forked from OSchip/llvm-project
3267 lines
112 KiB
C++
3267 lines
112 KiB
C++
//===-- llvmAsmParser.y - Parser for llvm assembly files --------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the bison parser for LLVM assembly languages files.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
%{
|
|
#include "ParserInternals.h"
|
|
#include "llvm/CallingConv.h"
|
|
#include "llvm/InlineAsm.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/ValueSymbolTable.h"
|
|
#include "llvm/AutoUpgrade.h"
|
|
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/Streams.h"
|
|
#include <algorithm>
|
|
#include <list>
|
|
#include <map>
|
|
#include <utility>
|
|
|
|
// The following is a gross hack. In order to rid the libAsmParser library of
|
|
// exceptions, we have to have a way of getting the yyparse function to go into
|
|
// an error situation. So, whenever we want an error to occur, the GenerateError
|
|
// function (see bottom of file) sets TriggerError. Then, at the end of each
|
|
// production in the grammer we use CHECK_FOR_ERROR which will invoke YYERROR
|
|
// (a goto) to put YACC in error state. Furthermore, several calls to
|
|
// GenerateError are made from inside productions and they must simulate the
|
|
// previous exception behavior by exiting the production immediately. We have
|
|
// replaced these with the GEN_ERROR macro which calls GeneratError and then
|
|
// immediately invokes YYERROR. This would be so much cleaner if it was a
|
|
// recursive descent parser.
|
|
static bool TriggerError = false;
|
|
#define CHECK_FOR_ERROR { if (TriggerError) { TriggerError = false; YYABORT; } }
|
|
#define GEN_ERROR(msg) { GenerateError(msg); YYERROR; }
|
|
|
|
int yyerror(const char *ErrorMsg); // Forward declarations to prevent "implicit
|
|
int yylex(); // declaration" of xxx warnings.
|
|
int yyparse();
|
|
using namespace llvm;
|
|
|
|
static Module *ParserResult;
|
|
|
|
// DEBUG_UPREFS - Define this symbol if you want to enable debugging output
|
|
// relating to upreferences in the input stream.
|
|
//
|
|
//#define DEBUG_UPREFS 1
|
|
#ifdef DEBUG_UPREFS
|
|
#define UR_OUT(X) cerr << X
|
|
#else
|
|
#define UR_OUT(X)
|
|
#endif
|
|
|
|
#define YYERROR_VERBOSE 1
|
|
|
|
static GlobalVariable *CurGV;
|
|
|
|
|
|
// This contains info used when building the body of a function. It is
|
|
// destroyed when the function is completed.
|
|
//
|
|
typedef std::vector<Value *> ValueList; // Numbered defs
|
|
|
|
static void
|
|
ResolveDefinitions(ValueList &LateResolvers, ValueList *FutureLateResolvers=0);
|
|
|
|
static struct PerModuleInfo {
|
|
Module *CurrentModule;
|
|
ValueList Values; // Module level numbered definitions
|
|
ValueList LateResolveValues;
|
|
std::vector<PATypeHolder> Types;
|
|
std::map<ValID, PATypeHolder> LateResolveTypes;
|
|
|
|
/// PlaceHolderInfo - When temporary placeholder objects are created, remember
|
|
/// how they were referenced and on which line of the input they came from so
|
|
/// that we can resolve them later and print error messages as appropriate.
|
|
std::map<Value*, std::pair<ValID, int> > PlaceHolderInfo;
|
|
|
|
// GlobalRefs - This maintains a mapping between <Type, ValID>'s and forward
|
|
// references to global values. Global values may be referenced before they
|
|
// are defined, and if so, the temporary object that they represent is held
|
|
// here. This is used for forward references of GlobalValues.
|
|
//
|
|
typedef std::map<std::pair<const PointerType *,
|
|
ValID>, GlobalValue*> GlobalRefsType;
|
|
GlobalRefsType GlobalRefs;
|
|
|
|
void ModuleDone() {
|
|
// If we could not resolve some functions at function compilation time
|
|
// (calls to functions before they are defined), resolve them now... Types
|
|
// are resolved when the constant pool has been completely parsed.
|
|
//
|
|
ResolveDefinitions(LateResolveValues);
|
|
if (TriggerError)
|
|
return;
|
|
|
|
// Check to make sure that all global value forward references have been
|
|
// resolved!
|
|
//
|
|
if (!GlobalRefs.empty()) {
|
|
std::string UndefinedReferences = "Unresolved global references exist:\n";
|
|
|
|
for (GlobalRefsType::iterator I = GlobalRefs.begin(), E =GlobalRefs.end();
|
|
I != E; ++I) {
|
|
UndefinedReferences += " " + I->first.first->getDescription() + " " +
|
|
I->first.second.getName() + "\n";
|
|
}
|
|
GenerateError(UndefinedReferences);
|
|
return;
|
|
}
|
|
|
|
// Look for intrinsic functions and CallInst that need to be upgraded
|
|
for (Module::iterator FI = CurrentModule->begin(),
|
|
FE = CurrentModule->end(); FI != FE; )
|
|
UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
|
|
|
|
Values.clear(); // Clear out function local definitions
|
|
Types.clear();
|
|
CurrentModule = 0;
|
|
}
|
|
|
|
// GetForwardRefForGlobal - Check to see if there is a forward reference
|
|
// for this global. If so, remove it from the GlobalRefs map and return it.
|
|
// If not, just return null.
|
|
GlobalValue *GetForwardRefForGlobal(const PointerType *PTy, ValID ID) {
|
|
// Check to see if there is a forward reference to this global variable...
|
|
// if there is, eliminate it and patch the reference to use the new def'n.
|
|
GlobalRefsType::iterator I = GlobalRefs.find(std::make_pair(PTy, ID));
|
|
GlobalValue *Ret = 0;
|
|
if (I != GlobalRefs.end()) {
|
|
Ret = I->second;
|
|
GlobalRefs.erase(I);
|
|
}
|
|
return Ret;
|
|
}
|
|
|
|
bool TypeIsUnresolved(PATypeHolder* PATy) {
|
|
// If it isn't abstract, its resolved
|
|
const Type* Ty = PATy->get();
|
|
if (!Ty->isAbstract())
|
|
return false;
|
|
// Traverse the type looking for abstract types. If it isn't abstract then
|
|
// we don't need to traverse that leg of the type.
|
|
std::vector<const Type*> WorkList, SeenList;
|
|
WorkList.push_back(Ty);
|
|
while (!WorkList.empty()) {
|
|
const Type* Ty = WorkList.back();
|
|
SeenList.push_back(Ty);
|
|
WorkList.pop_back();
|
|
if (const OpaqueType* OpTy = dyn_cast<OpaqueType>(Ty)) {
|
|
// Check to see if this is an unresolved type
|
|
std::map<ValID, PATypeHolder>::iterator I = LateResolveTypes.begin();
|
|
std::map<ValID, PATypeHolder>::iterator E = LateResolveTypes.end();
|
|
for ( ; I != E; ++I) {
|
|
if (I->second.get() == OpTy)
|
|
return true;
|
|
}
|
|
} else if (const SequentialType* SeqTy = dyn_cast<SequentialType>(Ty)) {
|
|
const Type* TheTy = SeqTy->getElementType();
|
|
if (TheTy->isAbstract() && TheTy != Ty) {
|
|
std::vector<const Type*>::iterator I = SeenList.begin(),
|
|
E = SeenList.end();
|
|
for ( ; I != E; ++I)
|
|
if (*I == TheTy)
|
|
break;
|
|
if (I == E)
|
|
WorkList.push_back(TheTy);
|
|
}
|
|
} else if (const StructType* StrTy = dyn_cast<StructType>(Ty)) {
|
|
for (unsigned i = 0; i < StrTy->getNumElements(); ++i) {
|
|
const Type* TheTy = StrTy->getElementType(i);
|
|
if (TheTy->isAbstract() && TheTy != Ty) {
|
|
std::vector<const Type*>::iterator I = SeenList.begin(),
|
|
E = SeenList.end();
|
|
for ( ; I != E; ++I)
|
|
if (*I == TheTy)
|
|
break;
|
|
if (I == E)
|
|
WorkList.push_back(TheTy);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
} CurModule;
|
|
|
|
static struct PerFunctionInfo {
|
|
Function *CurrentFunction; // Pointer to current function being created
|
|
|
|
ValueList Values; // Keep track of #'d definitions
|
|
unsigned NextValNum;
|
|
ValueList LateResolveValues;
|
|
bool isDeclare; // Is this function a forward declararation?
|
|
GlobalValue::LinkageTypes Linkage; // Linkage for forward declaration.
|
|
GlobalValue::VisibilityTypes Visibility;
|
|
|
|
/// BBForwardRefs - When we see forward references to basic blocks, keep
|
|
/// track of them here.
|
|
std::map<ValID, BasicBlock*> BBForwardRefs;
|
|
|
|
inline PerFunctionInfo() {
|
|
CurrentFunction = 0;
|
|
isDeclare = false;
|
|
Linkage = GlobalValue::ExternalLinkage;
|
|
Visibility = GlobalValue::DefaultVisibility;
|
|
}
|
|
|
|
inline void FunctionStart(Function *M) {
|
|
CurrentFunction = M;
|
|
NextValNum = 0;
|
|
}
|
|
|
|
void FunctionDone() {
|
|
// Any forward referenced blocks left?
|
|
if (!BBForwardRefs.empty()) {
|
|
GenerateError("Undefined reference to label " +
|
|
BBForwardRefs.begin()->second->getName());
|
|
return;
|
|
}
|
|
|
|
// Resolve all forward references now.
|
|
ResolveDefinitions(LateResolveValues, &CurModule.LateResolveValues);
|
|
|
|
Values.clear(); // Clear out function local definitions
|
|
BBForwardRefs.clear();
|
|
CurrentFunction = 0;
|
|
isDeclare = false;
|
|
Linkage = GlobalValue::ExternalLinkage;
|
|
Visibility = GlobalValue::DefaultVisibility;
|
|
}
|
|
} CurFun; // Info for the current function...
|
|
|
|
static bool inFunctionScope() { return CurFun.CurrentFunction != 0; }
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Code to handle definitions of all the types
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static void InsertValue(Value *V, ValueList &ValueTab = CurFun.Values) {
|
|
// Things that have names or are void typed don't get slot numbers
|
|
if (V->hasName() || (V->getType() == Type::VoidTy))
|
|
return;
|
|
|
|
// In the case of function values, we have to allow for the forward reference
|
|
// of basic blocks, which are included in the numbering. Consequently, we keep
|
|
// track of the next insertion location with NextValNum. When a BB gets
|
|
// inserted, it could change the size of the CurFun.Values vector.
|
|
if (&ValueTab == &CurFun.Values) {
|
|
if (ValueTab.size() <= CurFun.NextValNum)
|
|
ValueTab.resize(CurFun.NextValNum+1);
|
|
ValueTab[CurFun.NextValNum++] = V;
|
|
return;
|
|
}
|
|
// For all other lists, its okay to just tack it on the back of the vector.
|
|
ValueTab.push_back(V);
|
|
}
|
|
|
|
static const Type *getTypeVal(const ValID &D, bool DoNotImprovise = false) {
|
|
switch (D.Type) {
|
|
case ValID::LocalID: // Is it a numbered definition?
|
|
// Module constants occupy the lowest numbered slots...
|
|
if (D.Num < CurModule.Types.size())
|
|
return CurModule.Types[D.Num];
|
|
break;
|
|
case ValID::LocalName: // Is it a named definition?
|
|
if (const Type *N = CurModule.CurrentModule->getTypeByName(D.getName())) {
|
|
D.destroy(); // Free old strdup'd memory...
|
|
return N;
|
|
}
|
|
break;
|
|
default:
|
|
GenerateError("Internal parser error: Invalid symbol type reference");
|
|
return 0;
|
|
}
|
|
|
|
// If we reached here, we referenced either a symbol that we don't know about
|
|
// or an id number that hasn't been read yet. We may be referencing something
|
|
// forward, so just create an entry to be resolved later and get to it...
|
|
//
|
|
if (DoNotImprovise) return 0; // Do we just want a null to be returned?
|
|
|
|
|
|
if (inFunctionScope()) {
|
|
if (D.Type == ValID::LocalName) {
|
|
GenerateError("Reference to an undefined type: '" + D.getName() + "'");
|
|
return 0;
|
|
} else {
|
|
GenerateError("Reference to an undefined type: #" + utostr(D.Num));
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
std::map<ValID, PATypeHolder>::iterator I =CurModule.LateResolveTypes.find(D);
|
|
if (I != CurModule.LateResolveTypes.end())
|
|
return I->second;
|
|
|
|
Type *Typ = OpaqueType::get();
|
|
CurModule.LateResolveTypes.insert(std::make_pair(D, Typ));
|
|
return Typ;
|
|
}
|
|
|
|
// getExistingVal - Look up the value specified by the provided type and
|
|
// the provided ValID. If the value exists and has already been defined, return
|
|
// it. Otherwise return null.
