llvm-project/llvm/unittests/IR/ConstantsTest.cpp

804 lines
30 KiB
C++

//===- llvm/unittest/IR/ConstantsTest.cpp - Constants unit tests ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/Constants.h"
#include "llvm-c/Core.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/ConstantFold.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/SourceMgr.h"
#include "gtest/gtest.h"
namespace llvm {
namespace {
TEST(ConstantsTest, Integer_i1) {
LLVMContext Context;
IntegerType *Int1 = IntegerType::get(Context, 1);
Constant *One = ConstantInt::get(Int1, 1, true);
Constant *Zero = ConstantInt::get(Int1, 0);
Constant *NegOne = ConstantInt::get(Int1, static_cast<uint64_t>(-1), true);
EXPECT_EQ(NegOne, ConstantInt::getSigned(Int1, -1));
Constant *Poison = PoisonValue::get(Int1);
// Input: @b = constant i1 add(i1 1 , i1 1)
// Output: @b = constant i1 false
EXPECT_EQ(Zero, ConstantExpr::getAdd(One, One));
// @c = constant i1 add(i1 -1, i1 1)
// @c = constant i1 false
EXPECT_EQ(Zero, ConstantExpr::getAdd(NegOne, One));
// @d = constant i1 add(i1 -1, i1 -1)
// @d = constant i1 false
EXPECT_EQ(Zero, ConstantExpr::getAdd(NegOne, NegOne));
// @e = constant i1 sub(i1 -1, i1 1)
// @e = constant i1 false
EXPECT_EQ(Zero, ConstantExpr::getSub(NegOne, One));
// @f = constant i1 sub(i1 1 , i1 -1)
// @f = constant i1 false
EXPECT_EQ(Zero, ConstantExpr::getSub(One, NegOne));
// @g = constant i1 sub(i1 1 , i1 1)
// @g = constant i1 false
EXPECT_EQ(Zero, ConstantExpr::getSub(One, One));
// @h = constant i1 shl(i1 1 , i1 1) ; poison
// @h = constant i1 poison
EXPECT_EQ(Poison, ConstantExpr::getShl(One, One));
// @i = constant i1 shl(i1 1 , i1 0)
// @i = constant i1 true
EXPECT_EQ(One, ConstantExpr::getShl(One, Zero));
// @j = constant i1 lshr(i1 1, i1 1) ; poison
// @j = constant i1 poison
EXPECT_EQ(Poison, ConstantExpr::getLShr(One, One));
// @m = constant i1 ashr(i1 1, i1 1) ; poison
// @m = constant i1 poison
EXPECT_EQ(Poison, ConstantExpr::getAShr(One, One));
// @n = constant i1 mul(i1 -1, i1 1)
// @n = constant i1 true
EXPECT_EQ(One, ConstantExpr::getMul(NegOne, One));
// @o = constant i1 sdiv(i1 -1, i1 1) ; overflow
// @o = constant i1 true
EXPECT_EQ(One, ConstantFoldBinaryInstruction(Instruction::SDiv, NegOne, One));
// @p = constant i1 sdiv(i1 1 , i1 -1); overflow
// @p = constant i1 true
EXPECT_EQ(One, ConstantFoldBinaryInstruction(Instruction::SDiv, One, NegOne));
// @q = constant i1 udiv(i1 -1, i1 1)
// @q = constant i1 true
EXPECT_EQ(One, ConstantFoldBinaryInstruction(Instruction::UDiv, NegOne, One));
// @r = constant i1 udiv(i1 1, i1 -1)
// @r = constant i1 true
EXPECT_EQ(One, ConstantFoldBinaryInstruction(Instruction::UDiv, One, NegOne));
// @s = constant i1 srem(i1 -1, i1 1) ; overflow
// @s = constant i1 false
EXPECT_EQ(Zero,
ConstantFoldBinaryInstruction(Instruction::SRem, NegOne, One));
// @u = constant i1 srem(i1 1, i1 -1) ; overflow
// @u = constant i1 false
EXPECT_EQ(Zero,
ConstantFoldBinaryInstruction(Instruction::SRem, One, NegOne));
}
TEST(ConstantsTest, IntSigns) {
LLVMContext Context;
IntegerType *Int8Ty = Type::getInt8Ty(Context);
EXPECT_EQ(100, ConstantInt::get(Int8Ty, 100, false)->getSExtValue());
EXPECT_EQ(100, ConstantInt::get(Int8Ty, 100, true)->getSExtValue());
EXPECT_EQ(100, ConstantInt::getSigned(Int8Ty, 100)->getSExtValue());
EXPECT_EQ(-50, ConstantInt::get(Int8Ty, 206)->getSExtValue());
EXPECT_EQ(-50, ConstantInt::getSigned(Int8Ty, -50)->getSExtValue());
EXPECT_EQ(206U, ConstantInt::getSigned(Int8Ty, -50)->getZExtValue());
// Overflow is handled by truncation.
