInstr *LiMI = getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
|
|
LLVM_DEBUG(dbgs() << "Optimizing LI to ADDI: ");
|
|
LLVM_DEBUG(LiMI->dump());
|
|
|
|
// There could be repeated registers in the PHI, e.g: %1 =
|
|
// PHI %6, <%bb.2>, %8, <%bb.3>, %8, <%bb.6>; So if we've
|
|
// already replaced the def instruction, skip.
|
|
if (LiMI->getOpcode() == PPC::ADDI || LiMI->getOpcode() == PPC::ADDI8)
|
|
continue;
|
|
|
|
assert((LiMI->getOpcode() == PPC::LI ||
|
|
LiMI->getOpcode() == PPC::LI8) &&
|
|
"Invalid Opcode!");
|
|
auto LiImm = LiMI->getOperand(1).getImm(); // save the imm of LI
|
|
LiMI->RemoveOperand(1); // remove the imm of LI
|
|
LiMI->setDesc(TII->get(LiMI->getOpcode() == PPC::LI ? PPC::ADDI
|
|
: PPC::ADDI8));
|
|
MachineInstrBuilder(*LiMI->getParent()->getParent(), *LiMI)
|
|
.addReg(DominatorReg)
|
|
.addImm(LiImm); // restore the imm of LI
|
|
LLVM_DEBUG(LiMI->dump());
|
|
}
|
|
|
|
// Replace ADD with COPY
|
|
LLVM_DEBUG(dbgs() << "Optimizing ADD to COPY: ");
|
|
LLVM_DEBUG(MI.dump());
|
|
BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
|
|
MI.getOperand(0).getReg())
|
|
.add(Op1);
|
|
ToErase = &MI;
|
|
Simplified = true;
|
|
NumOptADDLIs++;
|
|
break;
|
|
}
|
|
case PPC::RLDICR: {
|
|
Simplified |= emitRLDICWhenLoweringJumpTables(MI) ||
|
|
combineSEXTAndSHL(MI, ToErase);
|
|
break;
|
|
}
|
|
case PPC::RLWINM:
|
|
case PPC::RLWINM_rec:
|
|
case PPC::RLWINM8:
|
|
case PPC::RLWINM8_rec: {
|
|
unsigned FoldingReg = MI.getOperand(1).getReg();
|
|
if (!Register::isVirtualRegister(FoldingReg))
|
|
break;
|
|
|
|
MachineInstr *SrcMI = MRI->getVRegDef(FoldingReg);
|
|
if (SrcMI->getOpcode() != PPC::RLWINM &&
|
|
SrcMI->getOpcode() != PPC::RLWINM_rec &&
|
|
SrcMI->getOpcode() != PPC::RLWINM8 &&
|
|
SrcMI->getOpcode() != PPC::RLWINM8_rec)
|
|
break;
|
|
assert((MI.getOperand(2).isImm() && MI.getOperand(3).isImm() &&
|
|
MI.getOperand(4).isImm() && SrcMI->getOperand(2).isImm() &&
|
|
SrcMI->getOperand(3).isImm() && SrcMI->getOperand(4).isImm()) &&
|
|
"Invalid PPC::RLWINM Instruction!");
|
|
uint64_t SHSrc = SrcMI->getOperand(2).getImm();
|
|
uint64_t SHMI = MI.getOperand(2).getImm();
|
|
uint64_t MBSrc = SrcMI->getOperand(3).getImm();
|
|
uint64_t MBMI = MI.getOperand(3).getImm();
|
|
uint64_t MESrc = SrcMI->getOperand(4).getImm();
|
|
uint64_t MEMI = MI.getOperand(4).getImm();
|
|
|
|
assert((MEMI < 32 && MESrc < 32 && MBMI < 32 && MBSrc < 32) &&
|
|
"Invalid PPC::RLWINM Instruction!");
|
|
|
|
// If MBMI is bigger than MEMI, we always can not get run of ones.
|
|
// RotatedSrcMask non-wrap:
|
|
// 0........31|32........63
|
|
// RotatedSrcMask: B---E B---E
|
|
// MaskMI: -----------|--E B------
|
|
// Result: ----- --- (Bad candidate)
|
|
//
|
|
// RotatedSrcMask wrap:
|
|
// 0........31|32........63
|
|
// RotatedSrcMask: --E B----|--E B----
|
|
// MaskMI: -----------|--E B------
|
|
// Result: --- -----|--- ----- (Bad candidate)
|
|
//
|
|
// One special case is RotatedSrcMask is a full set mask.
|
|
// RotatedSrcMask full:
|
|
// 0........31|32........63
|
|
// RotatedSrcMask: ------EB---|-------EB---
|
|
// MaskMI: -----------|--E B------
|
|
// Result: -----------|--- ------- (Good candidate)
|
|
|
|
// Mark special case.
|
|
bool SrcMaskFull = (MBSrc - MESrc == 1) || (MBSrc == 0 && MESrc == 31);
|
|
|
|
// For other MBMI > MEMI cases, just return.
|
|
if ((MBMI > MEMI) && !SrcMaskFull)
|
|
break;
|
|
|
|
// Handle MBMI <= MEMI cases.
