llvm-project/llvm/lib/Transforms/Scalar/MergeICmps.cpp

653 lines
24 KiB
C++

//===- MergeICmps.cpp - Optimize chains of integer comparisons ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass turns chains of integer comparisons into memcmp (the memcmp is
// later typically inlined as a chain of efficient hardware comparisons). This
// typically benefits c++ member or nonmember operator==().
//
// The basic idea is to replace a larger chain of integer comparisons loaded
// from contiguous memory locations into a smaller chain of such integer
// comparisons. Benefits are double:
// - There are less jumps, and therefore less opportunities for mispredictions
// and I-cache misses.
// - Code size is smaller, both because jumps are removed and because the
// encoding of a 2*n byte compare is smaller than that of two n-byte
// compares.
//===----------------------------------------------------------------------===//
#include <algorithm>
#include <numeric>
#include <utility>
#include <vector>
#include "llvm/ADT/APSInt.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Pass.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BuildLibCalls.h"
using namespace llvm;
namespace {
#define DEBUG_TYPE "mergeicmps"
// A BCE atom.
struct BCEAtom {
BCEAtom() : GEP(nullptr), LoadI(nullptr), Offset() {}
const Value *Base() const { return GEP ? GEP->getPointerOperand() : nullptr; }
bool operator<(const BCEAtom &O) const {
assert(Base() && "invalid atom");
assert(O.Base() && "invalid atom");
// Just ordering by (Base(), Offset) is sufficient. However because this
// means that the ordering will depend on the addresses of the base
// values, which are not reproducible from run to run. To guarantee
// stability, we use the names of the values if they exist; we sort by:
// (Base.getName(), Base(), Offset).
const int NameCmp = Base()->getName().compare(O.Base()->getName());
if (NameCmp == 0) {
if (Base() == O.Base()) {
return Offset.slt(O.Offset);
}
return Base() < O.Base();
}
return NameCmp < 0;
}
GetElementPtrInst *GEP;
LoadInst *LoadI;
APInt Offset;
};
// If this value is a load from a constant offset w.r.t. a base address, and
// there are no othe rusers of the load or address, returns the base address and
// the offset.
BCEAtom visitICmpLoadOperand(Value *const Val) {
BCEAtom Result;
if (auto *const LoadI = dyn_cast<LoadInst>(Val)) {
DEBUG(dbgs() << "load\n");
if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) {
DEBUG(dbgs() << "used outside of block\n");
return {};
}
if (LoadI->isVolatile()) {
DEBUG(dbgs() << "volatile\n");
return {};
}
Value *const Addr = LoadI->getOperand(0);
if (auto *const GEP = dyn_cast<GetElementPtrInst>(Addr)) {
DEBUG(dbgs() << "GEP\n");
if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) {
DEBUG(dbgs() << "used outside of block\n");
return {};
}
const auto &DL = GEP->getModule()->getDataLayout();
if (!isDereferenceablePointer(GEP, DL)) {
DEBUG(dbgs() << "not dereferenceable\n");
// We need to make sure that we can do comparison in any order, so we
// require memory to be unconditionnally dereferencable.
return {};
}
Result.Offset = APInt(DL.getPointerTypeSizeInBits(GEP->getType()), 0);
if (GEP->accumulateConstantOffset(DL, Result.Offset)) {
Result.GEP = GEP;
Result.LoadI = LoadI;
}
}
}
return Result;
}
// A basic block with a comparison between two BCE atoms.
// Note: the terminology is misleading: the comparison is symmetric, so there
// is no real {l/r}hs. What we want though is to have the same base on the
// left (resp. right), so that we can detect consecutive loads. To ensure this
// we put the smallest atom on the left.
class BCECmpBlock {
public:
BCECmpBlock() {}
BCECmpBlock(BCEAtom L, BCEAtom R, int SizeBits)
: Lhs_(L), Rhs_(R), SizeBits_(SizeBits) {
if (Rhs_ < Lhs_) std::swap(Rhs_, Lhs_);
}
bool IsValid() const {
return Lhs_.Base() != nullptr && Rhs_.Base() != nullptr;
}
// Assert the the block is consistent: If valid, it should also have
// non-null members besides Lhs_ and Rhs_.
void AssertConsistent() const {
if (IsValid()) {
assert(BB);
assert(CmpI);
assert(BranchI);
}
}
const BCEAtom &Lhs() const { return Lhs_; }
const BCEAtom &Rhs() const { return Rhs_; }
int SizeBits() const { return SizeBits_; }
// Returns true if the block does other works besides comparison.
bool doesOtherWork() const;
// The basic block where this comparison happens.
