forked from OSchip/llvm-project
256 lines
9.3 KiB
C++
256 lines
9.3 KiB
C++
//===- LoopInstSimplify.cpp - Loop Instruction Simplification Pass --------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass performs lightweight instruction simplification on loop bodies.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/LoopInstSimplify.h"
|
|
#include "llvm/ADT/PointerIntPair.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/LoopIterator.h"
|
|
#include "llvm/Analysis/LoopPass.h"
|
|
#include "llvm/Analysis/MemorySSA.h"
|
|
#include "llvm/Analysis/MemorySSAUpdater.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Utils/LoopUtils.h"
|
|
#include <algorithm>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "loop-instsimplify"
|
|
|
|
STATISTIC(NumSimplified, "Number of redundant instructions simplified");
|
|
|
|
static bool simplifyLoopInst(Loop &L, DominatorTree &DT, LoopInfo &LI,
|
|
AssumptionCache &AC, const TargetLibraryInfo &TLI,
|
|
MemorySSAUpdater *MSSAU) {
|
|
const DataLayout &DL = L.getHeader()->getModule()->getDataLayout();
|
|
SimplifyQuery SQ(DL, &TLI, &DT, &AC);
|
|
|
|
// On the first pass over the loop body we try to simplify every instruction.
|
|
// On subsequent passes, we can restrict this to only simplifying instructions
|
|
// where the inputs have been updated. We end up needing two sets: one
|
|
// containing the instructions we are simplifying in *this* pass, and one for
|
|
// the instructions we will want to simplify in the *next* pass. We use
|
|
// pointers so we can swap between two stably allocated sets.
|
|
SmallPtrSet<const Instruction *, 8> S1, S2, *ToSimplify = &S1, *Next = &S2;
|
|
|
|
// Track the PHI nodes that have already been visited during each iteration so
|
|
// that we can identify when it is necessary to iterate.
|
|
SmallPtrSet<PHINode *, 4> VisitedPHIs;
|
|
|
|
// While simplifying we may discover dead code or cause code to become dead.
|
|
// Keep track of all such instructions and we will delete them at the end.
|
|
SmallVector<Instruction *, 8> DeadInsts;
|
|
|
|
// First we want to create an RPO traversal of the loop body. By processing in
|
|
// RPO we can ensure that definitions are processed prior to uses (for non PHI
|
|
// uses) in all cases. This ensures we maximize the simplifications in each
|
|
// iteration over the loop and minimizes the possible causes for continuing to
|
|
// iterate.
|
|
LoopBlocksRPO RPOT(&L);
|
|
RPOT.perform(&LI);
|
|
MemorySSA *MSSA = MSSAU ? MSSAU->getMemorySSA() : nullptr;
|
|
|
|
bool Changed = false;
|
|
for (;;) {
|
|
if (MSSAU && VerifyMemorySSA)
|
|
MSSA->verifyMemorySSA();
|
|
for (BasicBlock *BB : RPOT) {
|
|
for (Instruction &I : *BB) {
|
|
if (auto *PI = dyn_cast<PHINode>(&I))
|
|
VisitedPHIs.insert(PI);
|
|
|
|
if (I.use_empty()) {
|
|
if (isInstructionTriviallyDead(&I, &TLI))
|
|
DeadInsts.push_back(&I);
|
|
continue;
|
|
}
|
|
|
|
// We special case the first iteration which we can detect due to the
|
|
// empty `ToSimplify` set.
|
|
bool IsFirstIteration = ToSimplify->empty();
|
|
|
|
if (!IsFirstIteration && !ToSimplify->count(&I))
|
|
continue;
|
|
|
|
Value *V = SimplifyInstruction(&I, SQ.getWithInstruction(&I));
|
|
if (!V || !LI.replacementPreservesLCSSAForm(&I, V))
|
|
continue;
|
|
|
|
for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
|
|
UI != UE;) {
|
|
Use &U = *UI++;
|
|
auto *UserI = cast<Instruction>(U.getUser());
|
|
U.set(V);
|
|
|
|
// If the instruction is used by a PHI node we have already processed
|
|
// we'll need to iterate on the loop body to converge, so add it to
|
|
// the next set.
|
|
if (auto *UserPI = dyn_cast<PHINode>(UserI))
|
|
if (VisitedPHIs.count(UserPI)) {
|
|
Next->insert(UserPI);
|
|
continue;
|
|
}
|
|
|
|
// If we are only simplifying targeted instructions and the user is an
|
|
// instruction in the loop body, add it to our set of targeted
|
|
// instructions. Because we process defs before uses (outside of PHIs)
|
|
// we won't have visited it yet.
|
|
//
|
|
// We also skip any uses outside of the loop being simplified. Those
|
|
// should always be PHI nodes due to LCSSA form, and we don't want to
|
|
// try to simplify those away.
