forked from OSchip/llvm-project
909 lines
34 KiB
TableGen
909 lines
34 KiB
TableGen
//=- X86ScheduleBtVer2.td - X86 BtVer2 (Jaguar) Scheduling ---*- tablegen -*-=//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the machine model for AMD btver2 (Jaguar) to support
|
|
// instruction scheduling and other instruction cost heuristics. Based off AMD Software
|
|
// Optimization Guide for AMD Family 16h Processors & Instruction Latency appendix.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def BtVer2Model : SchedMachineModel {
|
|
// All x86 instructions are modeled as a single micro-op, and btver2 can
|
|
// decode 2 instructions per cycle.
|
|
let IssueWidth = 2;
|
|
let MicroOpBufferSize = 64; // Retire Control Unit
|
|
let LoadLatency = 5; // FPU latency (worse case cf Integer 3 cycle latency)
|
|
let HighLatency = 25;
|
|
let MispredictPenalty = 14; // Minimum branch misdirection penalty
|
|
let PostRAScheduler = 1;
|
|
|
|
// FIXME: SSE4/AVX is unimplemented. This flag is set to allow
|
|
// the scheduler to assign a default model to unrecognized opcodes.
|
|
let CompleteModel = 0;
|
|
}
|
|
|
|
let SchedModel = BtVer2Model in {
|
|
|
|
// Jaguar can issue up to 6 micro-ops in one cycle
|
|
def JALU0 : ProcResource<1>; // Integer Pipe0: integer ALU0 (also handle FP->INT jam)
|
|
def JALU1 : ProcResource<1>; // Integer Pipe1: integer ALU1/MUL/DIV
|
|
def JLAGU : ProcResource<1>; // Integer Pipe2: LAGU
|
|
def JSAGU : ProcResource<1>; // Integer Pipe3: SAGU (also handles 3-operand LEA)
|
|
def JFPU0 : ProcResource<1>; // Vector/FPU Pipe0: VALU0/VIMUL/FPA
|
|
def JFPU1 : ProcResource<1>; // Vector/FPU Pipe1: VALU1/STC/FPM
|
|
|
|
// The Integer PRF for Jaguar is 64 entries, and it holds the architectural and
|
|
// speculative version of the 64-bit integer registers.
|
|
// Reference: www.realworldtech.com/jaguar/4/
|
|
def IntegerPRF : RegisterFile<64, [GR8, GR16, GR32, GR64, CCR]>;
|
|
|
|
// The Jaguar FP Retire Queue renames SIMD and FP uOps onto a pool of 72 SSE
|
|
// registers. Operations on 256-bit data types are cracked into two COPs.
|
|
// Reference: www.realworldtech.com/jaguar/4/
|
|
def FpuPRF: RegisterFile<72, [VR64, VR128, VR256], [1, 1, 2]>;
|
|
|
|
// The retire control unit (RCU) can track up to 64 macro-ops in-flight. It can
|
|
// retire up to two macro-ops per cycle.
|
|
// Reference: "Software Optimization Guide for AMD Family 16h Processors"
|
|
def RCU : RetireControlUnit<64, 2>;
|
|
|
|
// Integer Pipe Scheduler
|
|
def JALU01 : ProcResGroup<[JALU0, JALU1]> {
|
|
let BufferSize=20;
|
|
}
|
|
|
|
// AGU Pipe Scheduler
|
|
def JLSAGU : ProcResGroup<[JLAGU, JSAGU]> {
|
|
let BufferSize=12;
|
|
}
|
|
|
|
// Fpu Pipe Scheduler
|
|
def JFPU01 : ProcResGroup<[JFPU0, JFPU1]> {
|
|
let BufferSize=18;
|
|
}
|
|
|
|
// Functional units
|
|
def JDiv : ProcResource<1>; // integer division
|
|
def JMul : ProcResource<1>; // integer multiplication
|
|
def JVALU0 : ProcResource<1>; // vector integer
|
|
def JVALU1 : ProcResource<1>; // vector integer
|
|
def JVIMUL : ProcResource<1>; // vector integer multiplication
|
|
def JSTC : ProcResource<1>; // vector store/convert
|
|
def JFPM : ProcResource<1>; // FP multiplication
|
|
def JFPA : ProcResource<1>; // FP addition
|
|
|
|
// Functional unit groups
|
|
def JFPX : ProcResGroup<[JFPA, JFPM]>;
|
|
def JVALU : ProcResGroup<[JVALU0, JVALU1]>;
|
|
|
|
// Integer loads are 3 cycles, so ReadAfterLd registers needn't be available until 3
|
|
// cycles after the memory operand.
|
|
def : ReadAdvance<ReadAfterLd, 3>;
|
|
|
|
// Many SchedWrites are defined in pairs with and without a folded load.
|
|
// Instructions with folded loads are usually micro-fused, so they only appear
|
|
// as two micro-ops when dispatched by the schedulers.
|
|
// This multiclass defines the resource usage for variants with and without
|
|
// folded loads.
|
|
multiclass JWriteResIntPair<X86FoldableSchedWrite SchedRW,
|
|
list<ProcResourceKind> ExePorts,
|
|
int Lat, list<int> Res = [1], int UOps = 1> {
|
|
// Register variant is using a single cycle on ExePort.
|
|
def : WriteRes<SchedRW, ExePorts> {
|
|
let Latency = Lat;
|
|
let ResourceCycles = Res;
|
|
let NumMicroOps = UOps;
|
|
}
|
|
|
|
// Memory variant also uses a cycle on JLAGU and adds 3 cycles to the
|
|
// latency.
|
|
def : WriteRes<SchedRW.Folded, !listconcat([JLAGU], ExePorts)> {
|
|
let Latency = !add(Lat, 3);
|
|
let ResourceCycles = !listconcat([1], Res);
|
|
let NumMicroOps = UOps;
|
|
}
|
|
}
|
|
|
|
multiclass JWriteResFpuPair<X86FoldableSchedWrite SchedRW,
|
|
list<ProcResourceKind> ExePorts,
|
|
int Lat, list<int> Res = [1], int UOps = 1> {
|
|
// Register variant is using a single cycle on ExePort.
