llvm-project/polly/lib/CodeGen/CodeGeneration.cpp

388 lines
14 KiB
C++

//===- CodeGeneration.cpp - Code generate the Scops using ISL. ---------======//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The CodeGeneration pass takes a Scop created by ScopInfo and translates it
// back to LLVM-IR using the ISL code generator.
//
// The Scop describes the high level memory behavior of a control flow region.
// Transformation passes can update the schedule (execution order) of statements
// in the Scop. ISL is used to generate an abstract syntax tree that reflects
// the updated execution order. This clast is used to create new LLVM-IR that is
// computationally equivalent to the original control flow region, but executes
// its code in the new execution order defined by the changed schedule.
//
//===----------------------------------------------------------------------===//
#include "polly/CodeGen/CodeGeneration.h"
#include "polly/CodeGen/IRBuilder.h"
#include "polly/CodeGen/IslAst.h"
#include "polly/CodeGen/IslNodeBuilder.h"
#include "polly/CodeGen/PerfMonitor.h"
#include "polly/CodeGen/Utils.h"
#include "polly/DependenceInfo.h"
#include "polly/LinkAllPasses.h"
#include "polly/Options.h"
#include "polly/ScopInfo.h"
#include "polly/Support/ScopHelper.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Verifier.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "isl/ast.h"
#include <cassert>
using namespace llvm;
using namespace polly;
#define DEBUG_TYPE "polly-codegen"
static cl::opt<bool> Verify("polly-codegen-verify",
cl::desc("Verify the function generated by Polly"),
cl::Hidden, cl::init(false), cl::ZeroOrMore,
cl::cat(PollyCategory));
bool polly::PerfMonitoring;
static cl::opt<bool, true>
XPerfMonitoring("polly-codegen-perf-monitoring",
cl::desc("Add run-time performance monitoring"), cl::Hidden,
cl::location(polly::PerfMonitoring), cl::init(false),
cl::ZeroOrMore, cl::cat(PollyCategory));
STATISTIC(ScopsProcessed, "Number of SCoP processed");
STATISTIC(CodegenedScops, "Number of successfully generated SCoPs");
STATISTIC(CodegenedAffineLoops,
"Number of original affine loops in SCoPs that have been generated");
STATISTIC(CodegenedBoxedLoops,
"Number of original boxed loops in SCoPs that have been generated");
namespace polly {
/// Mark a basic block unreachable.
///
/// Marks the basic block @p Block unreachable by equipping it with an
/// UnreachableInst.
void markBlockUnreachable(BasicBlock &Block, PollyIRBuilder &Builder) {
auto *OrigTerminator = Block.getTerminator();
Builder.SetInsertPoint(OrigTerminator);
Builder.CreateUnreachable();
OrigTerminator->eraseFromParent();
}
} // namespace polly
static void verifyGeneratedFunction(Scop &S, Function &F, IslAstInfo &AI) {
if (!Verify || !verifyFunction(F, &errs()))
return;
LLVM_DEBUG({
errs() << "== ISL Codegen created an invalid function ==\n\n== The "
"SCoP ==\n";
errs() << S;
errs() << "\n== The isl AST ==\n";
AI.print(errs());
errs() << "\n== The invalid function ==\n";
F.print(errs());
});
llvm_unreachable("Polly generated function could not be verified. Add "
"-polly-codegen-verify=false to disable this assertion.");
}
// CodeGeneration adds a lot of BBs without updating the RegionInfo
// We make all created BBs belong to the scop's parent region without any
// nested structure to keep the RegionInfo verifier happy.
static void fixRegionInfo(Function &F, Region &ParentRegion, RegionInfo &RI) {
for (BasicBlock &BB : F) {
if (RI.getRegionFor(&BB))
continue;
RI.setRegionFor(&BB, &ParentRegion);
}
}
/// Remove all lifetime markers (llvm.lifetime.start, llvm.lifetime.end) from
/// @R.
///
/// CodeGeneration does not copy lifetime markers into the optimized SCoP,
/// which would leave the them only in the original path. This can transform
/// code such as
///
/// llvm.lifetime.start(%p)
/// llvm.lifetime.end(%p)
///
/// into
///
/// if (RTC) {
/// // generated code
/// } else {
/// // original code
/// llvm.lifetime.start(%p)
/// }
/// llvm.lifetime.end(%p)
///
/// The current StackColoring algorithm cannot handle if some, but not all,
/// paths from the end marker to the entry block cross the start marker. Same
/// for start markers that do not always cross the end markers. We avoid any
/// issues by removing all lifetime markers, even from the original code.
