forked from OSchip/llvm-project
537 lines
18 KiB
C++
537 lines
18 KiB
C++
//===- llvm/unittest/Support/KnownBitsTest.cpp - KnownBits tests ----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements unit tests for KnownBits functions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Support/KnownBits.h"
|
|
#include "KnownBitsTest.h"
|
|
#include "gtest/gtest.h"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
TEST(KnownBitsTest, AddCarryExhaustive) {
|
|
unsigned Bits = 4;
|
|
ForeachKnownBits(Bits, [&](const KnownBits &Known1) {
|
|
ForeachKnownBits(Bits, [&](const KnownBits &Known2) {
|
|
ForeachKnownBits(1, [&](const KnownBits &KnownCarry) {
|
|
// Explicitly compute known bits of the addition by trying all
|
|
// possibilities.
|
|
KnownBits Known(Bits);
|
|
Known.Zero.setAllBits();
|
|
Known.One.setAllBits();
|
|
ForeachNumInKnownBits(Known1, [&](const APInt &N1) {
|
|
ForeachNumInKnownBits(Known2, [&](const APInt &N2) {
|
|
ForeachNumInKnownBits(KnownCarry, [&](const APInt &Carry) {
|
|
APInt Add = N1 + N2;
|
|
if (Carry.getBoolValue())
|
|
++Add;
|
|
|
|
Known.One &= Add;
|
|
Known.Zero &= ~Add;
|
|
});
|
|
});
|
|
});
|
|
|
|
KnownBits KnownComputed =
|
|
KnownBits::computeForAddCarry(Known1, Known2, KnownCarry);
|
|
EXPECT_EQ(Known, KnownComputed);
|
|
});
|
|
});
|
|
});
|
|
}
|
|
|
|
static void TestAddSubExhaustive(bool IsAdd) {
|
|
unsigned Bits = 4;
|
|
ForeachKnownBits(Bits, [&](const KnownBits &Known1) {
|
|
ForeachKnownBits(Bits, [&](const KnownBits &Known2) {
|
|
KnownBits Known(Bits), KnownNSW(Bits);
|
|
Known.Zero.setAllBits();
|
|
Known.One.setAllBits();
|
|
KnownNSW.Zero.setAllBits();
|
|
KnownNSW.One.setAllBits();
|
|
|
|
ForeachNumInKnownBits(Known1, [&](const APInt &N1) {
|
|
ForeachNumInKnownBits(Known2, [&](const APInt &N2) {
|
|
bool Overflow;
|
|
APInt Res;
|
|
if (IsAdd)
|
|
Res = N1.sadd_ov(N2, Overflow);
|
|
else
|
|
Res = N1.ssub_ov(N2, Overflow);
|
|
|
|
Known.One &= Res;
|
|
Known.Zero &= ~Res;
|
|
|
|
if (!Overflow) {
|
|
KnownNSW.One &= Res;
|
|
KnownNSW.Zero &= ~Res;
|
|
}
|
|
});
|
|
});
|
|
|
|
KnownBits KnownComputed =
|
|
KnownBits::computeForAddSub(IsAdd, /*NSW*/ false, Known1, Known2);
|
|
EXPECT_EQ(Known, KnownComputed);
|
|
|
|
// The NSW calculation is not precise, only check that it's
|
|
// conservatively correct.
