forked from OSchip/llvm-project
1679 lines
63 KiB
C++
1679 lines
63 KiB
C++
//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This coordinates the per-module state used while generating code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodeGenModule.h"
|
|
#include "CGDebugInfo.h"
|
|
#include "CodeGenFunction.h"
|
|
#include "CGCall.h"
|
|
#include "CGObjCRuntime.h"
|
|
#include "Mangle.h"
|
|
#include "clang/CodeGen/CodeGenOptions.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/RecordLayout.h"
|
|
#include "clang/Basic/Builtins.h"
|
|
#include "clang/Basic/Diagnostic.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "clang/Basic/ConvertUTF.h"
|
|
#include "llvm/CallingConv.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
|
|
|
|
CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
|
|
llvm::Module &M, const llvm::TargetData &TD,
|
|
Diagnostic &diags)
|
|
: BlockModule(C, M, TD, Types, *this), Context(C),
|
|
Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
|
|
TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C),
|
|
VtableInfo(*this), Runtime(0),
|
|
MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
|
|
VMContext(M.getContext()) {
|
|
|
|
if (!Features.ObjC1)
|
|
Runtime = 0;
|
|
else if (!Features.NeXTRuntime)
|
|
Runtime = CreateGNUObjCRuntime(*this);
|
|
else if (Features.ObjCNonFragileABI)
|
|
Runtime = CreateMacNonFragileABIObjCRuntime(*this);
|
|
else
|
|
Runtime = CreateMacObjCRuntime(*this);
|
|
|
|
// If debug info generation is enabled, create the CGDebugInfo object.
|
|
DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(this) : 0;
|
|
}
|
|
|
|
CodeGenModule::~CodeGenModule() {
|
|
delete Runtime;
|
|
delete DebugInfo;
|
|
}
|
|
|
|
void CodeGenModule::Release() {
|
|
// We need to call this first because it can add deferred declarations.
|
|
EmitCXXGlobalInitFunc();
|
|
|
|
EmitDeferred();
|
|
if (Runtime)
|
|
if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
|
|
AddGlobalCtor(ObjCInitFunction);
|
|
EmitCtorList(GlobalCtors, "llvm.global_ctors");
|
|
EmitCtorList(GlobalDtors, "llvm.global_dtors");
|
|
EmitAnnotations();
|
|
EmitLLVMUsed();
|
|
}
|
|
|
|
/// ErrorUnsupported - Print out an error that codegen doesn't support the
|
|
/// specified stmt yet.
|
|
void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
|
|
bool OmitOnError) {
|
|
if (OmitOnError && getDiags().hasErrorOccurred())
|
|
return;
|
|
unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
|
|
"cannot compile this %0 yet");
|
|
std::string Msg = Type;
|
|
getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
|
|
<< Msg << S->getSourceRange();
|
|
}
|
|
|
|
/// ErrorUnsupported - Print out an error that codegen doesn't support the
|
|
/// specified decl yet.
|
|
void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
|
|
bool OmitOnError) {
|
|
if (OmitOnError && getDiags().hasErrorOccurred())
|
|
return;
|
|
unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
|
|
"cannot compile this %0 yet");
|
|
std::string Msg = Type;
|
|
getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
|
|
}
|
|
|
|
LangOptions::VisibilityMode
|
|
CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(D))
|
|
if (VD->getStorageClass() == VarDecl::PrivateExtern)
|
|
return LangOptions::Hidden;
|
|
|
|
if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
|
|
switch (attr->getVisibility()) {
|
|
default: assert(0 && "Unknown visibility!");
|
|
case VisibilityAttr::DefaultVisibility:
|
|
return LangOptions::Default;
|
|
case VisibilityAttr::HiddenVisibility:
|
|
return LangOptions::Hidden;
|
|
case VisibilityAttr::ProtectedVisibility:
|
|
return LangOptions::Protected;
|
|
}
|
|
}
|
|
|
|
return getLangOptions().getVisibilityMode();
|
|
}
|
|
|
|
void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
|
|
const Decl *D) const {
|
|
// Internal definitions always have default visibility.
|
|
if (GV->hasLocalLinkage()) {
|
|
GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
|
|
return;
|
|
}
|
|
|
|
switch (getDeclVisibilityMode(D)) {
|
|
default: assert(0 && "Unknown visibility!");
|
|
case LangOptions::Default:
|
|
return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
|
|
case LangOptions::Hidden:
|
|
return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
|
|
case LangOptions::Protected:
|
|
return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
|
|
}
|
|
}
|
|
|
|
const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
|
|
const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
|
|
|
|
if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
|
|
return getMangledCXXCtorName(D, GD.getCtorType());
|
|
if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
|
|
return getMangledCXXDtorName(D, GD.getDtorType());
|
|
|
|
return getMangledName(ND);
|
|
}
|
|
|
|
/// \brief Retrieves the mangled name for the given declaration.
|
|
///
|
|
/// If the given declaration requires a mangled name, returns an
|
|
/// const char* containing the mangled name. Otherwise, returns
|
|
/// the unmangled name.
|
|
///
|
|
const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
|
|
if (!getMangleContext().shouldMangleDeclName(ND)) {
|
|
assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
|
|
return ND->getNameAsCString();
|
|
}
|
|
|
|
llvm::SmallString<256> Name;
|
|
getMangleContext().mangleName(ND, Name);
|
|
Name += '\0';
|
|
return UniqueMangledName(Name.begin(), Name.end());
|
|
}
|
|
|
|
const char *CodeGenModule::UniqueMangledName(const char *NameStart,
|
|
const char *NameEnd) {
|
|
assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
|
|
|
|
return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
|
|
}
|
|
|
|
/// AddGlobalCtor - Add a function to the list that will be called before
|
|
/// main() runs.
|
|
void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
|
|
// FIXME: Type coercion of void()* types.
|
|
GlobalCtors.push_back(std::make_pair(Ctor, Priority));
|
|
}
|
|
|
|
/// AddGlobalDtor - Add a function to the list that will be called
|
|
/// when the module is unloaded.
|
|
void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
|
|
// FIXME: Type coercion of void()* types.
|
|
GlobalDtors.push_back(std::make_pair(Dtor, Priority));
|
|
}
|
|
|
|
void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
|
|
// Ctor function type is void()*.
|
|
llvm::FunctionType* CtorFTy =
|
|
llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
|
|
std::vector<const llvm::Type*>(),
|
|
false);
|
|
llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
|
|
|
|
// Get the type of a ctor entry, { i32, void ()* }.
|
|
llvm::StructType* CtorStructTy =
|
|
llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
|
|
llvm::PointerType::getUnqual(CtorFTy), NULL);
|
|
|
|
// Construct the constructor and destructor arrays.
|
|
std::vector<llvm::Constant*> Ctors;
|
|
for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
|
|
std::vector<llvm::Constant*> S;
|
|
S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
|
|
I->second, false));
|
|
S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
|
|
Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
|
|
}
|
|
|
|
if (!Ctors.empty()) {
|
|
llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
|
|
new llvm::GlobalVariable(TheModule, AT, false,
|
|
llvm::GlobalValue::AppendingLinkage,
|
|
llvm::ConstantArray::get(AT, Ctors),
|
|
GlobalName);
|
|
}
|
|
}
|
|
|
|
void CodeGenModule::EmitAnnotations() {
|
|
if (Annotations.empty())
|
|
return;
|
|
|
|
// Create a new global variable for the ConstantStruct in the Module.
|
|
llvm::Constant *Array =
|
|
llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
|
|
Annotations.size()),
|
|
Annotations);
|
|
llvm::GlobalValue *gv =
|
|
new llvm::GlobalVariable(TheModule, Array->getType(), false,
|
|
llvm::GlobalValue::AppendingLinkage, Array,
|
|
"llvm.global.annotations");
|
|
gv->setSection("llvm.metadata");
|
|
}
|
|
|
|
static CodeGenModule::GVALinkage
|
|
GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
|
|
const LangOptions &Features) {
|
|
// Everything located semantically within an anonymous namespace is
|
|
// always internal.
