forked from OSchip/llvm-project
792 lines
36 KiB
Markdown
792 lines
36 KiB
Markdown
<!--===- documentation/Intrinsics.md
|
|
|
|
Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
See https://llvm.org/LICENSE.txt for license information.
|
|
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
|
|
-->
|
|
|
|
# A categorization of standard (2018) and extended Fortran intrinsic procedures
|
|
|
|
This note attempts to group the intrinsic procedures of Fortran into categories
|
|
of functions or subroutines with similar interfaces as an aid to
|
|
comprehension beyond that which might be gained from the standard's
|
|
alphabetical list.
|
|
|
|
A brief status of intrinsic procedure support in f18 is also given at the end.
|
|
|
|
Few procedures are actually described here apart from their interfaces; see the
|
|
Fortran 2018 standard (section 16) for the complete story.
|
|
|
|
Intrinsic modules are not covered here.
|
|
|
|
## General rules
|
|
|
|
1. The value of any intrinsic function's `KIND` actual argument, if present,
|
|
must be a scalar constant integer expression, of any kind, whose value
|
|
resolves to some supported kind of the function's result type.
|
|
If optional and absent, the kind of the function's result is
|
|
either the default kind of that category or to the kind of an argument
|
|
(e.g., as in `AINT`).
|
|
1. Procedures are summarized with a non-Fortran syntax for brevity.
|
|
Wherever a function has a short definition, it appears after an
|
|
equal sign as if it were a statement function. Any functions referenced
|
|
in these short summaries are intrinsic.
|
|
1. Unless stated otherwise, an actual argument may have any supported kind
|
|
of a particular intrinsic type. Sometimes a pattern variable
|
|
can appear in a description (e.g., `REAL(k)`) when the kind of an
|
|
actual argument's type must match the kind of another argument, or
|
|
determines the kind type parameter of the function result.
|
|
1. When an intrinsic type name appears without a kind (e.g., `REAL`),
|
|
it refers to the default kind of that type. Sometimes the word
|
|
`default` will appear for clarity.
|
|
1. The names of the dummy arguments actually matter because they can
|
|
be used as keywords for actual arguments.
|
|
1. All standard intrinsic functions are pure, even when not elemental.
|
|
1. Assumed-rank arguments may not appear as actual arguments unless
|
|
expressly permitted.
|
|
1. When an argument is described with a default value, e.g. `KIND=KIND(0)`,
|
|
it is an optional argument. Optional arguments without defaults,
|
|
e.g. `DIM` on many transformationals, are wrapped in `[]` brackets
|
|
as in the Fortran standard. When an intrinsic has optional arguments
|
|
with and without default values, the arguments with default values
|
|
may appear within the brackets to preserve the order of arguments
|
|
(e.g., `COUNT`).
|
|
|
|
# Elemental intrinsic functions
|
|
|
|
Pure elemental semantics apply to these functions, to wit: when one or more of
|
|
the actual arguments are arrays, the arguments must be conformable, and
|
|
the result is also an array.
|
|
Scalar arguments are expanded when the arguments are not all scalars.
|
|
|
|
## Elemental intrinsic functions that may have unrestricted specific procedures
|
|
|
|
When an elemental intrinsic function is documented here as having an
|
|
_unrestricted specific name_, that name may be passed as an actual
|
|
argument, used as the target of a procedure pointer, appear in
|
|
a generic interface, and be otherwise used as if it were an external
|
|
procedure.
|
|
An `INTRINSIC` statement or attribute may have to be applied to an
|
|
unrestricted specific name to enable such usage.
|
|
|
|
When a name is being used as a specific procedure for any purpose other
|
|
than that of a called function, the specific instance of the function
|
|
that accepts and returns values of the default kinds of the intrinsic
|
|
types is used.
|
|
A Fortran `INTERFACE` could be written to define each of
|
|
these unrestricted specific intrinsic function names.
|
|
|
|
Calls to dummy arguments and procedure pointers that correspond to these
|
|
specific names must pass only scalar actual argument values.
|
|
|
|
No other intrinsic function name can be passed as an actual argument,
|
|
used as a pointer target, appear in a generic interface, or be otherwise
|
|
used except as the name of a called function.
|
|
Some of these _restricted specific intrinsic functions_, e.g. `FLOAT`,
|
|
provide a means for invoking a corresponding generic (`REAL` in the case of `FLOAT`)
|
|
with forced argument and result kinds.
|
|
Others, viz. `CHAR`, `ICHAR`, `INT`, `REAL`, and the lexical comparisons like `LGE`,
|
|
have the same name as their generic functions, and it is not clear what purpose
|
|
is accomplished by the standard by defining them as specific functions.
|
|
|
|
### Trigonometric elemental intrinsic functions, generic and (mostly) specific
|
|
All of these functions can be used as unrestricted specific names.
|
|
|
|
```
|
|
ACOS(REAL(k) X) -> REAL(k)
|
|
ASIN(REAL(k) X) -> REAL(k)
|
|
ATAN(REAL(k) X) -> REAL(k)
|
|
ATAN(REAL(k) Y, REAL(k) X) -> REAL(k) = ATAN2(Y, X)
|
|
ATAN2(REAL(k) Y, REAL(k) X) -> REAL(k)
|
|
COS(REAL(k) X) -> REAL(k)
|
|
COSH(REAL(k) X) -> REAL(k)
|
|
SIN(REAL(k) X) -> REAL(k)
|
|
SINH(REAL(k) X) -> REAL(k)
|
|
TAN(REAL(k) X) -> REAL(k)
|
|
TANH(REAL(k) X) -> REAL(k)
|
|
```
|
|
|
|
These `COMPLEX` versions of some of those functions, and the
|
|
inverse hyperbolic functions, cannot be used as specific names.
|
|
```
|
|
ACOS(COMPLEX(k) X) -> COMPLEX(k)
|
|
ASIN(COMPLEX(k) X) -> COMPLEX(k)
|
|
ATAN(COMPLEX(k) X) -> COMPLEX(k)
|
|
ACOSH(REAL(k) X) -> REAL(k)
|
|
ACOSH(COMPLEX(k) X) -> COMPLEX(k)
|
|
ASINH(REAL(k) X) -> REAL(k)
|
|
ASINH(COMPLEX(k) X) -> COMPLEX(k)
|
|
ATANH(REAL(k) X) -> REAL(k)
|
|
ATANH(COMPLEX(k) X) -> COMPLEX(k)
|
|
COS(COMPLEX(k) X) -> COMPLEX(k)
|
|
COSH(COMPLEX(k) X) -> COMPLEX(k)
|
|
SIN(COMPLEX(k) X) -> COMPLEX(k)
|
|
SINH(COMPLEX(k) X) -> COMPLEX(k)
|
|
TAN(COMPLEX(k) X) -> COMPLEX(k)
|
|
TANH(COMPLEX(k) X) -> COMPLEX(k)
|
|
```
|
|
|
|
### Non-trigonometric elemental intrinsic functions, generic and specific
|
|
These functions *can* be used as unrestricted specific names.