|
|
def : WriteRes<SchedRW, ExePorts> {
|
|
let Latency = Lat;
|
|
let ResourceCycles = Res;
|
|
let NumMicroOps = UOps;
|
|
}
|
|
|
|
// Memory variant also uses a cycle on JLAGU and adds 5 cycles to the
|
|
// latency.
|
|
def : WriteRes<SchedRW.Folded, !listconcat([JLAGU], ExePorts)> {
|
|
let Latency = !add(Lat, 5);
|
|
let ResourceCycles = !listconcat([1], Res);
|
|
let NumMicroOps = UOps;
|
|
}
|
|
}
|
|
|
|
// A folded store needs a cycle on the SAGU for the store data.
|
|
def : WriteRes<WriteRMW, [JSAGU]>;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Arithmetic.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
defm : JWriteResIntPair<WriteALU, [JALU01], 1>;
|
|
defm : JWriteResIntPair<WriteIMul, [JALU1, JMul], 3, [1, 1], 2>; // i8/i16/i32 multiplication
|
|
defm : JWriteResIntPair<WriteIDiv, [JALU1, JDiv], 41, [1, 41], 2>; // Worst case (i64 division)
|
|
defm : JWriteResIntPair<WriteCRC32, [JALU01], 3, [4], 3>;
|
|
|
|
defm : JWriteResIntPair<WriteCMOV, [JALU01], 1>; // Conditional move.
|
|
def : WriteRes<WriteSETCC, [JALU01]>; // Setcc.
|
|
def : WriteRes<WriteSETCCStore, [JALU01,JSAGU]>;
|
|
|
|
def : WriteRes<WriteIMulH, [JALU1]> {
|
|
let Latency = 6;
|
|
let ResourceCycles = [4];
|
|
}
|
|
|
|
// This is for simple LEAs with one or two input operands.
|
|
// FIXME: SAGU 3-operand LEA
|
|
def : WriteRes<WriteLEA, [JALU01]>;
|
|
|
|
// Bit counts.
|
|
defm : JWriteResIntPair<WriteBitScan, [JALU01], 5, [4], 8>;
|
|
defm : JWriteResIntPair<WritePOPCNT, [JALU01], 1>;
|
|
defm : JWriteResIntPair<WriteLZCNT, [JALU01], 1>;
|
|
defm : JWriteResIntPair<WriteTZCNT, [JALU01], 2, [2]>;
|
|
|
|
// BMI1 BEXTR, BMI2 BZHI
|
|
defm : JWriteResIntPair<WriteBEXTR, [JALU01], 1>;
|
|
defm : JWriteResIntPair<WriteBZHI, [JALU01], 1>; // NOTE: Doesn't exist on Jaguar.
|
|
|
|
def JWriteIMul64 : SchedWriteRes<[JALU1, JMul]> {
|
|
let Latency = 6;
|
|
let ResourceCycles = [1, 4];
|
|
let NumMicroOps = 2;
|
|
}
|
|
def JWriteIMul64Ld : SchedWriteRes<[JLAGU, JALU1, JMul]> {
|
|
let Latency = 9;
|
|
let ResourceCycles = [1, 1, 4];
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[JWriteIMul64], (instrs MUL64r, IMUL64r)>;
|
|
def : InstRW<[JWriteIMul64Ld], (instrs MUL64m, IMUL64m)>;
|
|
|
|
def JWriteIDiv8 : SchedWriteRes<[JALU1, JDiv]> {
|
|
let Latency = 12;
|
|
let ResourceCycles = [1, 12];
|
|
}
|
|
def JWriteIDiv8Ld : SchedWriteRes<[JLAGU, JALU1, JDiv]> {
|
|
let Latency = 15;
|
|
let ResourceCycles = [1, 1, 12];
|
|
}
|
|
def : InstRW<[JWriteIDiv8], (instrs DIV8r, IDIV8r)>;
|
|
def : InstRW<[JWriteIDiv8Ld], (instrs DIV8m, IDIV8m)>;
|
|
|
|
def JWriteIDiv16 : SchedWriteRes<[JALU1, JDiv]> {
|
|
let Latency = 17;
|
|
let ResourceCycles = [1, 17];
|
|
let NumMicroOps = 2;
|
|
}
|
|
def JWriteIDiv16Ld : SchedWriteRes<[JLAGU, JALU1, JDiv]> {
|
|
let Latency = 20;
|
|
let ResourceCycles = [1, 1, 17];
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[JWriteIDiv16], (instrs DIV16r, IDIV16r)>;
|
|
def : InstRW<[JWriteIDiv16Ld], (instrs DIV16m, IDIV16m)>;
|
|
|
|
def JWriteIDiv32 : SchedWriteRes<[JALU1, JDiv]> {
|
|
let Latency = 25;
|
|
let ResourceCycles = [1, 25];
|
|
let NumMicroOps = 2;
|
|
}
|
|
def JWriteIDiv32Ld : SchedWriteRes<[JLAGU, JALU1, JDiv]> {
|
|
let Latency = 28;
|
|
let ResourceCycles = [1, 1, 25];
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[JWriteIDiv32], (instrs DIV32r, IDIV32r)>;
|
|
def : InstRW<[JWriteIDiv32Ld], (instrs DIV32m, IDIV32m)>;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Integer shifts and rotates.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
defm : JWriteResIntPair<WriteShift, [JALU01], 1>;
|
|
|
|
def JWriteSHLDrri : SchedWriteRes<[JALU01]> {
|
|
let Latency = 3;
|
|
let ResourceCycles = [6];
|
|
let NumMicroOps = 6;
|
|
}
|
|
def: InstRW<[JWriteSHLDrri], (instrs SHLD16rri8, SHLD32rri8, SHLD64rri8,
|
|
SHRD16rri8, SHRD32rri8, SHRD64rri8)>;
|
|
|
|
def JWriteSHLDrrCL : SchedWriteRes<[JALU01]> {
|
|
let Latency = 4;
|
|
let ResourceCycles = [8];
|
|
let NumMicroOps = 7;
|
|
}
|
|
def: InstRW<[JWriteSHLDrrCL], (instrs SHLD16rrCL, SHLD32rrCL, SHLD64rrCL,
|
|
SHRD16rrCL, SHRD32rrCL, SHRD64rrCL)>;
|
|
|
|
def JWriteSHLDm : SchedWriteRes<[JLAGU, JALU01]> {
|
|
let Latency = 9;
|
|
let ResourceCycles = [1, 22];
|
|
let NumMicroOps = 8;
|
|
}
|
|
def: InstRW<[JWriteSHLDm],(instrs SHLD16mri8, SHLD32mri8, SHLD64mri8,
|
|
SHLD16mrCL, SHLD32mrCL, SHLD64mrCL,
|
|
SHRD16mri8, SHRD32mri8, SHRD64mri8,
|
|
SHRD16mrCL, SHRD32mrCL, SHRD64mrCL)>;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Loads, stores, and moves, not folded with other operations.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
def : WriteRes<WriteLoad, [JLAGU]> { let Latency = 5; }
|
|
def : WriteRes<WriteStore, [JSAGU]>;
|
|
def : WriteRes<WriteMove, [JALU01]>;
|
|
|
|
// Treat misc copies as a move.