|
|
if (FD->isInAnonymousNamespace())
|
|
return CodeGenModule::GVA_Internal;
|
|
|
|
// "static" functions get internal linkage.
|
|
if (FD->getStorageClass() == FunctionDecl::Static && !isa<CXXMethodDecl>(FD))
|
|
return CodeGenModule::GVA_Internal;
|
|
|
|
// The kind of external linkage this function will have, if it is not
|
|
// inline or static.
|
|
CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
|
|
if (Context.getLangOptions().CPlusPlus &&
|
|
FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
|
|
External = CodeGenModule::GVA_TemplateInstantiation;
|
|
|
|
if (!FD->isInlined())
|
|
return External;
|
|
|
|
if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
|
|
// GNU or C99 inline semantics. Determine whether this symbol should be
|
|
// externally visible.
|
|
if (FD->isInlineDefinitionExternallyVisible())
|
|
return External;
|
|
|
|
// C99 inline semantics, where the symbol is not externally visible.
|
|
return CodeGenModule::GVA_C99Inline;
|
|
}
|
|
|
|
// C++0x [temp.explicit]p9:
|
|
// [ Note: The intent is that an inline function that is the subject of
|
|
// an explicit instantiation declaration will still be implicitly
|
|
// instantiated when used so that the body can be considered for
|
|
// inlining, but that no out-of-line copy of the inline function would be
|
|
// generated in the translation unit. -- end note ]
|
|
if (FD->getTemplateSpecializationKind()
|
|
== TSK_ExplicitInstantiationDeclaration)
|
|
return CodeGenModule::GVA_C99Inline;
|
|
|
|
return CodeGenModule::GVA_CXXInline;
|
|
}
|
|
|
|
/// SetFunctionDefinitionAttributes - Set attributes for a global.
|
|
///
|
|
/// FIXME: This is currently only done for aliases and functions, but not for
|
|
/// variables (these details are set in EmitGlobalVarDefinition for variables).
|
|
void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
|
|
llvm::GlobalValue *GV) {
|
|
GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
|
|
|
|
if (Linkage == GVA_Internal) {
|
|
GV->setLinkage(llvm::Function::InternalLinkage);
|
|
} else if (D->hasAttr<DLLExportAttr>()) {
|
|
GV->setLinkage(llvm::Function::DLLExportLinkage);
|
|
} else if (D->hasAttr<WeakAttr>()) {
|
|
GV->setLinkage(llvm::Function::WeakAnyLinkage);
|
|
} else if (Linkage == GVA_C99Inline) {
|
|
// In C99 mode, 'inline' functions are guaranteed to have a strong
|
|
// definition somewhere else, so we can use available_externally linkage.
|
|
GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
|
|
} else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
|
|
// In C++, the compiler has to emit a definition in every translation unit
|
|
// that references the function. We should use linkonce_odr because
|
|
// a) if all references in this translation unit are optimized away, we
|
|
// don't need to codegen it. b) if the function persists, it needs to be
|
|
// merged with other definitions. c) C++ has the ODR, so we know the
|
|
// definition is dependable.
|
|
GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
|
|
} else {
|
|
assert(Linkage == GVA_StrongExternal);
|
|
// Otherwise, we have strong external linkage.
|
|
GV->setLinkage(llvm::Function::ExternalLinkage);
|
|
}
|
|
|
|
SetCommonAttributes(D, GV);
|
|
}
|
|
|
|
void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
|
|
const CGFunctionInfo &Info,
|
|
llvm::Function *F) {
|
|
unsigned CallingConv;
|
|
AttributeListType AttributeList;
|
|
ConstructAttributeList(Info, D, AttributeList, CallingConv);
|
|
F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
|
|
AttributeList.size()));
|
|
F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
|
|
}
|
|
|
|
void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
|
|
llvm::Function *F) {
|
|
if (!Features.Exceptions && !Features.ObjCNonFragileABI)
|
|
F->addFnAttr(llvm::Attribute::NoUnwind);
|
|
|
|
if (D->hasAttr<AlwaysInlineAttr>())
|
|
F->addFnAttr(llvm::Attribute::AlwaysInline);
|
|
|
|
if (D->hasAttr<NoInlineAttr>())
|
|
F->addFnAttr(llvm::Attribute::NoInline);
|
|
|
|
if (Features.getStackProtectorMode() == LangOptions::SSPOn)
|
|
F->addFnAttr(llvm::Attribute::StackProtect);
|
|
else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
|
|
F->addFnAttr(llvm::Attribute::StackProtectReq);
|
|
|
|
if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
|
|
unsigned width = Context.Target.getCharWidth();
|
|
F->setAlignment(AA->getAlignment() / width);
|
|
while ((AA = AA->getNext<AlignedAttr>()))
|
|
F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
|
|
}
|
|
// C++ ABI requires 2-byte alignment for member functions.
|
|
if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
|
|
F->setAlignment(2);
|
|
}
|
|
|
|
void CodeGenModule::SetCommonAttributes(const Decl *D,
|
|
llvm::GlobalValue *GV) {
|
|
setGlobalVisibility(GV, D);
|
|
|
|
if (D->hasAttr<UsedAttr>())
|
|
AddUsedGlobal(GV);
|
|
|
|
if (const SectionAttr *SA = D->getAttr<SectionAttr>())
|
|
GV->setSection(SA->getName());
|
|
}
|
|
|
|
void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
|
|
llvm::Function *F,
|
|
const CGFunctionInfo &FI) {
|
|
SetLLVMFunctionAttributes(D, FI, F);
|
|
SetLLVMFunctionAttributesForDefinition(D, F);
|
|
|
|
F->setLinkage(llvm::Function::InternalLinkage);
|
|
|
|
SetCommonAttributes(D, F);
|
|
}
|
|
|
|
void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
|
|
llvm::Function *F,
|
|
bool IsIncompleteFunction) {
|
|
if (!IsIncompleteFunction)
|
|
SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
|
|
|
|
// Only a few attributes are set on declarations; these may later be
|
|
// overridden by a definition.
|
|
|
|
if (FD->hasAttr<DLLImportAttr>()) {
|
|
F->setLinkage(llvm::Function::DLLImportLinkage);
|
|
} else if (FD->hasAttr<WeakAttr>() ||
|
|
FD->hasAttr<WeakImportAttr>()) {
|
|
// "extern_weak" is overloaded in LLVM; we probably should have
|
|
// separate linkage types for this.
|
|
F->setLinkage(llvm::Function::ExternalWeakLinkage);
|
|
} else {
|
|
F->setLinkage(llvm::Function::ExternalLinkage);
|
|
}
|
|
|
|
if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
|
|
F->setSection(SA->getName());
|
|
}
|
|
|
|
void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
|
|
assert(!GV->isDeclaration() &&
|
|
"Only globals with definition can force usage.");
|
|
LLVMUsed.push_back(GV);
|
|
}
|
|
|
|
void CodeGenModule::EmitLLVMUsed() {
|
|
// Don't create llvm.used if there is no need.
|
|
if (LLVMUsed.empty())
|
|
return;
|
|
|
|
const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
|
|
|
|
// Convert LLVMUsed to what ConstantArray needs.