EXPECT_EQ(0x3b, ConstantInt::get(Int8Ty, 0x13b)->getSExtValue());
}
TEST(ConstantsTest, FP128Test) {
LLVMContext Context;
Type *FP128Ty = Type::getFP128Ty(Context);
IntegerType *Int128Ty = Type::getIntNTy(Context, 128);
Constant *Zero128 = Constant::getNullValue(Int128Ty);
Constant *X = ConstantExpr::getUIToFP(Zero128, FP128Ty);
EXPECT_TRUE(isa<ConstantFP>(X));
}
TEST(ConstantsTest, PointerCast) {
LLVMContext C;
Type *Int8PtrTy = Type::getInt8PtrTy(C);
Type *Int32PtrTy = Type::getInt32PtrTy(C);
Type *Int64Ty = Type::getInt64Ty(C);
VectorType *Int8PtrVecTy = FixedVectorType::get(Int8PtrTy, 4);
VectorType *Int32PtrVecTy = FixedVectorType::get(Int32PtrTy, 4);
VectorType *Int64VecTy = FixedVectorType::get(Int64Ty, 4);
VectorType *Int8PtrScalableVecTy = ScalableVectorType::get(Int8PtrTy, 4);
VectorType *Int32PtrScalableVecTy = ScalableVectorType::get(Int32PtrTy, 4);
VectorType *Int64ScalableVecTy = ScalableVectorType::get(Int64Ty, 4);
// ptrtoint i8* to i64
EXPECT_EQ(
Constant::getNullValue(Int64Ty),
ConstantExpr::getPointerCast(Constant::getNullValue(Int8PtrTy), Int64Ty));
// bitcast i8* to i32*
EXPECT_EQ(Constant::getNullValue(Int32PtrTy),
ConstantExpr::getPointerCast(Constant::getNullValue(Int8PtrTy),
Int32PtrTy));
// ptrtoint <4 x i8*> to <4 x i64>
EXPECT_EQ(Constant::getNullValue(Int64VecTy),
ConstantExpr::getPointerCast(Constant::getNullValue(Int8PtrVecTy),
Int64VecTy));
// ptrtoint <vscale x 4 x i8*> to <vscale x 4 x i64>
EXPECT_EQ(
Constant::getNullValue(Int64ScalableVecTy),
ConstantExpr::getPointerCast(Constant::getNullValue(Int8PtrScalableVecTy),
Int64ScalableVecTy));
// bitcast <4 x i8*> to <4 x i32*>
EXPECT_EQ(Constant::getNullValue(Int32PtrVecTy),
ConstantExpr::getPointerCast(Constant::getNullValue(Int8PtrVecTy),
Int32PtrVecTy));
// bitcast <vscale x 4 x i8*> to <vscale x 4 x i32*>
EXPECT_EQ(
Constant::getNullValue(Int32PtrScalableVecTy),
ConstantExpr::getPointerCast(Constant::getNullValue(Int8PtrScalableVecTy),
Int32PtrScalableVecTy));
Type *Int32Ptr1Ty = Type::getInt32PtrTy(C, 1);
ConstantInt *K = ConstantInt::get(Type::getInt64Ty(C), 1234);
// Make sure that addrspacecast of inttoptr is not folded away.
EXPECT_NE(K, ConstantExpr::getAddrSpaceCast(
ConstantExpr::getIntToPtr(K, Int32PtrTy), Int32Ptr1Ty));
EXPECT_NE(K, ConstantExpr::getAddrSpaceCast(
ConstantExpr::getIntToPtr(K, Int32Ptr1Ty), Int32PtrTy));
Constant *NullInt32Ptr0 = Constant::getNullValue(Int32PtrTy);
Constant *NullInt32Ptr1 = Constant::getNullValue(Int32Ptr1Ty);
// Make sure that addrspacecast of null is not folded away.