|
|
def : InstRW<[WriteMove], (instrs COPY)>;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Idioms that clear a register, like xorps %xmm0, %xmm0.
|
|
// These can often bypass execution ports completely.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
def : WriteRes<WriteZero, []>;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Branches don't produce values, so they have no latency, but they still
|
|
// consume resources. Indirect branches can fold loads.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
defm : JWriteResIntPair<WriteJump, [JALU01], 1>;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Special case scheduling classes.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
def : WriteRes<WriteSystem, [JALU01]> { let Latency = 100; }
|
|
def : WriteRes<WriteMicrocoded, [JALU01]> { let Latency = 100; }
|
|
def : WriteRes<WriteFence, [JSAGU]>;
|
|
// Nops don't have dependencies, so there's no actual latency, but we set this
|
|
// to '1' to tell the scheduler that the nop uses an ALU slot for a cycle.
|
|
def : WriteRes<WriteNop, [JALU01]> { let Latency = 1; }
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Floating point. This covers both scalar and vector operations.
|
|
// FIXME: should we bother splitting JFPU pipe + unit stages for fast instructions?
|
|
// FIXME: Double precision latencies
|
|
// FIXME: SS vs PS latencies
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
def : WriteRes<WriteFLoad, [JLAGU, JFPU01, JFPX]> { let Latency = 5; }
|
|
def : WriteRes<WriteFStore, [JSAGU, JFPU1, JSTC]>;
|
|
def : WriteRes<WriteFMove, [JFPU01, JFPX]>;
|
|
|
|
defm : JWriteResFpuPair<WriteFAdd, [JFPU0, JFPA], 3>;
|
|
defm : JWriteResFpuPair<WriteFMul, [JFPU1, JFPM], 2>;
|
|
defm : JWriteResFpuPair<WriteFMA, [JFPU1, JFPM], 2>; // NOTE: Doesn't exist on Jaguar.
|
|
defm : JWriteResFpuPair<WriteFRcp, [JFPU1, JFPM], 2>;
|
|
defm : JWriteResFpuPair<WriteFRsqrt, [JFPU1, JFPM], 2>;
|
|
defm : JWriteResFpuPair<WriteFDiv, [JFPU1, JFPM], 19, [1, 19]>;
|
|
defm : JWriteResFpuPair<WriteFSqrt, [JFPU1, JFPM], 21, [1, 21]>;
|
|
defm : JWriteResFpuPair<WriteFShuffle, [JFPU01, JFPX], 1>;
|
|
defm : JWriteResFpuPair<WriteFVarShuffle, [JFPU01, JFPX], 2, [1, 4], 3>;
|
|
defm : JWriteResFpuPair<WriteFBlend, [JFPU01, JFPX], 1>;
|
|
defm : JWriteResFpuPair<WriteFVarBlend, [JFPU01, JFPX], 2, [1, 4], 3>;
|
|
defm : JWriteResFpuPair<WriteFShuffle256, [JFPU01, JFPX], 1>;
|
|
defm : JWriteResFpuPair<WriteFVarShuffle256, [JFPU01, JFPX], 1>; // NOTE: Doesn't exist on Jaguar.
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Conversions.
|
|
// FIXME: integer pipes
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
defm : JWriteResFpuPair<WriteCvtF2I, [JFPU1, JSTC], 3>; // Float -> Integer.
|
|
defm : JWriteResFpuPair<WriteCvtI2F, [JFPU1, JSTC], 3>; // Integer -> Float.
|
|
defm : JWriteResFpuPair<WriteCvtF2F, [JFPU1, JSTC], 3>; // Float -> Float size conversion.