|
|
```
|
|
ABS(REAL(k) A) -> REAL(k) = SIGN(A, 0.0)
|
|
AIMAG(COMPLEX(k) Z) -> REAL(k) = Z%IM
|
|
AINT(REAL(k) A, KIND=k) -> REAL(KIND)
|
|
ANINT(REAL(k) A, KIND=k) -> REAL(KIND)
|
|
CONJG(COMPLEX(k) Z) -> COMPLEX(k) = CMPLX(Z%RE, -Z%IM)
|
|
DIM(REAL(k) X, REAL(k) Y) -> REAL(k) = X-MIN(X,Y)
|
|
DPROD(default REAL X, default REAL Y) -> DOUBLE PRECISION = DBLE(X)*DBLE(Y)
|
|
EXP(REAL(k) X) -> REAL(k)
|
|
INDEX(CHARACTER(k) STRING, CHARACTER(k) SUBSTRING, LOGICAL(any) BACK=.FALSE., KIND=KIND(0)) -> INTEGER(KIND)
|
|
LEN(CHARACTER(k,n) STRING, KIND=KIND(0)) -> INTEGER(KIND) = n
|
|
LOG(REAL(k) X) -> REAL(k)
|
|
LOG10(REAL(k) X) -> REAL(k)
|
|
MOD(INTEGER(k) A, INTEGER(k) P) -> INTEGER(k) = A-P*INT(A/P)
|
|
NINT(REAL(k) A, KIND=KIND(0)) -> INTEGER(KIND)
|
|
SIGN(REAL(k) A, REAL(k) B) -> REAL(k)
|
|
SQRT(REAL(k) X) -> REAL(k) = X ** 0.5
|
|
```
|
|
|
|
These variants, however *cannot* be used as specific names without recourse to an alias
|
|
from the following section:
|
|
```
|
|
ABS(INTEGER(k) A) -> INTEGER(k) = SIGN(A, 0)
|
|
ABS(COMPLEX(k) A) -> REAL(k) = HYPOT(A%RE, A%IM)
|
|
DIM(INTEGER(k) X, INTEGER(k) Y) -> INTEGER(k) = X-MIN(X,Y)
|
|
EXP(COMPLEX(k) X) -> COMPLEX(k)
|
|
LOG(COMPLEX(k) X) -> COMPLEX(k)
|
|
MOD(REAL(k) A, REAL(k) P) -> REAL(k) = A-P*INT(A/P)
|
|
SIGN(INTEGER(k) A, INTEGER(k) B) -> INTEGER(k)
|
|
SQRT(COMPLEX(k) X) -> COMPLEX(k)
|
|
```
|
|
|
|
### Unrestricted specific aliases for some elemental intrinsic functions with distinct names
|
|
|
|
```
|
|
ALOG(REAL X) -> REAL = LOG(X)
|
|
ALOG10(REAL X) -> REAL = LOG10(X)
|
|
AMOD(REAL A, REAL P) -> REAL = MOD(A, P)
|
|
CABS(COMPLEX A) = ABS(A)
|
|
CCOS(COMPLEX X) = COS(X)
|
|
CEXP(COMPLEX A) -> COMPLEX = EXP(A)
|
|
CLOG(COMPLEX X) -> COMPLEX = LOG(X)
|
|
CSIN(COMPLEX X) -> COMPLEX = SIN(X)
|
|
CSQRT(COMPLEX X) -> COMPLEX = SQRT(X)
|
|
CTAN(COMPLEX X) -> COMPLEX = TAN(X)
|
|
DABS(DOUBLE PRECISION A) -> DOUBLE PRECISION = ABS(A)
|
|
DACOS(DOUBLE PRECISION X) -> DOUBLE PRECISION = ACOS(X)
|
|
DASIN(DOUBLE PRECISION X) -> DOUBLE PRECISION = ASIN(X)
|
|
DATAN(DOUBLE PRECISION X) -> DOUBLE PRECISION = ATAN(X)
|
|
DATAN2(DOUBLE PRECISION Y, DOUBLE PRECISION X) -> DOUBLE PRECISION = ATAN2(Y, X)
|
|
DCOS(DOUBLE PRECISION X) -> DOUBLE PRECISION = COS(X)
|
|
DCOSH(DOUBLE PRECISION X) -> DOUBLE PRECISION = COSH(X)
|
|
DDIM(DOUBLE PRECISION X, DOUBLE PRECISION Y) -> DOUBLE PRECISION = X-MIN(X,Y)
|
|
DEXP(DOUBLE PRECISION X) -> DOUBLE PRECISION = EXP(X)
|
|
DINT(DOUBLE PRECISION A) -> DOUBLE PRECISION = AINT(A)
|
|
DLOG(DOUBLE PRECISION X) -> DOUBLE PRECISION = LOG(X)
|
|
DLOG10(DOUBLE PRECISION X) -> DOUBLE PRECISION = LOG10(X)
|
|
DMOD(DOUBLE PRECISION A, DOUBLE PRECISION P) -> DOUBLE PRECISION = MOD(A, P)
|
|
DNINT(DOUBLE PRECISION A) -> DOUBLE PRECISION = ANINT(A)
|
|
DSIGN(DOUBLE PRECISION A, DOUBLE PRECISION B) -> DOUBLE PRECISION = SIGN(A, B)
|
|
DSIN(DOUBLE PRECISION X) -> DOUBLE PRECISION = SIN(X)
|
|
DSINH(DOUBLE PRECISION X) -> DOUBLE PRECISION = SINH(X)
|
|
DSQRT(DOUBLE PRECISION X) -> DOUBLE PRECISION = SQRT(X)
|
|
DTAN(DOUBLE PRECISION X) -> DOUBLE PRECISION = TAN(X)
|
|
DTANH(DOUBLE PRECISION X) -> DOUBLE PRECISION = TANH(X)
|
|
IABS(INTEGER A) -> INTEGER = ABS(A)
|
|
IDIM(INTEGER X, INTEGER Y) -> INTEGER = X-MIN(X,Y)
|
|
IDNINT(DOUBLE PRECISION A) -> INTEGER = NINT(A)
|
|
ISIGN(INTEGER A, INTEGER B) -> INTEGER = SIGN(A, B)
|
|
```
|
|
|
|
## Generic elemental intrinsic functions without specific names
|
|
|
|
(No procedures after this point can be passed as actual arguments, used as
|
|
pointer targets, or appear as specific procedures in generic interfaces.)
|
|
|
|
### Elemental conversions
|
|
|
|
```
|
|
ACHAR(INTEGER(k) I, KIND=KIND('')) -> CHARACTER(KIND,LEN=1)
|
|
CEILING(REAL() A, KIND=KIND(0)) -> INTEGER(KIND)
|
|
CHAR(INTEGER(any) I, KIND=KIND('')) -> CHARACTER(KIND,LEN=1)
|
|
CMPLX(COMPLEX(k) X, KIND=KIND(0.0D0)) -> COMPLEX(KIND)
|
|
CMPLX(INTEGER or REAL or BOZ X, INTEGER or REAL or BOZ Y=0, KIND=KIND((0,0))) -> COMPLEX(KIND)
|
|
DBLE(INTEGER or REAL or COMPLEX or BOZ A) = REAL(A, KIND=KIND(0.0D0))
|
|
EXPONENT(REAL(any) X) -> default INTEGER
|
|
FLOOR(REAL(any) A, KIND=KIND(0)) -> INTEGER(KIND)
|
|
IACHAR(CHARACTER(KIND=k,LEN=1) C, KIND=KIND(0)) -> INTEGER(KIND)
|
|
ICHAR(CHARACTER(KIND=k,LEN=1) C, KIND=KIND(0)) -> INTEGER(KIND)
|
|
INT(INTEGER or REAL or COMPLEX or BOZ A, KIND=KIND(0)) -> INTEGER(KIND)
|
|
LOGICAL(LOGICAL(any) L, KIND=KIND(.TRUE.)) -> LOGICAL(KIND)
|
|
REAL(INTEGER or REAL or COMPLEX or BOZ A, KIND=KIND(0.0)) -> REAL(KIND)
|
|
```
|
|
|
|
### Other generic elemental intrinsic functions without specific names
|
|
N.B. `BESSEL_JN(N1, N2, X)` and `BESSEL_YN(N1, N2, X)` are categorized
|
|
below with the _transformational_ intrinsic functions.