|
|
KnownBits KnownNSWComputed = KnownBits::computeForAddSub(
|
|
IsAdd, /*NSW*/true, Known1, Known2);
|
|
EXPECT_TRUE(KnownNSWComputed.Zero.isSubsetOf(KnownNSW.Zero));
|
|
EXPECT_TRUE(KnownNSWComputed.One.isSubsetOf(KnownNSW.One));
|
|
});
|
|
});
|
|
}
|
|
|
|
TEST(KnownBitsTest, AddSubExhaustive) {
|
|
TestAddSubExhaustive(true);
|
|
TestAddSubExhaustive(false);
|
|
}
|
|
|
|
TEST(KnownBitsTest, BinaryExhaustive) {
|
|
unsigned Bits = 4;
|
|
ForeachKnownBits(Bits, [&](const KnownBits &Known1) {
|
|
ForeachKnownBits(Bits, [&](const KnownBits &Known2) {
|
|
KnownBits KnownAnd(Bits);
|
|
KnownAnd.Zero.setAllBits();
|
|
KnownAnd.One.setAllBits();
|
|
KnownBits KnownOr(KnownAnd);
|
|
KnownBits KnownXor(KnownAnd);
|
|
KnownBits KnownUMax(KnownAnd);
|
|
KnownBits KnownUMin(KnownAnd);
|
|
KnownBits KnownSMax(KnownAnd);
|
|
KnownBits KnownSMin(KnownAnd);
|
|
KnownBits KnownMul(KnownAnd);
|
|
KnownBits KnownMulHS(KnownAnd);
|
|
KnownBits KnownMulHU(KnownAnd);
|
|
KnownBits KnownUDiv(KnownAnd);
|
|
KnownBits KnownURem(KnownAnd);
|
|
KnownBits KnownSRem(KnownAnd);
|
|
KnownBits KnownShl(KnownAnd);
|
|
KnownBits KnownLShr(KnownAnd);
|
|
KnownBits KnownAShr(KnownAnd);
|
|
|
|
ForeachNumInKnownBits(Known1, [&](const APInt &N1) {
|
|
ForeachNumInKnownBits(Known2, [&](const APInt &N2) {
|
|
APInt Res;
|
|
|
|
Res = N1 & N2;
|
|
KnownAnd.One &= Res;
|
|
KnownAnd.Zero &= ~Res;
|
|
|
|
Res = N1 | N2;
|
|
KnownOr.One &= Res;
|
|
KnownOr.Zero &= ~Res;
|
|
|
|
Res = N1 ^ N2;
|
|
KnownXor.One &= Res;
|
|
KnownXor.Zero &= ~Res;
|
|
|
|
Res = APIntOps::umax(N1, N2);
|
|
KnownUMax.One &= Res;
|
|
KnownUMax.Zero &= ~Res;
|
|
|
|
Res = APIntOps::umin(N1, N2);
|
|
KnownUMin.One &= Res;
|
|
KnownUMin.Zero &= ~Res;
|
|
|
|
Res = APIntOps::smax(N1, N2);
|
|
KnownSMax.One &= Res;
|
|
KnownSMax.Zero &= ~Res;
|
|
|
|
Res = APIntOps::smin(N1, N2);
|
|
KnownSMin.One &= Res;
|
|
KnownSMin.Zero &= ~Res;
|
|
|
|
Res = N1 * N2;
|
|
KnownMul.One &= Res;
|
|
KnownMul.Zero &= ~Res;
|
|
|
|
Res = (N1.sext(2 * Bits) * N2.sext(2 * Bits)).extractBits(Bits, Bits);
|
|
KnownMulHS.One &= Res;
|
|
KnownMulHS.Zero &= ~Res;
|
|
|
|
Res = (N1.zext(2 * Bits) * N2.zext(2 * Bits)).extractBits(Bits, Bits);
|
|
KnownMulHU.One &= Res;
|
|
KnownMulHU.Zero &= ~Res;
|
|
|
|
if (!N2.isZero()) {
|
|
Res = N1.udiv(N2);
|
|
KnownUDiv.One &= Res;
|
|
KnownUDiv.Zero &= ~Res;
|
|
|
|
Res = N1.urem(N2);
|
|
KnownURem.One &= Res;
|
|
KnownURem.Zero &= ~Res;
|
|
|
|
Res = N1.srem(N2);
|
|
KnownSRem.One &= Res;
|
|
KnownSRem.Zero &= ~Res;
|
|
}
|
|
|
|
if (N2.ult(1ULL << N1.getBitWidth())) {
|
|
Res = N1.shl(N2);
|
|
KnownShl.One &= Res;
|
|
KnownShl.Zero &= ~Res;
|
|
|
|
Res = N1.lshr(N2);
|
|
KnownLShr.One &= Res;
|
|
KnownLShr.Zero &= ~Res;
|
|
|
|
Res = N1.ashr(N2);