|
|
std::vector<llvm::Constant*> UsedArray;
|
|
UsedArray.resize(LLVMUsed.size());
|
|
for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
|
|
UsedArray[i] =
|
|
llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
|
|
i8PTy);
|
|
}
|
|
|
|
if (UsedArray.empty())
|
|
return;
|
|
llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
|
|
|
|
llvm::GlobalVariable *GV =
|
|
new llvm::GlobalVariable(getModule(), ATy, false,
|
|
llvm::GlobalValue::AppendingLinkage,
|
|
llvm::ConstantArray::get(ATy, UsedArray),
|
|
"llvm.used");
|
|
|
|
GV->setSection("llvm.metadata");
|
|
}
|
|
|
|
void CodeGenModule::EmitDeferred() {
|
|
// Emit code for any potentially referenced deferred decls. Since a
|
|
// previously unused static decl may become used during the generation of code
|
|
// for a static function, iterate until no changes are made.
|
|
while (!DeferredDeclsToEmit.empty()) {
|
|
GlobalDecl D = DeferredDeclsToEmit.back();
|
|
DeferredDeclsToEmit.pop_back();
|
|
|
|
// The mangled name for the decl must have been emitted in GlobalDeclMap.
|
|
// Look it up to see if it was defined with a stronger definition (e.g. an
|
|
// extern inline function with a strong function redefinition). If so,
|
|
// just ignore the deferred decl.
|
|
llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
|
|
assert(CGRef && "Deferred decl wasn't referenced?");
|
|
|
|
if (!CGRef->isDeclaration())
|
|
continue;
|
|
|
|
// Otherwise, emit the definition and move on to the next one.
|
|
EmitGlobalDefinition(D);
|
|
}
|
|
}
|
|
|
|
/// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
|
|
/// annotation information for a given GlobalValue. The annotation struct is
|
|
/// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the
|
|
/// GlobalValue being annotated. The second field is the constant string
|
|
/// created from the AnnotateAttr's annotation. The third field is a constant
|
|
/// string containing the name of the translation unit. The fourth field is
|
|
/// the line number in the file of the annotated value declaration.
|
|
///
|
|
/// FIXME: this does not unique the annotation string constants, as llvm-gcc
|
|
/// appears to.
|
|
///
|
|
llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
|
|
const AnnotateAttr *AA,
|
|
unsigned LineNo) {
|
|
llvm::Module *M = &getModule();
|
|
|
|
// get [N x i8] constants for the annotation string, and the filename string
|
|
// which are the 2nd and 3rd elements of the global annotation structure.
|
|
const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
|
|
llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
|
|
AA->getAnnotation(), true);
|
|
llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
|
|
M->getModuleIdentifier(),
|
|
true);
|
|
|
|
// Get the two global values corresponding to the ConstantArrays we just
|
|
// created to hold the bytes of the strings.
|
|
llvm::GlobalValue *annoGV =
|
|
new llvm::GlobalVariable(*M, anno->getType(), false,
|
|
llvm::GlobalValue::PrivateLinkage, anno,
|
|
GV->getName());
|
|
// translation unit name string, emitted into the llvm.metadata section.
|
|
llvm::GlobalValue *unitGV =
|
|
new llvm::GlobalVariable(*M, unit->getType(), false,
|
|
llvm::GlobalValue::PrivateLinkage, unit,
|
|
".str");
|
|
|
|
// Create the ConstantStruct for the global annotation.
|
|
llvm::Constant *Fields[4] = {
|
|
llvm::ConstantExpr::getBitCast(GV, SBP),
|
|
llvm::ConstantExpr::getBitCast(annoGV, SBP),
|
|
llvm::ConstantExpr::getBitCast(unitGV, SBP),
|
|
llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
|
|
};
|
|
return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
|
|
}
|
|
|
|
bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
|
|
// Never defer when EmitAllDecls is specified or the decl has
|
|
// attribute used.
|
|
if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
|
|
return false;
|
|
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
|
|
// Constructors and destructors should never be deferred.
|
|
if (FD->hasAttr<ConstructorAttr>() ||
|
|
FD->hasAttr<DestructorAttr>())
|
|
return false;
|
|
|
|
GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
|
|
|
|
// static, static inline, always_inline, and extern inline functions can
|
|
// always be deferred. Normal inline functions can be deferred in C99/C++.
|
|
if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
|
|
Linkage == GVA_CXXInline)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
const VarDecl *VD = cast<VarDecl>(Global);
|
|
assert(VD->isFileVarDecl() && "Invalid decl");
|
|
|
|
// We never want to defer structs that have non-trivial constructors or
|
|
// destructors.
|
|
|
|
// FIXME: Handle references.
|
|
if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
|
|
if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
|
|
if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Static data may be deferred, but out-of-line static data members
|
|
// cannot be.
|
|
if (VD->isInAnonymousNamespace())
|
|
return true;
|
|
if (VD->getLinkage() == VarDecl::InternalLinkage) {
|
|
// Initializer has side effects?
|
|
if (VD->getInit() && VD->getInit()->HasSideEffects(Context))
|
|
return false;
|
|
return !(VD->isStaticDataMember() && VD->isOutOfLine());
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void CodeGenModule::EmitGlobal(GlobalDecl GD) {
|
|
const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
|
|
|
|
// If this is an alias definition (which otherwise looks like a declaration)
|
|
// emit it now.
|
|
if (Global->hasAttr<AliasAttr>())
|
|
return EmitAliasDefinition(Global);
|
|
|
|
// Ignore declarations, they will be emitted on their first use.
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
|
|
// Forward declarations are emitted lazily on first use.
|
|
if (!FD->isThisDeclarationADefinition())
|
|
return;
|
|
} else {
|
|
const VarDecl *VD = cast<VarDecl>(Global);
|
|
assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
|
|
|
|
// In C++, if this is marked "extern", defer code generation.
|
|
if (getLangOptions().CPlusPlus && !VD->getInit() &&
|
|
(VD->getStorageClass() == VarDecl::Extern ||
|
|
VD->isExternC()))
|
|
return;
|
|
|
|
// In C, if this isn't a definition, defer code generation.
|
|
if (!getLangOptions().CPlusPlus && !VD->getInit())
|
|
return;
|
|
}
|
|
|
|
// Defer code generation when possible if this is a static definition, inline
|
|
// function etc. These we only want to emit if they are used.
|
|
if (MayDeferGeneration(Global)) {
|
|
// If the value has already been used, add it directly to the
|
|
// DeferredDeclsToEmit list.
|
|
const char *MangledName = getMangledName(GD);
|
|
if (GlobalDeclMap.count(MangledName))
|
|
DeferredDeclsToEmit.push_back(GD);
|
|
else {
|
|
// Otherwise, remember that we saw a deferred decl with this name. The
|
|
// first use of the mangled name will cause it to move into
|
|
// DeferredDeclsToEmit.
|
|
DeferredDecls[MangledName] = GD;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Otherwise emit the definition.
|
|
EmitGlobalDefinition(GD);
|
|
}
|
|
|
|
void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
|
|
const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
|
|
|
|
PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(),
|
|
Context.getSourceManager(),
|
|
"Generating code for declaration");
|
|
|
|
if (isa<CXXMethodDecl>(D))
|
|
getVtableInfo().MaybeEmitVtable(GD);
|
|
|
|
if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
|
|
EmitCXXConstructor(CD, GD.getCtorType());
|
|
else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
|
|
EmitCXXDestructor(DD, GD.getDtorType());
|
|
else if (isa<FunctionDecl>(D))
|
|
EmitGlobalFunctionDefinition(GD);
|
|
else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
|
|
EmitGlobalVarDefinition(VD);
|
|
else {
|
|
assert(0 && "Invalid argument to EmitGlobalDefinition()");
|
|
}
|
|
}
|
|
|
|
/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
|
|
/// module, create and return an llvm Function with the specified type. If there
|
|
/// is something in the module with the specified name, return it potentially
|
|
/// bitcasted to the right type.
|
|
///
|
|
/// If D is non-null, it specifies a decl that correspond to this. This is used
|
|
/// to set the attributes on the function when it is first created.