|
|
|
|
```
|
|
BESSEL_J0(REAL(k) X) -> REAL(k)
|
|
BESSEL_J1(REAL(k) X) -> REAL(k)
|
|
BESSEL_JN(INTEGER(n) N, REAL(k) X) -> REAL(k)
|
|
BESSEL_Y0(REAL(k) X) -> REAL(k)
|
|
BESSEL_Y1(REAL(k) X) -> REAL(k)
|
|
BESSEL_YN(INTEGER(n) N, REAL(k) X) -> REAL(k)
|
|
ERF(REAL(k) X) -> REAL(k)
|
|
ERFC(REAL(k) X) -> REAL(k)
|
|
ERFC_SCALED(REAL(k) X) -> REAL(k)
|
|
FRACTION(REAL(k) X) -> REAL(k)
|
|
GAMMA(REAL(k) X) -> REAL(k)
|
|
HYPOT(REAL(k) X, REAL(k) Y) -> REAL(k) = SQRT(X*X+Y*Y) without spurious overflow
|
|
IMAGE_STATUS(INTEGER(any) IMAGE [, scalar TEAM_TYPE TEAM ]) -> default INTEGER
|
|
IS_IOSTAT_END(INTEGER(any) I) -> default LOGICAL
|
|
IS_IOSTAT_EOR(INTEGER(any) I) -> default LOGICAL
|
|
LOG_GAMMA(REAL(k) X) -> REAL(k)
|
|
MAX(INTEGER(k) ...) -> INTEGER(k)
|
|
MAX(REAL(k) ...) -> REAL(k)
|
|
MAX(CHARACTER(KIND=k) ...) -> CHARACTER(KIND=k,LEN=MAX(LEN(...)))
|
|
MERGE(any type TSOURCE, same type FSOURCE, LOGICAL(any) MASK) -> type of FSOURCE
|
|
MIN(INTEGER(k) ...) -> INTEGER(k)
|
|
MIN(REAL(k) ...) -> REAL(k)
|
|
MIN(CHARACTER(KIND=k) ...) -> CHARACTER(KIND=k,LEN=MAX(LEN(...)))
|
|
MODULO(INTEGER(k) A, INTEGER(k) P) -> INTEGER(k); P*result >= 0
|
|
MODULO(REAL(k) A, REAL(k) P) -> REAL(k) = A - P*FLOOR(A/P)
|
|
NEAREST(REAL(k) X, REAL(any) S) -> REAL(k)
|
|
OUT_OF_RANGE(INTEGER(any) X, scalar INTEGER or REAL(k) MOLD) -> default LOGICAL
|
|
OUT_OF_RANGE(REAL(any) X, scalar REAL(k) MOLD) -> default LOGICAL
|
|
OUT_OF_RANGE(REAL(any) X, scalar INTEGER(any) MOLD, scalar LOGICAL(any) ROUND=.FALSE.) -> default LOGICAL
|
|
RRSPACING(REAL(k) X) -> REAL(k)
|
|
SCALE(REAL(k) X, INTEGER(any) I) -> REAL(k)
|
|
SET_EXPONENT(REAL(k) X, INTEGER(any) I) -> REAL(k)
|
|
SPACING(REAL(k) X) -> REAL(k)
|
|
```
|
|
|
|
### Restricted specific aliases for elemental conversions &/or extrema with default intrinsic types
|
|
|
|
```
|
|
AMAX0(INTEGER ...) = REAL(MAX(...))
|
|
AMAX1(REAL ...) = MAX(...)
|
|
AMIN0(INTEGER...) = REAL(MIN(...))
|
|
AMIN1(REAL ...) = MIN(...)
|
|
DMAX1(DOUBLE PRECISION ...) = MAX(...)
|
|
DMIN1(DOUBLE PRECISION ...) = MIN(...)
|
|
FLOAT(INTEGER I) = REAL(I)
|
|
IDINT(DOUBLE PRECISION A) = INT(A)
|
|
IFIX(REAL A) = INT(A)
|
|
MAX0(INTEGER ...) = MAX(...)
|
|
MAX1(REAL ...) = INT(MAX(...))
|
|
MIN0(INTEGER ...) = MIN(...)
|
|
MIN1(REAL ...) = INT(MIN(...))
|
|
SNGL(DOUBLE PRECISION A) = REAL(A)
|
|
```
|
|
|
|
### Generic elemental bit manipulation intrinsic functions
|
|
Many of these accept a typeless "BOZ" literal as an actual argument.
|
|
It is interpreted as having the kind of intrinsic `INTEGER` type
|
|
as another argument, as if the typeless were implicitly wrapped
|
|
in a call to `INT()`.
|
|
When multiple arguments can be either `INTEGER` values or typeless
|
|
constants, it is forbidden for *all* of them to be typeless
|
|
constants if the result of the function is `INTEGER`
|
|
(i.e., only `BGE`, `BGT`, `BLE`, and `BLT` can have multiple
|
|
typeless arguments).