BasicBlock *BB = nullptr;
// The ICMP for this comparison.
ICmpInst *CmpI = nullptr;
// The terminating branch.
BranchInst *BranchI = nullptr;
private:
BCEAtom Lhs_;
BCEAtom Rhs_;
int SizeBits_ = 0;
};
bool BCECmpBlock::doesOtherWork() const {
AssertConsistent();
// TODO(courbet): Can we allow some other things ? This is very conservative.
// We might be able to get away with anything does does not have any side
// effects outside of the basic block.
// Note: The GEPs and/or loads are not necessarily in the same block.
for (const Instruction &Inst : *BB) {
if (const auto *const GEP = dyn_cast<GetElementPtrInst>(&Inst)) {
if (!(Lhs_.GEP == GEP || Rhs_.GEP == GEP)) return true;
} else if (const auto *const L = dyn_cast<LoadInst>(&Inst)) {
if (!(Lhs_.LoadI == L || Rhs_.LoadI == L)) return true;
} else if (const auto *const C = dyn_cast<ICmpInst>(&Inst)) {
if (C != CmpI) return true;
} else if (const auto *const Br = dyn_cast<BranchInst>(&Inst)) {
if (Br != BranchI) return true;
} else {
return true;
}
}
return false;
}
// Visit the given comparison. If this is a comparison between two valid
// BCE atoms, returns the comparison.
BCECmpBlock visitICmp(const ICmpInst *const CmpI,
const ICmpInst::Predicate ExpectedPredicate) {
if (CmpI->getPredicate() == ExpectedPredicate) {
DEBUG(dbgs() << "cmp "
<< (ExpectedPredicate == ICmpInst::ICMP_EQ ? "eq" : "ne")
<< "\n");
auto Lhs = visitICmpLoadOperand(CmpI->getOperand(0));
if (!Lhs.Base()) return {};
auto Rhs = visitICmpLoadOperand(CmpI->getOperand(1));
if (!Rhs.Base()) return {};
return BCECmpBlock(std::move(Lhs), std::move(Rhs),
CmpI->getOperand(0)->getType()->getScalarSizeInBits());
}
return {};
}
// Visit the given comparison block. If this is a comparison between two valid
// BCE atoms, returns the comparison.
BCECmpBlock visitCmpBlock(Value *const Val, BasicBlock *const Block,
const BasicBlock *const PhiBlock) {
if (Block->empty()) return {};
auto *const BranchI = dyn_cast<BranchInst>(Block->getTerminator());
if (!BranchI) return {};
DEBUG(dbgs() << "branch\n");
if (BranchI->isUnconditional()) {
// In this case, we expect an incoming value which is the result of the
// comparison. This is the last link in the chain of comparisons (note
// that this does not mean that this is the last incoming value, blocks
// can be reordered).
auto *const CmpI = dyn_cast<ICmpInst>(Val);
if (!CmpI) return {};
DEBUG(dbgs() << "icmp\n");
auto Result = visitICmp(CmpI, ICmpInst::ICMP_EQ);
Result.CmpI = CmpI;
Result.BranchI = BranchI;
return Result;
} else {
// In this case, we expect a constant incoming value (the comparison is
// chained).