|
|
llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
|
|
const llvm::Type *Ty,
|
|
GlobalDecl D) {
|
|
// Lookup the entry, lazily creating it if necessary.
|
|
llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
|
|
if (Entry) {
|
|
if (Entry->getType()->getElementType() == Ty)
|
|
return Entry;
|
|
|
|
// Make sure the result is of the correct type.
|
|
const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
|
|
return llvm::ConstantExpr::getBitCast(Entry, PTy);
|
|
}
|
|
|
|
// This function doesn't have a complete type (for example, the return
|
|
// type is an incomplete struct). Use a fake type instead, and make
|
|
// sure not to try to set attributes.
|
|
bool IsIncompleteFunction = false;
|
|
if (!isa<llvm::FunctionType>(Ty)) {
|
|
Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
|
|
std::vector<const llvm::Type*>(), false);
|
|
IsIncompleteFunction = true;
|
|
}
|
|
llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
|
|
llvm::Function::ExternalLinkage,
|
|
"", &getModule());
|
|
F->setName(MangledName);
|
|
if (D.getDecl())
|
|
SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
|
|
IsIncompleteFunction);
|
|
Entry = F;
|
|
|
|
// This is the first use or definition of a mangled name. If there is a
|
|
// deferred decl with this name, remember that we need to emit it at the end
|
|
// of the file.
|
|
llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
|
|
DeferredDecls.find(MangledName);
|
|
if (DDI != DeferredDecls.end()) {
|
|
// Move the potentially referenced deferred decl to the DeferredDeclsToEmit
|
|
// list, and remove it from DeferredDecls (since we don't need it anymore).
|
|
DeferredDeclsToEmit.push_back(DDI->second);
|
|
DeferredDecls.erase(DDI);
|
|
} else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
|
|
// If this the first reference to a C++ inline function in a class, queue up
|
|
// the deferred function body for emission. These are not seen as
|
|
// top-level declarations.
|
|
if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
|
|
DeferredDeclsToEmit.push_back(D);
|
|
// A called constructor which has no definition or declaration need be
|
|
// synthesized.
|
|
else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
|
|
if (CD->isImplicit())
|
|
DeferredDeclsToEmit.push_back(D);
|
|
} else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
|
|
if (DD->isImplicit())
|
|
DeferredDeclsToEmit.push_back(D);
|
|
} else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
|
|
if (MD->isCopyAssignment() && MD->isImplicit())
|
|
DeferredDeclsToEmit.push_back(D);
|
|
}
|
|
}
|
|
|
|
return F;
|
|
}
|
|
|
|
/// GetAddrOfFunction - Return the address of the given function. If Ty is
|
|
/// non-null, then this function will use the specified type if it has to
|
|
/// create it (this occurs when we see a definition of the function).
|
|
llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
|
|
const llvm::Type *Ty) {
|
|
// If there was no specific requested type, just convert it now.
|
|
if (!Ty)
|
|
Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
|
|
return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD);
|
|
}
|
|
|
|
/// CreateRuntimeFunction - Create a new runtime function with the specified
|
|
/// type and name.
|
|
llvm::Constant *
|
|
CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
|
|
const char *Name) {
|
|
// Convert Name to be a uniqued string from the IdentifierInfo table.
|
|
Name = getContext().Idents.get(Name).getNameStart();
|
|
return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
|
|
}
|
|
|
|
/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
|
|
/// create and return an llvm GlobalVariable with the specified type. If there
|
|
/// is something in the module with the specified name, return it potentially
|
|
/// bitcasted to the right type.
|
|
///
|
|
/// If D is non-null, it specifies a decl that correspond to this. This is used
|
|
/// to set the attributes on the global when it is first created.
|
|
llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
|
|
const llvm::PointerType*Ty,
|
|
const VarDecl *D) {
|
|
// Lookup the entry, lazily creating it if necessary.
|
|
llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
|
|
if (Entry) {
|
|
if (Entry->getType() == Ty)
|
|
return Entry;
|
|
|
|
// Make sure the result is of the correct type.
|
|
return llvm::ConstantExpr::getBitCast(Entry, Ty);
|
|
}
|
|
|
|
// This is the first use or definition of a mangled name. If there is a
|
|
// deferred decl with this name, remember that we need to emit it at the end
|
|
// of the file.
|
|
llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
|
|
DeferredDecls.find(MangledName);
|
|
if (DDI != DeferredDecls.end()) {
|
|
// Move the potentially referenced deferred decl to the DeferredDeclsToEmit
|
|
// list, and remove it from DeferredDecls (since we don't need it anymore).
|
|
DeferredDeclsToEmit.push_back(DDI->second);
|
|
DeferredDecls.erase(DDI);
|
|
}
|
|
|
|
llvm::GlobalVariable *GV =
|
|
new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
|
|
llvm::GlobalValue::ExternalLinkage,
|
|
0, "", 0,
|
|
false, Ty->getAddressSpace());
|
|
GV->setName(MangledName);
|
|
|
|
// Handle things which are present even on external declarations.
|
|
if (D) {
|
|
// FIXME: This code is overly simple and should be merged with other global
|
|
// handling.
|
|
GV->setConstant(D->getType().isConstant(Context));
|
|
|
|
// FIXME: Merge with other attribute handling code.
|
|
if (D->getStorageClass() == VarDecl::PrivateExtern)
|
|
GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
|
|
|
|
if (D->hasAttr<WeakAttr>() ||
|
|
D->hasAttr<WeakImportAttr>())
|
|
GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
|
|
|
|
GV->setThreadLocal(D->isThreadSpecified());
|
|
}
|
|
|
|
return Entry = GV;
|
|
}
|
|
|
|
|
|
/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
|
|
/// given global variable. If Ty is non-null and if the global doesn't exist,
|
|
/// then it will be greated with the specified type instead of whatever the
|
|
/// normal requested type would be.
|
|
llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
|
|
const llvm::Type *Ty) {
|
|
assert(D->hasGlobalStorage() && "Not a global variable");
|
|
QualType ASTTy = D->getType();
|
|
if (Ty == 0)
|
|
Ty = getTypes().ConvertTypeForMem(ASTTy);
|
|
|
|
const llvm::PointerType *PTy =
|
|
llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
|
|
return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
|
|
}
|
|
|
|
/// CreateRuntimeVariable - Create a new runtime global variable with the
|
|
/// specified type and name.
|
|
llvm::Constant *
|
|
CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
|
|
const char *Name) {
|
|
// Convert Name to be a uniqued string from the IdentifierInfo table.
|
|
Name = getContext().Idents.get(Name).getNameStart();
|
|
return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
|
|
}
|
|
|
|
void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
|
|
assert(!D->getInit() && "Cannot emit definite definitions here!");
|
|
|
|
if (MayDeferGeneration(D)) {
|
|
// If we have not seen a reference to this variable yet, place it
|
|
// into the deferred declarations table to be emitted if needed
|
|
// later.
|
|
const char *MangledName = getMangledName(D);
|
|
if (GlobalDeclMap.count(MangledName) == 0) {
|
|
DeferredDecls[MangledName] = D;
|
|
return;
|
|
}
|
|
}
|
|
|
|
// The tentative definition is the only definition.
|
|
EmitGlobalVarDefinition(D);
|
|
}
|
|
|
|
static CodeGenModule::GVALinkage
|
|
GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
|
|
// Everything located semantically within an anonymous namespace is
|
|
// always internal.
|
|
if (VD->isInAnonymousNamespace())
|
|
return CodeGenModule::GVA_Internal;
|
|
|
|
// Handle linkage for static data members.
|
|
if (VD->isStaticDataMember()) {
|
|
switch (VD->getTemplateSpecializationKind()) {
|
|
case TSK_Undeclared:
|
|
case TSK_ExplicitSpecialization:
|
|
case TSK_ExplicitInstantiationDefinition:
|
|
return CodeGenModule::GVA_StrongExternal;
|
|
|
|
case TSK_ExplicitInstantiationDeclaration:
|
|
llvm::llvm_unreachable("Variable should not be instantiated");
|
|
// Fall through to treat this like any other instantiation.