|
|
//
|
|
static Value *getExistingVal(const Type *Ty, const ValID &D) {
|
|
if (isa<FunctionType>(Ty)) {
|
|
GenerateError("Functions are not values and "
|
|
"must be referenced as pointers");
|
|
return 0;
|
|
}
|
|
|
|
switch (D.Type) {
|
|
case ValID::LocalID: { // Is it a numbered definition?
|
|
// Check that the number is within bounds.
|
|
if (D.Num >= CurFun.Values.size())
|
|
return 0;
|
|
Value *Result = CurFun.Values[D.Num];
|
|
if (Ty != Result->getType()) {
|
|
GenerateError("Numbered value (%" + utostr(D.Num) + ") of type '" +
|
|
Result->getType()->getDescription() + "' does not match "
|
|
"expected type, '" + Ty->getDescription() + "'");
|
|
return 0;
|
|
}
|
|
return Result;
|
|
}
|
|
case ValID::GlobalID: { // Is it a numbered definition?
|
|
if (D.Num >= CurModule.Values.size())
|
|
return 0;
|
|
Value *Result = CurModule.Values[D.Num];
|
|
if (Ty != Result->getType()) {
|
|
GenerateError("Numbered value (@" + utostr(D.Num) + ") of type '" +
|
|
Result->getType()->getDescription() + "' does not match "
|
|
"expected type, '" + Ty->getDescription() + "'");
|
|
return 0;
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
case ValID::LocalName: { // Is it a named definition?
|
|
if (!inFunctionScope())
|
|
return 0;
|
|
ValueSymbolTable &SymTab = CurFun.CurrentFunction->getValueSymbolTable();
|
|
Value *N = SymTab.lookup(D.getName());
|
|
if (N == 0)
|
|
return 0;
|
|
if (N->getType() != Ty)
|
|
return 0;
|
|
|
|
D.destroy(); // Free old strdup'd memory...
|
|
return N;
|
|
}
|
|
case ValID::GlobalName: { // Is it a named definition?
|
|
ValueSymbolTable &SymTab = CurModule.CurrentModule->getValueSymbolTable();
|
|
Value *N = SymTab.lookup(D.getName());
|
|
if (N == 0)
|
|
return 0;
|
|
if (N->getType() != Ty)
|
|
return 0;
|
|
|
|
D.destroy(); // Free old strdup'd memory...
|
|
return N;
|
|
}
|
|
|
|
// Check to make sure that "Ty" is an integral type, and that our
|
|
// value will fit into the specified type...
|
|
case ValID::ConstSIntVal: // Is it a constant pool reference??
|
|
if (!isa<IntegerType>(Ty) ||
|
|
!ConstantInt::isValueValidForType(Ty, D.ConstPool64)) {
|
|
GenerateError("Signed integral constant '" +
|
|
itostr(D.ConstPool64) + "' is invalid for type '" +
|
|
Ty->getDescription() + "'");
|
|
return 0;
|
|
}
|
|
return ConstantInt::get(Ty, D.ConstPool64, true);
|
|
|
|
case ValID::ConstUIntVal: // Is it an unsigned const pool reference?
|
|
if (isa<IntegerType>(Ty) &&
|
|
ConstantInt::isValueValidForType(Ty, D.UConstPool64))
|
|
return ConstantInt::get(Ty, D.UConstPool64);
|
|
|
|
if (!isa<IntegerType>(Ty) ||
|
|
!ConstantInt::isValueValidForType(Ty, D.ConstPool64)) {
|
|
GenerateError("Integral constant '" + utostr(D.UConstPool64) +
|
|
"' is invalid or out of range for type '" +
|
|
Ty->getDescription() + "'");
|
|
return 0;
|
|
}
|
|
// This is really a signed reference. Transmogrify.
|
|
return ConstantInt::get(Ty, D.ConstPool64, true);
|
|
|
|
case ValID::ConstFPVal: // Is it a floating point const pool reference?
|
|
if (!Ty->isFloatingPoint() ||
|
|
!ConstantFP::isValueValidForType(Ty, *D.ConstPoolFP)) {
|
|
GenerateError("FP constant invalid for type");
|
|
return 0;
|
|
}
|
|
// Lexer has no type info, so builds all float and double FP constants
|
|
// as double. Fix this here. Long double does not need this.
|
|
if (&D.ConstPoolFP->getSemantics() == &APFloat::IEEEdouble &&
|
|
Ty==Type::FloatTy)
|
|
D.ConstPoolFP->convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven);
|
|
return ConstantFP::get(*D.ConstPoolFP);
|
|
|
|
case ValID::ConstNullVal: // Is it a null value?
|
|
if (!isa<PointerType>(Ty)) {
|
|
GenerateError("Cannot create a a non pointer null");
|
|
return 0;
|
|
}
|
|
return ConstantPointerNull::get(cast<PointerType>(Ty));
|
|
|
|
case ValID::ConstUndefVal: // Is it an undef value?
|
|
return UndefValue::get(Ty);
|
|
|
|
case ValID::ConstZeroVal: // Is it a zero value?
|
|
return Constant::getNullValue(Ty);
|
|
|
|
case ValID::ConstantVal: // Fully resolved constant?
|
|
if (D.ConstantValue->getType() != Ty) {
|
|
GenerateError("Constant expression type different from required type");
|
|
return 0;
|
|
}
|
|
return D.ConstantValue;
|
|
|
|
case ValID::InlineAsmVal: { // Inline asm expression
|
|
const PointerType *PTy = dyn_cast<PointerType>(Ty);
|
|
const FunctionType *FTy =
|
|
PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
|
|
if (!FTy || !InlineAsm::Verify(FTy, D.IAD->Constraints)) {
|
|
GenerateError("Invalid type for asm constraint string");
|
|
return 0;
|
|
}
|
|
InlineAsm *IA = InlineAsm::get(FTy, D.IAD->AsmString, D.IAD->Constraints,
|
|
D.IAD->HasSideEffects);
|
|
D.destroy(); // Free InlineAsmDescriptor.
|
|
return IA;
|
|
}
|
|
default:
|
|
assert(0 && "Unhandled case!");
|
|
return 0;
|
|
} // End of switch
|
|
|
|
assert(0 && "Unhandled case!");
|
|
return 0;
|
|
}
|
|
|
|
// getVal - This function is identical to getExistingVal, except that if a
|
|
// value is not already defined, it "improvises" by creating a placeholder var
|
|
// that looks and acts just like the requested variable. When the value is
|
|
// defined later, all uses of the placeholder variable are replaced with the
|
|
// real thing.
|
|
//
|
|
static Value *getVal(const Type *Ty, const ValID &ID) {
|
|
if (Ty == Type::LabelTy) {
|
|
GenerateError("Cannot use a basic block here");
|
|
return 0;
|
|
}
|
|
|
|
// See if the value has already been defined.
|
|
Value *V = getExistingVal(Ty, ID);
|
|
if (V) return V;
|
|
if (TriggerError) return 0;
|
|
|
|
if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty)) {
|
|
GenerateError("Invalid use of a composite type");
|
|
return 0;
|
|
}
|
|
|
|
// If we reached here, we referenced either a symbol that we don't know about
|
|
// or an id number that hasn't been read yet. We may be referencing something
|
|
// forward, so just create an entry to be resolved later and get to it...
|
|
//
|
|
switch (ID.Type) {
|
|
case ValID::GlobalName:
|
|
case ValID::GlobalID: {
|
|
const PointerType *PTy = dyn_cast<PointerType>(Ty);
|
|
if (!PTy) {
|
|
GenerateError("Invalid type for reference to global" );
|
|
return 0;
|
|
}
|
|
const Type* ElTy = PTy->getElementType();
|
|
if (const FunctionType *FTy = dyn_cast<FunctionType>(ElTy))
|
|
V = Function::Create(FTy, GlobalValue::ExternalLinkage);
|
|
else
|
|
V = new GlobalVariable(ElTy, false, GlobalValue::ExternalLinkage, 0, "",
|
|
(Module*)0, false, PTy->getAddressSpace());
|
|
break;
|
|
}
|
|
default:
|
|
V = new Argument(Ty);
|
|
}
|
|
|
|
// Remember where this forward reference came from. FIXME, shouldn't we try
|
|
// to recycle these things??
|
|
CurModule.PlaceHolderInfo.insert(std::make_pair(V, std::make_pair(ID,
|
|
LLLgetLineNo())));
|
|
|
|
if (inFunctionScope())
|
|
InsertValue(V, CurFun.LateResolveValues);
|
|
else
|
|
InsertValue(V, CurModule.LateResolveValues);
|
|
return V;
|
|
}
|
|
|
|
/// defineBBVal - This is a definition of a new basic block with the specified
|
|
/// identifier which must be the same as CurFun.NextValNum, if its numeric.
|
|
static BasicBlock *defineBBVal(const ValID &ID) {
|
|
assert(inFunctionScope() && "Can't get basic block at global scope!");
|
|
|
|
BasicBlock *BB = 0;
|
|
|
|
// First, see if this was forward referenced
|
|
|
|
std::map<ValID, BasicBlock*>::iterator BBI = CurFun.BBForwardRefs.find(ID);
|
|
if (BBI != CurFun.BBForwardRefs.end()) {
|
|
BB = BBI->second;
|
|
// The forward declaration could have been inserted anywhere in the
|
|
// function: insert it into the correct place now.
|
|
CurFun.CurrentFunction->getBasicBlockList().remove(BB);
|
|
CurFun.CurrentFunction->getBasicBlockList().push_back(BB);
|
|
|
|
// We're about to erase the entry, save the key so we can clean it up.
|
|
ValID Tmp = BBI->first;
|
|
|
|
// Erase the forward ref from the map as its no longer "forward"
|
|
CurFun.BBForwardRefs.erase(ID);
|
|
|
|
// The key has been removed from the map but so we don't want to leave
|
|
// strdup'd memory around so destroy it too.
|
|
Tmp.destroy();
|
|
|
|
// If its a numbered definition, bump the number and set the BB value.
|
|
if (ID.Type == ValID::LocalID) {
|
|
assert(ID.Num == CurFun.NextValNum && "Invalid new block number");
|
|
InsertValue(BB);
|
|
}
|
|
} else {
|
|
// We haven't seen this BB before and its first mention is a definition.
|
|
// Just create it and return it.
|
|
std::string Name (ID.Type == ValID::LocalName ? ID.getName() : "");
|
|
BB = BasicBlock::Create(Name, CurFun.CurrentFunction);
|
|
if (ID.Type == ValID::LocalID) {
|
|
assert(ID.Num == CurFun.NextValNum && "Invalid new block number");
|
|
InsertValue(BB);
|
|
}
|
|
}
|
|
|
|
ID.destroy();
|
|
return BB;
|
|
}
|
|
|
|
/// getBBVal - get an existing BB value or create a forward reference for it.
|
|
///
|
|
static BasicBlock *getBBVal(const ValID &ID) {
|
|
assert(inFunctionScope() && "Can't get basic block at global scope!");
|
|
|
|
BasicBlock *BB = 0;
|
|
|
|
std::map<ValID, BasicBlock*>::iterator BBI = CurFun.BBForwardRefs.find(ID);
|
|
if (BBI != CurFun.BBForwardRefs.end()) {
|
|
BB = BBI->second;
|
|
} if (ID.Type == ValID::LocalName) {
|
|
std::string Name = ID.getName();
|
|
Value *N = CurFun.CurrentFunction->getValueSymbolTable().lookup(Name);
|
|
if (N) {
|
|
if (N->getType()->getTypeID() == Type::LabelTyID)
|
|
BB = cast<BasicBlock>(N);
|
|
else
|
|
GenerateError("Reference to label '" + Name + "' is actually of type '"+
|
|
N->getType()->getDescription() + "'");
|
|
}
|
|
} else if (ID.Type == ValID::LocalID) {
|
|
if (ID.Num < CurFun.NextValNum && ID.Num < CurFun.Values.size()) {
|
|
if (CurFun.Values[ID.Num]->getType()->getTypeID() == Type::LabelTyID)
|
|
BB = cast<BasicBlock>(CurFun.Values[ID.Num]);
|
|
else
|
|
GenerateError("Reference to label '%" + utostr(ID.Num) +
|
|
"' is actually of type '"+
|
|
CurFun.Values[ID.Num]->getType()->getDescription() + "'");
|
|
}
|
|
} else {
|
|
GenerateError("Illegal label reference " + ID.getName());
|
|
return 0;
|
|
}
|
|
|
|
// If its already been defined, return it now.
|
|
if (BB) {
|
|
ID.destroy(); // Free strdup'd memory.
|
|
return BB;
|
|
}
|
|
|
|
// Otherwise, this block has not been seen before, create it.
|
|
std::string Name;
|
|
if (ID.Type == ValID::LocalName)
|
|
Name = ID.getName();
|
|
BB = BasicBlock::Create(Name, CurFun.CurrentFunction);
|
|
|
|
// Insert it in the forward refs map.
|
|
CurFun.BBForwardRefs[ID] = BB;
|
|
|
|
return BB;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Code to handle forward references in instructions
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This code handles the late binding needed with statements that reference
|
|
// values not defined yet... for example, a forward branch, or the PHI node for
|
|
// a loop body.