|
|
KnownAShr.One &= Res;
|
|
KnownAShr.Zero &= ~Res;
|
|
} else {
|
|
KnownShl.resetAll();
|
|
KnownLShr.resetAll();
|
|
KnownAShr.resetAll();
|
|
}
|
|
});
|
|
});
|
|
|
|
KnownBits ComputedAnd = Known1 & Known2;
|
|
EXPECT_EQ(KnownAnd, ComputedAnd);
|
|
|
|
KnownBits ComputedOr = Known1 | Known2;
|
|
EXPECT_EQ(KnownOr, ComputedOr);
|
|
|
|
KnownBits ComputedXor = Known1 ^ Known2;
|
|
EXPECT_EQ(KnownXor, ComputedXor);
|
|
|
|
KnownBits ComputedUMax = KnownBits::umax(Known1, Known2);
|
|
EXPECT_EQ(KnownUMax, ComputedUMax);
|
|
|
|
KnownBits ComputedUMin = KnownBits::umin(Known1, Known2);
|
|
EXPECT_EQ(KnownUMin, ComputedUMin);
|
|
|
|
KnownBits ComputedSMax = KnownBits::smax(Known1, Known2);
|
|
EXPECT_EQ(KnownSMax, ComputedSMax);
|
|
|
|
KnownBits ComputedSMin = KnownBits::smin(Known1, Known2);
|
|
EXPECT_EQ(KnownSMin, ComputedSMin);
|
|
|
|
// The following are conservatively correct, but not guaranteed to be
|
|
// precise.
|
|
KnownBits ComputedMul = KnownBits::mul(Known1, Known2);
|
|
EXPECT_TRUE(ComputedMul.Zero.isSubsetOf(KnownMul.Zero));
|
|
EXPECT_TRUE(ComputedMul.One.isSubsetOf(KnownMul.One));
|
|
|
|
KnownBits ComputedMulHS = KnownBits::mulhs(Known1, Known2);
|
|
EXPECT_TRUE(ComputedMulHS.Zero.isSubsetOf(KnownMulHS.Zero));
|
|
EXPECT_TRUE(ComputedMulHS.One.isSubsetOf(KnownMulHS.One));
|
|
|
|
KnownBits ComputedMulHU = KnownBits::mulhu(Known1, Known2);
|
|
EXPECT_TRUE(ComputedMulHU.Zero.isSubsetOf(KnownMulHU.Zero));
|
|
EXPECT_TRUE(ComputedMulHU.One.isSubsetOf(KnownMulHU.One));
|
|
|
|
KnownBits ComputedUDiv = KnownBits::udiv(Known1, Known2);
|
|
EXPECT_TRUE(ComputedUDiv.Zero.isSubsetOf(KnownUDiv.Zero));
|
|
EXPECT_TRUE(ComputedUDiv.One.isSubsetOf(KnownUDiv.One));
|
|
|
|
KnownBits ComputedURem = KnownBits::urem(Known1, Known2);
|
|
EXPECT_TRUE(ComputedURem.Zero.isSubsetOf(KnownURem.Zero));
|
|
EXPECT_TRUE(ComputedURem.One.isSubsetOf(KnownURem.One));
|
|
|
|
KnownBits ComputedSRem = KnownBits::srem(Known1, Known2);
|
|
EXPECT_TRUE(ComputedSRem.Zero.isSubsetOf(KnownSRem.Zero));
|
|
EXPECT_TRUE(ComputedSRem.One.isSubsetOf(KnownSRem.One));
|
|
|
|
KnownBits ComputedShl = KnownBits::shl(Known1, Known2);
|
|
EXPECT_TRUE(ComputedShl.Zero.isSubsetOf(KnownShl.Zero));
|
|
EXPECT_TRUE(ComputedShl.One.isSubsetOf(KnownShl.One));
|
|
|
|
KnownBits ComputedLShr = KnownBits::lshr(Known1, Known2);
|
|
EXPECT_TRUE(ComputedLShr.Zero.isSubsetOf(KnownLShr.Zero));
|
|
EXPECT_TRUE(ComputedLShr.One.isSubsetOf(KnownLShr.One));
|
|
|
|
KnownBits ComputedAShr = KnownBits::ashr(Known1, Known2);
|
|
EXPECT_TRUE(ComputedAShr.Zero.isSubsetOf(KnownAShr.Zero));
|
|
EXPECT_TRUE(ComputedAShr.One.isSubsetOf(KnownAShr.One));
|
|
});
|
|
});
|
|
|
|
// Also test 'unary' binary cases where the same argument is repeated.