EXPECT_NE(Constant::getNullValue(Int32PtrTy),
ConstantExpr::getAddrSpaceCast(NullInt32Ptr0, Int32Ptr1Ty));
EXPECT_NE(Constant::getNullValue(Int32Ptr1Ty),
ConstantExpr::getAddrSpaceCast(NullInt32Ptr1, Int32PtrTy));
}
#define CHECK(x, y) \
{ \
std::string __s; \
raw_string_ostream __o(__s); \
Instruction *__I = cast<ConstantExpr>(x)->getAsInstruction(); \
__I->print(__o); \
__I->deleteValue(); \
__o.flush(); \
EXPECT_EQ(std::string(" <badref> = " y), __s); \
}
TEST(ConstantsTest, AsInstructionsTest) {
LLVMContext Context;
std::unique_ptr<Module> M(new Module("MyModule", Context));
Type *Int64Ty = Type::getInt64Ty(Context);
Type *Int32Ty = Type::getInt32Ty(Context);
Type *Int16Ty = Type::getInt16Ty(Context);
Type *Int1Ty = Type::getInt1Ty(Context);
Type *FloatTy = Type::getFloatTy(Context);
Type *DoubleTy = Type::getDoubleTy(Context);
Constant *Global =
M->getOrInsertGlobal("dummy", PointerType::getUnqual(Int32Ty));
Constant *Global2 =
M->getOrInsertGlobal("dummy2", PointerType::getUnqual(Int32Ty));
Constant *P0 = ConstantExpr::getPtrToInt(Global, Int32Ty);
Constant *P1 = ConstantExpr::getUIToFP(P0, FloatTy);
Constant *P2 = ConstantExpr::getUIToFP(P0, DoubleTy);
Constant *P3 = ConstantExpr::getTrunc(P0, Int1Ty);
Constant *P4 = ConstantExpr::getPtrToInt(Global2, Int32Ty);
Constant *P5 = ConstantExpr::getUIToFP(P4, FloatTy);
Constant *P6 = ConstantExpr::getBitCast(P4, FixedVectorType::get(Int16Ty, 2));
Constant *One = ConstantInt::get(Int32Ty, 1);
Constant *Two = ConstantInt::get(Int64Ty, 2);
Constant *Big = ConstantInt::get(Context, APInt{256, uint64_t(-1), true});
Constant *Elt = ConstantInt::get(Int16Ty, 2015);
Constant *Poison16 = PoisonValue::get(Int16Ty);
Constant *Undef64 = UndefValue::get(Int64Ty);
Constant *PoisonV16 = PoisonValue::get(P6->getType());
#define P0STR "ptrtoint (ptr @dummy to i32)"
#define P1STR "uitofp (i32 ptrtoint (ptr @dummy to i32) to float)"
#define P2STR "uitofp (i32 ptrtoint (ptr @dummy to i32) to double)"
#define P3STR "ptrtoint (ptr @dummy to i1)"
#define P4STR "ptrtoint (ptr @dummy2 to i32)"
#define P5STR "uitofp (i32 ptrtoint (ptr @dummy2 to i32) to float)"
#define P6STR "bitcast (i32 ptrtoint (ptr @dummy2 to i32) to <2 x i16>)"
CHECK(ConstantExpr::getNeg(P0), "sub i32 0, " P0STR);
CHECK(ConstantExpr::getFNeg(P1), "fneg float " P1STR);
CHECK(ConstantExpr::getNot(P0), "xor i32 " P0STR ", -1");
CHECK(ConstantExpr::getAdd(P0, P0), "add i32 " P0STR ", " P0STR);
CHECK(ConstantExpr::getAdd(P0, P0, false, true),
"add nsw i32 " P0STR ", " P0STR);
CHECK(ConstantExpr::getAdd(P0, P0, true, true),
"add nuw nsw i32 " P0STR ", " P0STR);
CHECK(ConstantExpr::getSub(P0, P0), "sub i32 " P0STR ", " P0STR);
CHECK(ConstantExpr::getMul(P0, P0), "mul i32 " P0STR ", " P0STR);
CHECK(ConstantExpr::getAnd(P0, P0), "and i32 " P0STR ", " P0STR);
CHECK(ConstantExpr::getOr(P0, P0), "or i32 " P0STR ", " P0STR);
CHECK(ConstantExpr::getXor(P0, P0), "xor i32 " P0STR ", " P0STR);
CHECK(ConstantExpr::getShl(P0, P0), "shl i32 " P0STR ", " P0STR);
CHECK(ConstantExpr::getShl(P0, P0, true), "shl nuw i32 " P0STR ", " P0STR);
CHECK(ConstantExpr::getShl(P0, P0, false, true),
"shl nsw i32 " P0STR ", " P0STR);
CHECK(ConstantExpr::getLShr(P0, P0, false), "lshr i32 " P0STR ", " P0STR);
CHECK(ConstantExpr::getLShr(P0, P0, true),
"lshr exact i32 " P0STR ", " P0STR);
CHECK(ConstantExpr::getAShr(P0, P0, false), "ashr i32 " P0STR ", " P0STR);
CHECK(ConstantExpr::getAShr(P0, P0, true),
"ashr exact i32 " P0STR ", " P0STR);
CHECK(ConstantExpr::getSExt(P0, Int64Ty), "sext i32 " P0STR " to i64");
CHECK(ConstantExpr::getZExt(P0, Int64Ty), "zext i32 " P0STR " to i64");
CHECK(ConstantExpr::getFPTrunc(P2, FloatTy),
"fptrunc double " P2STR " to float");
CHECK(ConstantExpr::getFPExtend(P1, DoubleTy),
"fpext float " P1STR " to double");
CHECK(ConstantExpr::getSelect(P3, P0, P4),
"select i1 " P3STR ", i32 " P0STR ", i32 " P4STR);
CHECK(ConstantExpr::getICmp(CmpInst::ICMP_EQ, P0, P4),
"icmp eq i32 " P0STR ", " P4STR);
CHECK(ConstantExpr::getFCmp(CmpInst::FCMP_ULT, P1, P5),
"fcmp ult float " P1STR ", " P5STR);
std::vector<Constant *> V;
V.push_back(One);
// FIXME: getGetElementPtr() actually creates an inbounds ConstantGEP,
// not a normal one!