///
/// A better solution could be to hoist all llvm.lifetime.start to the split
/// node and all llvm.lifetime.end to the merge node, which should be
/// conservatively correct.
static void removeLifetimeMarkers(Region *R) {
for (auto *BB : R->blocks()) {
auto InstIt = BB->begin();
auto InstEnd = BB->end();
while (InstIt != InstEnd) {
auto NextIt = InstIt;
++NextIt;
if (auto *IT = dyn_cast<IntrinsicInst>(&*InstIt)) {
switch (IT->getIntrinsicID()) {
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end:
BB->getInstList().erase(InstIt);
break;
default:
break;
}
}
InstIt = NextIt;
}
}
}
static bool CodeGen(Scop &S, IslAstInfo &AI, LoopInfo &LI, DominatorTree &DT,
ScalarEvolution &SE, RegionInfo &RI) {
// Check whether IslAstInfo uses the same isl_ctx. Since -polly-codegen
// reports itself to preserve DependenceInfo and IslAstInfo, we might get
// those analysis that were computed by a different ScopInfo for a different
// Scop structure. When the ScopInfo/Scop object is freed, there is a high
// probability that the new ScopInfo/Scop object will be created at the same
// heap position with the same address. Comparing whether the Scop or ScopInfo
// address is the expected therefore is unreliable.
// Instead, we compare the address of the isl_ctx object. Both, DependenceInfo
// and IslAstInfo must hold a reference to the isl_ctx object to ensure it is
// not freed before the destruction of those analyses which might happen after
// the destruction of the Scop/ScopInfo they refer to. Hence, the isl_ctx
// will not be freed and its space not reused as long there is a
// DependenceInfo or IslAstInfo around.
IslAst &Ast = AI.getIslAst();
if (Ast.getSharedIslCtx() != S.getSharedIslCtx()) {
LLVM_DEBUG(dbgs() << "Got an IstAst for a different Scop/isl_ctx\n");
return false;
}
// Check if we created an isl_ast root node, otherwise exit.
isl_ast_node *AstRoot = Ast.getAst();
if (!AstRoot)
return false;
// Collect statistics. Do it before we modify the IR to avoid having it any
// influence on the result.
auto ScopStats = S.getStatistics();
ScopsProcessed++;
auto &DL = S.getFunction().getParent()->getDataLayout();
Region *R = &S.getRegion();
assert(!R->isTopLevelRegion() && "Top level regions are not supported");
ScopAnnotator Annotator;
simplifyRegion(R, &DT, &LI, &RI);
assert(R->isSimple());
BasicBlock *EnteringBB = S.getEnteringBlock();
assert(EnteringBB);
PollyIRBuilder Builder(EnteringBB->getContext(), ConstantFolder(),
IRInserter(Annotator));
Builder.SetInsertPoint(EnteringBB->getTerminator());
// Only build the run-time condition and parameters _after_ having
// introduced the conditional branch. This is important as the conditional
// branch will guard the original scop from new induction variables that
// the SCEVExpander may introduce while code generating the parameters and
// which may introduce scalar dependences that prevent us from correctly
// code generating this scop.
BBPair StartExitBlocks =
std::get<0>(executeScopConditionally(S, Builder.getTrue(), DT, RI, LI));
BasicBlock *StartBlock = std::get<0>(StartExitBlocks);
BasicBlock *ExitBlock = std::get<1>(StartExitBlocks);
removeLifetimeMarkers(R);
auto *SplitBlock = StartBlock->getSinglePredecessor();
IslNodeBuilder NodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock);
// All arrays must have their base pointers known before
// ScopAnnotator::buildAliasScopes.
NodeBuilder.allocateNewArrays(StartExitBlocks);
Annotator.buildAliasScopes(S);
if (PerfMonitoring) {
PerfMonitor P(S, EnteringBB->getParent()->getParent());
P.initialize();
P.insertRegionStart(SplitBlock->getTerminator());
BasicBlock *MergeBlock = ExitBlock->getUniqueSuccessor();
P.insertRegionEnd(MergeBlock->getTerminator());
}
// First generate code for the hoisted invariant loads and transitively the
// parameters they reference. Afterwards, for the remaining parameters that
// might reference the hoisted loads. Finally, build the runtime check
// that might reference both hoisted loads as well as parameters.
// If the hoisting fails we have to bail and execute the original code.