|
|
|
|
def JWriteCVTF2F : SchedWriteRes<[JFPU1, JSTC]> {
|
|
let Latency = 7;
|
|
let ResourceCycles = [1, 2];
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[JWriteCVTF2F], (instregex "(V)?CVTS(D|S)2S(D|S)rr")>;
|
|
|
|
def JWriteCVTF2FLd : SchedWriteRes<[JLAGU, JFPU1, JSTC]> {
|
|
let Latency = 12;
|
|
let ResourceCycles = [1, 1, 2];
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[JWriteCVTF2FLd], (instregex "(V)?CVTS(D|S)2S(D|S)rm")>;
|
|
|
|
def JWriteCVTF2SI : SchedWriteRes<[JFPU1, JSTC, JFPA, JALU0]> {
|
|
let Latency = 7;
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[JWriteCVTF2SI], (instregex "(V)?CVT(T?)S(D|S)2SI(64)?rr")>;
|
|
|
|
def JWriteCVTF2SILd : SchedWriteRes<[JLAGU, JFPU1, JSTC, JFPA, JALU0]> {
|
|
let Latency = 12;
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[JWriteCVTF2SILd], (instregex "(V)?CVT(T?)S(D|S)2SI(64)?rm")>;
|
|
|
|
// FIXME: f+3 ST,LD+STC latency
|
|
def JWriteCVTSI2F : SchedWriteRes<[JFPU1, JSTC]> {
|
|
let Latency = 9;
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[JWriteCVTSI2F], (instregex "(V)?CVTSI(64)?2S(D|S)rr")>;
|
|
|
|
def JWriteCVTSI2FLd : SchedWriteRes<[JLAGU, JFPU1, JSTC]> {
|
|
let Latency = 14;
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[JWriteCVTSI2FLd], (instregex "(V)?CVTSI(64)?2S(D|S)rm")>;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Vector integer operations.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
def : WriteRes<WriteVecLoad, [JLAGU, JFPU01, JVALU]> { let Latency = 5; }
|
|
def : WriteRes<WriteVecStore, [JSAGU, JFPU1, JSTC]>;
|
|
def : WriteRes<WriteVecMove, [JFPU01, JVALU]>;
|
|
|
|
defm : JWriteResFpuPair<WriteVecALU, [JFPU01, JVALU], 1>;
|
|
defm : JWriteResFpuPair<WriteVecShift, [JFPU01, JVALU], 1>;
|
|
defm : JWriteResFpuPair<WriteVecIMul, [JFPU0, JVIMUL], 2>;
|
|
defm : JWriteResFpuPair<WritePMULLD, [JFPU0, JFPU01, JVIMUL, JVALU], 4, [2, 1, 2, 1], 3>;
|
|
defm : JWriteResFpuPair<WriteMPSAD, [JFPU0, JVIMUL], 3, [1, 2]>;
|
|
defm : JWriteResFpuPair<WriteShuffle, [JFPU01, JVALU], 1>;
|
|
defm : JWriteResFpuPair<WriteVarShuffle, [JFPU01, JVALU], 2, [1, 4], 3>;
|
|
defm : JWriteResFpuPair<WriteBlend, [JFPU01, JVALU], 1>;
|
|
defm : JWriteResFpuPair<WriteVarBlend, [JFPU01, JVALU], 2, [1, 4], 3>;
|
|
defm : JWriteResFpuPair<WriteVecLogic, [JFPU01, JVALU], 1>;
|
|
defm : JWriteResFpuPair<WriteShuffle256, [JFPU01, JVALU], 1>;
|
|
defm : JWriteResFpuPair<WriteVarShuffle256, [JFPU01, JVALU], 1>; // NOTE: Doesn't exist on Jaguar.
|
|
defm : JWriteResFpuPair<WriteVarVecShift, [JFPU01, JVALU], 1>; // NOTE: Doesn't exist on Jaguar.
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Vector Extraction instructions.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
def JWritePEXTR : SchedWriteRes<[JFPU0, JFPA, JALU0]> { let Latency = 3; }
|
|
def : InstRW<[JWritePEXTR], (instrs MMX_PEXTRWrr,
|
|
EXTRACTPSrr, VEXTRACTPSrr,
|
|
PEXTRBrr, VPEXTRBrr,
|
|
PEXTRDrr, VPEXTRDrr,
|
|
PEXTRQrr, VPEXTRQrr,
|
|
PEXTRWrr, VPEXTRWrr, PEXTRWrr_REV, VPEXTRWrr_REV)>;
|
|
|
|
def JWritePEXTRSt : SchedWriteRes<[JFPU1, JSTC, JSAGU]> { let Latency = 3; }
|
|
def : InstRW<[JWritePEXTRSt], (instrs EXTRACTPSmr, VEXTRACTPSmr,
|
|
PEXTRBmr, VPEXTRBmr,
|
|
PEXTRDmr, VPEXTRDmr,
|
|
PEXTRQmr, VPEXTRQmr,
|
|
PEXTRWmr, VPEXTRWmr)>;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// SSE42 String instructions.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
defm : JWriteResFpuPair<WritePCmpIStrI, [JFPU1, JVALU1, JFPA, JALU0], 7, [1, 2, 1, 1], 3>;
|
|
defm : JWriteResFpuPair<WritePCmpIStrM, [JFPU1, JVALU1, JFPA, JALU0], 8, [1, 2, 1, 1], 3>;
|
|
defm : JWriteResFpuPair<WritePCmpEStrI, [JFPU1, JSAGU, JLAGU, JVALU, JVALU1, JFPA, JALU0], 14, [1, 2, 2, 6, 4, 1, 1], 9>;
|
|
defm : JWriteResFpuPair<WritePCmpEStrM, [JFPU1, JSAGU, JLAGU, JVALU, JVALU1, JFPA, JALU0], 14, [1, 2, 2, 6, 4, 1, 1], 9>;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// MOVMSK Instructions.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
def : WriteRes<WriteFMOVMSK, [JFPU0, JFPA, JALU0]> { let Latency = 3; }
|
|