|
|
|
|
case TSK_ImplicitInstantiation:
|
|
return CodeGenModule::GVA_TemplateInstantiation;
|
|
}
|
|
}
|
|
|
|
if (VD->getLinkage() == VarDecl::InternalLinkage)
|
|
return CodeGenModule::GVA_Internal;
|
|
|
|
return CodeGenModule::GVA_StrongExternal;
|
|
}
|
|
|
|
void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
|
|
llvm::Constant *Init = 0;
|
|
QualType ASTTy = D->getType();
|
|
|
|
if (D->getInit() == 0) {
|
|
// This is a tentative definition; tentative definitions are
|
|
// implicitly initialized with { 0 }.
|
|
//
|
|
// Note that tentative definitions are only emitted at the end of
|
|
// a translation unit, so they should never have incomplete
|
|
// type. In addition, EmitTentativeDefinition makes sure that we
|
|
// never attempt to emit a tentative definition if a real one
|
|
// exists. A use may still exists, however, so we still may need
|
|
// to do a RAUW.
|
|
assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
|
|
Init = EmitNullConstant(D->getType());
|
|
} else {
|
|
Init = EmitConstantExpr(D->getInit(), D->getType());
|
|
|
|
if (!Init) {
|
|
QualType T = D->getInit()->getType();
|
|
if (getLangOptions().CPlusPlus) {
|
|
CXXGlobalInits.push_back(D);
|
|
Init = EmitNullConstant(T);
|
|
} else {
|
|
ErrorUnsupported(D, "static initializer");
|
|
Init = llvm::UndefValue::get(getTypes().ConvertType(T));
|
|
}
|
|
}
|
|
}
|
|
|
|
const llvm::Type* InitType = Init->getType();
|
|
llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
|
|
|
|
// Strip off a bitcast if we got one back.
|
|
if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
|
|
assert(CE->getOpcode() == llvm::Instruction::BitCast ||
|
|
// all zero index gep.
|
|
CE->getOpcode() == llvm::Instruction::GetElementPtr);
|
|
Entry = CE->getOperand(0);
|
|
}
|
|
|
|
// Entry is now either a Function or GlobalVariable.
|
|
llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
|
|
|
|
// We have a definition after a declaration with the wrong type.
|
|
// We must make a new GlobalVariable* and update everything that used OldGV
|
|
// (a declaration or tentative definition) with the new GlobalVariable*
|
|
// (which will be a definition).
|
|
//
|
|
// This happens if there is a prototype for a global (e.g.
|
|
// "extern int x[];") and then a definition of a different type (e.g.
|
|
// "int x[10];"). This also happens when an initializer has a different type
|
|
// from the type of the global (this happens with unions).
|
|
if (GV == 0 ||
|
|
GV->getType()->getElementType() != InitType ||
|
|
GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
|
|
|
|
// Remove the old entry from GlobalDeclMap so that we'll create a new one.
|
|
GlobalDeclMap.erase(getMangledName(D));
|
|
|
|
// Make a new global with the correct type, this is now guaranteed to work.
|
|
GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
|
|
GV->takeName(cast<llvm::GlobalValue>(Entry));
|
|
|
|
// Replace all uses of the old global with the new global
|
|
llvm::Constant *NewPtrForOldDecl =
|
|
llvm::ConstantExpr::getBitCast(GV, Entry->getType());
|
|
Entry->replaceAllUsesWith(NewPtrForOldDecl);
|
|
|
|
// Erase the old global, since it is no longer used.
|
|
cast<llvm::GlobalValue>(Entry)->eraseFromParent();
|
|
}
|
|
|
|
if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
|
|
SourceManager &SM = Context.getSourceManager();
|
|
AddAnnotation(EmitAnnotateAttr(GV, AA,
|
|
SM.getInstantiationLineNumber(D->getLocation())));
|
|
}
|
|
|
|
GV->setInitializer(Init);
|
|
|
|
// If it is safe to mark the global 'constant', do so now.
|
|
GV->setConstant(false);
|
|
if (D->getType().isConstant(Context)) {
|
|
// FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable
|
|
// members, it cannot be declared "LLVM const".
|
|
GV->setConstant(true);
|
|
}
|
|
|
|
GV->setAlignment(getContext().getDeclAlignInBytes(D));
|
|
|
|
// Set the llvm linkage type as appropriate.
|
|
GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
|
|
if (Linkage == GVA_Internal)
|
|
GV->setLinkage(llvm::Function::InternalLinkage);
|
|
else if (D->hasAttr<DLLImportAttr>())
|
|
GV->setLinkage(llvm::Function::DLLImportLinkage);
|
|
else if (D->hasAttr<DLLExportAttr>())
|
|
GV->setLinkage(llvm::Function::DLLExportLinkage);
|
|
else if (D->hasAttr<WeakAttr>()) {
|
|
if (GV->isConstant())
|
|
GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
|
|
else
|
|
GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
|
|
} else if (Linkage == GVA_TemplateInstantiation)
|
|
GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
|
|
else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
|
|
!D->hasExternalStorage() && !D->getInit() &&
|
|
!D->getAttr<SectionAttr>()) {
|
|
GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
|
|
// common vars aren't constant even if declared const.
|
|
GV->setConstant(false);
|
|
} else
|
|
GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
|
|
|
|
SetCommonAttributes(D, GV);
|
|
|
|
// Emit global variable debug information.
|
|
if (CGDebugInfo *DI = getDebugInfo()) {
|
|
DI->setLocation(D->getLocation());
|
|
DI->EmitGlobalVariable(GV, D);
|
|
}
|
|
}
|
|
|
|
/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
|
|
/// implement a function with no prototype, e.g. "int foo() {}". If there are
|
|
/// existing call uses of the old function in the module, this adjusts them to
|
|
/// call the new function directly.
|
|
///
|
|
/// This is not just a cleanup: the always_inline pass requires direct calls to
|
|
/// functions to be able to inline them. If there is a bitcast in the way, it
|
|
/// won't inline them. Instcombine normally deletes these calls, but it isn't
|
|
/// run at -O0.
|
|
static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
|
|
llvm::Function *NewFn) {
|
|
// If we're redefining a global as a function, don't transform it.
|
|
llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
|
|
if (OldFn == 0) return;
|
|
|
|
const llvm::Type *NewRetTy = NewFn->getReturnType();
|
|
llvm::SmallVector<llvm::Value*, 4> ArgList;
|
|
|
|
for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
|
|
UI != E; ) {
|
|
// TODO: Do invokes ever occur in C code? If so, we should handle them too.
|
|
unsigned OpNo = UI.getOperandNo();
|
|
llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
|
|
if (!CI || OpNo != 0) continue;
|
|
|
|
// If the return types don't match exactly, and if the call isn't dead, then
|
|
// we can't transform this call.
|
|
if (CI->getType() != NewRetTy && !CI->use_empty())
|
|
continue;
|
|
|
|
// If the function was passed too few arguments, don't transform. If extra
|
|
// arguments were passed, we silently drop them. If any of the types
|
|
// mismatch, we don't transform.
|
|
unsigned ArgNo = 0;
|
|
bool DontTransform = false;
|
|
for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
|
|
E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
|
|
if (CI->getNumOperands()-1 == ArgNo ||
|
|
CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
|
|
DontTransform = true;
|
|
break;
|
|
}
|
|
}
|
|
if (DontTransform)
|
|
continue;
|
|
|
|
// Okay, we can transform this. Create the new call instruction and copy
|
|
// over the required information.