|
|
|
|
```
|
|
BGE(INTEGER(n1) or BOZ I, INTEGER(n2) or BOZ J) -> default LOGICAL
|
|
BGT(INTEGER(n1) or BOZ I, INTEGER(n2) or BOZ J) -> default LOGICAL
|
|
BLE(INTEGER(n1) or BOZ I, INTEGER(n2) or BOZ J) -> default LOGICAL
|
|
BLT(INTEGER(n1) or BOZ I, INTEGER(n2) or BOZ J) -> default LOGICAL
|
|
BTEST(INTEGER(n1) I, INTEGER(n2) POS) -> default LOGICAL
|
|
DSHIFTL(INTEGER(k) I, INTEGER(k) or BOZ J, INTEGER(any) SHIFT) -> INTEGER(k)
|
|
DSHIFTL(BOZ I, INTEGER(k), INTEGER(any) SHIFT) -> INTEGER(k)
|
|
DSHIFTR(INTEGER(k) I, INTEGER(k) or BOZ J, INTEGER(any) SHIFT) -> INTEGER(k)
|
|
DSHIFTR(BOZ I, INTEGER(k), INTEGER(any) SHIFT) -> INTEGER(k)
|
|
IAND(INTEGER(k) I, INTEGER(k) or BOZ J) -> INTEGER(k)
|
|
IAND(BOZ I, INTEGER(k) J) -> INTEGER(k)
|
|
IBCLR(INTEGER(k) I, INTEGER(any) POS) -> INTEGER(k)
|
|
IBITS(INTEGER(k) I, INTEGER(n1) POS, INTEGER(n2) LEN) -> INTEGER(k)
|
|
IBSET(INTEGER(k) I, INTEGER(any) POS) -> INTEGER(k)
|
|
IEOR(INTEGER(k) I, INTEGER(k) or BOZ J) -> INTEGER(k)
|
|
IEOR(BOZ I, INTEGER(k) J) -> INTEGER(k)
|
|
IOR(INTEGER(k) I, INTEGER(k) or BOZ J) -> INTEGER(k)
|
|
IOR(BOZ I, INTEGER(k) J) -> INTEGER(k)
|
|
ISHFT(INTEGER(k) I, INTEGER(any) SHIFT) -> INTEGER(k)
|
|
ISHFTC(INTEGER(k) I, INTEGER(n1) SHIFT, INTEGER(n2) SIZE=BIT_SIZE(I)) -> INTEGER(k)
|
|
LEADZ(INTEGER(any) I) -> default INTEGER
|
|
MASKL(INTEGER(any) I, KIND=KIND(0)) -> INTEGER(KIND)
|
|
MASKR(INTEGER(any) I, KIND=KIND(0)) -> INTEGER(KIND)
|
|
MERGE_BITS(INTEGER(k) I, INTEGER(k) or BOZ J, INTEGER(k) or BOZ MASK) = IOR(IAND(I,MASK),IAND(J,NOT(MASK)))
|
|
MERGE_BITS(BOZ I, INTEGER(k) J, INTEGER(k) or BOZ MASK) = IOR(IAND(I,MASK),IAND(J,NOT(MASK)))
|
|
NOT(INTEGER(k) I) -> INTEGER(k)
|
|
POPCNT(INTEGER(any) I) -> default INTEGER
|
|
POPPAR(INTEGER(any) I) -> default INTEGER = IAND(POPCNT(I), Z'1')
|
|
SHIFTA(INTEGER(k) I, INTEGER(any) SHIFT) -> INTEGER(k)
|
|
SHIFTL(INTEGER(k) I, INTEGER(any) SHIFT) -> INTEGER(k)
|
|
SHIFTR(INTEGER(k) I, INTEGER(any) SHIFT) -> INTEGER(k)
|
|
TRAILZ(INTEGER(any) I) -> default INTEGER
|
|
```
|
|
|
|
### Character elemental intrinsic functions
|
|
See also `INDEX` and `LEN` above among the elemental intrinsic functions with
|
|
unrestricted specific names.
|
|
```
|
|
ADJUSTL(CHARACTER(k,LEN=n) STRING) -> CHARACTER(k,LEN=n)
|
|
ADJUSTR(CHARACTER(k,LEN=n) STRING) -> CHARACTER(k,LEN=n)
|
|
LEN_TRIM(CHARACTER(k,n) STRING, KIND=KIND(0)) -> INTEGER(KIND) = n
|
|
LGE(CHARACTER(k,n1) STRING_A, CHARACTER(k,n2) STRING_B) -> default LOGICAL
|
|
LGT(CHARACTER(k,n1) STRING_A, CHARACTER(k,n2) STRING_B) -> default LOGICAL
|
|
LLE(CHARACTER(k,n1) STRING_A, CHARACTER(k,n2) STRING_B) -> default LOGICAL
|
|
LLT(CHARACTER(k,n1) STRING_A, CHARACTER(k,n2) STRING_B) -> default LOGICAL
|
|
SCAN(CHARACTER(k,n) STRING, CHARACTER(k,m) SET, LOGICAL(any) BACK=.FALSE., KIND=KIND(0)) -> INTEGER(KIND)
|
|
VERIFY(CHARACTER(k,n) STRING, CHARACTER(k,m) SET, LOGICAL(any) BACK=.FALSE., KIND=KIND(0)) -> INTEGER(KIND)
|
|
```
|
|
|
|
`SCAN` returns the index of the first (or last, if `BACK=.TRUE.`) character in `STRING`
|
|
that is present in `SET`, or zero if none is.
|
|
|
|
`VERIFY` is essentially the opposite: it returns the index of the first (or last) character
|
|
in `STRING` that is *not* present in `SET`, or zero if all are.
|
|
|
|
# Transformational intrinsic functions
|
|
|
|
This category comprises a large collection of intrinsic functions that
|
|
are collected together because they somehow transform their arguments
|
|
in a way that prevents them from being elemental.
|
|
All of them are pure, however.
|
|
|
|
Some general rules apply to the transformational intrinsic functions:
|
|
|
|
1. `DIM` arguments are optional; if present, the actual argument must be
|
|
a scalar integer of any kind.
|
|
1. When an optional `DIM` argument is absent, or an `ARRAY` or `MASK`
|
|
argument is a vector, the result of the function is scalar; otherwise,
|
|
the result is an array of the same shape as the `ARRAY` or `MASK`
|
|
argument with the dimension `DIM` removed from the shape.
|
|
1. When a function takes an optional `MASK` argument, it must be conformable
|
|
with its `ARRAY` argument if it is present, and the mask can be any kind
|
|
of `LOGICAL`. It can be scalar.
|
|
1. The type `numeric` here can be any kind of `INTEGER`, `REAL`, or `COMPLEX`.
|
|
1. The type `relational` here can be any kind of `INTEGER`, `REAL`, or `CHARACTER`.
|
|
1. The type `any` here denotes any intrinsic or derived type.
|
|
1. The notation `(..)` denotes an array of any rank (but not an assumed-rank array).
|
|
|
|
## Logical reduction transformational intrinsic functions
|
|
```
|
|
ALL(LOGICAL(k) MASK(..) [, DIM ]) -> LOGICAL(k)
|
|
ANY(LOGICAL(k) MASK(..) [, DIM ]) -> LOGICAL(k)
|
|
COUNT(LOGICAL(any) MASK(..) [, DIM, KIND=KIND(0) ]) -> INTEGER(KIND)
|
|
PARITY(LOGICAL(k) MASK(..) [, DIM ]) -> LOGICAL(k)
|
|
```
|
|
|
|
## Numeric reduction transformational intrinsic functions
|
|
```
|
|
IALL(INTEGER(k) ARRAY(..) [, DIM, MASK ]) -> INTEGER(k)
|
|
IANY(INTEGER(k) ARRAY(..) [, DIM, MASK ]) -> INTEGER(k)
|
|
IPARITY(INTEGER(k) ARRAY(..) [, DIM, MASK ]) -> INTEGER(k)
|
|
NORM2(REAL(k) X(..) [, DIM ]) -> REAL(k)
|
|
PRODUCT(numeric ARRAY(..) [, DIM, MASK ]) -> numeric
|
|
SUM(numeric ARRAY(..) [, DIM, MASK ]) -> numeric
|
|
```
|
|
|
|
`NORM2` generalizes `HYPOT` by computing `SQRT(SUM(X*X))` while avoiding spurious overflows.
|
|
|
|
## Extrema reduction transformational intrinsic functions
|
|
```
|
|
MAXVAL(relational(k) ARRAY(..) [, DIM, MASK ]) -> relational(k)
|
|
MINVAL(relational(k) ARRAY(..) [, DIM, MASK ]) -> relational(k)
|
|
```
|
|
|
|
### Locational transformational intrinsic functions
|
|
When the optional `DIM` argument is absent, the result is an `INTEGER(KIND)`
|
|
vector whose length is the rank of `ARRAY`.
|
|
When the optional `DIM` argument is present, the result is an `INTEGER(KIND)`
|
|
array of rank `RANK(ARRAY)-1` and shape equal to that of `ARRAY` with
|
|
the dimension `DIM` removed.
|
|
|
|
The optional `BACK` argument is a scalar LOGICAL value of any kind.