def : WriteRes<WriteVecMOVMSK, [JFPU0, JFPA, JALU0]> { let Latency = 3; }
|
|
def : WriteRes<WriteMMXMOVMSK, [JFPU0, JFPA, JALU0]> { let Latency = 3; }
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// AES Instructions.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
defm : JWriteResFpuPair<WriteAESIMC, [JFPU0, JVIMUL], 2>;
|
|
defm : JWriteResFpuPair<WriteAESKeyGen, [JFPU0, JVIMUL], 2>;
|
|
defm : JWriteResFpuPair<WriteAESDecEnc, [JFPU0, JVIMUL], 3, [1], 2>;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Horizontal add/sub instructions.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
defm : JWriteResFpuPair<WriteFHAdd, [JFPU0, JFPA], 3>;
|
|
defm : JWriteResFpuPair<WritePHAdd, [JFPU01, JVALU], 1>;
|
|
|
|
def JWriteFHAddY: SchedWriteRes<[JFPU0, JFPA]> {
|
|
let Latency = 3;
|
|
let ResourceCycles = [2, 2];
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[JWriteFHAddY], (instrs VHADDPDYrr, VHADDPSYrr, VHSUBPDYrr, VHSUBPSYrr)>;
|
|
|
|
def JWriteFHAddYLd: SchedWriteRes<[JLAGU, JFPU0, JFPA]> {
|
|
let Latency = 8;
|
|
let ResourceCycles = [2, 2, 2];
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[JWriteFHAddYLd, ReadAfterLd], (instrs VHADDPDYrm, VHADDPSYrm,
|
|
VHSUBPDYrm, VHSUBPSYrm)>;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Carry-less multiplication instructions.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
defm : JWriteResFpuPair<WriteCLMul, [JFPU0, JVIMUL], 2>;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// SSE4.1 instructions.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
def JWriteDPPS: SchedWriteRes<[JFPU1, JFPM, JFPA]> {
|
|
let Latency = 11;
|
|
let ResourceCycles = [1, 3, 3];
|
|
let NumMicroOps = 5;
|
|
}
|
|
def : InstRW<[JWriteDPPS], (instrs DPPSrri, VDPPSrri)>;
|
|
|
|
def JWriteDPPSLd: SchedWriteRes<[JLAGU, JFPU1, JFPM, JFPA]> {
|
|
let Latency = 16;
|
|
let ResourceCycles = [1, 1, 3, 3];
|
|
let NumMicroOps = 5;
|
|
}
|
|
def : InstRW<[JWriteDPPSLd], (instrs DPPSrmi, VDPPSrmi)>;
|
|
|
|
def JWriteDPPD: SchedWriteRes<[JFPU1, JFPM, JFPA]> {
|
|
let Latency = 9;
|
|
let ResourceCycles = [1, 3, 3];
|
|
let NumMicroOps = 3;
|
|
}
|
|
def : InstRW<[JWriteDPPD], (instrs DPPDrri, VDPPDrri)>;
|
|
|
|
def JWriteDPPDLd: SchedWriteRes<[JLAGU, JFPU1, JFPM, JFPA]> {
|
|
let Latency = 14;
|
|
let ResourceCycles = [1, 1, 3, 3];
|
|
let NumMicroOps = 3;
|
|
}
|
|
def : InstRW<[JWriteDPPDLd], (instrs DPPDrmi, VDPPDrmi)>;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// SSE4A instructions.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
def JWriteEXTRQ: SchedWriteRes<[JFPU01, JVALU]> {
|
|
}
|
|
def : InstRW<[JWriteEXTRQ], (instrs EXTRQ, EXTRQI)>;
|
|
|
|
def JWriteINSERTQ: SchedWriteRes<[JFPU01, JVALU]> {
|
|
let Latency = 2;
|
|
let ResourceCycles = [1, 4];
|
|
}
|
|
def : InstRW<[JWriteINSERTQ], (instrs INSERTQ, INSERTQI)>;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// F16C instructions.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
def JWriteCVT3: SchedWriteRes<[JFPU1, JSTC]> {
|
|
let Latency = 3;
|
|
}
|
|
def : InstRW<[JWriteCVT3], (instrs VCVTPS2PHrr, VCVTPH2PSrr)>;
|
|
|
|
def JWriteCVT3St: SchedWriteRes<[JFPU1, JSTC, JSAGU]> {
|
|
let Latency = 3;
|
|
}
|
|
def : InstRW<[JWriteCVT3St], (instrs VCVTPS2PHmr)>;
|
|
|
|
def JWriteCVT3Ld: SchedWriteRes<[JLAGU, JFPU1, JSTC]> {
|
|
let Latency = 8;
|
|
}
|
|
def : InstRW<[JWriteCVT3Ld], (instrs VCVTPH2PSrm)>;
|
|
|
|
def JWriteCVTPS2PHY: SchedWriteRes<[JFPU1, JSTC, JFPX]> {
|
|
let Latency = 6;
|
|
let ResourceCycles = [2, 2, 2];
|
|
let NumMicroOps = 3;
|
|
}
|
|
def : InstRW<[JWriteCVTPS2PHY], (instrs VCVTPS2PHYrr)>;
|
|
|
|
def JWriteCVTPS2PHYSt: SchedWriteRes<[JFPU1, JSTC, JFPX, JSAGU]> {
|
|
let Latency = 11;
|
|
let ResourceCycles = [2, 2, 2, 1];
|
|
let NumMicroOps = 3;
|
|
}
|
|
def : InstRW<[JWriteCVTPS2PHYSt], (instrs VCVTPS2PHYmr)>;
|
|
|
|
def JWriteCVTPH2PSY: SchedWriteRes<[JFPU1, JSTC]> {
|
|
let Latency = 3;
|
|
let ResourceCycles = [2, 2];
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[JWriteCVTPH2PSY], (instrs VCVTPH2PSYrr)>;
|
|
|
|
def JWriteCVTPH2PSYLd: SchedWriteRes<[JLAGU, JFPU1, JSTC]> {