const auto *const Const = dyn_cast<ConstantInt>(Val);
DEBUG(dbgs() << "const\n");
if (!Const->isZero()) return {};
DEBUG(dbgs() << "false\n");
auto *const CmpI = dyn_cast<ICmpInst>(BranchI->getCondition());
if (!CmpI) return {};
DEBUG(dbgs() << "icmp\n");
assert(BranchI->getNumSuccessors() == 2 && "expecting a cond branch");
BasicBlock *const FalseBlock = BranchI->getSuccessor(1);
auto Result = visitICmp(
CmpI, FalseBlock == PhiBlock ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE);
Result.CmpI = CmpI;
Result.BranchI = BranchI;
return Result;
}
return {};
}
// A chain of comparisons.
class BCECmpChain {
public:
BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi);
int size() const { return Comparisons_.size(); }
#ifdef MERGEICMPS_DOT_ON
void dump() const;
#endif // MERGEICMPS_DOT_ON
bool simplify(const TargetLibraryInfo *const TLI);
private:
static bool IsContiguous(const BCECmpBlock &First,
const BCECmpBlock &Second) {
return First.Lhs().Base() == Second.Lhs().Base() &&
First.Rhs().Base() == Second.Rhs().Base() &&
First.Lhs().Offset + First.SizeBits() / 8 == Second.Lhs().Offset &&
First.Rhs().Offset + First.SizeBits() / 8 == Second.Rhs().Offset;
}
// Merges the given comparison blocks into one memcmp block and update
// branches. Comparisons are assumed to be continguous. If NextBBInChain is
// null, the merged block will link to the phi block.
static void mergeComparisons(ArrayRef<BCECmpBlock> Comparisons,
BasicBlock *const NextBBInChain, PHINode &Phi,
const TargetLibraryInfo *const TLI);
PHINode &Phi_;
std::vector<BCECmpBlock> Comparisons_;
// The original entry block (before sorting);
BasicBlock *EntryBlock_;
};
BCECmpChain::BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi)
: Phi_(Phi) {
// Now look inside blocks to check for BCE comparisons.
std::vector<BCECmpBlock> Comparisons;
for (BasicBlock *Block : Blocks) {
BCECmpBlock Comparison = visitCmpBlock(Phi.getIncomingValueForBlock(Block),
Block, Phi.getParent());
Comparison.BB = Block;
if (!Comparison.IsValid()) {
DEBUG(dbgs() << "skip: not a valid BCECmpBlock\n");
return;
}
if (Comparison.doesOtherWork()) {
DEBUG(dbgs() << "block does extra work besides compare\n");
if (Comparisons.empty()) { // First block.
// TODO(courbet): The first block can do other things, and we should
// split them apart in a separate block before the comparison chain.
// Right now we just discard it and make the chain shorter.
DEBUG(dbgs()
<< "ignoring first block that does extra work besides compare\n");
continue;
}
// TODO(courbet): Right now we abort the whole chain. We could be
// merging only the blocks that don't do other work and resume the
// chain from there. For example:
// if (a[0] == b[0]) { // bb1
// if (a[1] == b[1]) { // bb2
// some_value = 3; //bb3
// if (a[2] == b[2]) { //bb3
// do a ton of stuff //bb4
// }
// }
// }
//
// This is:
//
// bb1 --eq--> bb2 --eq--> bb3* -eq--> bb4 --+
// \ \ \ \
// ne ne ne \
// \ \ \ v
// +------------+-----------+----------> bb_phi
//
// We can only merge the first two comparisons, because bb3* does
// "other work" (setting some_value to 3).
// We could still merge bb1 and bb2 though.
return;
}
DEBUG(dbgs() << "*Found cmp of " << Comparison.SizeBits()
<< " bits between " << Comparison.Lhs().Base() << " + "
<< Comparison.Lhs().Offset << " and "
<< Comparison.Rhs().Base() << " + " << Comparison.Rhs().Offset
<< "\n");
DEBUG(dbgs() << "\n");
Comparisons.push_back(Comparison);
}
EntryBlock_ = Comparisons[0].BB;
Comparisons_ = std::move(Comparisons);
#ifdef MERGEICMPS_DOT_ON
errs() << "BEFORE REORDERING:\n\n";
dump();
#endif // MERGEICMPS_DOT_ON
// Reorder blocks by LHS. We can do that without changing the
// semantics because we are only accessing dereferencable memory.