|
|
APInt MaskMI = APInt::getBitsSetWithWrap(32, 32 - MEMI - 1, 32 - MBMI);
|
|
// In MI, we only need low 32 bits of SrcMI, just consider about low 32
|
|
// bit of SrcMI mask. Note that in APInt, lowerest bit is at index 0,
|
|
// while in PowerPC ISA, lowerest bit is at index 63.
|
|
APInt MaskSrc =
|
|
APInt::getBitsSetWithWrap(32, 32 - MESrc - 1, 32 - MBSrc);
|
|
// Current APInt::getBitsSetWithWrap sets all bits to 0 if loBit is
|
|
// equal to highBit.
|
|
// If MBSrc - MESrc == 1, we expect a full set mask instead of Null.
|
|
if (SrcMaskFull && (MBSrc - MESrc == 1))
|
|
MaskSrc.setAllBits();
|
|
|
|
APInt RotatedSrcMask = MaskSrc.rotl(SHMI);
|
|
APInt FinalMask = RotatedSrcMask & MaskMI;
|
|
uint32_t NewMB, NewME;
|
|
|
|
// If final mask is 0, MI result should be 0 too.
|
|
if (FinalMask.isNullValue()) {
|
|
bool Is64Bit = (MI.getOpcode() == PPC::RLWINM8 ||
|
|
MI.getOpcode() == PPC::RLWINM8_rec);
|
|
|
|
Simplified = true;
|
|
|
|
LLVM_DEBUG(dbgs() << "Replace Instr: ");
|
|
LLVM_DEBUG(MI.dump());
|
|
|
|
if (MI.getOpcode() == PPC::RLWINM || MI.getOpcode() == PPC::RLWINM8) {
|
|
// Replace MI with "LI 0"
|
|
MI.RemoveOperand(4);
|
|
MI.RemoveOperand(3);
|
|
MI.RemoveOperand(2);
|
|
MI.getOperand(1).ChangeToImmediate(0);
|
|
MI.setDesc(TII->get(Is64Bit ? PPC::LI8 : PPC::LI));
|
|
} else {
|
|
// Replace MI with "ANDI_rec reg, 0"
|
|
MI.RemoveOperand(4);
|
|
MI.RemoveOperand(3);
|
|
MI.getOperand(2).setImm(0);
|
|
MI.setDesc(TII->get(Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec));
|
|
MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
|
|
if (SrcMI->getOperand(1).isKill()) {
|
|
MI.getOperand(1).setIsKill(true);
|
|
SrcMI->getOperand(1).setIsKill(false);
|
|
} else
|
|
// About to replace MI.getOperand(1), clear its kill flag.
|
|
MI.getOperand(1).setIsKill(false);
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "With: ");
|
|
LLVM_DEBUG(MI.dump());
|
|
} else if ((isRunOfOnes((unsigned)(FinalMask.getZExtValue()), NewMB,
|
|
NewME) && NewMB <= NewME)|| SrcMaskFull) {
|
|
// Here we only handle MBMI <= MEMI case, so NewMB must be no bigger
|
|
// than NewME. Otherwise we get a 64 bit value after folding, but MI
|
|
// return a 32 bit value.
|
|
|
|
Simplified = true;
|
|
LLVM_DEBUG(dbgs() << "Converting Instr: ");
|
|
LLVM_DEBUG(MI.dump());
|
|
|
|
uint16_t NewSH = (SHSrc + SHMI) % 32;
|
|
MI.getOperand(2).setImm(NewSH);
|
|
// If SrcMI mask is full, no need to update MBMI and MEMI.
|
|
if (!SrcMaskFull) {
|
|
MI.getOperand(3).setImm(NewMB);
|
|
MI.getOperand(4).setImm(NewME);
|
|
}
|
|
MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
|
|
if (SrcMI->getOperand(1).isKill()) {
|
|
MI.getOperand(1).setIsKill(true);
|
|
SrcMI->getOperand(1).setIsKill(false);
|
|
} else
|
|
// About to replace MI.getOperand(1), clear its kill flag.
|
|
MI.getOperand(1).setIsKill(false);
|
|
|
|
LLVM_DEBUG(dbgs() << "To: ");
|
|
LLVM_DEBUG(MI.dump());
|
|
}
|
|
if (Simplified) {
|
|
// If FoldingReg has no non-debug use and it has no implicit def (it
|
|
// is not RLWINMO or RLWINM8o), it's safe to delete its def SrcMI.
|
|
// Otherwise keep it.
|
|
++NumRotatesCollapsed;
|
|
if (MRI->use_nodbg_empty(FoldingReg) && !SrcMI->hasImplicitDef()) {
|
|
ToErase = SrcMI;
|
|
LLVM_DEBUG(dbgs() << "Delete dead instruction: ");
|
|
LLVM_DEBUG(SrcMI->dump());
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the last instruction was marked for elimination,
|
|
// remove it now.
|
|
if (ToErase) {
|
|
ToErase->eraseFromParent();
|
|
ToErase = nullptr;
|
|
}
|
|
}
|
|
|
|
// Eliminate all the TOC save instructions which are redundant.
|
|
Simplified |= eliminateRedundantTOCSaves(TOCSaves);
|
|
PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
|
|
if (FI->mustSaveTOC())
|
|
NumTOCSavesInPrologue++;
|
|
|
|
// We try to eliminate redundant compare instruction.