|
|
assert((L.contains(UserI) || isa<PHINode>(UserI)) &&
|
|
"Uses outside the loop should be PHI nodes due to LCSSA!");
|
|
if (!IsFirstIteration && L.contains(UserI))
|
|
ToSimplify->insert(UserI);
|
|
}
|
|
|
|
if (MSSAU)
|
|
if (Instruction *SimpleI = dyn_cast_or_null<Instruction>(V))
|
|
if (MemoryAccess *MA = MSSA->getMemoryAccess(&I))
|
|
if (MemoryAccess *ReplacementMA = MSSA->getMemoryAccess(SimpleI))
|
|
MA->replaceAllUsesWith(ReplacementMA);
|
|
|
|
assert(I.use_empty() && "Should always have replaced all uses!");
|
|
if (isInstructionTriviallyDead(&I, &TLI))
|
|
DeadInsts.push_back(&I);
|
|
++NumSimplified;
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
// Delete any dead instructions found thus far now that we've finished an
|
|
// iteration over all instructions in all the loop blocks.
|
|
if (!DeadInsts.empty()) {
|
|
Changed = true;
|
|
RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, &TLI, MSSAU);
|
|
}
|
|
|
|
if (MSSAU && VerifyMemorySSA)
|
|
MSSA->verifyMemorySSA();
|
|
|
|
// If we never found a PHI that needs to be simplified in the next
|
|
// iteration, we're done.
|
|
if (Next->empty())
|
|
break;
|
|
|
|
// Otherwise, put the next set in place for the next iteration and reset it
|
|
// and the visited PHIs for that iteration.
|
|
std::swap(Next, ToSimplify);
|
|
Next->clear();
|
|
VisitedPHIs.clear();
|
|
DeadInsts.clear();
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
namespace {
|
|
|
|
class LoopInstSimplifyLegacyPass : public LoopPass {
|
|
public:
|
|
static char ID; // Pass ID, replacement for typeid
|
|
|
|
LoopInstSimplifyLegacyPass() : LoopPass(ID) {
|
|
initializeLoopInstSimplifyLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnLoop(Loop *L, LPPassManager &LPM) override {
|
|
if (skipLoop(L))
|
|
return false;
|
|
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
|
AssumptionCache &AC =
|
|
getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
|
|
*L->getHeader()->getParent());
|
|
const TargetLibraryInfo &TLI =
|
|
getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
|
|
*L->getHeader()->getParent());
|
|
MemorySSA *MSSA = nullptr;
|
|
Optional<MemorySSAUpdater> MSSAU;
|
|
if (EnableMSSALoopDependency) {
|
|
MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
|
|
MSSAU = MemorySSAUpdater(MSSA);
|
|
}
|
|
|
|
return simplifyLoopInst(*L, DT, LI, AC, TLI,
|
|
MSSAU.hasValue() ? MSSAU.getPointer() : nullptr);
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<AssumptionCacheTracker>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
AU.setPreservesCFG();
|
|
if (EnableMSSALoopDependency) {
|
|
AU.addRequired<MemorySSAWrapperPass>();
|
|
AU.addPreserved<MemorySSAWrapperPass>();
|
|
}
|
|
getLoopAnalysisUsage(AU);
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
PreservedAnalyses LoopInstSimplifyPass::run(Loop &L, LoopAnalysisManager &AM,
|
|
LoopStandardAnalysisResults &AR,
|
|
LPMUpdater &) {
|
|
Optional<MemorySSAUpdater> MSSAU;
|
|
if (AR.MSSA) {
|
|
MSSAU = MemorySSAUpdater(AR.MSSA);
|
|
AR.MSSA->verifyMemorySSA();
|
|
}
|
|
if (!simplifyLoopInst(L, AR.DT, AR.LI, AR.AC, AR.TLI,
|
|
MSSAU.hasValue() ? MSSAU.getPointer() : nullptr))
|
|
return PreservedAnalyses::all();
|
|
|
|
auto PA = getLoopPassPreservedAnalyses();
|
|
PA.preserveSet<CFGAnalyses>();
|
|
if (AR.MSSA)
|
|
PA.preserve<MemorySSAAnalysis>();
|
|
return PA;
|
|
}
|
|
|
|
char LoopInstSimplifyLegacyPass::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(LoopInstSimplifyLegacyPass, "loop-instsimplify",
|
|
"Simplify instructions in loops", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopPass)
|
|
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
INITIALIZE_PASS_END(LoopInstSimplifyLegacyPass, "loop-instsimplify",
|
|
"Simplify instructions in loops", false, false)
|
|
|
|
Pass *llvm::createLoopInstSimplifyPass() {
|
|
return new LoopInstSimplifyLegacyPass();
|
|
}
|