|
|
//
|
|
// This keeps a table (CurFun.LateResolveValues) of all such forward references
|
|
// and back patchs after we are done.
|
|
//
|
|
|
|
// ResolveDefinitions - If we could not resolve some defs at parsing
|
|
// time (forward branches, phi functions for loops, etc...) resolve the
|
|
// defs now...
|
|
//
|
|
static void
|
|
ResolveDefinitions(ValueList &LateResolvers, ValueList *FutureLateResolvers) {
|
|
// Loop over LateResolveDefs fixing up stuff that couldn't be resolved
|
|
while (!LateResolvers.empty()) {
|
|
Value *V = LateResolvers.back();
|
|
LateResolvers.pop_back();
|
|
|
|
std::map<Value*, std::pair<ValID, int> >::iterator PHI =
|
|
CurModule.PlaceHolderInfo.find(V);
|
|
assert(PHI != CurModule.PlaceHolderInfo.end() && "Placeholder error!");
|
|
|
|
ValID &DID = PHI->second.first;
|
|
|
|
Value *TheRealValue = getExistingVal(V->getType(), DID);
|
|
if (TriggerError)
|
|
return;
|
|
if (TheRealValue) {
|
|
V->replaceAllUsesWith(TheRealValue);
|
|
delete V;
|
|
CurModule.PlaceHolderInfo.erase(PHI);
|
|
} else if (FutureLateResolvers) {
|
|
// Functions have their unresolved items forwarded to the module late
|
|
// resolver table
|
|
InsertValue(V, *FutureLateResolvers);
|
|
} else {
|
|
if (DID.Type == ValID::LocalName || DID.Type == ValID::GlobalName) {
|
|
GenerateError("Reference to an invalid definition: '" +DID.getName()+
|
|
"' of type '" + V->getType()->getDescription() + "'",
|
|
PHI->second.second);
|
|
return;
|
|
} else {
|
|
GenerateError("Reference to an invalid definition: #" +
|
|
itostr(DID.Num) + " of type '" +
|
|
V->getType()->getDescription() + "'",
|
|
PHI->second.second);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
LateResolvers.clear();
|
|
}
|
|
|
|
// ResolveTypeTo - A brand new type was just declared. This means that (if
|
|
// name is not null) things referencing Name can be resolved. Otherwise, things
|
|
// refering to the number can be resolved. Do this now.
|
|
//
|
|
static void ResolveTypeTo(std::string *Name, const Type *ToTy) {
|
|
ValID D;
|
|
if (Name)
|
|
D = ValID::createLocalName(*Name);
|
|
else
|
|
D = ValID::createLocalID(CurModule.Types.size());
|
|
|
|
std::map<ValID, PATypeHolder>::iterator I =
|
|
CurModule.LateResolveTypes.find(D);
|
|
if (I != CurModule.LateResolveTypes.end()) {
|
|
((DerivedType*)I->second.get())->refineAbstractTypeTo(ToTy);
|
|
CurModule.LateResolveTypes.erase(I);
|
|
}
|
|
}
|
|
|
|
// setValueName - Set the specified value to the name given. The name may be
|
|
// null potentially, in which case this is a noop. The string passed in is
|
|
// assumed to be a malloc'd string buffer, and is free'd by this function.
|
|
//
|
|
static void setValueName(Value *V, std::string *NameStr) {
|
|
if (!NameStr) return;
|
|
std::string Name(*NameStr); // Copy string
|
|
delete NameStr; // Free old string
|
|
|
|
if (V->getType() == Type::VoidTy) {
|
|
GenerateError("Can't assign name '" + Name+"' to value with void type");
|
|
return;
|
|
}
|
|
|
|
assert(inFunctionScope() && "Must be in function scope!");
|
|
ValueSymbolTable &ST = CurFun.CurrentFunction->getValueSymbolTable();
|
|
if (ST.lookup(Name)) {
|
|
GenerateError("Redefinition of value '" + Name + "' of type '" +
|
|
V->getType()->getDescription() + "'");
|
|
return;
|
|
}
|
|
|
|
// Set the name.
|
|
V->setName(Name);
|
|
}
|
|
|
|
/// ParseGlobalVariable - Handle parsing of a global. If Initializer is null,
|
|
/// this is a declaration, otherwise it is a definition.
|
|
static GlobalVariable *
|
|
ParseGlobalVariable(std::string *NameStr,
|
|
GlobalValue::LinkageTypes Linkage,
|
|
GlobalValue::VisibilityTypes Visibility,
|
|
bool isConstantGlobal, const Type *Ty,
|
|
Constant *Initializer, bool IsThreadLocal,
|
|
unsigned AddressSpace = 0) {
|
|
if (isa<FunctionType>(Ty)) {
|
|
GenerateError("Cannot declare global vars of function type");
|
|
return 0;
|
|
}
|
|
|
|
const PointerType *PTy = PointerType::get(Ty, AddressSpace);
|
|
|
|
std::string Name;
|
|
if (NameStr) {
|
|
Name = *NameStr; // Copy string
|
|
delete NameStr; // Free old string
|
|
}
|
|
|
|
// See if this global value was forward referenced. If so, recycle the
|
|
// object.
|
|
ValID ID;
|
|
if (!Name.empty()) {
|
|
ID = ValID::createGlobalName(Name);
|
|
} else {
|
|
ID = ValID::createGlobalID(CurModule.Values.size());
|
|
}
|
|
|
|
if (GlobalValue *FWGV = CurModule.GetForwardRefForGlobal(PTy, ID)) {
|
|
// Move the global to the end of the list, from whereever it was
|
|
// previously inserted.
|
|
GlobalVariable *GV = cast<GlobalVariable>(FWGV);
|
|
CurModule.CurrentModule->getGlobalList().remove(GV);
|
|
CurModule.CurrentModule->getGlobalList().push_back(GV);
|
|
GV->setInitializer(Initializer);
|
|
GV->setLinkage(Linkage);
|
|
GV->setVisibility(Visibility);
|
|
GV->setConstant(isConstantGlobal);
|
|
GV->setThreadLocal(IsThreadLocal);
|
|
InsertValue(GV, CurModule.Values);
|
|
return GV;
|
|
}
|
|
|
|
// If this global has a name
|
|
if (!Name.empty()) {
|
|
// if the global we're parsing has an initializer (is a definition) and
|
|
// has external linkage.
|
|
if (Initializer && Linkage != GlobalValue::InternalLinkage)
|
|
// If there is already a global with external linkage with this name
|
|
if (CurModule.CurrentModule->getGlobalVariable(Name, false)) {
|
|
// If we allow this GVar to get created, it will be renamed in the
|
|
// symbol table because it conflicts with an existing GVar. We can't
|
|
// allow redefinition of GVars whose linking indicates that their name
|
|
// must stay the same. Issue the error.
|
|
GenerateError("Redefinition of global variable named '" + Name +
|
|
"' of type '" + Ty->getDescription() + "'");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// Otherwise there is no existing GV to use, create one now.
|
|
GlobalVariable *GV =
|
|
new GlobalVariable(Ty, isConstantGlobal, Linkage, Initializer, Name,
|
|
CurModule.CurrentModule, IsThreadLocal, AddressSpace);
|
|
GV->setVisibility(Visibility);
|
|
InsertValue(GV, CurModule.Values);
|
|
return GV;
|
|
}
|
|
|
|
// setTypeName - Set the specified type to the name given. The name may be
|
|
// null potentially, in which case this is a noop. The string passed in is
|
|
// assumed to be a malloc'd string buffer, and is freed by this function.
|
|
//
|
|
// This function returns true if the type has already been defined, but is
|
|
// allowed to be redefined in the specified context. If the name is a new name
|
|
// for the type plane, it is inserted and false is returned.
|
|
static bool setTypeName(const Type *T, std::string *NameStr) {
|
|
assert(!inFunctionScope() && "Can't give types function-local names!");
|
|
if (NameStr == 0) return false;
|
|
|
|
std::string Name(*NameStr); // Copy string
|
|
delete NameStr; // Free old string
|
|
|
|
// We don't allow assigning names to void type
|
|
if (T == Type::VoidTy) {
|
|
GenerateError("Can't assign name '" + Name + "' to the void type");
|
|
return false;
|
|
}
|
|
|
|
// Set the type name, checking for conflicts as we do so.
|
|
bool AlreadyExists = CurModule.CurrentModule->addTypeName(Name, T);
|
|
|
|
if (AlreadyExists) { // Inserting a name that is already defined???
|
|
const Type *Existing = CurModule.CurrentModule->getTypeByName(Name);
|
|
assert(Existing && "Conflict but no matching type?!");
|
|
|
|
// There is only one case where this is allowed: when we are refining an
|
|
// opaque type. In this case, Existing will be an opaque type.
|
|
if (const OpaqueType *OpTy = dyn_cast<OpaqueType>(Existing)) {
|
|
// We ARE replacing an opaque type!
|
|
const_cast<OpaqueType*>(OpTy)->refineAbstractTypeTo(T);
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, this is an attempt to redefine a type. That's okay if
|
|
// the redefinition is identical to the original. This will be so if
|
|
// Existing and T point to the same Type object. In this one case we
|
|
// allow the equivalent redefinition.
|
|
if (Existing == T) return true; // Yes, it's equal.
|
|
|
|
// Any other kind of (non-equivalent) redefinition is an error.
|
|
GenerateError("Redefinition of type named '" + Name + "' of type '" +
|
|
T->getDescription() + "'");
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Code for handling upreferences in type names...
|
|
//
|
|
|
|
// TypeContains - Returns true if Ty directly contains E in it.
|
|
//
|
|
static bool TypeContains(const Type *Ty, const Type *E) {
|
|
return std::find(Ty->subtype_begin(), Ty->subtype_end(),
|
|
E) != Ty->subtype_end();
|
|
}
|
|
|
|
namespace {
|
|
struct UpRefRecord {
|
|
// NestingLevel - The number of nesting levels that need to be popped before
|
|
// this type is resolved.
|
|
unsigned NestingLevel;
|
|
|
|
// LastContainedTy - This is the type at the current binding level for the
|
|
// type. Every time we reduce the nesting level, this gets updated.
|
|
const Type *LastContainedTy;
|
|
|
|
// UpRefTy - This is the actual opaque type that the upreference is
|
|
// represented with.
|
|
OpaqueType *UpRefTy;
|
|
|
|
UpRefRecord(unsigned NL, OpaqueType *URTy)
|
|
: NestingLevel(NL), LastContainedTy(URTy), UpRefTy(URTy) {}
|
|
};
|
|
}
|
|
|
|
// UpRefs - A list of the outstanding upreferences that need to be resolved.
|
|
static std::vector<UpRefRecord> UpRefs;
|
|
|
|
/// HandleUpRefs - Every time we finish a new layer of types, this function is
|
|
/// called. It loops through the UpRefs vector, which is a list of the
|
|
/// currently active types. For each type, if the up reference is contained in
|
|
/// the newly completed type, we decrement the level count. When the level
|
|
/// count reaches zero, the upreferenced type is the type that is passed in:
|
|
/// thus we can complete the cycle.
|
|
///
|
|
static PATypeHolder HandleUpRefs(const Type *ty) {
|
|
// If Ty isn't abstract, or if there are no up-references in it, then there is
|
|
// nothing to resolve here.
|
|
if (!ty->isAbstract() || UpRefs.empty()) return ty;
|
|
|
|
PATypeHolder Ty(ty);
|
|
UR_OUT("Type '" << Ty->getDescription() <<
|
|
"' newly formed. Resolving upreferences.\n" <<
|
|
UpRefs.size() << " upreferences active!\n");
|
|
|
|
// If we find any resolvable upreferences (i.e., those whose NestingLevel goes
|
|
// to zero), we resolve them all together before we resolve them to Ty. At
|
|
// the end of the loop, if there is anything to resolve to Ty, it will be in
|
|
// this variable.
|
|
OpaqueType *TypeToResolve = 0;
|
|
|
|
for (unsigned i = 0; i != UpRefs.size(); ++i) {
|
|
UR_OUT(" UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
|
|
<< UpRefs[i].second->getDescription() << ") = "
|
|
<< (TypeContains(Ty, UpRefs[i].second) ? "true" : "false") << "\n");
|
|
if (TypeContains(Ty, UpRefs[i].LastContainedTy)) {
|
|
// Decrement level of upreference
|
|
unsigned Level = --UpRefs[i].NestingLevel;
|
|
UpRefs[i].LastContainedTy = Ty;
|
|
UR_OUT(" Uplevel Ref Level = " << Level << "\n");
|
|
if (Level == 0) { // Upreference should be resolved!
|
|
if (!TypeToResolve) {
|
|
TypeToResolve = UpRefs[i].UpRefTy;
|
|
} else {
|
|
UR_OUT(" * Resolving upreference for "
|
|
<< UpRefs[i].second->getDescription() << "\n";
|
|
std::string OldName = UpRefs[i].UpRefTy->getDescription());
|
|
UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
|
|
UR_OUT(" * Type '" << OldName << "' refined upreference to: "
|
|
<< (const void*)Ty << ", " << Ty->getDescription() << "\n");
|
|
}
|
|
UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list...