|
|
Simplified |= eliminateRedundantCompare();
|
|
|
|
return Simplified;
|
|
}
|
|
|
|
// helper functions for eliminateRedundantCompare
|
|
static bool isEqOrNe(MachineInstr *BI) {
|
|
PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
|
|
unsigned PredCond = PPC::getPredicateCondition(Pred);
|
|
return (PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE);
|
|
}
|
|
|
|
static bool isSupportedCmpOp(unsigned opCode) {
|
|
return (opCode == PPC::CMPLD || opCode == PPC::CMPD ||
|
|
opCode == PPC::CMPLW || opCode == PPC::CMPW ||
|
|
opCode == PPC::CMPLDI || opCode == PPC::CMPDI ||
|
|
opCode == PPC::CMPLWI || opCode == PPC::CMPWI);
|
|
}
|
|
|
|
static bool is64bitCmpOp(unsigned opCode) {
|
|
return (opCode == PPC::CMPLD || opCode == PPC::CMPD ||
|
|
opCode == PPC::CMPLDI || opCode == PPC::CMPDI);
|
|
}
|
|
|
|
static bool isSignedCmpOp(unsigned opCode) {
|
|
return (opCode == PPC::CMPD || opCode == PPC::CMPW ||
|
|
opCode == PPC::CMPDI || opCode == PPC::CMPWI);
|
|
}
|
|
|
|
static unsigned getSignedCmpOpCode(unsigned opCode) {
|
|
if (opCode == PPC::CMPLD) return PPC::CMPD;
|
|
if (opCode == PPC::CMPLW) return PPC::CMPW;
|
|
if (opCode == PPC::CMPLDI) return PPC::CMPDI;
|
|
if (opCode == PPC::CMPLWI) return PPC::CMPWI;
|
|
return opCode;
|
|
}
|
|
|
|
// We can decrement immediate x in (GE x) by changing it to (GT x-1) or
|
|
// (LT x) to (LE x-1)
|
|
static unsigned getPredicateToDecImm(MachineInstr *BI, MachineInstr *CMPI) {
|
|
uint64_t Imm = CMPI->getOperand(2).getImm();
|
|
bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
|
|
if ((!SignedCmp && Imm == 0) || (SignedCmp && Imm == 0x8000))
|
|
return 0;
|
|
|
|
PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
|
|
unsigned PredCond = PPC::getPredicateCondition(Pred);
|
|
unsigned PredHint = PPC::getPredicateHint(Pred);
|
|
if (PredCond == PPC::PRED_GE)
|
|
return PPC::getPredicate(PPC::PRED_GT, PredHint);
|
|
if (PredCond == PPC::PRED_LT)
|
|
return PPC::getPredicate(PPC::PRED_LE, PredHint);
|
|
|
|
return 0;
|
|
}
|
|
|
|
// We can increment immediate x in (GT x) by changing it to (GE x+1) or
|
|
// (LE x) to (LT x+1)
|
|
static unsigned getPredicateToIncImm(MachineInstr *BI, MachineInstr *CMPI) {
|
|
uint64_t Imm = CMPI->getOperand(2).getImm();
|
|
bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
|
|
if ((!SignedCmp && Imm == 0xFFFF) || (SignedCmp && Imm == 0x7FFF))
|
|
return 0;
|
|
|
|
PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
|
|
unsigned PredCond = PPC::getPredicateCondition(Pred);
|
|
unsigned PredHint = PPC::getPredicateHint(Pred);
|
|
if (PredCond == PPC::PRED_GT)
|
|
return PPC::getPredicate(PPC::PRED_GE, PredHint);
|
|
if (PredCond == PPC::PRED_LE)
|
|
return PPC::getPredicate(PPC::PRED_LT, PredHint);
|
|
|
|
return 0;
|
|
}
|
|
|
|
// This takes a Phi node and returns a register value for the specified BB.
|
|
static unsigned getIncomingRegForBlock(MachineInstr *Phi,
|
|
MachineBasicBlock *MBB) {
|
|
for (unsigned I = 2, E = Phi->getNumOperands() + 1; I != E; I += 2) {
|
|
MachineOperand &MO = Phi->getOperand(I);
|
|
if (MO.getMBB() == MBB)
|
|
return Phi->getOperand(I-1).getReg();
|
|
}
|
|
llvm_unreachable("invalid src basic block for this Phi node\n");
|
|
return 0;
|
|
}
|
|
|
|
// This function tracks the source of the register through register copy.
|
|
// If BB1 and BB2 are non-NULL, we also track PHI instruction in BB2
|
|
// assuming that the control comes from BB1 into BB2.
|
|
static unsigned getSrcVReg(unsigned Reg, MachineBasicBlock *BB1,
|
|
MachineBasicBlock *BB2, MachineRegisterInfo *MRI) {
|
|
unsigned SrcReg = Reg;
|
|
while (1) {
|
|
unsigned NextReg = SrcReg;
|
|
MachineInstr *Inst = MRI->getVRegDef(SrcReg);
|
|
if (BB1 && Inst->getOpcode() == PPC::PHI && Inst->getParent() == BB2) {
|
|
NextReg = getIncomingRegForBlock(Inst, BB1);
|
|
// We track through PHI only once to avoid infinite loop.