Builder.SetInsertPoint(SplitBlock->getTerminator());
if (!NodeBuilder.preloadInvariantLoads()) {
// Patch the introduced branch condition to ensure that we always execute
// the original SCoP.
auto *FalseI1 = Builder.getFalse();
auto *SplitBBTerm = Builder.GetInsertBlock()->getTerminator();
SplitBBTerm->setOperand(0, FalseI1);
// Since the other branch is hence ignored we mark it as unreachable and
// adjust the dominator tree accordingly.
auto *ExitingBlock = StartBlock->getUniqueSuccessor();
assert(ExitingBlock);
auto *MergeBlock = ExitingBlock->getUniqueSuccessor();
assert(MergeBlock);
markBlockUnreachable(*StartBlock, Builder);
markBlockUnreachable(*ExitingBlock, Builder);
auto *ExitingBB = S.getExitingBlock();
assert(ExitingBB);
DT.changeImmediateDominator(MergeBlock, ExitingBB);
DT.eraseNode(ExitingBlock);
isl_ast_node_free(AstRoot);
} else {
NodeBuilder.addParameters(S.getContext().release());
Value *RTC = NodeBuilder.createRTC(AI.getRunCondition());
Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC);
// Explicitly set the insert point to the end of the block to avoid that a
// split at the builder's current
// insert position would move the malloc calls to the wrong BasicBlock.
// Ideally we would just split the block during allocation of the new
// arrays, but this would break the assumption that there are no blocks
// between polly.start and polly.exiting (at this point).
Builder.SetInsertPoint(StartBlock->getTerminator());
NodeBuilder.create(AstRoot);
NodeBuilder.finalize();
fixRegionInfo(*EnteringBB->getParent(), *R->getParent(), RI);
CodegenedScops++;
CodegenedAffineLoops += ScopStats.NumAffineLoops;
CodegenedBoxedLoops += ScopStats.NumBoxedLoops;
}
Function *F = EnteringBB->getParent();
verifyGeneratedFunction(S, *F, AI);
for (auto *SubF : NodeBuilder.getParallelSubfunctions())
verifyGeneratedFunction(S, *SubF, AI);
// Mark the function such that we run additional cleanup passes on this
// function (e.g. mem2reg to rediscover phi nodes).
F->addFnAttr("polly-optimized");
return true;
}
namespace {
class CodeGeneration : public ScopPass {
public:
static char ID;
/// The data layout used.
const DataLayout *DL;
/// @name The analysis passes we need to generate code.
///
///{
LoopInfo *LI;
IslAstInfo *AI;
DominatorTree *DT;
ScalarEvolution *SE;
RegionInfo *RI;
///}
CodeGeneration() : ScopPass(ID) {}
/// Generate LLVM-IR for the SCoP @p S.
bool runOnScop(Scop &S) override {
// Skip SCoPs in case they're already code-generated by PPCGCodeGeneration.
if (S.isToBeSkipped())
return false;
AI = &getAnalysis<IslAstInfoWrapperPass>().getAI();
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
DL = &S.getFunction().getParent()->getDataLayout();
RI = &getAnalysis<RegionInfoPass>().getRegionInfo();
return CodeGen(S, *AI, *LI, *DT, *SE, *RI);
}
/// Register all analyses and transformation required.
void getAnalysisUsage(AnalysisUsage &AU) const override {
ScopPass::getAnalysisUsage(AU);
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<IslAstInfoWrapperPass>();
AU.addRequired<RegionInfoPass>();
AU.addRequired<ScalarEvolutionWrapperPass>();
AU.addRequired<ScopDetectionWrapperPass>();
AU.addRequired<ScopInfoRegionPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addPreserved<DependenceInfo>();
AU.addPreserved<IslAstInfoWrapperPass>();
// FIXME: We do not yet add regions for the newly generated code to the
// region tree.
}
};
} // namespace
PreservedAnalyses CodeGenerationPass::run(Scop &S, ScopAnalysisManager &SAM,
ScopStandardAnalysisResults &AR,
SPMUpdater &U) {
auto &AI = SAM.getResult<IslAstAnalysis>(S, AR);
if (CodeGen(S, AI, AR.LI, AR.DT, AR.SE, AR.RI)) {
U.invalidateScop(S);
return PreservedAnalyses::none();
}
return PreservedAnalyses::all();
}
char CodeGeneration::ID = 1;
Pass *polly::createCodeGenerationPass() { return new CodeGeneration(); }
INITIALIZE_PASS_BEGIN(CodeGeneration, "polly-codegen",
"Polly - Create LLVM-IR from SCoPs", false, false);
INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass);
INITIALIZE_PASS_END(CodeGeneration, "polly-codegen",
"Polly - Create LLVM-IR from SCoPs", false, false)