forked from OSchip/llvm-project
241 lines
9.3 KiB
C++
241 lines
9.3 KiB
C++
//===--- UppercaseLiteralSuffixCheck.cpp - clang-tidy ---------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "UppercaseLiteralSuffixCheck.h"
|
|
#include "../utils/ASTUtils.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/ASTMatchers/ASTMatchFinder.h"
|
|
#include "clang/Lex/Lexer.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
|
|
using namespace clang::ast_matchers;
|
|
|
|
namespace clang {
|
|
namespace tidy {
|
|
namespace readability {
|
|
|
|
namespace {
|
|
|
|
struct IntegerLiteralCheck {
|
|
using type = clang::IntegerLiteral;
|
|
static constexpr llvm::StringLiteral Name = llvm::StringLiteral("integer");
|
|
// What should be skipped before looking for the Suffixes? (Nothing here.)
|
|
static constexpr llvm::StringLiteral SkipFirst = llvm::StringLiteral("");
|
|
// Suffix can only consist of 'u' and 'l' chars, and can be a complex number
|
|
// ('i', 'j'). In MS compatibility mode, suffixes like i32 are supported.
|
|
static constexpr llvm::StringLiteral Suffixes =
|
|
llvm::StringLiteral("uUlLiIjJ");
|
|
};
|
|
constexpr llvm::StringLiteral IntegerLiteralCheck::Name;
|
|
constexpr llvm::StringLiteral IntegerLiteralCheck::SkipFirst;
|
|
constexpr llvm::StringLiteral IntegerLiteralCheck::Suffixes;
|
|
|
|
struct FloatingLiteralCheck {
|
|
using type = clang::FloatingLiteral;
|
|
static constexpr llvm::StringLiteral Name =
|
|
llvm::StringLiteral("floating point");
|
|
// C++17 introduced hexadecimal floating-point literals, and 'f' is both a
|
|
// valid hexadecimal digit in a hex float literal and a valid floating-point
|
|
// literal suffix.
|
|
// So we can't just "skip to the chars that can be in the suffix".
|
|
// Since the exponent ('p'/'P') is mandatory for hexadecimal floating-point
|
|
// literals, we first skip everything before the exponent.
|
|
static constexpr llvm::StringLiteral SkipFirst = llvm::StringLiteral("pP");
|
|
// Suffix can only consist of 'f', 'l', "f16", 'h', 'q' chars,
|
|
// and can be a complex number ('i', 'j').
|
|
static constexpr llvm::StringLiteral Suffixes =
|
|
llvm::StringLiteral("fFlLhHqQiIjJ");
|
|
};
|
|
constexpr llvm::StringLiteral FloatingLiteralCheck::Name;
|
|
constexpr llvm::StringLiteral FloatingLiteralCheck::SkipFirst;
|
|
constexpr llvm::StringLiteral FloatingLiteralCheck::Suffixes;
|
|
|
|
struct NewSuffix {
|
|
SourceRange LiteralLocation;
|
|
StringRef OldSuffix;
|
|
llvm::Optional<FixItHint> FixIt;
|
|
};
|
|
|
|
llvm::Optional<SourceLocation> getMacroAwareLocation(SourceLocation Loc,
|
|
const SourceManager &SM) {
|
|
// Do nothing if the provided location is invalid.
|
|
if (Loc.isInvalid())
|
|
return llvm::None;
|
|
// Look where the location was *actually* written.
|
|
SourceLocation SpellingLoc = SM.getSpellingLoc(Loc);
|
|
if (SpellingLoc.isInvalid())
|
|
return llvm::None;
|
|
return SpellingLoc;
|
|
}
|
|
|
|
llvm::Optional<SourceRange> getMacroAwareSourceRange(SourceRange Loc,
|
|
const SourceManager &SM) {
|
|
llvm::Optional<SourceLocation> Begin =
|
|
getMacroAwareLocation(Loc.getBegin(), SM);
|
|
llvm::Optional<SourceLocation> End = getMacroAwareLocation(Loc.getEnd(), SM);
|
|
if (!Begin || !End)
|
|
return llvm::None;
|
|
return SourceRange(*Begin, *End);
|
|
}
|
|
|
|
llvm::Optional<std::string>
|
|
getNewSuffix(llvm::StringRef OldSuffix,
|
|
const std::vector<std::string> &NewSuffixes) {
|
|
// If there is no config, just uppercase the entirety of the suffix.