|
|
BB1 = nullptr;
|
|
}
|
|
else if (Inst->isFullCopy())
|
|
NextReg = Inst->getOperand(1).getReg();
|
|
if (NextReg == SrcReg || !Register::isVirtualRegister(NextReg))
|
|
break;
|
|
SrcReg = NextReg;
|
|
}
|
|
return SrcReg;
|
|
}
|
|
|
|
static bool eligibleForCompareElimination(MachineBasicBlock &MBB,
|
|
MachineBasicBlock *&PredMBB,
|
|
MachineBasicBlock *&MBBtoMoveCmp,
|
|
MachineRegisterInfo *MRI) {
|
|
|
|
auto isEligibleBB = [&](MachineBasicBlock &BB) {
|
|
auto BII = BB.getFirstInstrTerminator();
|
|
// We optimize BBs ending with a conditional branch.
|
|
// We check only for BCC here, not BCCLR, because BCCLR
|
|
// will be formed only later in the pipeline.
|
|
if (BB.succ_size() == 2 &&
|
|
BII != BB.instr_end() &&
|
|
(*BII).getOpcode() == PPC::BCC &&
|
|
(*BII).getOperand(1).isReg()) {
|
|
// We optimize only if the condition code is used only by one BCC.
|
|
Register CndReg = (*BII).getOperand(1).getReg();
|
|
if (!Register::isVirtualRegister(CndReg) || !MRI->hasOneNonDBGUse(CndReg))
|
|
return false;
|
|
|
|
MachineInstr *CMPI = MRI->getVRegDef(CndReg);
|
|
// We assume compare and branch are in the same BB for ease of analysis.
|
|
if (CMPI->getParent() != &BB)
|
|
return false;
|
|
|
|
// We skip this BB if a physical register is used in comparison.
|
|
for (MachineOperand &MO : CMPI->operands())
|
|
if (MO.isReg() && !Register::isVirtualRegister(MO.getReg()))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
|
|
// If this BB has more than one successor, we can create a new BB and
|
|
// move the compare instruction in the new BB.
|
|
// So far, we do not move compare instruction to a BB having multiple
|
|
// successors to avoid potentially increasing code size.
|
|
auto isEligibleForMoveCmp = [](MachineBasicBlock &BB) {
|
|
return BB.succ_size() == 1;
|
|
};
|
|
|
|
if (!isEligibleBB(MBB))
|
|
return false;
|
|
|
|
unsigned NumPredBBs = MBB.pred_size();
|
|
if (NumPredBBs == 1) {
|
|
MachineBasicBlock *TmpMBB = *MBB.pred_begin();
|
|
if (isEligibleBB(*TmpMBB)) {
|
|
PredMBB = TmpMBB;
|
|
MBBtoMoveCmp = nullptr;
|
|
return true;
|
|
}
|
|
}
|
|
else if (NumPredBBs == 2) {
|
|
// We check for partially redundant case.
|
|
// So far, we support cases with only two predecessors
|
|
// to avoid increasing the number of instructions.
|
|
MachineBasicBlock::pred_iterator PI = MBB.pred_begin();
|
|
MachineBasicBlock *Pred1MBB = *PI;
|
|
MachineBasicBlock *Pred2MBB = *(PI+1);
|
|
|
|
if (isEligibleBB(*Pred1MBB) && isEligibleForMoveCmp(*Pred2MBB)) {
|
|
// We assume Pred1MBB is the BB containing the compare to be merged and
|
|
// Pred2MBB is the BB to which we will append a compare instruction.
|
|
// Hence we can proceed as is.
|
|
}
|
|
else if (isEligibleBB(*Pred2MBB) && isEligibleForMoveCmp(*Pred1MBB)) {
|
|
// We need to swap Pred1MBB and Pred2MBB to canonicalize.
|
|
std::swap(Pred1MBB, Pred2MBB);
|
|
}
|
|
else return false;
|
|
|
|
// Here, Pred2MBB is the BB to which we need to append a compare inst.
|
|
// We cannot move the compare instruction if operands are not available
|
|
// in Pred2MBB (i.e. defined in MBB by an instruction other than PHI).
|
|
MachineInstr *BI = &*MBB.getFirstInstrTerminator();
|
|
MachineInstr *CMPI = MRI->getVRegDef(BI->getOperand(1).getReg());
|
|
for (int I = 1; I <= 2; I++)
|
|
if (CMPI->getOperand(I).isReg()) {
|
|
MachineInstr *Inst = MRI->getVRegDef(CMPI->getOperand(I).getReg());
|
|
if (Inst->getParent() == &MBB && Inst->getOpcode() != PPC::PHI)
|
|
return false;
|
|
}
|
|
|
|
PredMBB = Pred1MBB;
|
|
MBBtoMoveCmp = Pred2MBB;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// This function will iterate over the input map containing a pair of TOC save
|
|
// instruction and a flag. The flag will be set to false if the TOC save is
|
|
// proven redundant. This function will erase from the basic block all the TOC
|
|
// saves marked as redundant.