|
|
When present and `.TRUE.`, it causes the function to return the index
|
|
of the *last* occurence of the target or extreme value.
|
|
|
|
For `FINDLOC`, `ARRAY` may have any of the five intrinsic types, and `VALUE`
|
|
must a scalar value of a type for which `ARRAY==VALUE` or `ARRAY .EQV. VALUE`
|
|
is an acceptable expression.
|
|
|
|
```
|
|
FINDLOC(intrinsic ARRAY(..), scalar VALUE [, DIM, MASK, KIND=KIND(0), BACK=.FALSE. ])
|
|
MAXLOC(relational ARRAY(..) [, DIM, MASK, KIND=KIND(0), BACK=.FALSE. ])
|
|
MINLOC(relational ARRAY(..) [, DIM, MASK, KIND=KIND(0), BACK=.FALSE. ])
|
|
```
|
|
|
|
## Data rearrangement transformational intrinsic functions
|
|
The optional `DIM` argument to these functions must be a scalar integer of
|
|
any kind, and it takes a default value of 1 when absent.
|
|
|
|
```
|
|
CSHIFT(any ARRAY(..), INTEGER(any) SHIFT(..) [, DIM ]) -> same type/kind/shape as ARRAY
|
|
```
|
|
Either `SHIFT` is scalar or `RANK(SHIFT) == RANK(ARRAY) - 1` and `SHAPE(SHIFT)` is that of `SHAPE(ARRAY)` with element `DIM` removed.
|
|
|
|
```
|
|
EOSHIFT(any ARRAY(..), INTEGER(any) SHIFT(..) [, BOUNDARY, DIM ]) -> same type/kind/shape as ARRAY
|
|
```
|
|
* `SHIFT` is scalar or `RANK(SHIFT) == RANK(ARRAY) - 1` and `SHAPE(SHIFT)` is that of `SHAPE(ARRAY)` with element `DIM` removed.
|
|
* If `BOUNDARY` is present, it must have the same type and parameters as `ARRAY`.
|
|
* If `BOUNDARY` is absent, `ARRAY` must be of an intrinsic type, and the default `BOUNDARY` is the obvious `0`, `' '`, or `.FALSE.` value of `KIND(ARRAY)`.
|
|
* If `BOUNDARY` is present, either it is scalar, or `RANK(BOUNDARY) == RANK(ARRAY) - 1` and `SHAPE(BOUNDARY)` is that of `SHAPE(ARRAY)` with element `DIM`
|
|
removed.
|
|
|
|
```
|
|
PACK(any ARRAY(..), LOGICAL(any) MASK(..)) -> vector of same type and kind as ARRAY
|
|
```
|
|
* `MASK` is conformable with `ARRAY` and may be scalar.
|
|
* The length of the result vector is `COUNT(MASK)` if `MASK` is an array, else `SIZE(ARRAY)` if `MASK` is `.TRUE.`, else zero.
|
|
|
|
```
|
|
PACK(any ARRAY(..), LOGICAL(any) MASK(..), any VECTOR(n)) -> vector of same type, kind, and size as VECTOR
|
|
```
|
|
* `MASK` is conformable with `ARRAY` and may be scalar.
|
|
* `VECTOR` has the same type and kind as `ARRAY`.
|
|
* `VECTOR` must not be smaller than result of `PACK` with no `VECTOR` argument.
|
|
* The leading elements of `VECTOR` are replaced with elements from `ARRAY` as
|
|
if `PACK` had been invoked without `VECTOR`.
|
|
|
|
```
|
|
RESHAPE(any SOURCE(..), INTEGER(k) SHAPE(n) [, PAD(..), INTEGER(k2) ORDER(n) ]) -> SOURCE array with shape SHAPE
|
|
```
|
|
* If `ORDER` is present, it is a vector of the same size as `SHAPE`, and
|
|
contains a permutation.
|
|
* The element(s) of `PAD` are used to fill out the result once `SOURCE`
|
|
has been consumed.
|
|
|
|
```
|
|
SPREAD(any SOURCE, DIM, scalar INTEGER(any) NCOPIES) -> same type as SOURCE, rank=RANK(SOURCE)+1
|
|
TRANSFER(any SOURCE, any MOLD) -> scalar if MOLD is scalar, else vector; same type and kind as MOLD
|
|
TRANSFER(any SOURCE, any MOLD, scalar INTEGER(any) SIZE) -> vector(SIZE) of type and kind of MOLD
|
|
TRANSPOSE(any MATRIX(n,m)) -> matrix(m,n) of same type and kind as MATRIX
|
|
```
|
|
|
|
The shape of the result of `SPREAD` is the same as that of `SOURCE`, with `NCOPIES` inserted
|
|
at position `DIM`.
|
|
|
|
```
|
|
UNPACK(any VECTOR(n), LOGICAL(any) MASK(..), FIELD) -> type and kind of VECTOR, shape of MASK
|
|
```
|
|
`FIELD` has same type and kind as `VECTOR` and is conformable with `MASK`.
|
|
|
|
## Other transformational intrinsic functions
|
|
```
|
|
BESSEL_JN(INTEGER(n1) N1, INTEGER(n2) N2, REAL(k) X) -> REAL(k) vector (MAX(N2-N1+1,0))
|
|
BESSEL_YN(INTEGER(n1) N1, INTEGER(n2) N2, REAL(k) X) -> REAL(k) vector (MAX(N2-N1+1,0))
|
|
COMMAND_ARGUMENT_COUNT() -> scalar default INTEGER
|
|
DOT_PRODUCT(LOGICAL(k) VECTOR_A(n), LOGICAL(k) VECTOR_B(n)) -> LOGICAL(k) = ANY(VECTOR_A .AND. VECTOR_B)
|
|
DOT_PRODUCT(COMPLEX(any) VECTOR_A(n), numeric VECTOR_B(n)) = SUM(CONJG(VECTOR_A) * VECTOR_B)
|
|
DOT_PRODUCT(INTEGER(any) or REAL(any) VECTOR_A(n), numeric VECTOR_B(n)) = SUM(VECTOR_A * VECTOR_B)
|
|
MATMUL(numeric ARRAY_A(j), numeric ARRAY_B(j,k)) -> numeric vector(k)
|
|
MATMUL(numeric ARRAY_A(j,k), numeric ARRAY_B(k)) -> numeric vector(j)
|
|
MATMUL(numeric ARRAY_A(j,k), numeric ARRAY_B(k,m)) -> numeric matrix(j,m)
|
|
MATMUL(LOGICAL(n1) ARRAY_A(j), LOGICAL(n2) ARRAY_B(j,k)) -> LOGICAL vector(k)
|
|
MATMUL(LOGICAL(n1) ARRAY_A(j,k), LOGICAL(n2) ARRAY_B(k)) -> LOGICAL vector(j)
|
|
MATMUL(LOGICAL(n1) ARRAY_A(j,k), LOGICAL(n2) ARRAY_B(k,m)) -> LOGICAL matrix(j,m)
|
|
NULL([POINTER/ALLOCATABLE MOLD]) -> POINTER
|
|
REDUCE(any ARRAY(..), function OPERATION [, DIM, LOGICAL(any) MASK(..), IDENTITY, LOGICAL ORDERED=.FALSE. ])
|
|
REPEAT(CHARACTER(k,n) STRING, INTEGER(any) NCOPIES) -> CHARACTER(k,n*NCOPIES)
|
|
SELECTED_CHAR_KIND('DEFAULT' or 'ASCII' or 'ISO_10646' or ...) -> scalar default INTEGER
|
|
SELECTED_INT_KIND(scalar INTEGER(any) R) -> scalar default INTEGER
|
|
SELECTED_REAL_KIND([scalar INTEGER(any) P, scalar INTEGER(any) R, scalar INTEGER(any) RADIX]) -> scalar default INTEGER
|
|
SHAPE(SOURCE, KIND=KIND(0)) -> INTEGER(KIND)(RANK(SOURCE))
|
|
TRIM(CHARACTER(k,n) STRING) -> CHARACTER(k)
|
|
```
|
|
|
|
The type and kind of the result of a numeric `MATMUL` is the same as would result from
|
|
a multiplication of an element of ARRAY_A and an element of ARRAY_B.