|
|
let Latency = 8;
|
|
let ResourceCycles = [1, 2, 2];
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[JWriteCVTPH2PSYLd], (instrs VCVTPH2PSYrm)>;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// AVX instructions.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
def JWriteFLogic: SchedWriteRes<[JFPU01, JFPX]> {
|
|
}
|
|
def : InstRW<[JWriteFLogic], (instrs ORPDrr, ORPSrr, VORPDrr, VORPSrr,
|
|
XORPDrr, XORPSrr, VXORPDrr, VXORPSrr,
|
|
ANDPDrr, ANDPSrr, VANDPDrr, VANDPSrr,
|
|
ANDNPDrr, ANDNPSrr, VANDNPDrr, VANDNPSrr)>;
|
|
|
|
def JWriteFLogicLd: SchedWriteRes<[JLAGU, JFPU01, JFPX]> {
|
|
let Latency = 6;
|
|
}
|
|
def : InstRW<[JWriteFLogicLd, ReadAfterLd], (instrs ORPDrm, ORPSrm,
|
|
VORPDrm, VORPSrm,
|
|
XORPDrm, XORPSrm,
|
|
VXORPDrm, VXORPSrm,
|
|
ANDPDrm, ANDPSrm,
|
|
VANDPDrm, VANDPSrm,
|
|
ANDNPDrm, ANDNPSrm,
|
|
VANDNPDrm, VANDNPSrm)>;
|
|
|
|
def JWriteFLogicY: SchedWriteRes<[JFPU01, JFPX]> {
|
|
let ResourceCycles = [2, 2];
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[JWriteFLogicY], (instrs VORPDYrr, VORPSYrr,
|
|
VXORPDYrr, VXORPSYrr,
|
|
VANDPDYrr, VANDPSYrr,
|
|
VANDNPDYrr, VANDNPSYrr)>;
|
|
|
|
def JWriteFLogicYLd: SchedWriteRes<[JLAGU, JFPU01, JFPX]> {
|
|
let Latency = 6;
|
|
let ResourceCycles = [2, 2, 2];
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[JWriteFLogicYLd, ReadAfterLd], (instrs VORPDYrm, VORPSYrm,
|
|
VXORPDYrm, VXORPSYrm,
|
|
VANDPDYrm, VANDPSYrm,
|
|
VANDNPDYrm, VANDNPSYrm)>;
|
|
|
|
def JWriteVDPPSY: SchedWriteRes<[JFPU1, JFPM, JFPA]> {
|
|
let Latency = 12;
|
|
let ResourceCycles = [2, 6, 6];
|
|
let NumMicroOps = 10;
|
|
}
|
|
def : InstRW<[JWriteVDPPSY], (instrs VDPPSYrri)>;
|
|
|
|
def JWriteVDPPSYLd: SchedWriteRes<[JLAGU, JFPU1, JFPM, JFPA]> {
|
|
let Latency = 17;
|
|
let ResourceCycles = [2, 2, 6, 6];
|
|
let NumMicroOps = 10;
|
|
}
|
|
def : InstRW<[JWriteVDPPSYLd, ReadAfterLd], (instrs VDPPSYrmi)>;
|
|
|
|
def JWriteFAddY: SchedWriteRes<[JFPU0, JFPA]> {
|
|
let Latency = 3;
|
|
let ResourceCycles = [2, 2];
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[JWriteFAddY], (instrs VADDPDYrr, VADDPSYrr,
|
|
VSUBPDYrr, VSUBPSYrr,
|
|
VADDSUBPDYrr, VADDSUBPSYrr)>;
|
|
|
|
def JWriteFAddYLd: SchedWriteRes<[JLAGU, JFPU0, JFPA]> {
|
|
let Latency = 8;
|
|
let ResourceCycles = [2, 2, 2];
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[JWriteFAddYLd, ReadAfterLd], (instrs VADDPDYrm, VADDPSYrm,
|
|
VSUBPDYrm, VSUBPSYrm,
|
|
VADDSUBPDYrm, VADDSUBPSYrm)>;
|
|
|
|
def JWriteFDivY: SchedWriteRes<[JFPU1, JFPM]> {
|
|
let Latency = 38;
|
|
let ResourceCycles = [2, 38];
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[JWriteFDivY], (instrs VDIVPDYrr, VDIVPSYrr)>;
|
|
|
|
def JWriteFDivYLd: SchedWriteRes<[JLAGU, JFPU1, JFPM]> {
|
|
let Latency = 43;
|
|
let ResourceCycles = [2, 2, 38];
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[JWriteFDivYLd, ReadAfterLd], (instrs VDIVPDYrm, VDIVPSYrm)>;
|
|
|
|
def JWriteVMULYPD: SchedWriteRes<[JFPU1, JFPM]> {
|
|
let Latency = 4;
|
|
let ResourceCycles = [2, 4];
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[JWriteVMULYPD], (instrs VMULPDYrr)>;
|
|
|
|
def JWriteVMULYPDLd: SchedWriteRes<[JLAGU, JFPU1, JFPM]> {
|
|
let Latency = 9;
|
|
let ResourceCycles = [2, 2, 4];
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[JWriteVMULYPDLd, ReadAfterLd], (instrs VMULPDYrm)>;
|
|
|
|
def JWriteVMULYPS: SchedWriteRes<[JFPU1, JFPM]> {
|
|
let Latency = 2;
|
|
let ResourceCycles = [2, 2];
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[JWriteVMULYPS], (instrs VMULPSYrr, VRCPPSYr, VRSQRTPSYr)>;
|
|
|
|
def JWriteVMULYPSLd: SchedWriteRes<[JLAGU, JFPU1, JFPM]> {
|
|
let Latency = 7;
|
|
let ResourceCycles = [2, 2, 2];
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[JWriteVMULYPSLd, ReadAfterLd], (instrs VMULPSYrm, VRCPPSYm, VRSQRTPSYm)>;
|
|
|
|
def JWriteVMULPD: SchedWriteRes<[JFPU1, JFPM]> {
|
|
let Latency = 4;
|
|
let ResourceCycles = [1, 2];
|
|
}
|
|
def : InstRW<[JWriteVMULPD], (instrs MULPDrr, MULSDrr, VMULPDrr, VMULSDrr)>;
|
|
|
|