// CHECK(ConstantExpr::getGetElementPtr(Global, V, false),
// "getelementptr i32*, i32** @dummy, i32 1");
CHECK(ConstantExpr::getInBoundsGetElementPtr(PointerType::getUnqual(Int32Ty),
Global, V),
"getelementptr inbounds ptr, ptr @dummy, i32 1");
CHECK(ConstantExpr::getExtractElement(P6, One),
"extractelement <2 x i16> " P6STR ", i32 1");
EXPECT_EQ(Poison16, ConstantExpr::getExtractElement(P6, Two));
EXPECT_EQ(Poison16, ConstantExpr::getExtractElement(P6, Big));
EXPECT_EQ(Poison16, ConstantExpr::getExtractElement(P6, Undef64));
EXPECT_EQ(Elt, ConstantExpr::getExtractElement(
ConstantExpr::getInsertElement(P6, Elt, One), One));
EXPECT_EQ(PoisonV16, ConstantExpr::getInsertElement(P6, Elt, Two));
EXPECT_EQ(PoisonV16, ConstantExpr::getInsertElement(P6, Elt, Big));
EXPECT_EQ(PoisonV16, ConstantExpr::getInsertElement(P6, Elt, Undef64));
}
#ifdef GTEST_HAS_DEATH_TEST
#ifndef NDEBUG
TEST(ConstantsTest, ReplaceWithConstantTest) {
LLVMContext Context;
std::unique_ptr<Module> M(new Module("MyModule", Context));
Type *Int32Ty = Type::getInt32Ty(Context);
Constant *One = ConstantInt::get(Int32Ty, 1);
Constant *Global =
M->getOrInsertGlobal("dummy", PointerType::getUnqual(Int32Ty));
Constant *GEP = ConstantExpr::getGetElementPtr(
PointerType::getUnqual(Int32Ty), Global, One);
EXPECT_DEATH(Global->replaceAllUsesWith(GEP),
"this->replaceAllUsesWith\\(expr\\(this\\)\\) is NOT valid!");
}
#endif
#endif
#undef CHECK
TEST(ConstantsTest, ConstantArrayReplaceWithConstant) {
LLVMContext Context;
std::unique_ptr<Module> M(new Module("MyModule", Context));
Type *IntTy = Type::getInt8Ty(Context);
ArrayType *ArrayTy = ArrayType::get(IntTy, 2);
Constant *A01Vals[2] = {ConstantInt::get(IntTy, 0),
ConstantInt::get(IntTy, 1)};
Constant *A01 = ConstantArray::get(ArrayTy, A01Vals);
Constant *Global = new GlobalVariable(*M, IntTy, false,
GlobalValue::ExternalLinkage, nullptr);
Constant *GlobalInt = ConstantExpr::getPtrToInt(Global, IntTy);
Constant *A0GVals[2] = {ConstantInt::get(IntTy, 0), GlobalInt};
Constant *A0G = ConstantArray::get(ArrayTy, A0GVals);
ASSERT_NE(A01, A0G);
GlobalVariable *RefArray =
new GlobalVariable(*M, ArrayTy, false, GlobalValue::ExternalLinkage, A0G);
ASSERT_EQ(A0G, RefArray->getInitializer());
GlobalInt->replaceAllUsesWith(ConstantInt::get(IntTy, 1));
ASSERT_EQ(A01, RefArray->getInitializer());
}
TEST(ConstantsTest, ConstantExprReplaceWithConstant) {
LLVMContext Context;
std::unique_ptr<Module> M(new Module("MyModule", Context));
Type *IntTy = Type::getInt8Ty(Context);
Constant *G1 = new GlobalVariable(*M, IntTy, false,
GlobalValue::ExternalLinkage, nullptr);
Constant *G2 = new GlobalVariable(*M, IntTy, false,
GlobalValue::ExternalLinkage, nullptr);
ASSERT_NE(G1, G2);
Constant *Int1 = ConstantExpr::getPtrToInt(G1, IntTy);
Constant *Int2 = ConstantExpr::getPtrToInt(G2, IntTy);
ASSERT_NE(Int1, Int2);
GlobalVariable *Ref =
new GlobalVariable(*M, IntTy, false, GlobalValue::ExternalLinkage, Int1);
ASSERT_EQ(Int1, Ref->getInitializer());
G1->replaceAllUsesWith(G2);
ASSERT_EQ(Int2, Ref->getInitializer());
}
TEST(ConstantsTest, GEPReplaceWithConstant) {
LLVMContext Context;
std::unique_ptr<Module> M(new Module("MyModule", Context));
Type *IntTy = Type::getInt32Ty(Context);
Type *PtrTy = PointerType::get(IntTy, 0);
auto *C1 = ConstantInt::get(IntTy, 1);
auto *Placeholder = new GlobalVariable(
*M, IntTy, false, GlobalValue::ExternalWeakLinkage, nullptr);
auto *GEP = ConstantExpr::getGetElementPtr(IntTy, Placeholder, C1);
ASSERT_EQ(GEP->getOperand(0), Placeholder);
auto *Ref =
