llvm-project/llvm/unittests/ADT/SequenceTest.cpp

300 lines
8.9 KiB
C++

//===- SequenceTest.cpp - Unit tests for a sequence abstraciton -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/STLExtras.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include <algorithm>
#include <numeric>
using namespace llvm;
using testing::ElementsAre;
using testing::IsEmpty;
namespace {
using detail::canTypeFitValue;
using detail::CheckedInt;
using IntegralTypes = testing::Types<uint8_t, // 0
uint16_t, // 1
uint32_t, // 2
uint64_t, // 3
uintmax_t, // 4
int8_t, // 5
int16_t, // 6
int32_t, // 7
int64_t, // 8
intmax_t // 9
>;
template <class T> class StrongIntTest : public testing::Test {};
TYPED_TEST_SUITE(StrongIntTest, IntegralTypes, );
TYPED_TEST(StrongIntTest, Operations) {
using T = TypeParam;
auto Max = std::numeric_limits<T>::max();
auto Min = std::numeric_limits<T>::min();
// We bail out for types that are not entirely representable within intmax_t.
if (!canTypeFitValue<intmax_t>(Max) || !canTypeFitValue<intmax_t>(Min))
return;
// All representable values convert back and forth.
EXPECT_EQ(CheckedInt::from(Min).template to<T>(), Min);
EXPECT_EQ(CheckedInt::from(Max).template to<T>(), Max);
// Addition -2, -1, 0, 1, 2.
const T Expected = Max / 2;
const CheckedInt Actual = CheckedInt::from(Expected);
EXPECT_EQ((Actual + -2).template to<T>(), Expected - 2);
EXPECT_EQ((Actual + -1).template to<T>(), Expected - 1);
EXPECT_EQ((Actual + 0).template to<T>(), Expected);
EXPECT_EQ((Actual + 1).template to<T>(), Expected + 1);
EXPECT_EQ((Actual + 2).template to<T>(), Expected + 2);
// EQ/NEQ
EXPECT_EQ(Actual, Actual);
EXPECT_NE(Actual, Actual + 1);
// Difference
EXPECT_EQ(Actual - Actual, 0);
EXPECT_EQ((Actual + 1) - Actual, 1);
EXPECT_EQ(Actual - (Actual + 2), -2);
}
#if defined(GTEST_HAS_DEATH_TEST) && !defined(NDEBUG)
TEST(StrongIntDeathTest, OutOfBounds) {
// Values above 'INTMAX_MAX' are not representable.
EXPECT_DEATH(CheckedInt::from<uintmax_t>(INTMAX_MAX + 1ULL), "Out of bounds");
EXPECT_DEATH(CheckedInt::from<uintmax_t>(UINTMAX_MAX), "Out of bounds");
// Casting to narrower type asserts when out of bounds.
EXPECT_DEATH(CheckedInt::from(-1).to<uint8_t>(), "Out of bounds");
EXPECT_DEATH(CheckedInt::from(256).to<uint8_t>(), "Out of bounds");
// Operations leading to intmax_t overflow assert.
EXPECT_DEATH(CheckedInt::from(INTMAX_MAX) + 1, "Out of bounds");
EXPECT_DEATH(CheckedInt::from(INTMAX_MIN) + -1, "Out of bounds");
EXPECT_DEATH(CheckedInt::from(INTMAX_MIN) - CheckedInt::from(INTMAX_MAX),
"Out of bounds");
}
#endif
TEST(SafeIntIteratorTest, Operations) {
detail::SafeIntIterator<int, false> Forward(0);
detail::SafeIntIterator<int, true> Reverse(0);
const auto SetToZero = [&]() {
Forward = detail::SafeIntIterator<int, false>(0);
Reverse = detail::SafeIntIterator<int, true>(0);
};
// Equality / Comparisons
SetToZero();
EXPECT_EQ(Forward, Forward);
EXPECT_LT(Forward - 1, Forward);
EXPECT_LE(Forward, Forward);
EXPECT_LE(Forward - 1, Forward);
EXPECT_GT(Forward + 1, Forward);
EXPECT_GE(Forward, Forward);
EXPECT_GE(Forward + 1, Forward);
EXPECT_EQ(Reverse, Reverse);
EXPECT_LT(Reverse - 1, Reverse);
EXPECT_LE(Reverse, Reverse);
EXPECT_LE(Reverse - 1, Reverse);
EXPECT_GT(Reverse + 1, Reverse);
EXPECT_GE(Reverse, Reverse);
EXPECT_GE(Reverse + 1, Reverse);
// Dereference
SetToZero();
EXPECT_EQ(*Forward, 0);
EXPECT_EQ(*Reverse, 0);
// Indexing
SetToZero();
EXPECT_EQ(Forward[2], 2);
EXPECT_EQ(Reverse[2], -2);
// Pre-increment
SetToZero();
++Forward;
EXPECT_EQ(*Forward, 1);
++Reverse;
EXPECT_EQ(*Reverse, -1);
// Pre-decrement
SetToZero();
--Forward;
EXPECT_EQ(*Forward, -1);
--Reverse;
EXPECT_EQ(*Reverse, 1);
// Post-increment
SetToZero();
EXPECT_EQ(*(Forward++), 0);
EXPECT_EQ(*Forward, 1);
EXPECT_EQ(*(Reverse++), 0);
EXPECT_EQ(*Reverse, -1);
// Post-decrement
SetToZero();
EXPECT_EQ(*(Forward--), 0);
EXPECT_EQ(*Forward, -1);
EXPECT_EQ(*(Reverse--), 0);