|
|
--i; // Do not skip the next element...
|
|
}
|
|
}
|
|
}
|
|
|
|
if (TypeToResolve) {
|
|
UR_OUT(" * Resolving upreference for "
|
|
<< UpRefs[i].second->getDescription() << "\n";
|
|
std::string OldName = TypeToResolve->getDescription());
|
|
TypeToResolve->refineAbstractTypeTo(Ty);
|
|
}
|
|
|
|
return Ty;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RunVMAsmParser - Define an interface to this parser
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
static Module* RunParser(Module * M);
|
|
|
|
Module *llvm::RunVMAsmParser(llvm::MemoryBuffer *MB) {
|
|
InitLLLexer(MB);
|
|
Module *M = RunParser(new Module(LLLgetFilename()));
|
|
FreeLexer();
|
|
return M;
|
|
}
|
|
|
|
%}
|
|
|
|
%union {
|
|
llvm::Module *ModuleVal;
|
|
llvm::Function *FunctionVal;
|
|
llvm::BasicBlock *BasicBlockVal;
|
|
llvm::TerminatorInst *TermInstVal;
|
|
llvm::Instruction *InstVal;
|
|
llvm::Constant *ConstVal;
|
|
|
|
const llvm::Type *PrimType;
|
|
std::list<llvm::PATypeHolder> *TypeList;
|
|
llvm::PATypeHolder *TypeVal;
|
|
llvm::Value *ValueVal;
|
|
std::vector<llvm::Value*> *ValueList;
|
|
llvm::ArgListType *ArgList;
|
|
llvm::TypeWithAttrs TypeWithAttrs;
|
|
llvm::TypeWithAttrsList *TypeWithAttrsList;
|
|
llvm::ParamList *ParamList;
|
|
|
|
// Represent the RHS of PHI node
|
|
std::list<std::pair<llvm::Value*,
|
|
llvm::BasicBlock*> > *PHIList;
|
|
std::vector<std::pair<llvm::Constant*, llvm::BasicBlock*> > *JumpTable;
|
|
std::vector<llvm::Constant*> *ConstVector;
|
|
|
|
llvm::GlobalValue::LinkageTypes Linkage;
|
|
llvm::GlobalValue::VisibilityTypes Visibility;
|
|
llvm::ParameterAttributes ParamAttrs;
|
|
llvm::APInt *APIntVal;
|
|
int64_t SInt64Val;
|
|
uint64_t UInt64Val;
|
|
int SIntVal;
|
|
unsigned UIntVal;
|
|
llvm::APFloat *FPVal;
|
|
bool BoolVal;
|
|
|
|
std::string *StrVal; // This memory must be deleted
|
|
llvm::ValID ValIDVal;
|
|
|
|
llvm::Instruction::BinaryOps BinaryOpVal;
|
|
llvm::Instruction::TermOps TermOpVal;
|
|
llvm::Instruction::MemoryOps MemOpVal;
|
|
llvm::Instruction::CastOps CastOpVal;
|
|
llvm::Instruction::OtherOps OtherOpVal;
|
|
llvm::ICmpInst::Predicate IPredicate;
|
|
llvm::FCmpInst::Predicate FPredicate;
|
|
}
|
|
|
|
%type <ModuleVal> Module
|
|
%type <FunctionVal> Function FunctionProto FunctionHeader BasicBlockList
|
|
%type <BasicBlockVal> BasicBlock InstructionList
|
|
%type <TermInstVal> BBTerminatorInst
|
|
%type <InstVal> Inst InstVal MemoryInst
|
|
%type <ConstVal> ConstVal ConstExpr AliaseeRef
|
|
%type <ConstVector> ConstVector
|
|
%type <ArgList> ArgList ArgListH
|
|
%type <PHIList> PHIList
|
|
%type <ParamList> ParamList // For call param lists & GEP indices
|
|
%type <ValueList> IndexList // For GEP indices
|
|
%type <TypeList> TypeListI
|
|
%type <TypeWithAttrsList> ArgTypeList ArgTypeListI
|
|
%type <TypeWithAttrs> ArgType
|
|
%type <JumpTable> JumpTable
|
|
%type <BoolVal> GlobalType // GLOBAL or CONSTANT?
|
|
%type <BoolVal> ThreadLocal // 'thread_local' or not
|
|
%type <BoolVal> OptVolatile // 'volatile' or not
|
|
%type <BoolVal> OptTailCall // TAIL CALL or plain CALL.
|
|
%type <BoolVal> OptSideEffect // 'sideeffect' or not.
|
|
%type <Linkage> GVInternalLinkage GVExternalLinkage
|
|
%type <Linkage> FunctionDefineLinkage FunctionDeclareLinkage
|
|
%type <Linkage> AliasLinkage
|
|
%type <Visibility> GVVisibilityStyle
|
|
|
|
// ValueRef - Unresolved reference to a definition or BB
|
|
%type <ValIDVal> ValueRef ConstValueRef SymbolicValueRef
|
|
%type <ValueVal> ResolvedVal // <type> <valref> pair
|
|
%type <ValueList> ReturnedVal
|
|
// Tokens and types for handling constant integer values
|
|
//
|
|
// ESINT64VAL - A negative number within long long range
|
|
%token <SInt64Val> ESINT64VAL
|
|
|
|
// EUINT64VAL - A positive number within uns. long long range
|
|
%token <UInt64Val> EUINT64VAL
|
|
|
|
// ESAPINTVAL - A negative number with arbitrary precision
|
|
%token <APIntVal> ESAPINTVAL
|
|
|
|
// EUAPINTVAL - A positive number with arbitrary precision
|
|
%token <APIntVal> EUAPINTVAL
|
|
|
|
%token <UIntVal> LOCALVAL_ID GLOBALVAL_ID // %123 @123
|
|
%token <FPVal> FPVAL // Float or Double constant
|
|
|
|
// Built in types...
|
|
%type <TypeVal> Types ResultTypes
|
|
%type <PrimType> IntType FPType PrimType // Classifications
|
|
%token <PrimType> VOID INTTYPE
|
|
%token <PrimType> FLOAT DOUBLE X86_FP80 FP128 PPC_FP128 LABEL
|
|
%token TYPE
|
|
|
|
|
|
%token<StrVal> LOCALVAR GLOBALVAR LABELSTR
|
|
%token<StrVal> STRINGCONSTANT ATSTRINGCONSTANT PCTSTRINGCONSTANT
|
|
%type <StrVal> LocalName OptLocalName OptLocalAssign
|
|
%type <StrVal> GlobalName OptGlobalAssign GlobalAssign
|
|
%type <StrVal> OptSection SectionString OptGC
|
|
|
|
%type <UIntVal> OptAlign OptCAlign OptAddrSpace
|
|
|
|
%token ZEROINITIALIZER TRUETOK FALSETOK BEGINTOK ENDTOK
|
|
%token DECLARE DEFINE GLOBAL CONSTANT SECTION ALIAS VOLATILE THREAD_LOCAL
|
|
%token TO DOTDOTDOT NULL_TOK UNDEF INTERNAL LINKONCE WEAK APPENDING
|
|
%token DLLIMPORT DLLEXPORT EXTERN_WEAK COMMON
|
|
%token OPAQUE EXTERNAL TARGET TRIPLE ALIGN ADDRSPACE
|
|
%token DEPLIBS CALL TAIL ASM_TOK MODULE SIDEEFFECT
|
|
%token CC_TOK CCC_TOK FASTCC_TOK COLDCC_TOK X86_STDCALLCC_TOK X86_FASTCALLCC_TOK
|
|
%token DATALAYOUT
|
|
%type <UIntVal> OptCallingConv
|
|
%type <ParamAttrs> OptParamAttrs ParamAttr
|
|
%type <ParamAttrs> OptFuncAttrs FuncAttr
|
|
|
|
// Basic Block Terminating Operators
|
|
%token <TermOpVal> RET BR SWITCH INVOKE UNWIND UNREACHABLE
|
|
|
|
// Binary Operators
|
|
%type <BinaryOpVal> ArithmeticOps LogicalOps // Binops Subcatagories
|
|
%token <BinaryOpVal> ADD SUB MUL UDIV SDIV FDIV UREM SREM FREM AND OR XOR
|
|
%token <BinaryOpVal> SHL LSHR ASHR
|
|
|
|
%token <OtherOpVal> ICMP FCMP VICMP VFCMP
|
|
%type <IPredicate> IPredicates
|
|
%type <FPredicate> FPredicates
|
|
%token EQ NE SLT SGT SLE SGE ULT UGT ULE UGE
|
|
%token OEQ ONE OLT OGT OLE OGE ORD UNO UEQ UNE
|
|
|
|
// Memory Instructions
|
|
%token <MemOpVal> MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR
|
|
|
|
// Cast Operators
|
|
%type <CastOpVal> CastOps
|
|
%token <CastOpVal> TRUNC ZEXT SEXT FPTRUNC FPEXT BITCAST
|
|
%token <CastOpVal> UITOFP SITOFP FPTOUI FPTOSI INTTOPTR PTRTOINT
|
|
|
|
// Other Operators
|
|
%token <OtherOpVal> PHI_TOK SELECT VAARG
|
|
%token <OtherOpVal> EXTRACTELEMENT INSERTELEMENT SHUFFLEVECTOR
|
|
%token <OtherOpVal> GETRESULT
|
|
|
|
// Function Attributes
|
|
%token SIGNEXT ZEROEXT NORETURN INREG SRET NOUNWIND NOALIAS BYVAL NEST
|
|
%token READNONE READONLY GC
|
|
|
|
// Visibility Styles
|
|
%token DEFAULT HIDDEN PROTECTED
|
|
|
|
%start Module
|
|
%%
|
|
|
|
|
|
// Operations that are notably excluded from this list include:
|
|
// RET, BR, & SWITCH because they end basic blocks and are treated specially.
|
|
//
|
|
ArithmeticOps: ADD | SUB | MUL | UDIV | SDIV | FDIV | UREM | SREM | FREM;
|
|
LogicalOps : SHL | LSHR | ASHR | AND | OR | XOR;
|
|
CastOps : TRUNC | ZEXT | SEXT | FPTRUNC | FPEXT | BITCAST |
|
|
UITOFP | SITOFP | FPTOUI | FPTOSI | INTTOPTR | PTRTOINT;
|
|
|
|
IPredicates
|
|
: EQ { $$ = ICmpInst::ICMP_EQ; } | NE { $$ = ICmpInst::ICMP_NE; }
|
|
| SLT { $$ = ICmpInst::ICMP_SLT; } | SGT { $$ = ICmpInst::ICMP_SGT; }
|
|
| SLE { $$ = ICmpInst::ICMP_SLE; } | SGE { $$ = ICmpInst::ICMP_SGE; }
|
|
| ULT { $$ = ICmpInst::ICMP_ULT; } | UGT { $$ = ICmpInst::ICMP_UGT; }
|
|
| ULE { $$ = ICmpInst::ICMP_ULE; } | UGE { $$ = ICmpInst::ICMP_UGE; }
|
|
;
|
|
|
|
FPredicates
|
|
: OEQ { $$ = FCmpInst::FCMP_OEQ; } | ONE { $$ = FCmpInst::FCMP_ONE; }
|
|
| OLT { $$ = FCmpInst::FCMP_OLT; } | OGT { $$ = FCmpInst::FCMP_OGT; }
|
|
| OLE { $$ = FCmpInst::FCMP_OLE; } | OGE { $$ = FCmpInst::FCMP_OGE; }
|
|
| ORD { $$ = FCmpInst::FCMP_ORD; } | UNO { $$ = FCmpInst::FCMP_UNO; }
|
|
| UEQ { $$ = FCmpInst::FCMP_UEQ; } | UNE { $$ = FCmpInst::FCMP_UNE; }
|
|
| ULT { $$ = FCmpInst::FCMP_ULT; } | UGT { $$ = FCmpInst::FCMP_UGT; }
|
|
| ULE { $$ = FCmpInst::FCMP_ULE; } | UGE { $$ = FCmpInst::FCMP_UGE; }
|
|
| TRUETOK { $$ = FCmpInst::FCMP_TRUE; }
|
|
| FALSETOK { $$ = FCmpInst::FCMP_FALSE; }
|
|
;
|
|
|
|
// These are some types that allow classification if we only want a particular
|
|
// thing... for example, only a signed, unsigned, or integral type.
|
|
IntType : INTTYPE;
|
|
FPType : FLOAT | DOUBLE | PPC_FP128 | FP128 | X86_FP80;
|
|
|
|
LocalName : LOCALVAR | STRINGCONSTANT | PCTSTRINGCONSTANT ;
|
|
OptLocalName : LocalName | /*empty*/ { $$ = 0; };
|
|
|
|
OptAddrSpace : ADDRSPACE '(' EUINT64VAL ')' { $$=$3; }
|
|
| /*empty*/ { $$=0; };
|
|
|
|
/// OptLocalAssign - Value producing statements have an optional assignment
|
|
/// component.