std::sort(Comparisons_.begin(), Comparisons_.end(),
[](const BCECmpBlock &a, const BCECmpBlock &b) {
return a.Lhs() < b.Lhs();
});
#ifdef MERGEICMPS_DOT_ON
errs() << "AFTER REORDERING:\n\n";
dump();
#endif // MERGEICMPS_DOT_ON
}
#ifdef MERGEICMPS_DOT_ON
void BCECmpChain::dump() const {
errs() << "digraph dag {\n";
errs() << " graph [bgcolor=transparent];\n";
errs() << " node [color=black,style=filled,fillcolor=lightyellow];\n";
errs() << " edge [color=black];\n";
for (size_t I = 0; I < Comparisons_.size(); ++I) {
const auto &Comparison = Comparisons_[I];
errs() << " \"" << I << "\" [label=\"%"
<< Comparison.Lhs().Base()->getName() << " + "
<< Comparison.Lhs().Offset << " == %"
<< Comparison.Rhs().Base()->getName() << " + "
<< Comparison.Rhs().Offset << " (" << (Comparison.SizeBits() / 8)
<< " bytes)\"];\n";
const Value *const Val = Phi_.getIncomingValueForBlock(Comparison.BB);
if (I > 0) errs() << " \"" << (I - 1) << "\" -> \"" << I << "\";\n";
errs() << " \"" << I << "\" -> \"Phi\" [label=\"" << *Val << "\"];\n";
}
errs() << " \"Phi\" [label=\"Phi\"];\n";
errs() << "}\n\n";
}
#endif // MERGEICMPS_DOT_ON
bool BCECmpChain::simplify(const TargetLibraryInfo *const TLI) {
// First pass to check if there is at least one merge. If not, we don't do
// anything and we keep analysis passes intact.
{
bool AtLeastOneMerged = false;
for (size_t I = 1; I < Comparisons_.size(); ++I) {
if (IsContiguous(Comparisons_[I - 1], Comparisons_[I])) {
AtLeastOneMerged = true;
break;
}
}
if (!AtLeastOneMerged) return false;
}
// Remove phi references to comparison blocks, they will be rebuilt as we
// merge the blocks.
for (const auto &Comparison : Comparisons_) {
Phi_.removeIncomingValue(Comparison.BB, false);
}
// Point the predecessors of the chain to the first comparison block (which is
// the new entry point).
if (EntryBlock_ != Comparisons_[0].BB)
EntryBlock_->replaceAllUsesWith(Comparisons_[0].BB);
// Effectively merge blocks.
int NumMerged = 1;
for (size_t I = 1; I < Comparisons_.size(); ++I) {
if (IsContiguous(Comparisons_[I - 1], Comparisons_[I])) {
++NumMerged;
} else {
// Merge all previous comparisons and start a new merge block.
mergeComparisons(
makeArrayRef(Comparisons_).slice(I - NumMerged, NumMerged),
Comparisons_[I].BB, Phi_, TLI);
NumMerged = 1;
}
}
mergeComparisons(makeArrayRef(Comparisons_)
.slice(Comparisons_.size() - NumMerged, NumMerged),
nullptr, Phi_, TLI);
return true;
}
void BCECmpChain::mergeComparisons(ArrayRef<BCECmpBlock> Comparisons,
BasicBlock *const NextBBInChain,
PHINode &Phi,
const TargetLibraryInfo *const TLI) {
assert(!Comparisons.empty());
const auto &FirstComparison = *Comparisons.begin();
BasicBlock *const BB = FirstComparison.BB;
LLVMContext &Context = BB->getContext();
if (Comparisons.size() >= 2) {
DEBUG(dbgs() << "Merging " << Comparisons.size() << " comparisons\n");
const auto TotalSize =
std::accumulate(Comparisons.begin(), Comparisons.end(), 0,
[](int Size, const BCECmpBlock &C) {
return Size + C.SizeBits();
}) /
8;
// Incoming edges do not need to be updated, and both GEPs are already
// computing the right address, we just need to:
// - replace the two loads and the icmp with the memcmp
// - update the branch
// - update the incoming values in the phi.