new GlobalVariable(*M, PtrTy, false, GlobalValue::ExternalLinkage, GEP);
ASSERT_EQ(GEP, Ref->getInitializer());
auto *Global = new GlobalVariable(*M, IntTy, false,
GlobalValue::ExternalLinkage, nullptr);
auto *Alias = GlobalAlias::create(IntTy, 0, GlobalValue::ExternalLinkage,
"alias", Global, M.get());
Placeholder->replaceAllUsesWith(Alias);
ASSERT_EQ(GEP, Ref->getInitializer());
ASSERT_EQ(GEP->getOperand(0), Alias);
}
TEST(ConstantsTest, AliasCAPI) {
LLVMContext Context;
SMDiagnostic Error;
std::unique_ptr<Module> M =
parseAssemblyString("@g = global i32 42", Error, Context);
GlobalVariable *G = M->getGlobalVariable("g");
Type *I16Ty = Type::getInt16Ty(Context);
Type *I16PTy = PointerType::get(I16Ty, 0);
Constant *Aliasee = ConstantExpr::getBitCast(G, I16PTy);
LLVMValueRef AliasRef =
LLVMAddAlias2(wrap(M.get()), wrap(I16Ty), 0, wrap(Aliasee), "a");
ASSERT_EQ(unwrap<GlobalAlias>(AliasRef)->getAliasee(), Aliasee);
}
static std::string getNameOfType(Type *T) {
std::string S;
raw_string_ostream RSOS(S);
T->print(RSOS);
return S;
}
TEST(ConstantsTest, BuildConstantDataArrays) {
LLVMContext Context;
for (Type *T : {Type::getInt8Ty(Context), Type::getInt16Ty(Context),
Type::getInt32Ty(Context), Type::getInt64Ty(Context)}) {
ArrayType *ArrayTy = ArrayType::get(T, 2);
Constant *Vals[] = {ConstantInt::get(T, 0), ConstantInt::get(T, 1)};
Constant *CA = ConstantArray::get(ArrayTy, Vals);
ASSERT_TRUE(isa<ConstantDataArray>(CA)) << " T = " << getNameOfType(T);
auto *CDA = cast<ConstantDataArray>(CA);
Constant *CA2 = ConstantDataArray::getRaw(
CDA->getRawDataValues(), CDA->getNumElements(), CDA->getElementType());
ASSERT_TRUE(CA == CA2) << " T = " << getNameOfType(T);
}
for (Type *T : {Type::getHalfTy(Context), Type::getBFloatTy(Context),
Type::getFloatTy(Context), Type::getDoubleTy(Context)}) {
ArrayType *ArrayTy = ArrayType::get(T, 2);
Constant *Vals[] = {ConstantFP::get(T, 0), ConstantFP::get(T, 1)};
Constant *CA = ConstantArray::get(ArrayTy, Vals);
ASSERT_TRUE(isa<ConstantDataArray>(CA)) << " T = " << getNameOfType(T);
auto *CDA = cast<ConstantDataArray>(CA);
Constant *CA2 = ConstantDataArray::getRaw(
CDA->getRawDataValues(), CDA->getNumElements(), CDA->getElementType());
ASSERT_TRUE(CA == CA2) << " T = " << getNameOfType(T);
}
}
TEST(ConstantsTest, BuildConstantDataVectors) {
LLVMContext Context;
for (Type *T : {Type::getInt8Ty(Context), Type::getInt16Ty(Context),
Type::getInt32Ty(Context), Type::getInt64Ty(Context)}) {
Constant *Vals[] = {ConstantInt::get(T, 0), ConstantInt::get(T, 1)};
Constant *CV = ConstantVector::get(Vals);
ASSERT_TRUE(isa<ConstantDataVector>(CV)) << " T = " << getNameOfType(T);
auto *CDV = cast<ConstantDataVector>(CV);
Constant *CV2 = ConstantDataVector::getRaw(
CDV->getRawDataValues(), CDV->getNumElements(), CDV->getElementType());
ASSERT_TRUE(CV == CV2) << " T = " << getNameOfType(T);
}
for (Type *T : {Type::getHalfTy(Context), Type::getBFloatTy(Context),
Type::getFloatTy(Context), Type::getDoubleTy(Context)}) {
Constant *Vals[] = {ConstantFP::get(T, 0), ConstantFP::get(T, 1)};
Constant *CV = ConstantVector::get(Vals);
ASSERT_TRUE(isa<ConstantDataVector>(CV)) << " T = " << getNameOfType(T);
auto *CDV = cast<ConstantDataVector>(CV);
Constant *CV2 = ConstantDataVector::getRaw(
CDV->getRawDataValues(), CDV->getNumElements(), CDV->getElementType());
ASSERT_TRUE(CV == CV2) << " T = " << getNameOfType(T);
}
}
void bitcastToGEPHelper(bool useOpaquePointers) {
LLVMContext Context;
Context.setOpaquePointers(useOpaquePointers);
std::unique_ptr<Module> M(new Module("MyModule", Context));