|
|
ForeachKnownBits(Bits, [&](const KnownBits &Known) {
|
|
KnownBits KnownMul(Bits);
|
|
KnownMul.Zero.setAllBits();
|
|
KnownMul.One.setAllBits();
|
|
|
|
ForeachNumInKnownBits(Known, [&](const APInt &N) {
|
|
APInt Res = N * N;
|
|
KnownMul.One &= Res;
|
|
KnownMul.Zero &= ~Res;
|
|
});
|
|
|
|
KnownBits ComputedMul = KnownBits::mul(Known, Known, /*SelfMultiply*/ true);
|
|
EXPECT_TRUE(ComputedMul.Zero.isSubsetOf(KnownMul.Zero));
|
|
EXPECT_TRUE(ComputedMul.One.isSubsetOf(KnownMul.One));
|
|
});
|
|
}
|
|
|
|
TEST(KnownBitsTest, UnaryExhaustive) {
|
|
unsigned Bits = 4;
|
|
ForeachKnownBits(Bits, [&](const KnownBits &Known) {
|
|
KnownBits KnownAbs(Bits);
|
|
KnownAbs.Zero.setAllBits();
|
|
KnownAbs.One.setAllBits();
|
|
KnownBits KnownAbsPoison(KnownAbs);
|
|
|
|
ForeachNumInKnownBits(Known, [&](const APInt &N) {
|
|
APInt Res = N.abs();
|
|
KnownAbs.One &= Res;
|
|
KnownAbs.Zero &= ~Res;
|
|
|
|
if (!N.isMinSignedValue()) {
|
|
KnownAbsPoison.One &= Res;
|
|
KnownAbsPoison.Zero &= ~Res;
|
|
}
|
|
});
|
|
|
|
// abs() is conservatively correct, but not guaranteed to be precise.
|
|
KnownBits ComputedAbs = Known.abs();
|
|
EXPECT_TRUE(ComputedAbs.Zero.isSubsetOf(KnownAbs.Zero));
|
|
EXPECT_TRUE(ComputedAbs.One.isSubsetOf(KnownAbs.One));
|
|
|
|
KnownBits ComputedAbsPoison = Known.abs(true);
|
|
EXPECT_TRUE(ComputedAbsPoison.Zero.isSubsetOf(KnownAbsPoison.Zero));
|
|
EXPECT_TRUE(ComputedAbsPoison.One.isSubsetOf(KnownAbsPoison.One));
|
|
});
|
|
}
|
|
|
|
TEST(KnownBitsTest, ICmpExhaustive) {
|
|
unsigned Bits = 4;
|
|
ForeachKnownBits(Bits, [&](const KnownBits &Known1) {
|
|
ForeachKnownBits(Bits, [&](const KnownBits &Known2) {
|
|
bool AllEQ = true, NoneEQ = true;
|
|
bool AllNE = true, NoneNE = true;
|
|
bool AllUGT = true, NoneUGT = true;
|
|
bool AllUGE = true, NoneUGE = true;
|
|
bool AllULT = true, NoneULT = true;
|
|
bool AllULE = true, NoneULE = true;
|
|
bool AllSGT = true, NoneSGT = true;
|
|
bool AllSGE = true, NoneSGE = true;
|
|
bool AllSLT = true, NoneSLT = true;
|
|
bool AllSLE = true, NoneSLE = true;
|
|
|
|
ForeachNumInKnownBits(Known1, [&](const APInt &N1) {
|
|
ForeachNumInKnownBits(Known2, [&](const APInt &N2) {
|
|
AllEQ &= N1.eq(N2);
|
|
AllNE &= N1.ne(N2);
|
|
AllUGT &= N1.ugt(N2);
|
|
AllUGE &= N1.uge(N2);
|
|
AllULT &= N1.ult(N2);
|
|
AllULE &= N1.ule(N2);
|
|
AllSGT &= N1.sgt(N2);
|
|
AllSGE &= N1.sge(N2);
|
|
AllSLT &= N1.slt(N2);
|
|
AllSLE &= N1.sle(N2);
|
|
NoneEQ &= !N1.eq(N2);
|
|
NoneNE &= !N1.ne(N2);
|
|
NoneUGT &= !N1.ugt(N2);