|
|
bool PPCMIPeephole::eliminateRedundantTOCSaves(
|
|
std::map<MachineInstr *, bool> &TOCSaves) {
|
|
bool Simplified = false;
|
|
int NumKept = 0;
|
|
for (auto TOCSave : TOCSaves) {
|
|
if (!TOCSave.second) {
|
|
TOCSave.first->eraseFromParent();
|
|
RemoveTOCSave++;
|
|
Simplified = true;
|
|
} else {
|
|
NumKept++;
|
|
}
|
|
}
|
|
|
|
if (NumKept > 1)
|
|
MultiTOCSaves++;
|
|
|
|
return Simplified;
|
|
}
|
|
|
|
// If multiple conditional branches are executed based on the (essentially)
|
|
// same comparison, we merge compare instructions into one and make multiple
|
|
// conditional branches on this comparison.
|
|
// For example,
|
|
// if (a == 0) { ... }
|
|
// else if (a < 0) { ... }
|
|
// can be executed by one compare and two conditional branches instead of
|
|
// two pairs of a compare and a conditional branch.
|
|
//
|
|
// This method merges two compare instructions in two MBBs and modifies the
|
|
// compare and conditional branch instructions if needed.
|
|
// For the above example, the input for this pass looks like:
|
|
// cmplwi r3, 0
|
|
// beq 0, .LBB0_3
|
|
// cmpwi r3, -1
|
|
// bgt 0, .LBB0_4
|
|
// So, before merging two compares, we need to modify these instructions as
|
|
// cmpwi r3, 0 ; cmplwi and cmpwi yield same result for beq
|
|
// beq 0, .LBB0_3
|
|
// cmpwi r3, 0 ; greather than -1 means greater or equal to 0
|
|
// bge 0, .LBB0_4
|
|
|
|
bool PPCMIPeephole::eliminateRedundantCompare(void) {
|
|
bool Simplified = false;
|
|
|
|
for (MachineBasicBlock &MBB2 : *MF) {
|
|
MachineBasicBlock *MBB1 = nullptr, *MBBtoMoveCmp = nullptr;
|
|
|
|
// For fully redundant case, we select two basic blocks MBB1 and MBB2
|
|
// as an optimization target if
|
|
// - both MBBs end with a conditional branch,
|
|
// - MBB1 is the only predecessor of MBB2, and
|
|
// - compare does not take a physical register as a operand in both MBBs.
|
|
// In this case, eligibleForCompareElimination sets MBBtoMoveCmp nullptr.
|
|
//
|
|
// As partially redundant case, we additionally handle if MBB2 has one
|
|
// additional predecessor, which has only one successor (MBB2).
|
|
// In this case, we move the compare instruction originally in MBB2 into
|
|
// MBBtoMoveCmp. This partially redundant case is typically appear by
|
|
// compiling a while loop; here, MBBtoMoveCmp is the loop preheader.
|
|
//
|
|
// Overview of CFG of related basic blocks
|
|
// Fully redundant case Partially redundant case
|
|
// -------- ---------------- --------
|
|
// | MBB1 | (w/ 2 succ) | MBBtoMoveCmp | | MBB1 | (w/ 2 succ)
|
|
// -------- ---------------- --------
|
|
// | \ (w/ 1 succ) \ | \
|
|
// | \ \ | \
|
|
// | \ |
|
|
// -------- --------
|
|
// | MBB2 | (w/ 1 pred | MBB2 | (w/ 2 pred
|
|
// -------- and 2 succ) -------- and 2 succ)
|
|
// | \ | \
|
|
// | \ | \
|
|
//
|
|
if (!eligibleForCompareElimination(MBB2, MBB1, MBBtoMoveCmp, MRI))
|
|
continue;
|
|
|
|
MachineInstr *BI1 = &*MBB1->getFirstInstrTerminator();
|
|
MachineInstr *CMPI1 = MRI->getVRegDef(BI1->getOperand(1).getReg());
|
|
|
|
MachineInstr *BI2 = &*MBB2.getFirstInstrTerminator();
|
|
MachineInstr *CMPI2 = MRI->getVRegDef(BI2->getOperand(1).getReg());
|
|
bool IsPartiallyRedundant = (MBBtoMoveCmp != nullptr);
|
|
|
|
// We cannot optimize an unsupported compare opcode or
|
|
// a mix of 32-bit and 64-bit comaprisons
|
|
if (!isSupportedCmpOp(CMPI1->getOpcode()) ||
|
|
!isSupportedCmpOp(CMPI2->getOpcode()) ||
|
|
is64bitCmpOp(CMPI1->getOpcode()) != is64bitCmpOp(CMPI2->getOpcode()))
|
|
continue;
|
|
|
|
unsigned NewOpCode = 0;
|
|
unsigned NewPredicate1 = 0, NewPredicate2 = 0;
|
|
int16_t Imm1 = 0, NewImm1 = 0, Imm2 = 0, NewImm2 = 0;
|
|
bool SwapOperands = false;
|
|
|
|
if (CMPI1->getOpcode() != CMPI2->getOpcode()) {
|
|
// Typically, unsigned comparison is used for equality check, but
|
|
// we replace it with a signed comparison if the comparison
|
|
// to be merged is a signed comparison.
|
|
// In other cases of opcode mismatch, we cannot optimize this.
|
|
|
|
// We cannot change opcode when comparing against an immediate
|
|
// if the most significant bit of the immediate is one
|
|
// due to the difference in sign extension.