|
|
ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
|
|
llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
|
|
ArgList.end(), "", CI);
|
|
ArgList.clear();
|
|
if (!NewCall->getType()->isVoidTy())
|
|
NewCall->takeName(CI);
|
|
NewCall->setAttributes(CI->getAttributes());
|
|
NewCall->setCallingConv(CI->getCallingConv());
|
|
|
|
// Finally, remove the old call, replacing any uses with the new one.
|
|
if (!CI->use_empty())
|
|
CI->replaceAllUsesWith(NewCall);
|
|
|
|
// Copy any custom metadata attached with CI.
|
|
llvm::MetadataContext &TheMetadata = CI->getContext().getMetadata();
|
|
TheMetadata.copyMD(CI, NewCall);
|
|
|
|
CI->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
|
|
void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
|
|
const llvm::FunctionType *Ty;
|
|
const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
|
|
|
|
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
|
|
bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic();
|
|
|
|
Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
|
|
} else {
|
|
Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
|
|
|
|
// As a special case, make sure that definitions of K&R function
|
|
// "type foo()" aren't declared as varargs (which forces the backend
|
|
// to do unnecessary work).
|
|
if (D->getType()->isFunctionNoProtoType()) {
|
|
assert(Ty->isVarArg() && "Didn't lower type as expected");
|
|
// Due to stret, the lowered function could have arguments.
|
|
// Just create the same type as was lowered by ConvertType
|
|
// but strip off the varargs bit.
|
|
std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
|
|
Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
|
|
}
|
|
}
|
|
|
|
// Get or create the prototype for the function.
|
|
llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
|
|
|
|
// Strip off a bitcast if we got one back.
|
|
if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
|
|
assert(CE->getOpcode() == llvm::Instruction::BitCast);
|
|
Entry = CE->getOperand(0);
|
|
}
|
|
|
|
|
|
if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
|
|
llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
|
|
|
|
// If the types mismatch then we have to rewrite the definition.
|
|
assert(OldFn->isDeclaration() &&
|
|
"Shouldn't replace non-declaration");
|
|
|
|
// F is the Function* for the one with the wrong type, we must make a new
|
|
// Function* and update everything that used F (a declaration) with the new
|
|
// Function* (which will be a definition).
|
|
//
|
|
// This happens if there is a prototype for a function
|
|
// (e.g. "int f()") and then a definition of a different type
|
|
// (e.g. "int f(int x)"). Start by making a new function of the
|
|
// correct type, RAUW, then steal the name.
|
|
GlobalDeclMap.erase(getMangledName(D));
|
|
llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
|
|
NewFn->takeName(OldFn);
|
|
|
|
// If this is an implementation of a function without a prototype, try to
|
|
// replace any existing uses of the function (which may be calls) with uses
|
|
// of the new function
|
|
if (D->getType()->isFunctionNoProtoType()) {
|
|
ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
|
|
OldFn->removeDeadConstantUsers();
|
|
}
|
|
|
|
// Replace uses of F with the Function we will endow with a body.
|
|
if (!Entry->use_empty()) {
|
|
llvm::Constant *NewPtrForOldDecl =
|
|
llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
|
|
Entry->replaceAllUsesWith(NewPtrForOldDecl);
|
|
}
|
|
|
|
// Ok, delete the old function now, which is dead.
|
|
OldFn->eraseFromParent();
|
|
|
|
Entry = NewFn;
|
|
}
|
|
|
|
llvm::Function *Fn = cast<llvm::Function>(Entry);
|
|
|
|
CodeGenFunction(*this).GenerateCode(D, Fn);
|
|
|
|
SetFunctionDefinitionAttributes(D, Fn);
|
|
SetLLVMFunctionAttributesForDefinition(D, Fn);
|
|
|
|
if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
|
|
AddGlobalCtor(Fn, CA->getPriority());
|
|
if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
|
|
AddGlobalDtor(Fn, DA->getPriority());
|
|
}
|
|
|
|
void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
|
|
const AliasAttr *AA = D->getAttr<AliasAttr>();
|
|
assert(AA && "Not an alias?");
|
|
|
|
const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
|
|
|
|
// Unique the name through the identifier table.
|
|
const char *AliaseeName = AA->getAliasee().c_str();
|
|
AliaseeName = getContext().Idents.get(AliaseeName).getNameStart();
|
|
|
|
// Create a reference to the named value. This ensures that it is emitted
|
|
// if a deferred decl.
|
|
llvm::Constant *Aliasee;
|
|
if (isa<llvm::FunctionType>(DeclTy))
|
|
Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
|
|
else
|
|
Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
|
|
llvm::PointerType::getUnqual(DeclTy), 0);
|
|
|
|
// Create the new alias itself, but don't set a name yet.
|
|
llvm::GlobalValue *GA =
|
|
new llvm::GlobalAlias(Aliasee->getType(),
|
|
llvm::Function::ExternalLinkage,
|
|
"", Aliasee, &getModule());
|
|
|
|
// See if there is already something with the alias' name in the module.
|
|
const char *MangledName = getMangledName(D);
|
|
llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
|
|
|
|
if (Entry && !Entry->isDeclaration()) {
|
|
// If there is a definition in the module, then it wins over the alias.
|
|
// This is dubious, but allow it to be safe. Just ignore the alias.
|
|
GA->eraseFromParent();
|
|
return;
|
|
}
|
|
|
|
if (Entry) {
|
|
// If there is a declaration in the module, then we had an extern followed
|
|
// by the alias, as in:
|
|
// extern int test6();
|
|
// ...
|
|
// int test6() __attribute__((alias("test7")));
|
|
//
|
|
// Remove it and replace uses of it with the alias.
|
|
|
|
Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
|
|
Entry->getType()));
|
|
Entry->eraseFromParent();
|
|
}
|
|
|
|
// Now we know that there is no conflict, set the name.
|
|
Entry = GA;
|
|
GA->setName(MangledName);
|
|
|
|
// Set attributes which are particular to an alias; this is a
|
|
// specialization of the attributes which may be set on a global
|
|
// variable/function.
|
|
if (D->hasAttr<DLLExportAttr>()) {
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
|
// The dllexport attribute is ignored for undefined symbols.
|
|
if (FD->getBody())
|
|
GA->setLinkage(llvm::Function::DLLExportLinkage);
|
|
} else {
|
|
GA->setLinkage(llvm::Function::DLLExportLinkage);
|
|
}
|
|
} else if (D->hasAttr<WeakAttr>() ||
|
|
D->hasAttr<WeakImportAttr>()) {
|
|
GA->setLinkage(llvm::Function::WeakAnyLinkage);
|
|
}
|
|
|
|
SetCommonAttributes(D, GA);
|
|
}
|
|
|
|
/// getBuiltinLibFunction - Given a builtin id for a function like
|
|
/// "__builtin_fabsf", return a Function* for "fabsf".
|
|
llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
|
|
unsigned BuiltinID) {
|
|
assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
|
|
Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
|
|
"isn't a lib fn");
|
|
|
|
// Get the name, skip over the __builtin_ prefix (if necessary).
|
|
const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
|
|
if (Context.BuiltinInfo.isLibFunction(BuiltinID))
|
|
Name += 10;
|
|
|
|
// Get the type for the builtin.
|
|
ASTContext::GetBuiltinTypeError Error;
|
|
QualType Type = Context.GetBuiltinType(BuiltinID, Error);
|
|
assert(Error == ASTContext::GE_None && "Can't get builtin type");
|
|
|
|
const llvm::FunctionType *Ty =
|
|
cast<llvm::FunctionType>(getTypes().ConvertType(Type));
|
|
|
|
// Unique the name through the identifier table.