|
|
|
|
The kind of the `LOGICAL` result of a `LOGICAL` `MATMUL` is the same as would result
|
|
from an intrinsic `.AND.` operation between an element of `ARRAY_A` and an element
|
|
of `ARRAY_B`.
|
|
|
|
Note that `DOT_PRODUCT` with a `COMPLEX` first argument operates on its complex conjugate,
|
|
but that `MATMUL` with a `COMPLEX` argument does not.
|
|
|
|
The `MOLD` argument to `NULL` may be omitted only in a context where the type of the pointer is known,
|
|
such as an initializer or pointer assignment statement.
|
|
|
|
At least one argument must be present in a call to `SELECTED_REAL_KIND`.
|
|
|
|
An assumed-rank array may be passed to `SHAPE`, and if it is associated with an assumed-size array,
|
|
the last element of the result will be -1.
|
|
|
|
## Coarray transformational intrinsic functions
|
|
```
|
|
FAILED_IMAGES([scalar TEAM_TYPE TEAM, KIND=KIND(0)]) -> INTEGER(KIND) vector
|
|
GET_TEAM([scalar INTEGER(?) LEVEL]) -> scalar TEAM_TYPE
|
|
IMAGE_INDEX(COARRAY, INTEGER(any) SUB(n) [, scalar TEAM_TYPE TEAM ]) -> scalar default INTEGER
|
|
IMAGE_INDEX(COARRAY, INTEGER(any) SUB(n), scalar INTEGER(any) TEAM_NUMBER) -> scalar default INTEGER
|
|
NUM_IMAGES([scalar TEAM_TYPE TEAM]) -> scalar default INTEGER
|
|
NUM_IMAGES(scalar INTEGER(any) TEAM_NUMBER) -> scalar default INTEGER
|
|
STOPPED_IMAGES([scalar TEAM_TYPE TEAM, KIND=KIND(0)]) -> INTEGER(KIND) vector
|
|
TEAM_NUMBER([scalar TEAM_TYPE TEAM]) -> scalar default INTEGER
|
|
THIS_IMAGE([COARRAY, DIM, scalar TEAM_TYPE TEAM]) -> default INTEGER
|
|
```
|
|
The result of `THIS_IMAGE` is a scalar if `DIM` is present or if `COARRAY` is absent,
|
|
and a vector whose length is the corank of `COARRAY` otherwise.
|
|
|
|
# Inquiry intrinsic functions
|
|
These are neither elemental nor transformational; all are pure.
|
|
|
|
## Type inquiry intrinsic functions
|
|
All of these functions return constants.
|
|
The value of the argument is not used, and may well be undefined.
|
|
```
|
|
BIT_SIZE(INTEGER(k) I(..)) -> INTEGER(k)
|
|
DIGITS(INTEGER or REAL X(..)) -> scalar default INTEGER
|
|
EPSILON(REAL(k) X(..)) -> scalar REAL(k)
|
|
HUGE(INTEGER(k) X(..)) -> scalar INTEGER(k)
|
|
HUGE(REAL(k) X(..)) -> scalar of REAL(k)
|
|
KIND(intrinsic X(..)) -> scalar default INTEGER
|
|
MAXEXPONENT(REAL(k) X(..)) -> scalar default INTEGER
|
|
MINEXPONENT(REAL(k) X(..)) -> scalar default INTEGER
|
|
NEW_LINE(CHARACTER(k,n) A(..)) -> scalar CHARACTER(k,1) = CHAR(10)
|
|
PRECISION(REAL(k) or COMPLEX(k) X(..)) -> scalar default INTEGER
|
|
RADIX(INTEGER(k) or REAL(k) X(..)) -> scalar default INTEGER, always 2
|
|
RANGE(INTEGER(k) or REAL(k) or COMPLEX(k) X(..)) -> scalar default INTEGER
|
|
TINY(REAL(k) X(..)) -> scalar REAL(k)
|
|
```
|
|
|
|
## Bound and size inquiry intrinsic functions
|
|
The results are scalar when `DIM` is present, and a vector of length=(co)rank(`(CO)ARRAY`)
|
|
when `DIM` is absent.
|
|
```
|
|
LBOUND(any ARRAY(..) [, DIM, KIND=KIND(0) ]) -> INTEGER(KIND)
|
|
LCOBOUND(any COARRAY [, DIM, KIND=KIND(0) ]) -> INTEGER(KIND)
|
|
SIZE(any ARRAY(..) [, DIM, KIND=KIND(0) ]) -> INTEGER(KIND)
|
|
UBOUND(any ARRAY(..) [, DIM, KIND=KIND(0) ]) -> INTEGER(KIND)
|
|
UCOBOUND(any COARRAY [, DIM, KIND=KIND(0) ]) -> INTEGER(KIND)
|
|
```
|
|
|
|
Assumed-rank arrays may be used with `LBOUND`, `SIZE`, and `UBOUND`.
|
|
|
|
## Object characteristic inquiry intrinsic functions
|
|
```
|
|
ALLOCATED(any type ALLOCATABLE ARRAY) -> scalar default LOGICAL
|
|
ALLOCATED(any type ALLOCATABLE SCALAR) -> scalar default LOGICAL
|
|
ASSOCIATED(any type POINTER POINTER [, same type TARGET]) -> scalar default LOGICAL
|
|
COSHAPE(COARRAY, KIND=KIND(0)) -> INTEGER(KIND) vector of length corank(COARRAY)
|
|
EXTENDS_TYPE_OF(A, MOLD) -> default LOGICAL
|
|
IS_CONTIGUOUS(any data ARRAY(..)) -> scalar default LOGICAL
|
|
PRESENT(OPTIONAL A) -> scalar default LOGICAL
|
|
RANK(any data A) -> scalar default INTEGER = 0 if A is scalar, SIZE(SHAPE(A)) if A is an array, rank if assumed-rank
|
|
SAME_TYPE_AS(A, B) -> scalar default LOGICAL
|
|
STORAGE_SIZE(any data A, KIND=KIND(0)) -> INTEGER(KIND)
|
|
```
|
|
The arguments to `EXTENDS_TYPE_OF` must be of extensible derived types or be unlimited polymorphic.
|
|
|
|
An assumed-rank array may be used with `IS_CONTIGUOUS` and `RANK`.