def JWriteVMULPDLd: SchedWriteRes<[JLAGU, JFPU1, JFPM]> {
|
|
let Latency = 9;
|
|
let ResourceCycles = [1, 1, 2];
|
|
}
|
|
def : InstRW<[JWriteVMULPDLd], (instrs MULPDrm, MULSDrm, VMULPDrm, VMULSDrm)>;
|
|
|
|
def JWriteVCVTY: SchedWriteRes<[JFPU1, JSTC]> {
|
|
let Latency = 3;
|
|
let ResourceCycles = [2, 2];
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[JWriteVCVTY], (instrs VCVTDQ2PDYrr, VCVTDQ2PSYrr,
|
|
VCVTPS2DQYrr, VCVTTPS2DQYrr,
|
|
VROUNDPDYr, VROUNDPSYr)>;
|
|
|
|
def JWriteVCVTYLd: SchedWriteRes<[JLAGU, JFPU1, JSTC]> {
|
|
let Latency = 8;
|
|
let ResourceCycles = [2, 2, 2];
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[JWriteVCVTYLd, ReadAfterLd], (instrs VCVTDQ2PDYrm, VCVTDQ2PSYrm,
|
|
VCVTPS2DQYrm, VCVTTPS2DQYrm,
|
|
VROUNDPDYm, VROUNDPSYm)>;
|
|
|
|
def JWriteVMOVNTDQSt: SchedWriteRes<[JFPU1, JSTC, JSAGU]> {
|
|
let Latency = 2;
|
|
}
|
|
def : InstRW<[JWriteVMOVNTDQSt], (instrs MOVNTDQmr, VMOVNTDQmr)>;
|
|
|
|
def JWriteMOVNTSt: SchedWriteRes<[JFPU1, JSTC, JSAGU]> {
|
|
let Latency = 3;
|
|
}
|
|
def : InstRW<[JWriteMOVNTSt], (instrs MOVNTPDmr, MOVNTPSmr, MOVNTSD, MOVNTSS, VMOVNTPDmr, VMOVNTPSmr)>;
|
|
|
|
def JWriteVMOVNTPYSt: SchedWriteRes<[JFPU1, JSTC, JSAGU]> {
|
|
let Latency = 3;
|
|
let ResourceCycles = [2, 2, 2];
|
|
}
|
|
def : InstRW<[JWriteVMOVNTPYSt], (instrs VMOVNTDQYmr, VMOVNTPDYmr, VMOVNTPSYmr)>;
|
|
|
|
def JWriteFComi : SchedWriteRes<[JFPU0, JFPA, JALU0]> {
|
|
let Latency = 3;
|
|
}
|
|
def : InstRW<[JWriteFComi], (instregex "(V)?(U)?COMIS(D|S)rr")>;
|
|
|
|
def JWriteFComiLd : SchedWriteRes<[JLAGU, JFPU0, JFPA, JALU0]> {
|
|
let Latency = 8;
|
|
}
|
|
def : InstRW<[JWriteFComiLd], (instregex "(V)?(U)?COMIS(D|S)rm")>;
|
|
|
|
def JWriteFCmp: SchedWriteRes<[JFPU0, JFPA]> {
|
|
let Latency = 2;
|
|
}
|
|
def : InstRW<[JWriteFCmp], (instregex "(V)?M(AX|IN)(P|S)(D|S)rr",
|
|
"(V)?CMPP(S|D)rri", "(V)?CMPS(S|D)rr")>;
|
|
|
|
def JWriteFCmpLd: SchedWriteRes<[JLAGU, JFPU0, JFPA]> {
|
|
let Latency = 7;
|
|
}
|
|
def : InstRW<[JWriteFCmpLd], (instregex "(V)?M(AX|IN)(P|S)(D|S)rm",
|
|
"(V)?CMPP(S|D)rmi", "(V)?CMPS(S|D)rm")>;
|
|
|
|
def JWriteFCmpY: SchedWriteRes<[JFPU0, JFPA]> {
|
|
let Latency = 2;
|
|
let ResourceCycles = [2, 2];
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[JWriteFCmpY], (instregex "VCMPP(S|D)Yrri", "VM(AX|IN)P(D|S)Yrr")>;
|
|
|
|
def JWriteFCmpYLd: SchedWriteRes<[JLAGU, JFPU0, JFPA]> {
|
|
let Latency = 7;
|
|
let ResourceCycles = [2, 2, 2];
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[JWriteFCmpYLd, ReadAfterLd], (instregex "VCMPP(S|D)Yrmi", "VM(AX|IN)P(D|S)Yrm")>;
|
|
|
|
def JWriteVCVTPDY: SchedWriteRes<[JFPU1, JSTC, JFPX]> {
|
|
let Latency = 6;
|
|
let ResourceCycles = [2, 2, 4];
|
|
let NumMicroOps = 3;
|
|
}
|
|
def : InstRW<[JWriteVCVTPDY], (instrs VCVTPD2DQYrr, VCVTTPD2DQYrr, VCVTPD2PSYrr)>;
|
|
|
|
def JWriteVCVTPDYLd: SchedWriteRes<[JLAGU, JFPU1, JSTC, JFPX]> {
|
|
let Latency = 11;
|
|
let ResourceCycles = [2, 2, 2, 4];
|
|
let NumMicroOps = 3;
|
|
}
|
|
def : InstRW<[JWriteVCVTPDYLd, ReadAfterLd], (instrs VCVTPD2DQYrm, VCVTTPD2DQYrm, VCVTPD2PSYrm)>;
|
|
|
|
def JWriteVPERMY: SchedWriteRes<[JFPU01, JFPX]> {
|
|
let Latency = 3;
|
|
let ResourceCycles = [2, 6];
|
|
let NumMicroOps = 6;
|
|
}
|
|
def : InstRW<[JWriteVPERMY], (instrs VBLENDVPDYrr, VBLENDVPSYrr, VPERMILPDYrr, VPERMILPSYrr)>;
|
|
|
|
def JWriteVPERMYLd: SchedWriteRes<[JLAGU, JFPU01, JFPX]> {
|
|
let Latency = 8;
|
|
let ResourceCycles = [2, 2, 6];
|
|
let NumMicroOps = 6;
|
|
}
|
|
def : InstRW<[JWriteVPERMYLd, ReadAfterLd], (instrs VBLENDVPDYrm, VBLENDVPSYrm, VPERMILPDYrm, VPERMILPSYrm)>;
|
|
|
|
def JWriteShuffleY: SchedWriteRes<[JFPU01, JFPX]> {
|
|
let ResourceCycles = [2, 2];
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[JWriteShuffleY], (instrs VBLENDPDYrri, VBLENDPSYrri,
|
|
VMOVDDUPYrr, VMOVSHDUPYrr, VMOVSLDUPYrr,
|
|
VPERMILPDYri, VPERMILPSYri, VSHUFPDYrri,
|
|
VSHUFPSYrri, VUNPCKHPDYrr, VUNPCKHPSYrr,
|
|
VUNPCKLPDYrr, VUNPCKLPSYrr)>;
|
|
|
|
def JWriteShuffleYLd: SchedWriteRes<[JLAGU, JFPU01, JFPX]> {
|
|
let Latency = 6;
|
|
let ResourceCycles = [2, 2, 2];