auto *i32 = Type::getInt32Ty(Context);
auto *U = StructType::create(Context, "Unsized");
Type *EltTys[] = {i32, U};
auto *S = StructType::create(EltTys);
auto *G =
new GlobalVariable(*M, S, false, GlobalValue::ExternalLinkage, nullptr);
auto *PtrTy = PointerType::get(i32, 0);
auto *C = ConstantExpr::getBitCast(G, PtrTy);
if (Context.supportsTypedPointers()) {
EXPECT_EQ(cast<ConstantExpr>(C)->getOpcode(), Instruction::BitCast);
} else {
/* With opaque pointers, no cast is necessary. */
EXPECT_EQ(C, G);
}
}
TEST(ConstantsTest, BitcastToGEP) {
bitcastToGEPHelper(true);
bitcastToGEPHelper(false);
}
bool foldFuncPtrAndConstToNull(LLVMContext &Context, Module *TheModule,
uint64_t AndValue,
MaybeAlign FunctionAlign = llvm::None) {
Type *VoidType(Type::getVoidTy(Context));
FunctionType *FuncType(FunctionType::get(VoidType, false));
Function *Func(
Function::Create(FuncType, GlobalValue::ExternalLinkage, "", TheModule));
if (FunctionAlign)
Func->setAlignment(*FunctionAlign);
IntegerType *ConstantIntType(Type::getInt32Ty(Context));
ConstantInt *TheConstant(ConstantInt::get(ConstantIntType, AndValue));
Constant *TheConstantExpr(ConstantExpr::getPtrToInt(Func, ConstantIntType));
bool Result =
ConstantExpr::get(Instruction::And, TheConstantExpr, TheConstant)
->isNullValue();
if (!TheModule) {
// If the Module exists then it will delete the Function.
delete Func;
}
return Result;
}
TEST(ConstantsTest, FoldFunctionPtrAlignUnknownAnd2) {
LLVMContext Context;
Module TheModule("TestModule", Context);
// When the DataLayout doesn't specify a function pointer alignment we
// assume in this case that it is 4 byte aligned. This is a bug but we can't
// fix it directly because it causes a code size regression on X86.
// FIXME: This test should be changed once existing targets have
// appropriate defaults. See associated FIXME in ConstantFoldBinaryInstruction
ASSERT_TRUE(foldFuncPtrAndConstToNull(Context, &TheModule, 2));
}
TEST(ConstantsTest, DontFoldFunctionPtrAlignUnknownAnd4) {
LLVMContext Context;
Module TheModule("TestModule", Context);
ASSERT_FALSE(foldFuncPtrAndConstToNull(Context, &TheModule, 4));
}
TEST(ConstantsTest, FoldFunctionPtrAlign4) {
LLVMContext Context;
Module TheModule("TestModule", Context);
const char *AlignmentStrings[] = {"Fi32", "Fn32"};
for (unsigned AndValue = 1; AndValue <= 2; ++AndValue) {
for (const char *AlignmentString : AlignmentStrings) {
TheModule.setDataLayout(AlignmentString);
ASSERT_TRUE(foldFuncPtrAndConstToNull(Context, &TheModule, AndValue));
}
}
}
TEST(ConstantsTest, DontFoldFunctionPtrAlign1) {
LLVMContext Context;
Module TheModule("TestModule", Context);
const char *AlignmentStrings[] = {"Fi8", "Fn8"};
for (const char *AlignmentString : AlignmentStrings) {
TheModule.setDataLayout(AlignmentString);
ASSERT_FALSE(foldFuncPtrAndConstToNull(Context, &TheModule, 2));
}
}
TEST(ConstantsTest, FoldFunctionAlign4PtrAlignMultiple) {
LLVMContext Context;
Module TheModule("TestModule", Context);
TheModule.setDataLayout("Fn8");
ASSERT_TRUE(foldFuncPtrAndConstToNull(Context, &TheModule, 2, Align(4)));
}
TEST(ConstantsTest, DontFoldFunctionAlign4PtrAlignIndependent) {
LLVMContext Context;
Module TheModule("TestModule", Context);
TheModule.setDataLayout("Fi8");
ASSERT_FALSE(foldFuncPtrAndConstToNull(Context, &TheModule, 2, Align(4)));
}
TEST(ConstantsTest, DontFoldFunctionPtrIfNoModule) {
LLVMContext Context;
// Even though the function is explicitly 4 byte aligned, in the absence of a
// DataLayout we can't assume that the function pointer is aligned.