|
|
OptLocalAssign : LocalName '=' {
|
|
$$ = $1;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| /*empty*/ {
|
|
$$ = 0;
|
|
CHECK_FOR_ERROR
|
|
};
|
|
|
|
GlobalName : GLOBALVAR | ATSTRINGCONSTANT ;
|
|
|
|
OptGlobalAssign : GlobalAssign
|
|
| /*empty*/ {
|
|
$$ = 0;
|
|
CHECK_FOR_ERROR
|
|
};
|
|
|
|
GlobalAssign : GlobalName '=' {
|
|
$$ = $1;
|
|
CHECK_FOR_ERROR
|
|
};
|
|
|
|
GVInternalLinkage
|
|
: INTERNAL { $$ = GlobalValue::InternalLinkage; }
|
|
| WEAK { $$ = GlobalValue::WeakLinkage; }
|
|
| LINKONCE { $$ = GlobalValue::LinkOnceLinkage; }
|
|
| APPENDING { $$ = GlobalValue::AppendingLinkage; }
|
|
| DLLEXPORT { $$ = GlobalValue::DLLExportLinkage; }
|
|
| COMMON { $$ = GlobalValue::CommonLinkage; }
|
|
;
|
|
|
|
GVExternalLinkage
|
|
: DLLIMPORT { $$ = GlobalValue::DLLImportLinkage; }
|
|
| EXTERN_WEAK { $$ = GlobalValue::ExternalWeakLinkage; }
|
|
| EXTERNAL { $$ = GlobalValue::ExternalLinkage; }
|
|
;
|
|
|
|
GVVisibilityStyle
|
|
: /*empty*/ { $$ = GlobalValue::DefaultVisibility; }
|
|
| DEFAULT { $$ = GlobalValue::DefaultVisibility; }
|
|
| HIDDEN { $$ = GlobalValue::HiddenVisibility; }
|
|
| PROTECTED { $$ = GlobalValue::ProtectedVisibility; }
|
|
;
|
|
|
|
FunctionDeclareLinkage
|
|
: /*empty*/ { $$ = GlobalValue::ExternalLinkage; }
|
|
| DLLIMPORT { $$ = GlobalValue::DLLImportLinkage; }
|
|
| EXTERN_WEAK { $$ = GlobalValue::ExternalWeakLinkage; }
|
|
;
|
|
|
|
FunctionDefineLinkage
|
|
: /*empty*/ { $$ = GlobalValue::ExternalLinkage; }
|
|
| INTERNAL { $$ = GlobalValue::InternalLinkage; }
|
|
| LINKONCE { $$ = GlobalValue::LinkOnceLinkage; }
|
|
| WEAK { $$ = GlobalValue::WeakLinkage; }
|
|
| DLLEXPORT { $$ = GlobalValue::DLLExportLinkage; }
|
|
;
|
|
|
|
AliasLinkage
|
|
: /*empty*/ { $$ = GlobalValue::ExternalLinkage; }
|
|
| WEAK { $$ = GlobalValue::WeakLinkage; }
|
|
| INTERNAL { $$ = GlobalValue::InternalLinkage; }
|
|
;
|
|
|
|
OptCallingConv : /*empty*/ { $$ = CallingConv::C; } |
|
|
CCC_TOK { $$ = CallingConv::C; } |
|
|
FASTCC_TOK { $$ = CallingConv::Fast; } |
|
|
COLDCC_TOK { $$ = CallingConv::Cold; } |
|
|
X86_STDCALLCC_TOK { $$ = CallingConv::X86_StdCall; } |
|
|
X86_FASTCALLCC_TOK { $$ = CallingConv::X86_FastCall; } |
|
|
CC_TOK EUINT64VAL {
|
|
if ((unsigned)$2 != $2)
|
|
GEN_ERROR("Calling conv too large");
|
|
$$ = $2;
|
|
CHECK_FOR_ERROR
|
|
};
|
|
|
|
ParamAttr : ZEROEXT { $$ = ParamAttr::ZExt; }
|
|
| ZEXT { $$ = ParamAttr::ZExt; }
|
|
| SIGNEXT { $$ = ParamAttr::SExt; }
|
|
| SEXT { $$ = ParamAttr::SExt; }
|
|
| INREG { $$ = ParamAttr::InReg; }
|
|
| SRET { $$ = ParamAttr::StructRet; }
|
|
| NOALIAS { $$ = ParamAttr::NoAlias; }
|
|
| BYVAL { $$ = ParamAttr::ByVal; }
|
|
| NEST { $$ = ParamAttr::Nest; }
|
|
| ALIGN EUINT64VAL { $$ =
|
|
ParamAttr::constructAlignmentFromInt($2); }
|
|
;
|
|
|
|
OptParamAttrs : /* empty */ { $$ = ParamAttr::None; }
|
|
| OptParamAttrs ParamAttr {
|
|
$$ = $1 | $2;
|
|
}
|
|
;
|
|
|
|
FuncAttr : NORETURN { $$ = ParamAttr::NoReturn; }
|
|
| NOUNWIND { $$ = ParamAttr::NoUnwind; }
|
|
| ZEROEXT { $$ = ParamAttr::ZExt; }
|
|
| SIGNEXT { $$ = ParamAttr::SExt; }
|
|
| READNONE { $$ = ParamAttr::ReadNone; }
|
|
| READONLY { $$ = ParamAttr::ReadOnly; }
|
|
;
|
|
|
|
OptFuncAttrs : /* empty */ { $$ = ParamAttr::None; }
|
|
| OptFuncAttrs FuncAttr {
|
|
$$ = $1 | $2;
|
|
}
|
|
;
|
|
|
|
OptGC : /* empty */ { $$ = 0; }
|
|
| GC STRINGCONSTANT {
|
|
$$ = $2;
|
|
}
|
|
;
|
|
|
|
// OptAlign/OptCAlign - An optional alignment, and an optional alignment with
|
|
// a comma before it.
|
|
OptAlign : /*empty*/ { $$ = 0; } |
|
|
ALIGN EUINT64VAL {
|
|
$$ = $2;
|
|
if ($$ != 0 && !isPowerOf2_32($$))
|
|
GEN_ERROR("Alignment must be a power of two");
|
|
CHECK_FOR_ERROR
|
|
};
|
|
OptCAlign : /*empty*/ { $$ = 0; } |
|
|
',' ALIGN EUINT64VAL {
|
|
$$ = $3;
|
|
if ($$ != 0 && !isPowerOf2_32($$))
|
|
GEN_ERROR("Alignment must be a power of two");
|
|
CHECK_FOR_ERROR
|
|
};
|
|
|
|
|
|
|
|
SectionString : SECTION STRINGCONSTANT {
|
|
for (unsigned i = 0, e = $2->length(); i != e; ++i)
|
|
if ((*$2)[i] == '"' || (*$2)[i] == '\\')
|
|
GEN_ERROR("Invalid character in section name");
|
|
$$ = $2;
|
|
CHECK_FOR_ERROR
|
|
};
|
|
|
|
OptSection : /*empty*/ { $$ = 0; } |
|
|
SectionString { $$ = $1; };
|
|
|
|
// GlobalVarAttributes - Used to pass the attributes string on a global. CurGV
|
|
// is set to be the global we are processing.
|
|
//
|
|
GlobalVarAttributes : /* empty */ {} |
|
|
',' GlobalVarAttribute GlobalVarAttributes {};
|
|
GlobalVarAttribute : SectionString {
|
|
CurGV->setSection(*$1);
|
|
delete $1;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| ALIGN EUINT64VAL {
|
|
if ($2 != 0 && !isPowerOf2_32($2))
|
|
GEN_ERROR("Alignment must be a power of two");
|
|
CurGV->setAlignment($2);
|
|
CHECK_FOR_ERROR
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Types includes all predefined types... except void, because it can only be
|
|
// used in specific contexts (function returning void for example).
|
|
|
|
// Derived types are added later...
|
|
//
|
|
PrimType : INTTYPE | FLOAT | DOUBLE | PPC_FP128 | FP128 | X86_FP80 | LABEL ;
|
|
|
|
Types
|
|
: OPAQUE {
|
|
$$ = new PATypeHolder(OpaqueType::get());
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| PrimType {
|
|
$$ = new PATypeHolder($1);
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| Types OptAddrSpace '*' { // Pointer type?
|
|
if (*$1 == Type::LabelTy)
|
|
GEN_ERROR("Cannot form a pointer to a basic block");
|
|
$$ = new PATypeHolder(HandleUpRefs(PointerType::get(*$1, $2)));
|
|
delete $1;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| SymbolicValueRef { // Named types are also simple types...
|
|
const Type* tmp = getTypeVal($1);
|
|
CHECK_FOR_ERROR
|
|
$$ = new PATypeHolder(tmp);
|
|
}
|
|
| '\\' EUINT64VAL { // Type UpReference
|
|
if ($2 > (uint64_t)~0U) GEN_ERROR("Value out of range");
|
|
OpaqueType *OT = OpaqueType::get(); // Use temporary placeholder
|
|
UpRefs.push_back(UpRefRecord((unsigned)$2, OT)); // Add to vector...
|
|
$$ = new PATypeHolder(OT);
|
|
UR_OUT("New Upreference!\n");
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| Types '(' ArgTypeListI ')' OptFuncAttrs {
|
|
// Allow but ignore attributes on function types; this permits auto-upgrade.
|
|
// FIXME: remove in LLVM 3.0.
|
|
const Type *RetTy = *$1;
|
|
if (!FunctionType::isValidReturnType(RetTy))
|
|
GEN_ERROR("Invalid result type for LLVM function");
|
|
|
|
std::vector<const Type*> Params;
|
|
TypeWithAttrsList::iterator I = $3->begin(), E = $3->end();
|
|
for (; I != E; ++I ) {
|
|
const Type *Ty = I->Ty->get();
|
|
Params.push_back(Ty);
|
|
}
|
|
|
|
bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
|
|
if (isVarArg) Params.pop_back();
|
|
|
|
for (unsigned i = 0; i != Params.size(); ++i)
|
|
if (!(Params[i]->isFirstClassType() || isa<OpaqueType>(Params[i])))
|
|
GEN_ERROR("Function arguments must be value types!");
|
|
|
|
CHECK_FOR_ERROR
|
|
|
|
FunctionType *FT = FunctionType::get(RetTy, Params, isVarArg);
|
|
delete $3; // Delete the argument list
|
|
delete $1; // Delete the return type handle
|
|
$$ = new PATypeHolder(HandleUpRefs(FT));
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| VOID '(' ArgTypeListI ')' OptFuncAttrs {
|
|
// Allow but ignore attributes on function types; this permits auto-upgrade.
|
|
// FIXME: remove in LLVM 3.0.
|
|
std::vector<const Type*> Params;
|
|
TypeWithAttrsList::iterator I = $3->begin(), E = $3->end();
|
|
for ( ; I != E; ++I ) {
|
|
const Type* Ty = I->Ty->get();
|
|
Params.push_back(Ty);
|
|
}
|
|
|
|
bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
|
|
if (isVarArg) Params.pop_back();
|
|
|
|
for (unsigned i = 0; i != Params.size(); ++i)
|
|
if (!(Params[i]->isFirstClassType() || isa<OpaqueType>(Params[i])))
|
|
GEN_ERROR("Function arguments must be value types!");
|
|
|
|
CHECK_FOR_ERROR
|
|
|
|
FunctionType *FT = FunctionType::get($1, Params, isVarArg);
|
|
delete $3; // Delete the argument list
|
|
$$ = new PATypeHolder(HandleUpRefs(FT));
|
|
CHECK_FOR_ERROR
|
|
}
|
|
|
|
| '[' EUINT64VAL 'x' Types ']' { // Sized array type?
|
|
$$ = new PATypeHolder(HandleUpRefs(ArrayType::get(*$4, (unsigned)$2)));
|
|
delete $4;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| '<' EUINT64VAL 'x' Types '>' { // Vector type?
|
|
const llvm::Type* ElemTy = $4->get();
|
|
if ((unsigned)$2 != $2)
|
|
GEN_ERROR("Unsigned result not equal to signed result");
|
|
if (!ElemTy->isFloatingPoint() && !ElemTy->isInteger())
|
|
GEN_ERROR("Element type of a VectorType must be primitive");
|
|
$$ = new PATypeHolder(HandleUpRefs(VectorType::get(*$4, (unsigned)$2)));
|
|
delete $4;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| '{' TypeListI '}' { // Structure type?
|
|
std::vector<const Type*> Elements;
|
|
for (std::list<llvm::PATypeHolder>::iterator I = $2->begin(),
|
|
E = $2->end(); I != E; ++I)
|
|
Elements.push_back(*I);
|
|
|
|
$$ = new PATypeHolder(HandleUpRefs(StructType::get(Elements)));
|
|
delete $2;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| '{' '}' { // Empty structure type?