EXPECT_EQ(*Reverse, 1);
// Compound assignment operators
SetToZero();
Forward += 1;
EXPECT_EQ(*Forward, 1);
Reverse += 1;
EXPECT_EQ(*Reverse, -1);
SetToZero();
Forward -= 2;
EXPECT_EQ(*Forward, -2);
Reverse -= 2;
EXPECT_EQ(*Reverse, 2);
// Arithmetic
SetToZero();
EXPECT_EQ(*(Forward + 3), 3);
EXPECT_EQ(*(Reverse + 3), -3);
SetToZero();
EXPECT_EQ(*(Forward - 4), -4);
EXPECT_EQ(*(Reverse - 4), 4);
// Difference
SetToZero();
EXPECT_EQ(Forward - Forward, 0);
EXPECT_EQ(Reverse - Reverse, 0);
EXPECT_EQ((Forward + 1) - Forward, 1);
EXPECT_EQ(Forward - (Forward + 1), -1);
EXPECT_EQ((Reverse + 1) - Reverse, 1);
EXPECT_EQ(Reverse - (Reverse + 1), -1);
}
TEST(SequenceTest, Iteration) {
EXPECT_THAT(seq(-4, 5), ElementsAre(-4, -3, -2, -1, 0, 1, 2, 3, 4));
EXPECT_THAT(reverse(seq(-4, 5)), ElementsAre(4, 3, 2, 1, 0, -1, -2, -3, -4));
EXPECT_THAT(seq_inclusive(-4, 5),
ElementsAre(-4, -3, -2, -1, 0, 1, 2, 3, 4, 5));
EXPECT_THAT(reverse(seq_inclusive(-4, 5)),
ElementsAre(5, 4, 3, 2, 1, 0, -1, -2, -3, -4));
}
TEST(SequenceTest, Distance) {
const auto Forward = seq(0, 10);
EXPECT_EQ(std::distance(Forward.begin(), Forward.end()), 10);
EXPECT_EQ(std::distance(Forward.rbegin(), Forward.rend()), 10);
}
TEST(SequenceTest, Dereference) {
const auto Forward = seq(0, 10).begin();
EXPECT_EQ(Forward[0], 0);
EXPECT_EQ(Forward[2], 2);
const auto Backward = seq(0, 10).rbegin();
EXPECT_EQ(Backward[0], 9);
EXPECT_EQ(Backward[2], 7);
}
enum UntypedEnum { A = 3 };
enum TypedEnum : uint32_t { B = 3 };
namespace X {
enum class ScopedEnum : uint16_t { C = 3 };
} // namespace X
struct S {
enum NestedEnum { D = 4 };
enum NestedEnum2 { E = 5 };
private:
enum NestedEnum3 { F = 6 };
friend struct llvm::enum_iteration_traits<NestedEnum3>;
public:
static auto getNestedEnum3() { return NestedEnum3::F; }
};
} // namespace
namespace llvm {
template <> struct enum_iteration_traits<UntypedEnum> {
static constexpr bool is_iterable = true;
};
template <> struct enum_iteration_traits<TypedEnum> {
static constexpr bool is_iterable = true;
};
template <> struct enum_iteration_traits<X::ScopedEnum> {
static constexpr bool is_iterable = true;
};
template <> struct enum_iteration_traits<S::NestedEnum> {
static constexpr bool is_iterable = true;
};
template <> struct enum_iteration_traits<S::NestedEnum3> {
static constexpr bool is_iterable = true;
};
} // namespace llvm
namespace {
TEST(StrongIntTest, Enums) {
EXPECT_EQ(CheckedInt::from(A).to<UntypedEnum>(), A);
EXPECT_EQ(CheckedInt::from(B).to<TypedEnum>(), B);
EXPECT_EQ(CheckedInt::from(X::ScopedEnum::C).to<X::ScopedEnum>(),
X::ScopedEnum::C);
}
TEST(SequenceTest, IterableEnums) {
EXPECT_THAT(enum_seq(UntypedEnum::A, UntypedEnum::A), IsEmpty());
EXPECT_THAT(enum_seq_inclusive(UntypedEnum::A, UntypedEnum::A),
ElementsAre(UntypedEnum::A));
EXPECT_THAT(enum_seq(TypedEnum::B, TypedEnum::B), IsEmpty());
EXPECT_THAT(enum_seq_inclusive(TypedEnum::B, TypedEnum::B),
ElementsAre(TypedEnum::B));
EXPECT_THAT(enum_seq(X::ScopedEnum::C, X::ScopedEnum::C), IsEmpty());
EXPECT_THAT(enum_seq_inclusive(X::ScopedEnum::C, X::ScopedEnum::C),
ElementsAre(X::ScopedEnum::C));
EXPECT_THAT(enum_seq_inclusive(S::NestedEnum::D, S::NestedEnum::D),
ElementsAre(S::NestedEnum::D));
EXPECT_THAT(enum_seq_inclusive(S::getNestedEnum3(), S::getNestedEnum3()),
ElementsAre(S::getNestedEnum3()));
}
TEST(SequenceTest, NonIterableEnums) {
EXPECT_THAT(enum_seq(S::NestedEnum2::E, S::NestedEnum2::E,
force_iteration_on_noniterable_enum),
IsEmpty());
EXPECT_THAT(enum_seq_inclusive(S::NestedEnum2::E, S::NestedEnum2::E,
force_iteration_on_noniterable_enum),
ElementsAre(S::NestedEnum2::E));
// Check that this also works with enums marked as iterable.
EXPECT_THAT(enum_seq(UntypedEnum::A, UntypedEnum::A,
force_iteration_on_noniterable_enum),
IsEmpty());
EXPECT_THAT(enum_seq_inclusive(UntypedEnum::A, UntypedEnum::A,
force_iteration_on_noniterable_enum),
ElementsAre(UntypedEnum::A));
}
} // namespace