ASSERT_FALSE(foldFuncPtrAndConstToNull(Context, nullptr, 2, Align(4)));
}
TEST(ConstantsTest, FoldGlobalVariablePtr) {
LLVMContext Context;
IntegerType *IntType(Type::getInt32Ty(Context));
std::unique_ptr<GlobalVariable> Global(
new GlobalVariable(IntType, true, GlobalValue::ExternalLinkage));
Global->setAlignment(Align(4));
ConstantInt *TheConstant(ConstantInt::get(IntType, 2));
Constant *TheConstantExpr(ConstantExpr::getPtrToInt(Global.get(), IntType));
ASSERT_TRUE(ConstantExpr::get(Instruction::And, TheConstantExpr, TheConstant)
->isNullValue());
}
// Check that containsUndefOrPoisonElement and containsPoisonElement is working
// great
TEST(ConstantsTest, containsUndefElemTest) {
LLVMContext Context;
Type *Int32Ty = Type::getInt32Ty(Context);
Constant *CU = UndefValue::get(Int32Ty);
Constant *CP = PoisonValue::get(Int32Ty);
Constant *C1 = ConstantInt::get(Int32Ty, 1);
Constant *C2 = ConstantInt::get(Int32Ty, 2);
{
Constant *V1 = ConstantVector::get({C1, C2});
EXPECT_FALSE(V1->containsUndefOrPoisonElement());
EXPECT_FALSE(V1->containsPoisonElement());
}
{
Constant *V2 = ConstantVector::get({C1, CU});
EXPECT_TRUE(V2->containsUndefOrPoisonElement());
EXPECT_FALSE(V2->containsPoisonElement());
}
{
Constant *V3 = ConstantVector::get({C1, CP});
EXPECT_TRUE(V3->containsUndefOrPoisonElement());
EXPECT_TRUE(V3->containsPoisonElement());
}
{
Constant *V4 = ConstantVector::get({CU, CP});
EXPECT_TRUE(V4->containsUndefOrPoisonElement());
EXPECT_TRUE(V4->containsPoisonElement());
}
}
// Check that undefined elements in vector constants are matched
// correctly for both integer and floating-point types. Just don't
// crash on vectors of pointers (could be handled?).
TEST(ConstantsTest, isElementWiseEqual) {
LLVMContext Context;
Type *Int32Ty = Type::getInt32Ty(Context);
Constant *CU = UndefValue::get(Int32Ty);
Constant *C1 = ConstantInt::get(Int32Ty, 1);
Constant *C2 = ConstantInt::get(Int32Ty, 2);
Constant *C1211 = ConstantVector::get({C1, C2, C1, C1});
Constant *C12U1 = ConstantVector::get({C1, C2, CU, C1});
Constant *C12U2 = ConstantVector::get({C1, C2, CU, C2});
Constant *C12U21 = ConstantVector::get({C1, C2, CU, C2, C1});
EXPECT_TRUE(C1211->isElementWiseEqual(C12U1));
EXPECT_TRUE(C12U1->isElementWiseEqual(C1211));
EXPECT_FALSE(C12U2->isElementWiseEqual(C12U1));
EXPECT_FALSE(C12U1->isElementWiseEqual(C12U2));
EXPECT_FALSE(C12U21->isElementWiseEqual(C12U2));
Type *FltTy = Type::getFloatTy(Context);
Constant *CFU = UndefValue::get(FltTy);
Constant *CF1 = ConstantFP::get(FltTy, 1.0);
Constant *CF2 = ConstantFP::get(FltTy, 2.0);
Constant *CF1211 = ConstantVector::get({CF1, CF2, CF1, CF1});
Constant *CF12U1 = ConstantVector::get({CF1, CF2, CFU, CF1});
Constant *CF12U2 = ConstantVector::get({CF1, CF2, CFU, CF2});
Constant *CFUU1U = ConstantVector::get({CFU, CFU, CF1, CFU});
EXPECT_TRUE(CF1211->isElementWiseEqual(CF12U1));
EXPECT_TRUE(CF12U1->isElementWiseEqual(CF1211));
EXPECT_TRUE(CFUU1U->isElementWiseEqual(CF12U1));
EXPECT_FALSE(CF12U2->isElementWiseEqual(CF12U1));
EXPECT_FALSE(CF12U1->isElementWiseEqual(CF12U2));
PointerType *PtrTy = Type::getInt8PtrTy(Context);
Constant *CPU = UndefValue::get(PtrTy);
Constant *CP0 = ConstantPointerNull::get(PtrTy);
Constant *CP0000 = ConstantVector::get({CP0, CP0, CP0, CP0});
Constant *CP00U0 = ConstantVector::get({CP0, CP0, CPU, CP0});
Constant *CP00U = ConstantVector::get({CP0, CP0, CPU});
EXPECT_FALSE(CP0000->isElementWiseEqual(CP00U0));
EXPECT_FALSE(CP00U0->isElementWiseEqual(CP0000));
EXPECT_FALSE(CP0000->isElementWiseEqual(CP00U));
EXPECT_FALSE(CP00U->isElementWiseEqual(CP00U0));
}
// Check that vector/aggregate constants correctly store undef and poison
// elements.