|
|
NoneUGE &= !N1.uge(N2);
|
|
NoneULT &= !N1.ult(N2);
|
|
NoneULE &= !N1.ule(N2);
|
|
NoneSGT &= !N1.sgt(N2);
|
|
NoneSGE &= !N1.sge(N2);
|
|
NoneSLT &= !N1.slt(N2);
|
|
NoneSLE &= !N1.sle(N2);
|
|
});
|
|
});
|
|
|
|
Optional<bool> KnownEQ = KnownBits::eq(Known1, Known2);
|
|
Optional<bool> KnownNE = KnownBits::ne(Known1, Known2);
|
|
Optional<bool> KnownUGT = KnownBits::ugt(Known1, Known2);
|
|
Optional<bool> KnownUGE = KnownBits::uge(Known1, Known2);
|
|
Optional<bool> KnownULT = KnownBits::ult(Known1, Known2);
|
|
Optional<bool> KnownULE = KnownBits::ule(Known1, Known2);
|
|
Optional<bool> KnownSGT = KnownBits::sgt(Known1, Known2);
|
|
Optional<bool> KnownSGE = KnownBits::sge(Known1, Known2);
|
|
Optional<bool> KnownSLT = KnownBits::slt(Known1, Known2);
|
|
Optional<bool> KnownSLE = KnownBits::sle(Known1, Known2);
|
|
|
|
EXPECT_EQ(AllEQ || NoneEQ, KnownEQ.has_value());
|
|
EXPECT_EQ(AllNE || NoneNE, KnownNE.has_value());
|
|
EXPECT_EQ(AllUGT || NoneUGT, KnownUGT.has_value());
|
|
EXPECT_EQ(AllUGE || NoneUGE, KnownUGE.has_value());
|
|
EXPECT_EQ(AllULT || NoneULT, KnownULT.has_value());
|
|
EXPECT_EQ(AllULE || NoneULE, KnownULE.has_value());
|
|
EXPECT_EQ(AllSGT || NoneSGT, KnownSGT.has_value());
|
|
EXPECT_EQ(AllSGE || NoneSGE, KnownSGE.has_value());
|
|
EXPECT_EQ(AllSLT || NoneSLT, KnownSLT.has_value());
|
|
EXPECT_EQ(AllSLE || NoneSLE, KnownSLE.has_value());
|
|
|
|
EXPECT_EQ(AllEQ, KnownEQ.has_value() && KnownEQ.value());
|
|
EXPECT_EQ(AllNE, KnownNE.has_value() && KnownNE.value());
|
|
EXPECT_EQ(AllUGT, KnownUGT.has_value() && KnownUGT.value());
|
|
EXPECT_EQ(AllUGE, KnownUGE.has_value() && KnownUGE.value());
|
|
EXPECT_EQ(AllULT, KnownULT.has_value() && KnownULT.value());
|
|
EXPECT_EQ(AllULE, KnownULE.has_value() && KnownULE.value());
|
|
EXPECT_EQ(AllSGT, KnownSGT.has_value() && KnownSGT.value());
|
|
EXPECT_EQ(AllSGE, KnownSGE.has_value() && KnownSGE.value());
|
|
EXPECT_EQ(AllSLT, KnownSLT.has_value() && KnownSLT.value());
|
|
EXPECT_EQ(AllSLE, KnownSLE.has_value() && KnownSLE.value());
|
|
|
|
EXPECT_EQ(NoneEQ, KnownEQ.has_value() && !KnownEQ.value());
|
|
EXPECT_EQ(NoneNE, KnownNE.has_value() && !KnownNE.value());
|
|
EXPECT_EQ(NoneUGT, KnownUGT.has_value() && !KnownUGT.value());
|
|
EXPECT_EQ(NoneUGE, KnownUGE.has_value() && !KnownUGE.value());
|
|
EXPECT_EQ(NoneULT, KnownULT.has_value() && !KnownULT.value());
|
|
EXPECT_EQ(NoneULE, KnownULE.has_value() && !KnownULE.value());
|
|
EXPECT_EQ(NoneSGT, KnownSGT.has_value() && !KnownSGT.value());