|
|
Name = getContext().Idents.get(Name).getNameStart();
|
|
return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
|
|
}
|
|
|
|
llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
|
|
unsigned NumTys) {
|
|
return llvm::Intrinsic::getDeclaration(&getModule(),
|
|
(llvm::Intrinsic::ID)IID, Tys, NumTys);
|
|
}
|
|
|
|
llvm::Function *CodeGenModule::getMemCpyFn() {
|
|
if (MemCpyFn) return MemCpyFn;
|
|
const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
|
|
return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
|
|
}
|
|
|
|
llvm::Function *CodeGenModule::getMemMoveFn() {
|
|
if (MemMoveFn) return MemMoveFn;
|
|
const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
|
|
return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
|
|
}
|
|
|
|
llvm::Function *CodeGenModule::getMemSetFn() {
|
|
if (MemSetFn) return MemSetFn;
|
|
const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
|
|
return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
|
|
}
|
|
|
|
static llvm::StringMapEntry<llvm::Constant*> &
|
|
GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
|
|
const StringLiteral *Literal,
|
|
bool TargetIsLSB,
|
|
bool &IsUTF16,
|
|
unsigned &StringLength) {
|
|
unsigned NumBytes = Literal->getByteLength();
|
|
|
|
// Check for simple case.
|
|
if (!Literal->containsNonAsciiOrNull()) {
|
|
StringLength = NumBytes;
|
|
return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
|
|
StringLength));
|
|
}
|
|
|
|
// Otherwise, convert the UTF8 literals into a byte string.
|
|
llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
|
|
const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
|
|
UTF16 *ToPtr = &ToBuf[0];
|
|
|
|
ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
|
|
&ToPtr, ToPtr + NumBytes,
|
|
strictConversion);
|
|
|
|
// Check for conversion failure.
|
|
if (Result != conversionOK) {
|
|
// FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
|
|
// this duplicate code.
|
|
assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
|
|
StringLength = NumBytes;
|
|
return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
|
|
StringLength));
|
|
}
|
|
|
|
// ConvertUTF8toUTF16 returns the length in ToPtr.
|
|
StringLength = ToPtr - &ToBuf[0];
|
|
|
|
// Render the UTF-16 string into a byte array and convert to the target byte
|
|
// order.
|
|
//
|
|
// FIXME: This isn't something we should need to do here.
|
|
llvm::SmallString<128> AsBytes;
|
|
AsBytes.reserve(StringLength * 2);
|
|
for (unsigned i = 0; i != StringLength; ++i) {
|
|
unsigned short Val = ToBuf[i];
|
|
if (TargetIsLSB) {
|
|
AsBytes.push_back(Val & 0xFF);
|
|
AsBytes.push_back(Val >> 8);
|
|
} else {
|
|
AsBytes.push_back(Val >> 8);
|
|
AsBytes.push_back(Val & 0xFF);
|
|
}
|
|
}
|
|
// Append one extra null character, the second is automatically added by our
|
|
// caller.
|
|
AsBytes.push_back(0);
|
|
|
|
IsUTF16 = true;
|
|
return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
|
|
}
|
|
|
|
llvm::Constant *
|
|
CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
|
|
unsigned StringLength = 0;
|
|
bool isUTF16 = false;
|
|
llvm::StringMapEntry<llvm::Constant*> &Entry =
|
|
GetConstantCFStringEntry(CFConstantStringMap, Literal,
|
|
getTargetData().isLittleEndian(),
|
|
isUTF16, StringLength);
|
|
|
|
if (llvm::Constant *C = Entry.getValue())
|
|
return C;
|
|
|
|
llvm::Constant *Zero =
|
|
llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
|
|
llvm::Constant *Zeros[] = { Zero, Zero };
|
|
|
|
// If we don't already have it, get __CFConstantStringClassReference.
|
|
if (!CFConstantStringClassRef) {
|
|
const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
|
|
Ty = llvm::ArrayType::get(Ty, 0);
|
|
llvm::Constant *GV = CreateRuntimeVariable(Ty,
|
|
"__CFConstantStringClassReference");
|
|
// Decay array -> ptr
|
|
CFConstantStringClassRef =
|
|
llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
|
|
}
|
|
|
|
QualType CFTy = getContext().getCFConstantStringType();
|
|
|
|
const llvm::StructType *STy =
|
|
cast<llvm::StructType>(getTypes().ConvertType(CFTy));
|
|
|
|
std::vector<llvm::Constant*> Fields(4);
|
|
|
|
// Class pointer.
|
|
Fields[0] = CFConstantStringClassRef;
|
|
|
|
// Flags.
|
|
const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
|
|
Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
|
|
llvm::ConstantInt::get(Ty, 0x07C8);
|
|
|
|
// String pointer.
|
|
llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
|
|
|
|
const char *Sect = 0;
|
|
llvm::GlobalValue::LinkageTypes Linkage;
|
|
bool isConstant;
|
|
if (isUTF16) {
|
|
Sect = getContext().Target.getUnicodeStringSection();
|
|
// FIXME: why do utf strings get "_" labels instead of "L" labels?
|
|
Linkage = llvm::GlobalValue::InternalLinkage;
|
|
// Note: -fwritable-strings doesn't make unicode CFStrings writable, but
|
|
// does make plain ascii ones writable.
|
|
isConstant = true;
|
|
} else {
|
|
Linkage = llvm::GlobalValue::PrivateLinkage;
|
|
isConstant = !Features.WritableStrings;
|
|
}
|
|
|
|
llvm::GlobalVariable *GV =
|
|
new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
|
|
".str");
|
|
if (Sect)
|
|
GV->setSection(Sect);
|
|
if (isUTF16) {
|
|
unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
|
|
GV->setAlignment(Align);
|
|
}
|
|
Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
|
|
|
|
// String length.
|
|
Ty = getTypes().ConvertType(getContext().LongTy);
|
|
Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
|
|
|
|
// The struct.
|
|
C = llvm::ConstantStruct::get(STy, Fields);
|
|
GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
|
|
llvm::GlobalVariable::PrivateLinkage, C,
|
|
"_unnamed_cfstring_");
|
|
if (const char *Sect = getContext().Target.getCFStringSection())
|
|
GV->setSection(Sect);
|
|
Entry.setValue(GV);
|
|
|
|
return GV;
|
|
}
|
|
|
|
/// GetStringForStringLiteral - Return the appropriate bytes for a
|
|
/// string literal, properly padded to match the literal type.
|
|
std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
|
|
const char *StrData = E->getStrData();
|
|
unsigned Len = E->getByteLength();
|
|
|
|
const ConstantArrayType *CAT =
|
|
getContext().getAsConstantArrayType(E->getType());
|
|
assert(CAT && "String isn't pointer or array!");
|
|
|
|
// Resize the string to the right size.
|
|
std::string Str(StrData, StrData+Len);
|
|
uint64_t RealLen = CAT->getSize().getZExtValue();
|
|
|
|
if (E->isWide())
|
|
RealLen *= getContext().Target.getWCharWidth()/8;
|
|
|
|
Str.resize(RealLen, '\0');
|
|
|
|
return Str;
|
|
}
|
|
|
|
/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
|
|
/// constant array for the given string literal.
|
|
llvm::Constant *
|
|
CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
|
|
// FIXME: This can be more efficient.
|
|
// FIXME: We shouldn't need to bitcast the constant in the wide string case.
|
|
llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
|
|
if (S->isWide()) {
|
|
llvm::Type *DestTy =
|
|
llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
|
|
C = llvm::ConstantExpr::getBitCast(C, DestTy);
|
|
}
|
|
return C;
|
|
}
|
|
|
|
/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
|
|
/// array for the given ObjCEncodeExpr node.
|
|
llvm::Constant *
|
|
CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
|
|
std::string Str;
|
|
getContext().getObjCEncodingForType(E->getEncodedType(), Str);
|
|
|
|
return GetAddrOfConstantCString(Str);
|
|
}
|
|
|
|
|
|
/// GenerateWritableString -- Creates storage for a string literal.