FirstComparison.BranchI->eraseFromParent();
FirstComparison.CmpI->eraseFromParent();
FirstComparison.Lhs().LoadI->eraseFromParent();
FirstComparison.Rhs().LoadI->eraseFromParent();
IRBuilder<> Builder(BB);
const auto &DL = Phi.getModule()->getDataLayout();
Value *const MemCmpCall = emitMemCmp(
FirstComparison.Lhs().GEP, FirstComparison.Rhs().GEP, ConstantInt::get(DL.getIntPtrType(Context), TotalSize),
Builder, DL, TLI);
Value *const MemCmpIsZero = Builder.CreateICmpEQ(
MemCmpCall, ConstantInt::get(Type::getInt32Ty(Context), 0));
// Add a branch to the next basic block in the chain.
if (NextBBInChain) {
Builder.CreateCondBr(MemCmpIsZero, NextBBInChain, Phi.getParent());
Phi.addIncoming(ConstantInt::getFalse(Context), BB);
} else {
Builder.CreateBr(Phi.getParent());
Phi.addIncoming(MemCmpIsZero, BB);
}
// Delete merged blocks.
for (size_t I = 1; I < Comparisons.size(); ++I) {
BasicBlock *CBB = Comparisons[I].BB;
CBB->replaceAllUsesWith(BB);
CBB->eraseFromParent();
}
} else {
assert(Comparisons.size() == 1);
// There are no blocks to merge, but we still need to update the branches.
DEBUG(dbgs() << "Only one comparison, updating branches\n");
if (NextBBInChain) {
if (FirstComparison.BranchI->isConditional()) {
DEBUG(dbgs() << "conditional -> conditional\n");
// Just update the "true" target, the "false" target should already be
// the phi block.
assert(FirstComparison.BranchI->getSuccessor(1) == Phi.getParent());
FirstComparison.BranchI->setSuccessor(0, NextBBInChain);
Phi.addIncoming(ConstantInt::getFalse(Context), BB);
} else {
DEBUG(dbgs() << "unconditional -> conditional\n");
// Replace the unconditional branch by a conditional one.
FirstComparison.BranchI->eraseFromParent();
IRBuilder<> Builder(BB);
Builder.CreateCondBr(FirstComparison.CmpI, NextBBInChain,
Phi.getParent());
Phi.addIncoming(FirstComparison.CmpI, BB);
}
} else {
if (FirstComparison.BranchI->isConditional()) {
DEBUG(dbgs() << "conditional -> unconditional\n");
// Replace the conditional branch by an unconditional one.
FirstComparison.BranchI->eraseFromParent();
IRBuilder<> Builder(BB);
Builder.CreateBr(Phi.getParent());
Phi.addIncoming(FirstComparison.CmpI, BB);
} else {
DEBUG(dbgs() << "unconditional -> unconditional\n");
Phi.addIncoming(FirstComparison.CmpI, BB);
}
}
}
}
std::vector<BasicBlock *> getOrderedBlocks(PHINode &Phi,
BasicBlock *const LastBlock,
int NumBlocks) {
// Walk up from the last block to find other blocks.
std::vector<BasicBlock *> Blocks(NumBlocks);
BasicBlock *CurBlock = LastBlock;
for (int BlockIndex = NumBlocks - 1; BlockIndex > 0; --BlockIndex) {
if (CurBlock->hasAddressTaken()) {
// Somebody is jumping to the block through an address, all bets are
// off.
DEBUG(dbgs() << "skip: block " << BlockIndex
<< " has its address taken\n");
return {};
}
Blocks[BlockIndex] = CurBlock;
auto *SinglePredecessor = CurBlock->getSinglePredecessor();
if (!SinglePredecessor) {
// The block has two or more predecessors.
DEBUG(dbgs() << "skip: block " << BlockIndex
<< " has two or more predecessors\n");
return {};
}
if (Phi.getBasicBlockIndex(SinglePredecessor) < 0) {
// The block does not link back to the phi.