|
|
EXPECT_EQ(NoneSGE, KnownSGE.has_value() && !KnownSGE.value());
|
|
EXPECT_EQ(NoneSLT, KnownSLT.has_value() && !KnownSLT.value());
|
|
EXPECT_EQ(NoneSLE, KnownSLE.has_value() && !KnownSLE.value());
|
|
});
|
|
});
|
|
}
|
|
|
|
TEST(KnownBitsTest, GetMinMaxVal) {
|
|
unsigned Bits = 4;
|
|
ForeachKnownBits(Bits, [&](const KnownBits &Known) {
|
|
APInt Min = APInt::getMaxValue(Bits);
|
|
APInt Max = APInt::getMinValue(Bits);
|
|
ForeachNumInKnownBits(Known, [&](const APInt &N) {
|
|
Min = APIntOps::umin(Min, N);
|
|
Max = APIntOps::umax(Max, N);
|
|
});
|
|
EXPECT_EQ(Min, Known.getMinValue());
|
|
EXPECT_EQ(Max, Known.getMaxValue());
|
|
});
|
|
}
|
|
|
|
TEST(KnownBitsTest, GetSignedMinMaxVal) {
|
|
unsigned Bits = 4;
|
|
ForeachKnownBits(Bits, [&](const KnownBits &Known) {
|
|
APInt Min = APInt::getSignedMaxValue(Bits);
|
|
APInt Max = APInt::getSignedMinValue(Bits);
|
|
ForeachNumInKnownBits(Known, [&](const APInt &N) {
|
|
Min = APIntOps::smin(Min, N);
|
|
Max = APIntOps::smax(Max, N);
|
|
});
|
|
EXPECT_EQ(Min, Known.getSignedMinValue());
|
|
EXPECT_EQ(Max, Known.getSignedMaxValue());
|
|
});
|
|
}
|
|
|
|
TEST(KnownBitsTest, CountMaxActiveBits) {
|
|
unsigned Bits = 4;
|
|
ForeachKnownBits(Bits, [&](const KnownBits &Known) {
|
|
unsigned Expected = 0;
|
|
ForeachNumInKnownBits(Known, [&](const APInt &N) {
|
|
Expected = std::max(Expected, N.getActiveBits());
|
|
});
|
|
EXPECT_EQ(Expected, Known.countMaxActiveBits());
|
|
});
|
|
}
|
|
|
|
TEST(KnownBitsTest, CountMaxSignificantBits) {
|
|
unsigned Bits = 4;
|
|
ForeachKnownBits(Bits, [&](const KnownBits &Known) {
|
|
unsigned Expected = 0;
|
|
ForeachNumInKnownBits(Known, [&](const APInt &N) {
|
|
Expected = std::max(Expected, N.getSignificantBits());
|
|
});
|
|
EXPECT_EQ(Expected, Known.countMaxSignificantBits());
|
|
});
|
|
}
|
|
|
|
TEST(KnownBitsTest, SExtOrTrunc) {
|
|
const unsigned NarrowerSize = 4;
|
|
const unsigned BaseSize = 6;
|
|
const unsigned WiderSize = 8;
|
|
APInt NegativeFitsNarrower(BaseSize, -4, /*isSigned*/ true);
|
|
APInt NegativeDoesntFitNarrower(BaseSize, -28, /*isSigned*/ true);
|
|
APInt PositiveFitsNarrower(BaseSize, 14);
|
|
APInt PositiveDoesntFitNarrower(BaseSize, 36);
|
|
auto InitKnownBits = [&](KnownBits &Res, const APInt &Input) {
|
|
Res = KnownBits(Input.getBitWidth());
|
|
Res.One = Input;
|
|
Res.Zero = ~Input;
|
|
};
|
|
|
|
for (unsigned Size : {NarrowerSize, BaseSize, WiderSize}) {
|
|
for (const APInt &Input :
|
|
{NegativeFitsNarrower, NegativeDoesntFitNarrower, PositiveFitsNarrower,