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[JWriteShuffleYLd, ReadAfterLd], (instrs VBLENDPDYrmi, VBLENDPSYrmi,
|
|
VMOVDDUPYrm, VMOVSHDUPYrm,
|
|
VMOVSLDUPYrm, VPERMILPDYmi,
|
|
VPERMILPSYmi, VSHUFPDYrmi,
|
|
VSHUFPSYrmi, VUNPCKHPDYrm,
|
|
VUNPCKHPSYrm, VUNPCKLPDYrm,
|
|
VUNPCKLPSYrm)>;
|
|
|
|
def JWriteVBROADCASTYLd: SchedWriteRes<[JLAGU, JFPU01, JFPX]> {
|
|
let Latency = 6;
|
|
let ResourceCycles = [1, 2, 4];
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[JWriteVBROADCASTYLd, ReadAfterLd], (instrs VBROADCASTSDYrm,
|
|
VBROADCASTSSYrm)>;
|
|
|
|
def JWriteVMaskMovLd: SchedWriteRes<[JLAGU, JFPU01, JFPX]> {
|
|
let Latency = 6;
|
|
let ResourceCycles = [1, 1, 2];
|
|
}
|
|
def : InstRW<[JWriteVMaskMovLd], (instrs VMASKMOVPDrm, VMASKMOVPSrm)>;
|
|
|
|
def JWriteVMaskMovYLd: SchedWriteRes<[JLAGU, JFPU01, JFPX]> {
|
|
let Latency = 6;
|
|
let ResourceCycles = [2, 2, 4];
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[JWriteVMaskMovYLd], (instrs VMASKMOVPDYrm, VMASKMOVPSYrm)>;
|
|
|
|
def JWriteVMaskMovSt: SchedWriteRes<[JFPU01, JFPX, JSAGU]> {
|
|
let Latency = 6;
|
|
let ResourceCycles = [1, 4, 1];
|
|
}
|
|
def : InstRW<[JWriteVMaskMovSt], (instrs VMASKMOVPDmr, VMASKMOVPSmr)>;
|
|
|
|
def JWriteVMaskMovYSt: SchedWriteRes<[JFPU01, JFPX, JSAGU]> {
|
|
let Latency = 6;
|
|
let ResourceCycles = [2, 4, 2];
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[JWriteVMaskMovYSt], (instrs VMASKMOVPDYmr, VMASKMOVPSYmr)>;
|
|
|
|
def JWriteVTESTY: SchedWriteRes<[JFPU01, JFPX, JFPA, JALU0]> {
|
|
let Latency = 4;
|
|
let ResourceCycles = [2, 2, 2, 1];
|
|
let NumMicroOps = 3;
|
|
}
|
|
def : InstRW<[JWriteVTESTY], (instrs VPTESTYrr, VTESTPDYrr, VTESTPSYrr)>;
|
|
|
|
def JWriteVTESTYLd: SchedWriteRes<[JLAGU, JFPU01, JFPX, JFPA, JALU0]> {
|
|
let Latency = 9;
|
|
let ResourceCycles = [2, 2, 2, 2, 1];
|
|
let NumMicroOps = 3;
|
|
}
|
|
def : InstRW<[JWriteVTESTYLd], (instrs VPTESTYrm, VTESTPDYrm, VTESTPSYrm)>;
|
|
|
|
def JWriteVTEST: SchedWriteRes<[JFPU0, JFPA, JALU0]> {
|
|
let Latency = 3;
|
|
}
|
|
def : InstRW<[JWriteVTEST], (instrs PTESTrr, VPTESTrr, VTESTPDrr, VTESTPSrr)>;
|
|
|
|
def JWriteVTESTLd: SchedWriteRes<[JLAGU, JFPU0, JFPA, JALU0]> {
|
|
let Latency = 8;
|
|
}
|
|
def : InstRW<[JWriteVTESTLd], (instrs PTESTrm, VPTESTrm, VTESTPDrm, VTESTPSrm)>;
|
|
|
|
def JWriteVSQRTPD: SchedWriteRes<[JFPU1, JFPM]> {
|
|
let Latency = 27;
|
|
let ResourceCycles = [1, 27];
|
|
}
|
|
def : InstRW<[JWriteVSQRTPD], (instrs SQRTPDr, VSQRTPDr,
|
|
SQRTSDr, VSQRTSDr,
|
|
SQRTSDr_Int, VSQRTSDr_Int)>;
|
|
|
|
def JWriteVSQRTPDLd: SchedWriteRes<[JLAGU, JFPU1, JFPM]> {
|
|
let Latency = 32;
|
|
let ResourceCycles = [1, 1, 27];
|
|
}
|
|
def : InstRW<[JWriteVSQRTPDLd], (instrs SQRTPDm, VSQRTPDm,
|
|
SQRTSDm, VSQRTSDm,
|
|
SQRTSDm_Int, VSQRTSDm_Int)>;
|
|
|
|
def JWriteVSQRTYPD: SchedWriteRes<[JFPU1, JFPM]> {
|
|
let Latency = 54; // each uOp is 27cy.
|
|
let ResourceCycles = [2, 54];
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[JWriteVSQRTYPD], (instrs VSQRTPDYr)>;
|
|
|
|
def JWriteVSQRTYPDLd: SchedWriteRes<[JLAGU, JFPU1, JFPM]> {
|
|
let Latency = 59; // each uOp is 27cy (+5cy of memory load).
|
|
let ResourceCycles = [2, 2, 54];
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[JWriteVSQRTYPDLd], (instrs VSQRTPDYm)>;
|
|
|
|
def JWriteVSQRTYPS: SchedWriteRes<[JFPU1, JFPM]> {
|
|
let Latency = 42;
|
|
let ResourceCycles = [2, 42];
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[JWriteVSQRTYPS], (instrs VSQRTPSYr)>;
|
|
|
|
def JWriteVSQRTYPSLd: SchedWriteRes<[JLAGU, JFPU1, JFPM]> {
|
|
let Latency = 47;
|
|
let ResourceCycles = [2, 2, 42];
|
|
let NumMicroOps = 2;
|
|
}
|
|
def : InstRW<[JWriteVSQRTYPSLd], (instrs VSQRTPSYm)>;
|
|
|
|
def JWriteJVZEROALL: SchedWriteRes<[]> {
|
|
let Latency = 90;
|
|
let NumMicroOps = 73;
|
|
}
|
|
def : InstRW<[JWriteJVZEROALL], (instrs VZEROALL)>;
|
|
|
|
def JWriteJVZEROUPPER: SchedWriteRes<[]> {
|
|
let Latency = 46;
|
|
let NumMicroOps = 37;
|
|
}
|
|
def : InstRW<[JWriteJVZEROUPPER], (instrs VZEROUPPER)>;
|
|
} // SchedModel
|
|
|