|
|
static llvm::Constant *GenerateStringLiteral(const std::string &str,
|
|
bool constant,
|
|
CodeGenModule &CGM,
|
|
const char *GlobalName) {
|
|
// Create Constant for this string literal. Don't add a '\0'.
|
|
llvm::Constant *C =
|
|
llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
|
|
|
|
// Create a global variable for this string
|
|
return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
|
|
llvm::GlobalValue::PrivateLinkage,
|
|
C, GlobalName);
|
|
}
|
|
|
|
/// GetAddrOfConstantString - Returns a pointer to a character array
|
|
/// containing the literal. This contents are exactly that of the
|
|
/// given string, i.e. it will not be null terminated automatically;
|
|
/// see GetAddrOfConstantCString. Note that whether the result is
|
|
/// actually a pointer to an LLVM constant depends on
|
|
/// Feature.WriteableStrings.
|
|
///
|
|
/// The result has pointer to array type.
|
|
llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
|
|
const char *GlobalName) {
|
|
bool IsConstant = !Features.WritableStrings;
|
|
|
|
// Get the default prefix if a name wasn't specified.
|
|
if (!GlobalName)
|
|
GlobalName = ".str";
|
|
|
|
// Don't share any string literals if strings aren't constant.
|
|
if (!IsConstant)
|
|
return GenerateStringLiteral(str, false, *this, GlobalName);
|
|
|
|
llvm::StringMapEntry<llvm::Constant *> &Entry =
|
|
ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
|
|
|
|
if (Entry.getValue())
|
|
return Entry.getValue();
|
|
|
|
// Create a global variable for this.
|
|
llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
|
|
Entry.setValue(C);
|
|
return C;
|
|
}
|
|
|
|
/// GetAddrOfConstantCString - Returns a pointer to a character
|
|
/// array containing the literal and a terminating '\-'
|
|
/// character. The result has pointer to array type.
|
|
llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
|
|
const char *GlobalName){
|
|
return GetAddrOfConstantString(str + '\0', GlobalName);
|
|
}
|
|
|
|
/// EmitObjCPropertyImplementations - Emit information for synthesized
|
|
/// properties for an implementation.
|
|
void CodeGenModule::EmitObjCPropertyImplementations(const
|
|
ObjCImplementationDecl *D) {
|
|
for (ObjCImplementationDecl::propimpl_iterator
|
|
i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
|
|
ObjCPropertyImplDecl *PID = *i;
|
|
|
|
// Dynamic is just for type-checking.
|
|
if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
|
|
ObjCPropertyDecl *PD = PID->getPropertyDecl();
|
|
|
|
// Determine which methods need to be implemented, some may have
|
|
// been overridden. Note that ::isSynthesized is not the method
|
|
// we want, that just indicates if the decl came from a
|
|
// property. What we want to know is if the method is defined in
|
|
// this implementation.
|
|
if (!D->getInstanceMethod(PD->getGetterName()))
|
|
CodeGenFunction(*this).GenerateObjCGetter(
|
|
const_cast<ObjCImplementationDecl *>(D), PID);
|
|
if (!PD->isReadOnly() &&
|
|
!D->getInstanceMethod(PD->getSetterName()))
|
|
CodeGenFunction(*this).GenerateObjCSetter(
|
|
const_cast<ObjCImplementationDecl *>(D), PID);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// EmitNamespace - Emit all declarations in a namespace.
|
|
void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
|
|
for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
|
|
I != E; ++I)
|
|
EmitTopLevelDecl(*I);
|
|
}
|
|
|
|
// EmitLinkageSpec - Emit all declarations in a linkage spec.
|
|
void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
|
|
if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
|
|
LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
|
|
ErrorUnsupported(LSD, "linkage spec");
|
|
return;
|
|
}
|
|
|
|
for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
|
|
I != E; ++I)
|
|
EmitTopLevelDecl(*I);
|
|
}
|
|
|
|
/// EmitTopLevelDecl - Emit code for a single top level declaration.
|
|
void CodeGenModule::EmitTopLevelDecl(Decl *D) {
|
|
// If an error has occurred, stop code generation, but continue
|
|
// parsing and semantic analysis (to ensure all warnings and errors
|
|
// are emitted).
|
|
if (Diags.hasErrorOccurred())
|
|
return;
|
|
|
|
// Ignore dependent declarations.
|
|
if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
|
|
return;
|
|
|
|
switch (D->getKind()) {
|
|
case Decl::CXXConversion:
|
|
case Decl::CXXMethod:
|
|
case Decl::Function:
|
|
// Skip function templates
|
|
if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
|
|
return;
|
|
|
|
EmitGlobal(cast<FunctionDecl>(D));
|
|
break;
|
|
|
|
case Decl::Var:
|
|
EmitGlobal(cast<VarDecl>(D));
|
|
break;
|
|
|
|
// C++ Decls
|
|
case Decl::Namespace:
|
|
EmitNamespace(cast<NamespaceDecl>(D));
|
|
break;
|
|
// No code generation needed.
|
|
case Decl::UsingShadow:
|
|
case Decl::Using:
|
|
case Decl::UsingDirective:
|
|
case Decl::ClassTemplate:
|
|
case Decl::FunctionTemplate:
|
|
case Decl::NamespaceAlias:
|
|
break;
|
|
case Decl::CXXConstructor:
|
|
// Skip function templates
|
|
if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
|
|
return;
|
|
|
|
EmitCXXConstructors(cast<CXXConstructorDecl>(D));
|
|
break;
|
|
case Decl::CXXDestructor:
|
|
EmitCXXDestructors(cast<CXXDestructorDecl>(D));
|
|
break;
|
|
|
|
case Decl::StaticAssert:
|
|
// Nothing to do.
|
|
break;
|
|
|
|
// Objective-C Decls
|
|
|
|
// Forward declarations, no (immediate) code generation.
|
|
case Decl::ObjCClass:
|
|
case Decl::ObjCForwardProtocol:
|
|
case Decl::ObjCCategory:
|
|
case Decl::ObjCInterface:
|
|
break;
|
|
|
|
case Decl::ObjCProtocol:
|
|
Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
|
|
break;
|
|
|
|
case Decl::ObjCCategoryImpl:
|
|
// Categories have properties but don't support synthesize so we
|
|
// can ignore them here.
|
|
Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
|
|
break;
|
|
|
|
case Decl::ObjCImplementation: {
|
|
ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
|
|
EmitObjCPropertyImplementations(OMD);
|
|
Runtime->GenerateClass(OMD);
|
|
break;
|
|
}
|
|
case Decl::ObjCMethod: {
|
|
ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
|
|
// If this is not a prototype, emit the body.
|
|
if (OMD->getBody())
|
|
CodeGenFunction(*this).GenerateObjCMethod(OMD);
|
|
break;
|
|
}
|
|
case Decl::ObjCCompatibleAlias:
|
|
// compatibility-alias is a directive and has no code gen.
|
|
break;
|
|
|
|
case Decl::LinkageSpec:
|
|
EmitLinkageSpec(cast<LinkageSpecDecl>(D));
|
|
break;
|
|
|
|
case Decl::FileScopeAsm: {
|
|
FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
|
|
std::string AsmString(AD->getAsmString()->getStrData(),
|
|
AD->getAsmString()->getByteLength());
|
|
|
|
const std::string &S = getModule().getModuleInlineAsm();
|
|
if (S.empty())
|
|
getModule().setModuleInlineAsm(AsmString);
|
|
else
|
|
getModule().setModuleInlineAsm(S + '\n' + AsmString);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
// Make sure we handled everything we should, every other kind is a
|
|
// non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind
|
|
// function. Need to recode Decl::Kind to do that easily.
|
|
assert(isa<TypeDecl>(D) && "Unsupported decl kind");
|
|
}
|
|
}
|