DEBUG(dbgs() << "skip: block " << BlockIndex
<< " does not link back to the phi\n");
return {};
}
CurBlock = SinglePredecessor;
}
Blocks[0] = CurBlock;
return Blocks;
}
bool processPhi(PHINode &Phi, const TargetLibraryInfo *const TLI) {
DEBUG(dbgs() << "processPhi()\n");
if (Phi.getNumIncomingValues() <= 1) {
DEBUG(dbgs() << "skip: only one incoming value in phi\n");
return false;
}
// We are looking for something that has the following structure:
// bb1 --eq--> bb2 --eq--> bb3 --eq--> bb4 --+
// \ \ \ \
// ne ne ne \
// \ \ \ v
// +------------+-----------+----------> bb_phi
//
// - The last basic block (bb4 here) must branch unconditionally to bb_phi.
// It's the only block that contributes a non-constant value to the Phi.
// - All other blocks (b1, b2, b3) must have exactly two successors, one of
// them being the the phi block.
// - All intermediate blocks (bb2, bb3) must have only one predecessor.
// - Blocks cannot do other work besides the comparison, see doesOtherWork()
// The blocks are not necessarily ordered in the phi, so we start from the
// last block and reconstruct the order.
BasicBlock *LastBlock = nullptr;
for (unsigned I = 0; I < Phi.getNumIncomingValues(); ++I) {
if (isa<ConstantInt>(Phi.getIncomingValue(I))) continue;
if (LastBlock) {
// There are several non-constant values.
DEBUG(dbgs() << "skip: several non-constant values\n");
return false;
}
LastBlock = Phi.getIncomingBlock(I);
}
if (!LastBlock) {
// There is no non-constant block.
DEBUG(dbgs() << "skip: no non-constant block\n");
return false;
}
if (LastBlock->getSingleSuccessor() != Phi.getParent()) {
DEBUG(dbgs() << "skip: last block non-phi successor\n");
return false;
}
const auto Blocks =
getOrderedBlocks(Phi, LastBlock, Phi.getNumIncomingValues());
if (Blocks.empty()) return false;
BCECmpChain CmpChain(Blocks, Phi);
if (CmpChain.size() < 2) {
DEBUG(dbgs() << "skip: only one compare block\n");
return false;
}
return CmpChain.simplify(TLI);
}
class MergeICmps : public FunctionPass {
public:
static char ID;
MergeICmps() : FunctionPass(ID) {
initializeMergeICmpsPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override {
if (skipFunction(F)) return false;
const auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
auto PA = runImpl(F, &TLI, &TTI);
return !PA.areAllPreserved();
}
private:
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<TargetLibraryInfoWrapperPass>();
AU.addRequired<TargetTransformInfoWrapperPass>();
}
PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI,
const TargetTransformInfo *TTI);
};
PreservedAnalyses MergeICmps::runImpl(Function &F, const TargetLibraryInfo *TLI,
const TargetTransformInfo *TTI) {
DEBUG(dbgs() << "MergeICmpsPass: " << F.getName() << "\n");
// We only try merging comparisons if the target wants to expand memcmp later.
// The rationale is to avoid turning small chains into memcmp calls.
if (!TTI->enableMemCmpExpansion(true)) return PreservedAnalyses::all();
bool MadeChange = false;
for (auto BBIt = ++F.begin(); BBIt != F.end(); ++BBIt) {
// A Phi operation is always first in a basic block.
if (auto *const Phi = dyn_cast<PHINode>(&*BBIt->begin()))
MadeChange |= processPhi(*Phi, TLI);
}
if (MadeChange) return PreservedAnalyses::none();
return PreservedAnalyses::all();
}
} // namespace
char MergeICmps::ID = 0;
INITIALIZE_PASS_BEGIN(MergeICmps, "mergeicmps",
"Merge contiguous icmps into a memcmp", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(MergeICmps, "mergeicmps",
"Merge contiguous icmps into a memcmp", false, false)
Pass *llvm::createMergeICmpsPass() { return new MergeICmps(); }