|
|
|
|
# Intrinsic subroutines
|
|
|
|
(*TODO*: complete these descriptions)
|
|
|
|
## One elemental intrinsic subroutine
|
|
```
|
|
INTERFACE
|
|
SUBROUTINE MVBITS(FROM, FROMPOS, LEN, TO, TOPOS)
|
|
INTEGER(k1) :: FROM, TO
|
|
INTENT(IN) :: FROM
|
|
INTENT(INOUT) :: TO
|
|
INTEGER(k2), INTENT(IN) :: FROMPOS
|
|
INTEGER(k3), INTENT(IN) :: LEN
|
|
INTEGER(k4), INTENT(IN) :: TOPOS
|
|
END SUBROUTINE
|
|
END INTERFACE
|
|
```
|
|
|
|
## Non-elemental intrinsic subroutines
|
|
```
|
|
CALL CPU_TIME(REAL INTENT(OUT) TIME)
|
|
```
|
|
The kind of `TIME` is not specified in the standard.
|
|
|
|
```
|
|
CALL DATE_AND_TIME([DATE, TIME, ZONE, VALUES])
|
|
```
|
|
* All arguments are `OPTIONAL` and `INTENT(OUT)`.
|
|
* `DATE`, `TIME`, and `ZONE` are scalar default `CHARACTER`.
|
|
* `VALUES` is a vector of at least 8 elements of `INTEGER(KIND >= 2)`.
|
|
```
|
|
CALL EVENT_QUERY(EVENT, COUNT [, STAT])
|
|
CALL EXECUTE_COMMAND_LINE(COMMAND [, WAIT, EXITSTAT, CMDSTAT, CMDMSG ])
|
|
CALL GET_COMMAND([COMMAND, LENGTH, STATUS, ERRMSG ])
|
|
CALL GET_COMMAND_ARGUMENT(NUMBER [, VALUE, LENGTH, STATUS, ERRMSG ])
|
|
CALL GET_ENVIRONMENT_VARIABLE(NAME [, VALUE, LENGTH, STATUS, TRIM_NAME, ERRMSG ])
|
|
CALL MOVE_ALLOC(ALLOCATABLE INTENT(INOUT) FROM, ALLOCATABLE INTENT(OUT) TO [, STAT, ERRMSG ])
|
|
CALL RANDOM_INIT(LOGICAL(k1) INTENT(IN) REPEATABLE, LOGICAL(k2) INTENT(IN) IMAGE_DISTINCT)
|
|
CALL RANDOM_NUMBER(REAL(k) INTENT(OUT) HARVEST(..))
|
|
CALL RANDOM_SEED([SIZE, PUT, GET])
|
|
CALL SYSTEM_CLOCK([COUNT, COUNT_RATE, COUNT_MAX])
|
|
```
|
|
|
|
## Atomic intrinsic subroutines
|
|
```
|
|
CALL ATOMIC_ADD(ATOM, VALUE [, STAT=])
|
|
CALL ATOMIC_AND(ATOM, VALUE [, STAT=])
|
|
CALL ATOMIC_CAS(ATOM, OLD, COMPARE, NEW [, STAT=])
|
|
CALL ATOMIC_DEFINE(ATOM, VALUE [, STAT=])
|
|
CALL ATOMIC_FETCH_ADD(ATOM, VALUE, OLD [, STAT=])
|
|
CALL ATOMIC_FETCH_AND(ATOM, VALUE, OLD [, STAT=])
|
|
CALL ATOMIC_FETCH_OR(ATOM, VALUE, OLD [, STAT=])
|
|
CALL ATOMIC_FETCH_XOR(ATOM, VALUE, OLD [, STAT=])
|
|
CALL ATOMIC_OR(ATOM, VALUE [, STAT=])
|
|
CALL ATOMIC_REF(VALUE, ATOM [, STAT=])
|
|
CALL ATOMIC_XOR(ATOM, VALUE [, STAT=])
|
|
```
|
|
|
|
## Collective intrinsic subroutines
|
|
```
|
|
CALL CO_BROADCAST
|
|
CALL CO_MAX
|
|
CALL CO_MIN
|
|
CALL CO_REDUCE
|
|
CALL CO_SUM
|
|
```
|
|
|
|
# Non-standard intrinsics
|
|
## PGI
|
|
```
|
|
AND, OR, XOR
|
|
LSHIFT, RSHIFT, SHIFT
|
|
ZEXT, IZEXT
|
|
COSD, SIND, TAND, ACOSD, ASIND, ATAND, ATAN2D
|
|
COMPL
|
|
DCMPLX
|
|
EQV, NEQV
|
|
INT8
|
|
JINT, JNINT, KNINT
|
|
LOC
|
|
```
|
|
|
|
## Intel
|
|
```
|
|
DCMPLX(X,Y), QCMPLX(X,Y)
|
|
DREAL(DOUBLE COMPLEX A) -> DOUBLE PRECISION
|
|
DFLOAT, DREAL
|
|
QEXT, QFLOAT, QREAL
|
|
DNUM, INUM, JNUM, KNUM, QNUM, RNUM - scan value from string
|
|
ZEXT
|
|
RAN, RANF
|
|
ILEN(I) = BIT_SIZE(I)
|
|
SIZEOF
|
|
MCLOCK, SECNDS
|
|
COTAN(X) = 1.0/TAN(X)
|
|
COSD, SIND, TAND, ACOSD, ASIND, ATAND, ATAN2D, COTAND - degrees
|
|
AND, OR, XOR
|
|
LSHIFT, RSHIFT
|
|
IBCHNG, ISHA, ISHC, ISHL, IXOR
|
|
IARG, IARGC, NARGS, NUMARG
|
|
BADDRESS, IADDR
|
|
CACHESIZE, EOF, FP_CLASS, INT_PTR_KIND, ISNAN, LOC
|
|
MALLOC
|
|
```
|
|
|
|
# Intrinsic Procedure Support in f18
|
|
This section gives an overview of the support inside f18 libraries for the
|
|
intrinsic procedures listed above.
|
|
It may be outdated, refer to f18 code base for the actual support status.
|
|
|
|
## Semantic Analysis
|
|
F18 semantic expression analysis phase detects intrinsic procedure references,
|
|
validates the argument types and deduces the return types.
|
|
This phase currently supports all the intrinsic procedures listed above but the ones in the table below.
|
|
|
|
| Intrinsic Category | Intrinsic Procedures Lacking Support |
|
|
| --- | --- |
|
|
| Coarray intrinsic functions | LCOBOUND, UCOBOUND, FAILED_IMAGES, GET_TEAM, IMAGE_INDEX, NUM_IMAGES, STOPPED_IMAGES, TEAM_NUMBER, THIS_IMAGE, COSHAPE |
|
|
| Object characteristic inquiry functions | ALLOCATED, ASSOCIATED, EXTENDS_TYPE_OF, IS_CONTIGUOUS, PRESENT, RANK, SAME_TYPE, STORAGE_SIZE |
|
|
| Type inquiry intrinsic functions | BIT_SIZE, DIGITS, EPSILON, HUGE, KIND, MAXEXPONENT, MINEXPONENT, NEW_LINE, PRECISION, RADIX, RANGE, TINY|
|
|
| Non-standard intrinsic functions | AND, OR, XOR, LSHIFT, RSHIFT, SHIFT, ZEXT, IZEXT, COSD, SIND, TAND, ACOSD, ASIND, ATAND, ATAN2D, COMPL, DCMPLX, EQV, NEQV, INT8, JINT, JNINT, KNINT, LOC, QCMPLX, DREAL, DFLOAT, QEXT, QFLOAT, QREAL, DNUM, NUM, JNUM, KNUM, QNUM, RNUM, RAN, RANF, ILEN, SIZEOF, MCLOCK, SECNDS, COTAN, IBCHNG, ISHA, ISHC, ISHL, IXOR, IARG, IARGC, NARGS, NUMARG, BADDRESS, IADDR, CACHESIZE, EOF, FP_CLASS, INT_PTR_KIND, ISNAN, MALLOC |
|
|
| Intrinsic subroutines |MVBITS (elemental), CPU_TIME, DATE_AND_TIME, EVENT_QUERY, EXECUTE_COMMAND_LINE, GET_COMMAND, GET_COMMAND_ARGUMENT, GET_ENVIRONMENT_VARIABLE, MOVE_ALLOC, RANDOM_INIT, RANDOM_NUMBER, RANDOM_SEED, SYSTEM_CLOCK |
|
|
| Atomic intrinsic subroutines | ATOMIC_ADD &al. |
|
|
| Collective intrinsic subroutines | CO_BROADCAST &al. |
|
|
|
|
|
|
## Intrinsic Function Folding
|
|
Fortran Constant Expressions can contain references to a certain number of
|
|
intrinsic functions (see Fortran 2018 standard section 10.1.12 for more details).