TEST(ConstantsTest, CheckElementWiseUndefPoison) {
LLVMContext Context;
Type *Int32Ty = Type::getInt32Ty(Context);
StructType *STy = StructType::get(Int32Ty, Int32Ty);
ArrayType *ATy = ArrayType::get(Int32Ty, 2);
Constant *CU = UndefValue::get(Int32Ty);
Constant *CP = PoisonValue::get(Int32Ty);
{
Constant *CUU = ConstantVector::get({CU, CU});
Constant *CPP = ConstantVector::get({CP, CP});
Constant *CUP = ConstantVector::get({CU, CP});
Constant *CPU = ConstantVector::get({CP, CU});
EXPECT_EQ(CUU, UndefValue::get(CUU->getType()));
EXPECT_EQ(CPP, PoisonValue::get(CPP->getType()));
EXPECT_NE(CUP, UndefValue::get(CUP->getType()));
EXPECT_NE(CPU, UndefValue::get(CPU->getType()));
}
{
Constant *CUU = ConstantStruct::get(STy, {CU, CU});
Constant *CPP = ConstantStruct::get(STy, {CP, CP});
Constant *CUP = ConstantStruct::get(STy, {CU, CP});
Constant *CPU = ConstantStruct::get(STy, {CP, CU});
EXPECT_EQ(CUU, UndefValue::get(CUU->getType()));
EXPECT_EQ(CPP, PoisonValue::get(CPP->getType()));
EXPECT_NE(CUP, UndefValue::get(CUP->getType()));
EXPECT_NE(CPU, UndefValue::get(CPU->getType()));
}
{
Constant *CUU = ConstantArray::get(ATy, {CU, CU});
Constant *CPP = ConstantArray::get(ATy, {CP, CP});
Constant *CUP = ConstantArray::get(ATy, {CU, CP});
Constant *CPU = ConstantArray::get(ATy, {CP, CU});
EXPECT_EQ(CUU, UndefValue::get(CUU->getType()));
EXPECT_EQ(CPP, PoisonValue::get(CPP->getType()));
EXPECT_NE(CUP, UndefValue::get(CUP->getType()));
EXPECT_NE(CPU, UndefValue::get(CPU->getType()));
}
}
TEST(ConstantsTest, GetSplatValueRoundTrip) {
LLVMContext Context;
Type *FloatTy = Type::getFloatTy(Context);
Type *Int32Ty = Type::getInt32Ty(Context);
Type *Int8Ty = Type::getInt8Ty(Context);
for (unsigned Min : {1, 2, 8}) {
auto ScalableEC = ElementCount::getScalable(Min);
auto FixedEC = ElementCount::getFixed(Min);
for (auto EC : {ScalableEC, FixedEC}) {
for (auto *Ty : {FloatTy, Int32Ty, Int8Ty}) {
Constant *Zero = Constant::getNullValue(Ty);
Constant *One = Constant::getAllOnesValue(Ty);
for (auto *C : {Zero, One}) {
Constant *Splat = ConstantVector::getSplat(EC, C);
ASSERT_NE(nullptr, Splat);
Constant *SplatVal = Splat->getSplatValue();
EXPECT_NE(nullptr, SplatVal);
EXPECT_EQ(SplatVal, C);
}
}
}
}
}
TEST(ConstantsTest, ComdatUserTracking) {
LLVMContext Context;
Module M("MyModule", Context);
Comdat *C = M.getOrInsertComdat("comdat");
const SmallPtrSetImpl<GlobalObject *> &Users = C->getUsers();
EXPECT_TRUE(Users.size() == 0);
Type *Ty = Type::getInt8Ty(Context);
GlobalVariable *GV1 = cast<GlobalVariable>(M.getOrInsertGlobal("gv1", Ty));
GV1->setComdat(C);
EXPECT_TRUE(Users.size() == 1);
EXPECT_TRUE(Users.contains(GV1));
GlobalVariable *GV2 = cast<GlobalVariable>(M.getOrInsertGlobal("gv2", Ty));
GV2->setComdat(C);
EXPECT_TRUE(Users.size() == 2);
EXPECT_TRUE(Users.contains(GV2));
GV1->eraseFromParent();
EXPECT_TRUE(Users.size() == 1);
EXPECT_TRUE(Users.contains(GV2));
GV2->eraseFromParent();
EXPECT_TRUE(Users.size() == 0);
}
} // end anonymous namespace
} // end namespace llvm