|
|
auto CmpAgainstImmWithSignBit = [](MachineInstr *I) {
|
|
if (!I->getOperand(2).isImm())
|
|
return false;
|
|
int16_t Imm = (int16_t)I->getOperand(2).getImm();
|
|
return Imm < 0;
|
|
};
|
|
|
|
if (isEqOrNe(BI2) && !CmpAgainstImmWithSignBit(CMPI2) &&
|
|
CMPI1->getOpcode() == getSignedCmpOpCode(CMPI2->getOpcode()))
|
|
NewOpCode = CMPI1->getOpcode();
|
|
else if (isEqOrNe(BI1) && !CmpAgainstImmWithSignBit(CMPI1) &&
|
|
getSignedCmpOpCode(CMPI1->getOpcode()) == CMPI2->getOpcode())
|
|
NewOpCode = CMPI2->getOpcode();
|
|
else continue;
|
|
}
|
|
|
|
if (CMPI1->getOperand(2).isReg() && CMPI2->getOperand(2).isReg()) {
|
|
// In case of comparisons between two registers, these two registers
|
|
// must be same to merge two comparisons.
|
|
unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
|
|
nullptr, nullptr, MRI);
|
|
unsigned Cmp1Operand2 = getSrcVReg(CMPI1->getOperand(2).getReg(),
|
|
nullptr, nullptr, MRI);
|
|
unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
|
|
MBB1, &MBB2, MRI);
|
|
unsigned Cmp2Operand2 = getSrcVReg(CMPI2->getOperand(2).getReg(),
|
|
MBB1, &MBB2, MRI);
|
|
|
|
if (Cmp1Operand1 == Cmp2Operand1 && Cmp1Operand2 == Cmp2Operand2) {
|
|
// Same pair of registers in the same order; ready to merge as is.
|
|
}
|
|
else if (Cmp1Operand1 == Cmp2Operand2 && Cmp1Operand2 == Cmp2Operand1) {
|
|
// Same pair of registers in different order.
|
|
// We reverse the predicate to merge compare instructions.
|
|
PPC::Predicate Pred = (PPC::Predicate)BI2->getOperand(0).getImm();
|
|
NewPredicate2 = (unsigned)PPC::getSwappedPredicate(Pred);
|
|
// In case of partial redundancy, we need to swap operands
|
|
// in another compare instruction.
|
|
SwapOperands = true;
|
|
}
|
|
else continue;
|
|
}
|
|
else if (CMPI1->getOperand(2).isImm() && CMPI2->getOperand(2).isImm()) {
|
|
// In case of comparisons between a register and an immediate,
|
|
// the operand register must be same for two compare instructions.
|
|
unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
|
|
nullptr, nullptr, MRI);
|
|
unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
|
|
MBB1, &MBB2, MRI);
|
|
if (Cmp1Operand1 != Cmp2Operand1)
|
|
continue;
|
|
|
|
NewImm1 = Imm1 = (int16_t)CMPI1->getOperand(2).getImm();
|
|
NewImm2 = Imm2 = (int16_t)CMPI2->getOperand(2).getImm();
|
|
|
|
// If immediate are not same, we try to adjust by changing predicate;
|
|
// e.g. GT imm means GE (imm+1).
|
|
if (Imm1 != Imm2 && (!isEqOrNe(BI2) || !isEqOrNe(BI1))) {
|
|
int Diff = Imm1 - Imm2;
|
|
if (Diff < -2 || Diff > 2)
|
|
continue;
|
|
|
|
unsigned PredToInc1 = getPredicateToIncImm(BI1, CMPI1);
|
|
unsigned PredToDec1 = getPredicateToDecImm(BI1, CMPI1);
|
|
unsigned PredToInc2 = getPredicateToIncImm(BI2, CMPI2);
|
|
unsigned PredToDec2 = getPredicateToDecImm(BI2, CMPI2);
|
|
if (Diff == 2) {
|
|
if (PredToInc2 && PredToDec1) {
|
|
NewPredicate2 = PredToInc2;
|
|
NewPredicate1 = PredToDec1;
|
|
NewImm2++;
|
|
NewImm1--;
|
|
}
|
|
}
|
|
else if (Diff == 1) {
|
|
if (PredToInc2) {
|
|
NewImm2++;
|
|
NewPredicate2 = PredToInc2;
|
|
}
|
|
else if (PredToDec1) {
|
|
NewImm1--;
|
|
NewPredicate1 = PredToDec1;
|
|
}
|
|
}
|
|
else if (Diff == -1) {
|
|
if (PredToDec2) {
|
|
NewImm2--;
|
|
NewPredicate2 = PredToDec2;
|
|
}
|
|
else if (PredToInc1) {
|
|
NewImm1++;
|
|
NewPredicate1 = PredToInc1;
|
|
}
|
|
}
|
|
else if (Diff == -2) {
|
|
if (PredToDec2 && PredToInc1) {
|
|
NewPredicate2 = PredToDec2;
|
|
NewPredicate1 = PredToInc1;
|
|
NewImm2--;
|
|
NewImm1++;
|
|
}
|
|
}
|
|
}
|
|
|
|
// We cannot merge two compares if the immediates are not same.
|
|
if (NewImm2 != NewImm1)
|
|
continue;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Optimize two pairs of compare and branch:\n");
|
|
LLVM_DEBUG(CMPI1->dump());
|
|
LLVM_DEBUG(BI1->dump());
|
|
LLVM_DEBUG(CMPI2->dump());
|
|
LLVM_DEBUG(BI2->dump());
|
|
|
|
// We adjust opcode, predicates and immediate as we determined above.