|
|
$$ = new PATypeHolder(StructType::get(std::vector<const Type*>()));
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| '<' '{' TypeListI '}' '>' {
|
|
std::vector<const Type*> Elements;
|
|
for (std::list<llvm::PATypeHolder>::iterator I = $3->begin(),
|
|
E = $3->end(); I != E; ++I)
|
|
Elements.push_back(*I);
|
|
|
|
$$ = new PATypeHolder(HandleUpRefs(StructType::get(Elements, true)));
|
|
delete $3;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| '<' '{' '}' '>' { // Empty structure type?
|
|
$$ = new PATypeHolder(StructType::get(std::vector<const Type*>(), true));
|
|
CHECK_FOR_ERROR
|
|
}
|
|
;
|
|
|
|
ArgType
|
|
: Types OptParamAttrs {
|
|
// Allow but ignore attributes on function types; this permits auto-upgrade.
|
|
// FIXME: remove in LLVM 3.0.
|
|
$$.Ty = $1;
|
|
$$.Attrs = ParamAttr::None;
|
|
}
|
|
;
|
|
|
|
ResultTypes
|
|
: Types {
|
|
if (!UpRefs.empty())
|
|
GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
|
|
if (!(*$1)->isFirstClassType() && !isa<StructType>($1->get()))
|
|
GEN_ERROR("LLVM functions cannot return aggregate types");
|
|
$$ = $1;
|
|
}
|
|
| VOID {
|
|
$$ = new PATypeHolder(Type::VoidTy);
|
|
}
|
|
;
|
|
|
|
ArgTypeList : ArgType {
|
|
$$ = new TypeWithAttrsList();
|
|
$$->push_back($1);
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| ArgTypeList ',' ArgType {
|
|
($$=$1)->push_back($3);
|
|
CHECK_FOR_ERROR
|
|
}
|
|
;
|
|
|
|
ArgTypeListI
|
|
: ArgTypeList
|
|
| ArgTypeList ',' DOTDOTDOT {
|
|
$$=$1;
|
|
TypeWithAttrs TWA; TWA.Attrs = ParamAttr::None;
|
|
TWA.Ty = new PATypeHolder(Type::VoidTy);
|
|
$$->push_back(TWA);
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| DOTDOTDOT {
|
|
$$ = new TypeWithAttrsList;
|
|
TypeWithAttrs TWA; TWA.Attrs = ParamAttr::None;
|
|
TWA.Ty = new PATypeHolder(Type::VoidTy);
|
|
$$->push_back(TWA);
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| /*empty*/ {
|
|
$$ = new TypeWithAttrsList();
|
|
CHECK_FOR_ERROR
|
|
};
|
|
|
|
// TypeList - Used for struct declarations and as a basis for function type
|
|
// declaration type lists
|
|
//
|
|
TypeListI : Types {
|
|
$$ = new std::list<PATypeHolder>();
|
|
$$->push_back(*$1);
|
|
delete $1;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| TypeListI ',' Types {
|
|
($$=$1)->push_back(*$3);
|
|
delete $3;
|
|
CHECK_FOR_ERROR
|
|
};
|
|
|
|
// ConstVal - The various declarations that go into the constant pool. This
|
|
// production is used ONLY to represent constants that show up AFTER a 'const',
|
|
// 'constant' or 'global' token at global scope. Constants that can be inlined
|
|
// into other expressions (such as integers and constexprs) are handled by the
|
|
// ResolvedVal, ValueRef and ConstValueRef productions.
|
|
//
|
|
ConstVal: Types '[' ConstVector ']' { // Nonempty unsized arr
|
|
if (!UpRefs.empty())
|
|
GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
|
|
const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
|
|
if (ATy == 0)
|
|
GEN_ERROR("Cannot make array constant with type: '" +
|
|
(*$1)->getDescription() + "'");
|
|
const Type *ETy = ATy->getElementType();
|
|
int NumElements = ATy->getNumElements();
|
|
|
|
// Verify that we have the correct size...
|
|
if (NumElements != -1 && NumElements != (int)$3->size())
|
|
GEN_ERROR("Type mismatch: constant sized array initialized with " +
|
|
utostr($3->size()) + " arguments, but has size of " +
|
|
itostr(NumElements) + "");
|
|
|
|
// Verify all elements are correct type!
|
|
for (unsigned i = 0; i < $3->size(); i++) {
|
|
if (ETy != (*$3)[i]->getType())
|
|
GEN_ERROR("Element #" + utostr(i) + " is not of type '" +
|
|
ETy->getDescription() +"' as required!\nIt is of type '"+
|
|
(*$3)[i]->getType()->getDescription() + "'.");
|
|
}
|
|
|
|
$$ = ConstantArray::get(ATy, *$3);
|
|
delete $1; delete $3;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| Types '[' ']' {
|
|
if (!UpRefs.empty())
|
|
GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
|
|
const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
|
|
if (ATy == 0)
|
|
GEN_ERROR("Cannot make array constant with type: '" +
|
|
(*$1)->getDescription() + "'");
|
|
|
|
int NumElements = ATy->getNumElements();
|
|
if (NumElements != -1 && NumElements != 0)
|
|
GEN_ERROR("Type mismatch: constant sized array initialized with 0"
|
|
" arguments, but has size of " + itostr(NumElements) +"");
|
|
$$ = ConstantArray::get(ATy, std::vector<Constant*>());
|
|
delete $1;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| Types 'c' STRINGCONSTANT {
|
|
if (!UpRefs.empty())
|
|
GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
|
|
const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
|
|
if (ATy == 0)
|
|
GEN_ERROR("Cannot make array constant with type: '" +
|
|
(*$1)->getDescription() + "'");
|
|
|
|
int NumElements = ATy->getNumElements();
|
|
const Type *ETy = ATy->getElementType();
|
|
if (NumElements != -1 && NumElements != int($3->length()))
|
|
GEN_ERROR("Can't build string constant of size " +
|
|
itostr((int)($3->length())) +
|
|
" when array has size " + itostr(NumElements) + "");
|
|
std::vector<Constant*> Vals;
|
|
if (ETy == Type::Int8Ty) {
|
|
for (unsigned i = 0; i < $3->length(); ++i)
|
|
Vals.push_back(ConstantInt::get(ETy, (*$3)[i]));
|
|
} else {
|
|
delete $3;
|
|
GEN_ERROR("Cannot build string arrays of non byte sized elements");
|
|
}
|
|
delete $3;
|
|
$$ = ConstantArray::get(ATy, Vals);
|
|
delete $1;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| Types '<' ConstVector '>' { // Nonempty unsized arr
|
|
if (!UpRefs.empty())
|
|
GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
|
|
const VectorType *PTy = dyn_cast<VectorType>($1->get());
|
|
if (PTy == 0)
|
|
GEN_ERROR("Cannot make packed constant with type: '" +
|
|
(*$1)->getDescription() + "'");
|
|
const Type *ETy = PTy->getElementType();
|
|
int NumElements = PTy->getNumElements();
|
|
|
|
// Verify that we have the correct size...
|
|
if (NumElements != -1 && NumElements != (int)$3->size())
|
|
GEN_ERROR("Type mismatch: constant sized packed initialized with " +
|
|
utostr($3->size()) + " arguments, but has size of " +
|
|
itostr(NumElements) + "");
|
|
|
|
// Verify all elements are correct type!
|
|
for (unsigned i = 0; i < $3->size(); i++) {
|
|
if (ETy != (*$3)[i]->getType())
|
|
GEN_ERROR("Element #" + utostr(i) + " is not of type '" +
|
|
ETy->getDescription() +"' as required!\nIt is of type '"+
|
|
(*$3)[i]->getType()->getDescription() + "'.");
|
|
}
|
|
|
|
$$ = ConstantVector::get(PTy, *$3);
|
|
delete $1; delete $3;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| Types '{' ConstVector '}' {
|
|
const StructType *STy = dyn_cast<StructType>($1->get());
|
|
if (STy == 0)
|
|
GEN_ERROR("Cannot make struct constant with type: '" +
|
|
(*$1)->getDescription() + "'");
|
|
|
|
if ($3->size() != STy->getNumContainedTypes())
|
|
GEN_ERROR("Illegal number of initializers for structure type");
|
|
|
|
// Check to ensure that constants are compatible with the type initializer!
|
|
for (unsigned i = 0, e = $3->size(); i != e; ++i)
|
|
if ((*$3)[i]->getType() != STy->getElementType(i))
|
|
GEN_ERROR("Expected type '" +
|
|
STy->getElementType(i)->getDescription() +
|
|
"' for element #" + utostr(i) +
|
|
" of structure initializer");
|
|
|
|
// Check to ensure that Type is not packed
|
|
if (STy->isPacked())
|
|
GEN_ERROR("Unpacked Initializer to vector type '" +
|
|
STy->getDescription() + "'");
|
|
|
|
$$ = ConstantStruct::get(STy, *$3);
|
|
delete $1; delete $3;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| Types '{' '}' {
|
|
if (!UpRefs.empty())
|
|
GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
|
|
const StructType *STy = dyn_cast<StructType>($1->get());
|
|
if (STy == 0)
|
|
GEN_ERROR("Cannot make struct constant with type: '" +
|
|
(*$1)->getDescription() + "'");
|
|
|
|
if (STy->getNumContainedTypes() != 0)
|
|
GEN_ERROR("Illegal number of initializers for structure type");
|
|
|
|
// Check to ensure that Type is not packed
|
|
if (STy->isPacked())
|
|
GEN_ERROR("Unpacked Initializer to vector type '" +
|
|
STy->getDescription() + "'");
|
|
|
|
$$ = ConstantStruct::get(STy, std::vector<Constant*>());
|
|
delete $1;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| Types '<' '{' ConstVector '}' '>' {
|
|
const StructType *STy = dyn_cast<StructType>($1->get());
|
|
if (STy == 0)
|
|
GEN_ERROR("Cannot make struct constant with type: '" +
|
|
(*$1)->getDescription() + "'");
|
|
|
|
if ($4->size() != STy->getNumContainedTypes())
|
|
GEN_ERROR("Illegal number of initializers for structure type");
|
|
|
|
// Check to ensure that constants are compatible with the type initializer!
|
|
for (unsigned i = 0, e = $4->size(); i != e; ++i)
|
|
if ((*$4)[i]->getType() != STy->getElementType(i))
|
|
GEN_ERROR("Expected type '" +
|
|
STy->getElementType(i)->getDescription() +
|
|
"' for element #" + utostr(i) +
|
|
" of structure initializer");
|
|
|
|
// Check to ensure that Type is packed
|
|
if (!STy->isPacked())
|
|
GEN_ERROR("Vector initializer to non-vector type '" +
|
|
STy->getDescription() + "'");
|
|
|
|
$$ = ConstantStruct::get(STy, *$4);
|
|
delete $1; delete $4;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| Types '<' '{' '}' '>' {
|
|
if (!UpRefs.empty())
|
|
GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
|
|
const StructType *STy = dyn_cast<StructType>($1->get());
|
|
if (STy == 0)
|
|
GEN_ERROR("Cannot make struct constant with type: '" +
|
|
(*$1)->getDescription() + "'");
|
|
|
|
if (STy->getNumContainedTypes() != 0)
|
|
GEN_ERROR("Illegal number of initializers for structure type");
|
|
|
|
// Check to ensure that Type is packed
|
|
if (!STy->isPacked())
|
|
GEN_ERROR("Vector initializer to non-vector type '" +
|
|
STy->getDescription() + "'");
|
|
|
|
$$ = ConstantStruct::get(STy, std::vector<Constant*>());
|
|
delete $1;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| Types NULL_TOK {
|
|
if (!UpRefs.empty())
|
|
GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
|
|
const PointerType *PTy = dyn_cast<PointerType>($1->get());
|
|
if (PTy == 0)
|
|
GEN_ERROR("Cannot make null pointer constant with type: '" +
|
|
(*$1)->getDescription() + "'");
|
|
|
|
$$ = ConstantPointerNull::get(PTy);
|
|
delete $1;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| Types UNDEF {
|
|
if (!UpRefs.empty())
|
|
GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
|
|
$$ = UndefValue::get($1->get());
|
|
delete $1;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| Types SymbolicValueRef {
|
|
if (!UpRefs.empty())
|
|
GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
|
|
const PointerType *Ty = dyn_cast<PointerType>($1->get());
|
|
if (Ty == 0)
|
|
GEN_ERROR("Global const reference must be a pointer type " + (*$1)->getDescription());
|
|
|
|
// ConstExprs can exist in the body of a function, thus creating
|
|
// GlobalValues whenever they refer to a variable. Because we are in
|
|
// the context of a function, getExistingVal will search the functions
|
|
// symbol table instead of the module symbol table for the global symbol,
|
|
// which throws things all off. To get around this, we just tell
|
|
// getExistingVal that we are at global scope here.
|
|
//
|
|
Function *SavedCurFn = CurFun.CurrentFunction;
|
|
CurFun.CurrentFunction = 0;
|
|
|
|
Value *V = getExistingVal(Ty, $2);
|
|
CHECK_FOR_ERROR
|
|
|
|
CurFun.CurrentFunction = SavedCurFn;
|
|
|
|
// If this is an initializer for a constant pointer, which is referencing a
|
|
// (currently) undefined variable, create a stub now that shall be replaced
|
|
// in the future with the right type of variable.