|
|
PositiveDoesntFitNarrower}) {
|
|
KnownBits Test;
|
|
InitKnownBits(Test, Input);
|
|
KnownBits Baseline;
|
|
InitKnownBits(Baseline, Input.sextOrTrunc(Size));
|
|
Test = Test.sextOrTrunc(Size);
|
|
EXPECT_EQ(Test, Baseline);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(KnownBitsTest, SExtInReg) {
|
|
unsigned Bits = 4;
|
|
for (unsigned FromBits = 1; FromBits <= Bits; ++FromBits) {
|
|
ForeachKnownBits(Bits, [&](const KnownBits &Known) {
|
|
APInt CommonOne = APInt::getAllOnes(Bits);
|
|
APInt CommonZero = APInt::getAllOnes(Bits);
|
|
unsigned ExtBits = Bits - FromBits;
|
|
ForeachNumInKnownBits(Known, [&](const APInt &N) {
|
|
APInt Ext = N << ExtBits;
|
|
Ext.ashrInPlace(ExtBits);
|
|
CommonOne &= Ext;
|
|
CommonZero &= ~Ext;
|
|
});
|
|
KnownBits KnownSExtInReg = Known.sextInReg(FromBits);
|
|
EXPECT_EQ(CommonOne, KnownSExtInReg.One);
|
|
EXPECT_EQ(CommonZero, KnownSExtInReg.Zero);
|
|
});
|
|
}
|
|
}
|
|
|
|
TEST(KnownBitsTest, CommonBitsSet) {
|
|
unsigned Bits = 4;
|
|
ForeachKnownBits(Bits, [&](const KnownBits &Known1) {
|
|
ForeachKnownBits(Bits, [&](const KnownBits &Known2) {
|
|
bool HasCommonBitsSet = false;
|
|
ForeachNumInKnownBits(Known1, [&](const APInt &N1) {
|
|
ForeachNumInKnownBits(Known2, [&](const APInt &N2) {
|
|
HasCommonBitsSet |= N1.intersects(N2);
|
|
});
|
|
});
|
|
EXPECT_EQ(!HasCommonBitsSet,
|
|
KnownBits::haveNoCommonBitsSet(Known1, Known2));
|
|
});
|
|
});
|
|
}
|
|
|
|
TEST(KnownBitsTest, ConcatBits) {
|
|
unsigned Bits = 4;
|
|
for (unsigned LoBits = 1; LoBits < Bits; ++LoBits) {
|
|
unsigned HiBits = Bits - LoBits;
|
|
ForeachKnownBits(LoBits, [&](const KnownBits &KnownLo) {
|
|
ForeachKnownBits(HiBits, [&](const KnownBits &KnownHi) {
|
|
KnownBits KnownAll = KnownHi.concat(KnownLo);
|
|
|
|
EXPECT_EQ(KnownLo.countMinPopulation() + KnownHi.countMinPopulation(),
|
|
KnownAll.countMinPopulation());
|
|
EXPECT_EQ(KnownLo.countMaxPopulation() + KnownHi.countMaxPopulation(),
|
|
KnownAll.countMaxPopulation());
|
|
|
|
KnownBits ExtractLo = KnownAll.extractBits(LoBits, 0);
|
|
KnownBits ExtractHi = KnownAll.extractBits(HiBits, LoBits);
|
|
|
|
EXPECT_EQ(KnownLo.One.getZExtValue(), ExtractLo.One.getZExtValue());
|
|
EXPECT_EQ(KnownHi.One.getZExtValue(), ExtractHi.One.getZExtValue());
|
|
EXPECT_EQ(KnownLo.Zero.getZExtValue(), ExtractLo.Zero.getZExtValue());
|
|
EXPECT_EQ(KnownHi.Zero.getZExtValue(), ExtractHi.Zero.getZExtValue());
|
|
});
|
|
});
|
|
}
|
|
}
|
|
|
|
} // end anonymous namespace
|