|
|
if (NewOpCode != 0 && NewOpCode != CMPI1->getOpcode()) {
|
|
CMPI1->setDesc(TII->get(NewOpCode));
|
|
}
|
|
if (NewPredicate1) {
|
|
BI1->getOperand(0).setImm(NewPredicate1);
|
|
}
|
|
if (NewPredicate2) {
|
|
BI2->getOperand(0).setImm(NewPredicate2);
|
|
}
|
|
if (NewImm1 != Imm1) {
|
|
CMPI1->getOperand(2).setImm(NewImm1);
|
|
}
|
|
|
|
if (IsPartiallyRedundant) {
|
|
// We touch up the compare instruction in MBB2 and move it to
|
|
// a previous BB to handle partially redundant case.
|
|
if (SwapOperands) {
|
|
Register Op1 = CMPI2->getOperand(1).getReg();
|
|
Register Op2 = CMPI2->getOperand(2).getReg();
|
|
CMPI2->getOperand(1).setReg(Op2);
|
|
CMPI2->getOperand(2).setReg(Op1);
|
|
}
|
|
if (NewImm2 != Imm2)
|
|
CMPI2->getOperand(2).setImm(NewImm2);
|
|
|
|
for (int I = 1; I <= 2; I++) {
|
|
if (CMPI2->getOperand(I).isReg()) {
|
|
MachineInstr *Inst = MRI->getVRegDef(CMPI2->getOperand(I).getReg());
|
|
if (Inst->getParent() != &MBB2)
|
|
continue;
|
|
|
|
assert(Inst->getOpcode() == PPC::PHI &&
|
|
"We cannot support if an operand comes from this BB.");
|
|
unsigned SrcReg = getIncomingRegForBlock(Inst, MBBtoMoveCmp);
|
|
CMPI2->getOperand(I).setReg(SrcReg);
|
|
}
|
|
}
|
|
auto I = MachineBasicBlock::iterator(MBBtoMoveCmp->getFirstTerminator());
|
|
MBBtoMoveCmp->splice(I, &MBB2, MachineBasicBlock::iterator(CMPI2));
|
|
|
|
DebugLoc DL = CMPI2->getDebugLoc();
|
|
Register NewVReg = MRI->createVirtualRegister(&PPC::CRRCRegClass);
|
|
BuildMI(MBB2, MBB2.begin(), DL,
|
|
TII->get(PPC::PHI), NewVReg)
|
|
.addReg(BI1->getOperand(1).getReg()).addMBB(MBB1)
|
|
.addReg(BI2->getOperand(1).getReg()).addMBB(MBBtoMoveCmp);
|
|
BI2->getOperand(1).setReg(NewVReg);
|
|
}
|
|
else {
|
|
// We finally eliminate compare instruction in MBB2.
|
|
BI2->getOperand(1).setReg(BI1->getOperand(1).getReg());
|
|
CMPI2->eraseFromParent();
|
|
}
|
|
BI2->getOperand(1).setIsKill(true);
|
|
BI1->getOperand(1).setIsKill(false);
|
|
|
|
LLVM_DEBUG(dbgs() << "into a compare and two branches:\n");
|
|
LLVM_DEBUG(CMPI1->dump());
|
|
LLVM_DEBUG(BI1->dump());
|
|
LLVM_DEBUG(BI2->dump());
|
|
if (IsPartiallyRedundant) {
|
|
LLVM_DEBUG(dbgs() << "The following compare is moved into "
|
|
<< printMBBReference(*MBBtoMoveCmp)
|
|
<< " to handle partial redundancy.\n");
|
|
LLVM_DEBUG(CMPI2->dump());
|
|
}
|
|
|
|
Simplified = true;
|
|
}
|
|
|
|
return Simplified;
|
|
}
|
|
|
|
// We miss the opportunity to emit an RLDIC when lowering jump tables
|
|
// since ISEL sees only a single basic block. When selecting, the clear
|
|
// and shift left will be in different blocks.
|
|
bool PPCMIPeephole::emitRLDICWhenLoweringJumpTables(MachineInstr &MI) {
|
|
if (MI.getOpcode() != PPC::RLDICR)
|
|
return false;
|
|
|
|
Register SrcReg = MI.getOperand(1).getReg();
|
|
if (!Register::isVirtualRegister(SrcReg))
|
|
return false;
|
|
|
|
MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
|
|
if (SrcMI->getOpcode() != PPC::RLDICL)
|
|
return false;
|
|
|
|
MachineOperand MOpSHSrc = SrcMI->getOperand(2);
|
|
MachineOperand MOpMBSrc = SrcMI->getOperand(3);
|
|
MachineOperand MOpSHMI = MI.getOperand(2);
|
|
MachineOperand MOpMEMI = MI.getOperand(3);
|
|
if (!(MOpSHSrc.isImm() && MOpMBSrc.isImm() && MOpSHMI.isImm() &&
|
|
MOpMEMI.isImm()))
|
|
return false;
|
|
|
|
uint64_t SHSrc = MOpSHSrc.getImm();
|
|
uint64_t MBSrc = MOpMBSrc.getImm();
|
|
uint64_t SHMI = MOpSHMI.getImm();
|
|
uint64_t MEMI = MOpMEMI.getImm();
|
|
uint64_t NewSH = SHSrc + SHMI;
|
|
uint64_t NewMB = MBSrc - SHMI;
|
|
if (NewMB > 63 || NewSH > 63)
|
|
return false;
|
|
|
|
// The bits cleared with RLDICL are [0, MBSrc).