|
|
if (NewSuffixes.empty())
|
|
return OldSuffix.upper();
|
|
// Else, find matching suffix, case-*insensitive*ly.
|
|
auto NewSuffix = llvm::find_if(
|
|
NewSuffixes, [OldSuffix](const std::string &PotentialNewSuffix) {
|
|
return OldSuffix.equals_insensitive(PotentialNewSuffix);
|
|
});
|
|
// Have a match, return it.
|
|
if (NewSuffix != NewSuffixes.end())
|
|
return *NewSuffix;
|
|
// Nope, I guess we have to keep it as-is.
|
|
return llvm::None;
|
|
}
|
|
|
|
template <typename LiteralType>
|
|
llvm::Optional<NewSuffix>
|
|
shouldReplaceLiteralSuffix(const Expr &Literal,
|
|
const std::vector<std::string> &NewSuffixes,
|
|
const SourceManager &SM, const LangOptions &LO) {
|
|
NewSuffix ReplacementDsc;
|
|
|
|
const auto &L = cast<typename LiteralType::type>(Literal);
|
|
|
|
// The naive location of the literal. Is always valid.
|
|
ReplacementDsc.LiteralLocation = L.getSourceRange();
|
|
|
|
// Was this literal fully spelled or is it a product of macro expansion?
|
|
bool RangeCanBeFixed =
|
|
utils::rangeCanBeFixed(ReplacementDsc.LiteralLocation, &SM);
|
|
|
|
// The literal may have macro expansion, we need the final expanded src range.
|
|
llvm::Optional<SourceRange> Range =
|
|
getMacroAwareSourceRange(ReplacementDsc.LiteralLocation, SM);
|
|
if (!Range)
|
|
return llvm::None;
|
|
|
|
if (RangeCanBeFixed)
|
|
ReplacementDsc.LiteralLocation = *Range;
|
|
// Else keep the naive literal location!
|
|
|
|
// Get the whole literal from the source buffer.
|
|
bool Invalid;
|
|
const StringRef LiteralSourceText = Lexer::getSourceText(
|
|
CharSourceRange::getTokenRange(*Range), SM, LO, &Invalid);
|
|
assert(!Invalid && "Failed to retrieve the source text.");
|
|
|
|
size_t Skip = 0;
|
|
|
|
// Do we need to ignore something before actually looking for the suffix?
|
|
if (!LiteralType::SkipFirst.empty()) {
|
|
// E.g. we can't look for 'f' suffix in hexadecimal floating-point literals
|
|
// until after we skip to the exponent (which is mandatory there),
|
|
// because hex-digit-sequence may contain 'f'.
|
|
Skip = LiteralSourceText.find_first_of(LiteralType::SkipFirst);
|
|
// We could be in non-hexadecimal floating-point literal, with no exponent.
|
|
if (Skip == StringRef::npos)
|
|
Skip = 0;
|
|
}
|
|
|
|
// Find the beginning of the suffix by looking for the first char that is
|
|
// one of these chars that can be in the suffix, potentially starting looking
|
|
// in the exponent, if we are skipping hex-digit-sequence.
|
|
Skip = LiteralSourceText.find_first_of(LiteralType::Suffixes, /*From=*/Skip);
|
|
|
|
// We can't check whether the *Literal has any suffix or not without actually
|
|
// looking for the suffix. So it is totally possible that there is no suffix.
|
|
if (Skip == StringRef::npos)
|
|
return llvm::None;
|
|
|
|
// Move the cursor in the source range to the beginning of the suffix.