|
|
//
|
|
if (V == 0) {
|
|
assert(isa<PointerType>(Ty) && "Globals may only be used as pointers!");
|
|
const PointerType *PT = cast<PointerType>(Ty);
|
|
|
|
// First check to see if the forward references value is already created!
|
|
PerModuleInfo::GlobalRefsType::iterator I =
|
|
CurModule.GlobalRefs.find(std::make_pair(PT, $2));
|
|
|
|
if (I != CurModule.GlobalRefs.end()) {
|
|
V = I->second; // Placeholder already exists, use it...
|
|
$2.destroy();
|
|
} else {
|
|
std::string Name;
|
|
if ($2.Type == ValID::GlobalName)
|
|
Name = $2.getName();
|
|
else if ($2.Type != ValID::GlobalID)
|
|
GEN_ERROR("Invalid reference to global");
|
|
|
|
// Create the forward referenced global.
|
|
GlobalValue *GV;
|
|
if (const FunctionType *FTy =
|
|
dyn_cast<FunctionType>(PT->getElementType())) {
|
|
GV = Function::Create(FTy, GlobalValue::ExternalWeakLinkage, Name,
|
|
CurModule.CurrentModule);
|
|
} else {
|
|
GV = new GlobalVariable(PT->getElementType(), false,
|
|
GlobalValue::ExternalWeakLinkage, 0,
|
|
Name, CurModule.CurrentModule);
|
|
}
|
|
|
|
// Keep track of the fact that we have a forward ref to recycle it
|
|
CurModule.GlobalRefs.insert(std::make_pair(std::make_pair(PT, $2), GV));
|
|
V = GV;
|
|
}
|
|
}
|
|
|
|
$$ = cast<GlobalValue>(V);
|
|
delete $1; // Free the type handle
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| Types ConstExpr {
|
|
if (!UpRefs.empty())
|
|
GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
|
|
if ($1->get() != $2->getType())
|
|
GEN_ERROR("Mismatched types for constant expression: " +
|
|
(*$1)->getDescription() + " and " + $2->getType()->getDescription());
|
|
$$ = $2;
|
|
delete $1;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| Types ZEROINITIALIZER {
|
|
if (!UpRefs.empty())
|
|
GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
|
|
const Type *Ty = $1->get();
|
|
if (isa<FunctionType>(Ty) || Ty == Type::LabelTy || isa<OpaqueType>(Ty))
|
|
GEN_ERROR("Cannot create a null initialized value of this type");
|
|
$$ = Constant::getNullValue(Ty);
|
|
delete $1;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| IntType ESINT64VAL { // integral constants
|
|
if (!ConstantInt::isValueValidForType($1, $2))
|
|
GEN_ERROR("Constant value doesn't fit in type");
|
|
$$ = ConstantInt::get($1, $2, true);
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| IntType ESAPINTVAL { // arbitrary precision integer constants
|
|
uint32_t BitWidth = cast<IntegerType>($1)->getBitWidth();
|
|
if ($2->getBitWidth() > BitWidth) {
|
|
GEN_ERROR("Constant value does not fit in type");
|
|
}
|
|
$2->sextOrTrunc(BitWidth);
|
|
$$ = ConstantInt::get(*$2);
|
|
delete $2;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| IntType EUINT64VAL { // integral constants
|
|
if (!ConstantInt::isValueValidForType($1, $2))
|
|
GEN_ERROR("Constant value doesn't fit in type");
|
|
$$ = ConstantInt::get($1, $2, false);
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| IntType EUAPINTVAL { // arbitrary precision integer constants
|
|
uint32_t BitWidth = cast<IntegerType>($1)->getBitWidth();
|
|
if ($2->getBitWidth() > BitWidth) {
|
|
GEN_ERROR("Constant value does not fit in type");
|
|
}
|
|
$2->zextOrTrunc(BitWidth);
|
|
$$ = ConstantInt::get(*$2);
|
|
delete $2;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| INTTYPE TRUETOK { // Boolean constants
|
|
assert(cast<IntegerType>($1)->getBitWidth() == 1 && "Not Bool?");
|
|
$$ = ConstantInt::getTrue();
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| INTTYPE FALSETOK { // Boolean constants
|
|
assert(cast<IntegerType>($1)->getBitWidth() == 1 && "Not Bool?");
|
|
$$ = ConstantInt::getFalse();
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| FPType FPVAL { // Floating point constants
|
|
if (!ConstantFP::isValueValidForType($1, *$2))
|
|
GEN_ERROR("Floating point constant invalid for type");
|
|
// Lexer has no type info, so builds all float and double FP constants
|
|
// as double. Fix this here. Long double is done right.
|
|
if (&$2->getSemantics()==&APFloat::IEEEdouble && $1==Type::FloatTy)
|
|
$2->convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven);
|
|
$$ = ConstantFP::get(*$2);
|
|
delete $2;
|
|
CHECK_FOR_ERROR
|
|
};
|
|
|
|
|
|
ConstExpr: CastOps '(' ConstVal TO Types ')' {
|
|
if (!UpRefs.empty())
|
|
GEN_ERROR("Invalid upreference in type: " + (*$5)->getDescription());
|
|
Constant *Val = $3;
|
|
const Type *DestTy = $5->get();
|
|
if (!CastInst::castIsValid($1, $3, DestTy))
|
|
GEN_ERROR("invalid cast opcode for cast from '" +
|
|
Val->getType()->getDescription() + "' to '" +
|
|
DestTy->getDescription() + "'");
|
|
$$ = ConstantExpr::getCast($1, $3, DestTy);
|
|
delete $5;
|
|
}
|
|
| GETELEMENTPTR '(' ConstVal IndexList ')' {
|
|
if (!isa<PointerType>($3->getType()))
|
|
GEN_ERROR("GetElementPtr requires a pointer operand");
|
|
|
|
const Type *IdxTy =
|
|
GetElementPtrInst::getIndexedType($3->getType(), $4->begin(), $4->end());
|
|
if (!IdxTy)
|
|
GEN_ERROR("Index list invalid for constant getelementptr");
|
|
|
|
SmallVector<Constant*, 8> IdxVec;
|
|
for (unsigned i = 0, e = $4->size(); i != e; ++i)
|
|
if (Constant *C = dyn_cast<Constant>((*$4)[i]))
|
|
IdxVec.push_back(C);
|
|
else
|
|
GEN_ERROR("Indices to constant getelementptr must be constants");
|
|
|
|
delete $4;
|
|
|
|
$$ = ConstantExpr::getGetElementPtr($3, &IdxVec[0], IdxVec.size());
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| SELECT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
|
|
if ($3->getType() != Type::Int1Ty)
|
|
GEN_ERROR("Select condition must be of boolean type");
|
|
if ($5->getType() != $7->getType())
|
|
GEN_ERROR("Select operand types must match");
|
|
$$ = ConstantExpr::getSelect($3, $5, $7);
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| ArithmeticOps '(' ConstVal ',' ConstVal ')' {
|
|
if ($3->getType() != $5->getType())
|
|
GEN_ERROR("Binary operator types must match");
|
|
CHECK_FOR_ERROR;
|
|
$$ = ConstantExpr::get($1, $3, $5);
|
|
}
|
|
| LogicalOps '(' ConstVal ',' ConstVal ')' {
|
|
if ($3->getType() != $5->getType())
|
|
GEN_ERROR("Logical operator types must match");
|
|
if (!$3->getType()->isInteger()) {
|
|
if (Instruction::isShift($1) || !isa<VectorType>($3->getType()) ||
|
|
!cast<VectorType>($3->getType())->getElementType()->isInteger())
|
|
GEN_ERROR("Logical operator requires integral operands");
|
|
}
|
|
$$ = ConstantExpr::get($1, $3, $5);
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| ICMP IPredicates '(' ConstVal ',' ConstVal ')' {
|
|
if ($4->getType() != $6->getType())
|
|
GEN_ERROR("icmp operand types must match");
|
|
$$ = ConstantExpr::getICmp($2, $4, $6);
|
|
}
|
|
| FCMP FPredicates '(' ConstVal ',' ConstVal ')' {
|
|
if ($4->getType() != $6->getType())
|
|
GEN_ERROR("fcmp operand types must match");
|
|
$$ = ConstantExpr::getFCmp($2, $4, $6);
|
|
}
|
|
| VICMP IPredicates '(' ConstVal ',' ConstVal ')' {
|
|
if ($4->getType() != $6->getType())
|
|
GEN_ERROR("vicmp operand types must match");
|
|
$$ = ConstantExpr::getVICmp($2, $4, $6);
|
|
}
|
|
| VFCMP FPredicates '(' ConstVal ',' ConstVal ')' {
|
|
if ($4->getType() != $6->getType())
|
|
GEN_ERROR("vfcmp operand types must match");
|
|
$$ = ConstantExpr::getVFCmp($2, $4, $6);
|
|
}
|
|
| EXTRACTELEMENT '(' ConstVal ',' ConstVal ')' {
|
|
if (!ExtractElementInst::isValidOperands($3, $5))
|
|
GEN_ERROR("Invalid extractelement operands");
|
|
$$ = ConstantExpr::getExtractElement($3, $5);
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| INSERTELEMENT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
|
|
if (!InsertElementInst::isValidOperands($3, $5, $7))
|
|
GEN_ERROR("Invalid insertelement operands");
|
|
$$ = ConstantExpr::getInsertElement($3, $5, $7);
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| SHUFFLEVECTOR '(' ConstVal ',' ConstVal ',' ConstVal ')' {
|
|
if (!ShuffleVectorInst::isValidOperands($3, $5, $7))
|
|
GEN_ERROR("Invalid shufflevector operands");
|
|
$$ = ConstantExpr::getShuffleVector($3, $5, $7);
|
|
CHECK_FOR_ERROR
|
|
};
|
|
|
|
|
|
// ConstVector - A list of comma separated constants.
|
|
ConstVector : ConstVector ',' ConstVal {
|
|
($$ = $1)->push_back($3);
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| ConstVal {
|
|
$$ = new std::vector<Constant*>();
|
|
$$->push_back($1);
|
|
CHECK_FOR_ERROR
|
|
};
|
|
|
|
|
|
// GlobalType - Match either GLOBAL or CONSTANT for global declarations...
|
|
GlobalType : GLOBAL { $$ = false; } | CONSTANT { $$ = true; };
|
|
|
|
// ThreadLocal
|
|
ThreadLocal : THREAD_LOCAL { $$ = true; } | { $$ = false; };
|
|
|
|
// AliaseeRef - Match either GlobalValue or bitcast to GlobalValue.
|
|
AliaseeRef : ResultTypes SymbolicValueRef {
|
|
const Type* VTy = $1->get();
|
|
Value *V = getVal(VTy, $2);
|
|
CHECK_FOR_ERROR
|
|
GlobalValue* Aliasee = dyn_cast<GlobalValue>(V);
|
|
if (!Aliasee)
|
|
GEN_ERROR("Aliases can be created only to global values");
|
|
|
|
$$ = Aliasee;
|
|
CHECK_FOR_ERROR
|
|
delete $1;
|
|
}
|
|
| BITCAST '(' AliaseeRef TO Types ')' {
|
|
Constant *Val = $3;
|
|
const Type *DestTy = $5->get();
|
|
if (!CastInst::castIsValid($1, $3, DestTy))
|
|
GEN_ERROR("invalid cast opcode for cast from '" +
|
|
Val->getType()->getDescription() + "' to '" +
|
|
DestTy->getDescription() + "'");
|
|
|
|
$$ = ConstantExpr::getCast($1, $3, DestTy);
|
|
CHECK_FOR_ERROR
|
|
delete $5;
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Rules to match Modules
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Module rule: Capture the result of parsing the whole file into a result
|
|
// variable...
|
|
//
|
|
Module
|
|
: DefinitionList {
|
|
$$ = ParserResult = CurModule.CurrentModule;
|
|
CurModule.ModuleDone();
|
|
CHECK_FOR_ERROR;
|
|
}
|
|
| /*empty*/ {
|
|
$$ = ParserResult = CurModule.CurrentModule;
|
|
CurModule.ModuleDone();
|
|
CHECK_FOR_ERROR;
|
|
}
|
|
;
|
|
|
|
DefinitionList
|
|
: Definition
|
|
| DefinitionList Definition
|
|
;
|
|
|
|
Definition
|
|
: DEFINE { CurFun.isDeclare = false; } Function {
|
|
CurFun.FunctionDone();
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| DECLARE { CurFun.isDeclare = true; } FunctionProto {
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| MODULE ASM_TOK AsmBlock {
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| OptLocalAssign TYPE Types {
|
|
if (!UpRefs.empty())
|
|
GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
|
|
// Eagerly resolve types. This is not an optimization, this is a
|
|
// requirement that is due to the fact that we could have this:
|
|
//
|
|
// %list = type { %list * }
|
|
// %list = type { %list * } ; repeated type decl
|
|
//
|
|
// If types are not resolved eagerly, then the two types will not be
|
|
// determined to be the same type!