|
|
// The bits cleared with RLDICR are (MEMI, 63].
|
|
// After the sequence, the bits cleared are:
|
|
// [0, MBSrc-SHMI) and (MEMI, 63).
|
|
//
|
|
// The bits cleared with RLDIC are [0, NewMB) and (63-NewSH, 63].
|
|
if ((63 - NewSH) != MEMI)
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "Converting pair: ");
|
|
LLVM_DEBUG(SrcMI->dump());
|
|
LLVM_DEBUG(MI.dump());
|
|
|
|
MI.setDesc(TII->get(PPC::RLDIC));
|
|
MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
|
|
MI.getOperand(2).setImm(NewSH);
|
|
MI.getOperand(3).setImm(NewMB);
|
|
|
|
LLVM_DEBUG(dbgs() << "To: ");
|
|
LLVM_DEBUG(MI.dump());
|
|
NumRotatesCollapsed++;
|
|
return true;
|
|
}
|
|
|
|
// For case in LLVM IR
|
|
// entry:
|
|
// %iconv = sext i32 %index to i64
|
|
// br i1 undef label %true, label %false
|
|
// true:
|
|
// %ptr = getelementptr inbounds i32, i32* null, i64 %iconv
|
|
// ...
|
|
// PPCISelLowering::combineSHL fails to combine, because sext and shl are in
|
|
// different BBs when conducting instruction selection. We can do a peephole
|
|
// optimization to combine these two instructions into extswsli after
|
|
// instruction selection.
|
|
bool PPCMIPeephole::combineSEXTAndSHL(MachineInstr &MI,
|
|
MachineInstr *&ToErase) {
|
|
if (MI.getOpcode() != PPC::RLDICR)
|
|
return false;
|
|
|
|
if (!MF->getSubtarget<PPCSubtarget>().isISA3_0())
|
|
return false;
|
|
|
|
assert(MI.getNumOperands() == 4 && "RLDICR should have 4 operands");
|
|
|
|
MachineOperand MOpSHMI = MI.getOperand(2);
|
|
MachineOperand MOpMEMI = MI.getOperand(3);
|
|
if (!(MOpSHMI.isImm() && MOpMEMI.isImm()))
|
|
return false;
|
|
|
|
uint64_t SHMI = MOpSHMI.getImm();
|
|
uint64_t MEMI = MOpMEMI.getImm();
|
|
if (SHMI + MEMI != 63)
|
|
return false;
|
|
|
|
Register SrcReg = MI.getOperand(1).getReg();
|
|
if (!Register::isVirtualRegister(SrcReg))
|
|
return false;
|
|
|
|
MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
|
|
if (SrcMI->getOpcode() != PPC::EXTSW &&
|
|
SrcMI->getOpcode() != PPC::EXTSW_32_64)
|
|
return false;
|
|
|
|
// If the register defined by extsw has more than one use, combination is not
|
|
// needed.
|
|
if (!MRI->hasOneNonDBGUse(SrcReg))
|
|
return false;
|
|
|
|
assert(SrcMI->getNumOperands() == 2 && "EXTSW should have 2 operands");
|
|
assert(SrcMI->getOperand(1).isReg() &&
|
|
"EXTSW's second operand should be a register");
|
|
if (!Register::isVirtualRegister(SrcMI->getOperand(1).getReg()))
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "Combining pair: ");
|
|
LLVM_DEBUG(SrcMI->dump());
|
|
LLVM_DEBUG(MI.dump());
|
|
|
|
MachineInstr *NewInstr =
|
|
BuildMI(*MI.getParent(), &MI, MI.getDebugLoc(),
|
|
SrcMI->getOpcode() == PPC::EXTSW ? TII->get(PPC::EXTSWSLI)
|
|
: TII->get(PPC::EXTSWSLI_32_64),
|
|
MI.getOperand(0).getReg())
|
|
.add(SrcMI->getOperand(1))
|
|
.add(MOpSHMI);
|
|
(void)NewInstr;
|
|
|
|
LLVM_DEBUG(dbgs() << "TO: ");
|
|
LLVM_DEBUG(NewInstr->dump());
|
|
++NumEXTSWAndSLDICombined;
|
|
ToErase = &MI;
|
|
// SrcMI, which is extsw, is of no use now, erase it.
|
|
SrcMI->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
} // end default namespace
|
|
|
|
INITIALIZE_PASS_BEGIN(PPCMIPeephole, DEBUG_TYPE,
|
|
"PowerPC MI Peephole Optimization", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
|
|
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
|
|
INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
|
|
INITIALIZE_PASS_END(PPCMIPeephole, DEBUG_TYPE,
|
|
"PowerPC MI Peephole Optimization", false, false)
|
|
|
|
char PPCMIPeephole::ID = 0;
|
|
FunctionPass*
|
|
llvm::createPPCMIPeepholePass() { return new PPCMIPeephole(); }
|
|
|