|
|
Constant Expressions may be used to define kind arguments. Therefore, the semantic
|
|
expression analysis phase must be able to fold references to intrinsic functions
|
|
listed in section 10.1.12.
|
|
|
|
F18 intrinsic function folding is either performed by implementations directly
|
|
operating on f18 scalar types or by using host runtime functions and
|
|
host hardware types. F18 supports folding elemental intrinsic functions over
|
|
arrays when an implementation is provided for the scalars (regardless of whether
|
|
it is using host hardware types or not).
|
|
The status of intrinsic function folding support is given in the sub-sections below.
|
|
|
|
### Intrinsic Functions with Host Independent Folding Support
|
|
Implementations using f18 scalar types enables folding intrinsic functions
|
|
on any host and with any possible type kind supported by f18. The intrinsic functions
|
|
listed below are folded using host independent implementations.
|
|
|
|
| Return Type | Intrinsic Functions with Host Independent Folding Support|
|
|
| --- | --- |
|
|
| INTEGER| ABS(INTEGER(k)), DIM(INTEGER(k), INTEGER(k)), DSHIFTL, DSHIFTR, IAND, IBCLR, IBSET, IEOR, INT, IOR, ISHFT, KIND, LEN, LEADZ, MASKL, MASKR, MERGE_BITS, POPCNT, POPPAR, SHIFTA, SHIFTL, SHIFTR, TRAILZ |
|
|
| REAL | ABS(REAL(k)), ABS(COMPLEX(k)), AIMAG, AINT, DPROD, REAL |
|
|
| COMPLEX | CMPLX, CONJG |
|
|
| LOGICAL | BGE, BGT, BLE, BLT |
|
|
|
|
### Intrinsic Functions with Host Dependent Folding Support
|
|
Implementations using the host runtime may not be available for all supported
|
|
f18 types depending on the host hardware types and the libraries available on the host.
|
|
The actual support on a host depends on what the host hardware types are.
|
|
The list below gives the functions that are folded using host runtime and the related C/C++ types.
|
|
F18 automatically detects if these types match an f18 scalar type. If so,
|
|
folding of the intrinsic functions will be possible for the related f18 scalar type,
|
|
otherwise an error message will be produced by f18 when attempting to fold related intrinsic functions.
|
|
|
|
| C/C++ Host Type | Intrinsic Functions with Host Standard C++ Library Based Folding Support |
|
|
| --- | --- |
|
|
| float, double and long double | ACOS, ACOSH, ASINH, ATAN, ATAN2, ATANH, COS, COSH, ERF, ERFC, EXP, GAMMA, HYPOT, LOG, LOG10, LOG_GAMMA, MOD, SIN, SQRT, SINH, SQRT, TAN, TANH |
|
|
| std::complex for float, double and long double| ACOS, ACOSH, ASIN, ASINH, ATAN, ATANH, COS, COSH, EXP, LOG, SIN, SINH, SQRT, TAN, TANH |
|
|
|
|
On top of the default usage of C++ standard library functions for folding described
|
|
in the table above, it is possible to compile f18 evaluate library with
|
|
[libpgmath](https://github.com/flang-compiler/flang/tree/master/runtime/libpgmath)
|
|
so that it can be used for folding. To do so, one must have a compiled version
|
|
of the libpgmath library available on the host and add
|
|
`-DLIBPGMATH_DIR=<path to the compiled shared libpgmath library>` to the f18 cmake command.
|
|
|
|
Libpgmath comes with real and complex functions that replace C++ standard library
|
|
float and double functions to fold all the intrinsic functions listed in the table above.
|
|
It has no long double versions. If the host long double matches an f18 scalar type,
|
|
C++ standard library functions will still be used for folding expressions with this scalar type.
|
|
Libpgmath adds the possibility to fold the following functions for f18 real scalar
|
|
types related to host float and double types.
|
|
|
|
| C/C++ Host Type | Additional Intrinsic Function Folding Support with Libpgmath (Optional) |
|
|
| --- | --- |
|
|
|float and double| BESSEL_J0, BESSEL_J1, BESSEL_JN (elemental only), BESSEL_Y0, BESSEL_Y1, BESSEL_Yn (elemental only), ERFC_SCALED |
|
|
|
|
Libpgmath comes in three variants (precise, relaxed and fast). So far, only the
|
|
precise version is used for intrinsic function folding in f18. It guarantees the greatest numerical precision.
|
|
|
|
### Intrinsic Functions with Missing Folding Support
|
|
The following intrinsic functions are allowed in constant expressions but f18
|
|
is not yet able to fold them. Note that there might be constraints on the arguments
|
|
so that these intrinsics can be used in constant expressions (see section 10.1.12 of Fortran 2018 standard).
|
|
|
|
ALL, ACHAR, ADJUSTL, ADJUSTR, ANINT, ANY, BESSEL_JN (transformational only),
|
|
BESSEL_YN (transformational only), BTEST, CEILING, CHAR, COUNT, CSHIFT, DOT_PRODUCT,
|
|
DIM (REAL only), DOT_PRODUCT, EOSHIFT, FINDLOC, FLOOR, FRACTION, HUGE, IACHAR, IALL,
|
|
IANY, IPARITY, IBITS, ICHAR, IMAGE_STATUS, INDEX, ISHFTC, IS_IOSTAT_END,
|
|
IS_IOSTAT_EOR, LBOUND, LEN_TRIM, LGE, LGT, LLE, LLT, LOGICAL, MATMUL, MAX, MAXLOC,
|
|
MAXVAL, MERGE, MIN, MINLOC, MINVAL, MOD (INTEGER only), MODULO, NEAREST, NINT,
|
|
NORM2, NOT, OUT_OF_RANGE, PACK, PARITY, PRODUCT, REPEAT, REDUCE, RESHAPE,
|
|
RRSPACING, SCAN, SCALE, SELECTED_CHAR_KIND, SELECTED_INT_KIND, SELECTED_REAL_KIND,
|
|
SET_EXPONENT, SHAPE, SIGN, SIZE, SPACING, SPREAD, SUM, TINY, TRANSFER, TRANSPOSE,
|
|
TRIM, UBOUND, UNPACK, VERIFY.
|
|
|
|
Coarray, non standard, IEEE and ISO_C_BINDINGS intrinsic functions that can be
|
|
used in constant expressions have currently no folding support at all.
|