|
|
Range->setBegin(Range->getBegin().getLocWithOffset(Skip));
|
|
// And in our textual representation too.
|
|
ReplacementDsc.OldSuffix = LiteralSourceText.drop_front(Skip);
|
|
assert(!ReplacementDsc.OldSuffix.empty() &&
|
|
"We still should have some chars left.");
|
|
|
|
// And get the replacement suffix.
|
|
llvm::Optional<std::string> NewSuffix =
|
|
getNewSuffix(ReplacementDsc.OldSuffix, NewSuffixes);
|
|
if (!NewSuffix || ReplacementDsc.OldSuffix == *NewSuffix)
|
|
return llvm::None; // The suffix was already the way it should be.
|
|
|
|
if (RangeCanBeFixed)
|
|
ReplacementDsc.FixIt = FixItHint::CreateReplacement(*Range, *NewSuffix);
|
|
|
|
return ReplacementDsc;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
UppercaseLiteralSuffixCheck::UppercaseLiteralSuffixCheck(
|
|
StringRef Name, ClangTidyContext *Context)
|
|
: ClangTidyCheck(Name, Context),
|
|
NewSuffixes(
|
|
utils::options::parseStringList(Options.get("NewSuffixes", ""))),
|
|
IgnoreMacros(Options.getLocalOrGlobal("IgnoreMacros", true)) {}
|
|
|
|
void UppercaseLiteralSuffixCheck::storeOptions(
|
|
ClangTidyOptions::OptionMap &Opts) {
|
|
Options.store(Opts, "NewSuffixes",
|
|
utils::options::serializeStringList(NewSuffixes));
|
|
Options.store(Opts, "IgnoreMacros", IgnoreMacros);
|
|
}
|
|
|
|
void UppercaseLiteralSuffixCheck::registerMatchers(MatchFinder *Finder) {
|
|
// Sadly, we can't check whether the literal has suffix or not.
|
|
// E.g. i32 suffix still results in 'BuiltinType::Kind::Int'.
|
|
// And such an info is not stored in the *Literal itself.
|
|
Finder->addMatcher(
|
|
stmt(eachOf(integerLiteral().bind(IntegerLiteralCheck::Name),
|
|
floatLiteral().bind(FloatingLiteralCheck::Name)),
|
|
unless(anyOf(hasParent(userDefinedLiteral()),
|
|
hasAncestor(substNonTypeTemplateParmExpr())))),
|
|
this);
|
|
}
|
|
|
|
template <typename LiteralType>
|
|
bool UppercaseLiteralSuffixCheck::checkBoundMatch(
|
|
const MatchFinder::MatchResult &Result) {
|
|
const auto *Literal =
|
|
Result.Nodes.getNodeAs<typename LiteralType::type>(LiteralType::Name);
|
|
if (!Literal)
|
|
return false;
|
|
|
|
// We won't *always* want to diagnose.
|
|
// We might have a suffix that is already uppercase.
|
|
if (auto Details = shouldReplaceLiteralSuffix<LiteralType>(
|
|
*Literal, NewSuffixes, *Result.SourceManager, getLangOpts())) {
|
|
if (Details->LiteralLocation.getBegin().isMacroID() && IgnoreMacros)
|
|
return true;
|
|
auto Complaint = diag(Details->LiteralLocation.getBegin(),
|
|
"%0 literal has suffix '%1', which is not uppercase")
|
|
<< LiteralType::Name << Details->OldSuffix;
|
|
if (Details->FixIt) // Similarly, a fix-it is not always possible.
|
|
Complaint << *(Details->FixIt);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void UppercaseLiteralSuffixCheck::check(
|
|
const MatchFinder::MatchResult &Result) {
|
|
if (checkBoundMatch<IntegerLiteralCheck>(Result))
|
|
return; // If it *was* IntegerLiteral, don't check for FloatingLiteral.
|
|
checkBoundMatch<FloatingLiteralCheck>(Result);
|
|
}
|
|
|
|
} // namespace readability
|
|
} // namespace tidy
|
|
} // namespace clang
|