|
|
//
|
|
ResolveTypeTo($1, *$3);
|
|
|
|
if (!setTypeName(*$3, $1) && !$1) {
|
|
CHECK_FOR_ERROR
|
|
// If this is a named type that is not a redefinition, add it to the slot
|
|
// table.
|
|
CurModule.Types.push_back(*$3);
|
|
}
|
|
|
|
delete $3;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| OptLocalAssign TYPE VOID {
|
|
ResolveTypeTo($1, $3);
|
|
|
|
if (!setTypeName($3, $1) && !$1) {
|
|
CHECK_FOR_ERROR
|
|
// If this is a named type that is not a redefinition, add it to the slot
|
|
// table.
|
|
CurModule.Types.push_back($3);
|
|
}
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| OptGlobalAssign GVVisibilityStyle ThreadLocal GlobalType ConstVal
|
|
OptAddrSpace {
|
|
/* "Externally Visible" Linkage */
|
|
if ($5 == 0)
|
|
GEN_ERROR("Global value initializer is not a constant");
|
|
CurGV = ParseGlobalVariable($1, GlobalValue::ExternalLinkage,
|
|
$2, $4, $5->getType(), $5, $3, $6);
|
|
CHECK_FOR_ERROR
|
|
} GlobalVarAttributes {
|
|
CurGV = 0;
|
|
}
|
|
| OptGlobalAssign GVInternalLinkage GVVisibilityStyle ThreadLocal GlobalType
|
|
ConstVal OptAddrSpace {
|
|
if ($6 == 0)
|
|
GEN_ERROR("Global value initializer is not a constant");
|
|
CurGV = ParseGlobalVariable($1, $2, $3, $5, $6->getType(), $6, $4, $7);
|
|
CHECK_FOR_ERROR
|
|
} GlobalVarAttributes {
|
|
CurGV = 0;
|
|
}
|
|
| OptGlobalAssign GVExternalLinkage GVVisibilityStyle ThreadLocal GlobalType
|
|
Types OptAddrSpace {
|
|
if (!UpRefs.empty())
|
|
GEN_ERROR("Invalid upreference in type: " + (*$6)->getDescription());
|
|
CurGV = ParseGlobalVariable($1, $2, $3, $5, *$6, 0, $4, $7);
|
|
CHECK_FOR_ERROR
|
|
delete $6;
|
|
} GlobalVarAttributes {
|
|
CurGV = 0;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| OptGlobalAssign GVVisibilityStyle ALIAS AliasLinkage AliaseeRef {
|
|
std::string Name;
|
|
if ($1) {
|
|
Name = *$1;
|
|
delete $1;
|
|
}
|
|
if (Name.empty())
|
|
GEN_ERROR("Alias name cannot be empty");
|
|
|
|
Constant* Aliasee = $5;
|
|
if (Aliasee == 0)
|
|
GEN_ERROR(std::string("Invalid aliasee for alias: ") + Name);
|
|
|
|
GlobalAlias* GA = new GlobalAlias(Aliasee->getType(), $4, Name, Aliasee,
|
|
CurModule.CurrentModule);
|
|
GA->setVisibility($2);
|
|
InsertValue(GA, CurModule.Values);
|
|
|
|
|
|
// If there was a forward reference of this alias, resolve it now.
|
|
|
|
ValID ID;
|
|
if (!Name.empty())
|
|
ID = ValID::createGlobalName(Name);
|
|
else
|
|
ID = ValID::createGlobalID(CurModule.Values.size()-1);
|
|
|
|
if (GlobalValue *FWGV =
|
|
CurModule.GetForwardRefForGlobal(GA->getType(), ID)) {
|
|
// Replace uses of the fwdref with the actual alias.
|
|
FWGV->replaceAllUsesWith(GA);
|
|
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(FWGV))
|
|
GV->eraseFromParent();
|
|
else
|
|
cast<Function>(FWGV)->eraseFromParent();
|
|
}
|
|
ID.destroy();
|
|
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| TARGET TargetDefinition {
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| DEPLIBS '=' LibrariesDefinition {
|
|
CHECK_FOR_ERROR
|
|
}
|
|
;
|
|
|
|
|
|
AsmBlock : STRINGCONSTANT {
|
|
const std::string &AsmSoFar = CurModule.CurrentModule->getModuleInlineAsm();
|
|
if (AsmSoFar.empty())
|
|
CurModule.CurrentModule->setModuleInlineAsm(*$1);
|
|
else
|
|
CurModule.CurrentModule->setModuleInlineAsm(AsmSoFar+"\n"+*$1);
|
|
delete $1;
|
|
CHECK_FOR_ERROR
|
|
};
|
|
|
|
TargetDefinition : TRIPLE '=' STRINGCONSTANT {
|
|
CurModule.CurrentModule->setTargetTriple(*$3);
|
|
delete $3;
|
|
}
|
|
| DATALAYOUT '=' STRINGCONSTANT {
|
|
CurModule.CurrentModule->setDataLayout(*$3);
|
|
delete $3;
|
|
};
|
|
|
|
LibrariesDefinition : '[' LibList ']';
|
|
|
|
LibList : LibList ',' STRINGCONSTANT {
|
|
CurModule.CurrentModule->addLibrary(*$3);
|
|
delete $3;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| STRINGCONSTANT {
|
|
CurModule.CurrentModule->addLibrary(*$1);
|
|
delete $1;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| /* empty: end of list */ {
|
|
CHECK_FOR_ERROR
|
|
}
|
|
;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Rules to match Function Headers
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ArgListH : ArgListH ',' Types OptParamAttrs OptLocalName {
|
|
if (!UpRefs.empty())
|
|
GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
|
|
if (*$3 == Type::VoidTy)
|
|
GEN_ERROR("void typed arguments are invalid");
|
|
ArgListEntry E; E.Attrs = $4; E.Ty = $3; E.Name = $5;
|
|
$$ = $1;
|
|
$1->push_back(E);
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| Types OptParamAttrs OptLocalName {
|
|
if (!UpRefs.empty())
|
|
GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
|
|
if (*$1 == Type::VoidTy)
|
|
GEN_ERROR("void typed arguments are invalid");
|
|
ArgListEntry E; E.Attrs = $2; E.Ty = $1; E.Name = $3;
|
|
$$ = new ArgListType;
|
|
$$->push_back(E);
|
|
CHECK_FOR_ERROR
|
|
};
|
|
|
|
ArgList : ArgListH {
|
|
$$ = $1;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| ArgListH ',' DOTDOTDOT {
|
|
$$ = $1;
|
|
struct ArgListEntry E;
|
|
E.Ty = new PATypeHolder(Type::VoidTy);
|
|
E.Name = 0;
|
|
E.Attrs = ParamAttr::None;
|
|
$$->push_back(E);
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| DOTDOTDOT {
|
|
$$ = new ArgListType;
|
|
struct ArgListEntry E;
|
|
E.Ty = new PATypeHolder(Type::VoidTy);
|
|
E.Name = 0;
|
|
E.Attrs = ParamAttr::None;
|
|
$$->push_back(E);
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| /* empty */ {
|
|
$$ = 0;
|
|
CHECK_FOR_ERROR
|
|
};
|
|
|
|
FunctionHeaderH : OptCallingConv ResultTypes GlobalName '(' ArgList ')'
|
|
OptFuncAttrs OptSection OptAlign OptGC {
|
|
std::string FunctionName(*$3);
|
|
delete $3; // Free strdup'd memory!
|
|
|
|
// Check the function result for abstractness if this is a define. We should
|
|
// have no abstract types at this point
|
|
if (!CurFun.isDeclare && CurModule.TypeIsUnresolved($2))
|
|
GEN_ERROR("Reference to abstract result: "+ $2->get()->getDescription());
|
|
|
|
if (!FunctionType::isValidReturnType(*$2))
|
|
GEN_ERROR("Invalid result type for LLVM function");
|
|
|
|
std::vector<const Type*> ParamTypeList;
|
|
SmallVector<ParamAttrsWithIndex, 8> Attrs;
|
|
if ($7 != ParamAttr::None)
|
|
Attrs.push_back(ParamAttrsWithIndex::get(0, $7));
|
|
if ($5) { // If there are arguments...
|
|
unsigned index = 1;
|
|
for (ArgListType::iterator I = $5->begin(); I != $5->end(); ++I, ++index) {
|
|
const Type* Ty = I->Ty->get();
|
|
if (!CurFun.isDeclare && CurModule.TypeIsUnresolved(I->Ty))
|
|
GEN_ERROR("Reference to abstract argument: " + Ty->getDescription());
|
|
ParamTypeList.push_back(Ty);
|
|
if (Ty != Type::VoidTy && I->Attrs != ParamAttr::None)
|
|
Attrs.push_back(ParamAttrsWithIndex::get(index, I->Attrs));
|
|
}
|
|
}
|
|
|
|
bool isVarArg = ParamTypeList.size() && ParamTypeList.back() == Type::VoidTy;
|
|
if (isVarArg) ParamTypeList.pop_back();
|
|
|
|
PAListPtr PAL;
|
|
if (!Attrs.empty())
|
|
PAL = PAListPtr::get(Attrs.begin(), Attrs.end());
|
|
|
|
FunctionType *FT = FunctionType::get(*$2, ParamTypeList, isVarArg);
|
|
const PointerType *PFT = PointerType::getUnqual(FT);
|
|
delete $2;
|
|
|
|
ValID ID;
|
|
if (!FunctionName.empty()) {
|
|
ID = ValID::createGlobalName((char*)FunctionName.c_str());
|
|
} else {
|
|
ID = ValID::createGlobalID(CurModule.Values.size());
|
|
}
|
|
|
|
Function *Fn = 0;
|
|
// See if this function was forward referenced. If so, recycle the object.
|
|
if (GlobalValue *FWRef = CurModule.GetForwardRefForGlobal(PFT, ID)) {
|
|
// Move the function to the end of the list, from whereever it was
|
|
// previously inserted.
|
|
Fn = cast<Function>(FWRef);
|
|
assert(Fn->getParamAttrs().isEmpty() &&
|
|
"Forward reference has parameter attributes!");
|
|
CurModule.CurrentModule->getFunctionList().remove(Fn);
|
|
CurModule.CurrentModule->getFunctionList().push_back(Fn);
|
|
} else if (!FunctionName.empty() && // Merge with an earlier prototype?
|
|
(Fn = CurModule.CurrentModule->getFunction(FunctionName))) {
|
|
if (Fn->getFunctionType() != FT ) {
|
|
// The existing function doesn't have the same type. This is an overload
|
|
// error.
|
|
GEN_ERROR("Overload of function '" + FunctionName + "' not permitted.");
|
|
} else if (Fn->getParamAttrs() != PAL) {
|
|
// The existing function doesn't have the same parameter attributes.
|
|
// This is an overload error.
|
|
GEN_ERROR("Overload of function '" + FunctionName + "' not permitted.");
|
|
} else if (!CurFun.isDeclare && !Fn->isDeclaration()) {
|
|
// Neither the existing or the current function is a declaration and they
|
|
// have the same name and same type. Clearly this is a redefinition.
|
|
GEN_ERROR("Redefinition of function '" + FunctionName + "'");
|
|
} else if (Fn->isDeclaration()) {
|
|
// Make sure to strip off any argument names so we can't get conflicts.
|
|
for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
|
|
AI != AE; ++AI)
|
|
AI->setName("");
|
|
}
|
|
} else { // Not already defined?
|
|
Fn = Function::Create(FT, GlobalValue::ExternalWeakLinkage, FunctionName,
|
|
CurModule.CurrentModule);
|
|
InsertValue(Fn, CurModule.Values);
|
|
}
|
|
|
|
CurFun.FunctionStart(Fn);
|
|
|
|
if (CurFun.isDeclare) {
|
|
// If we have declaration, always overwrite linkage. This will allow us to
|
|
// correctly handle cases, when pointer to function is passed as argument to
|
|
// another function.
|
|
Fn->setLinkage(CurFun.Linkage);
|
|
Fn->setVisibility(CurFun.Visibility);
|
|
}
|
|
Fn->setCallingConv($1);
|
|
Fn->setParamAttrs(PAL);
|
|
Fn->setAlignment($9);
|
|
if ($8) {
|
|
Fn->setSection(*$8);
|
|
delete $8;
|
|
}
|
|
if ($10) {
|
|
Fn->setCollector($10->c_str());
|
|
delete $10;
|
|
}
|
|
|
|
// Add all of the arguments we parsed to the function...
|
|
if ($5) { // Is null if empty...
|
|
if (isVarArg) { // Nuke the last entry
|
|
assert($5->back().Ty->get() == Type::VoidTy && $5->back().Name == 0 &&
|
|
"Not a varargs marker!");
|
|
delete $5->back().Ty;
|
|
$5->pop_back(); // Delete the last entry
|
|
}
|
|
Function::arg_iterator ArgIt = Fn->arg_begin();
|
|
Function::arg_iterator ArgEnd = Fn->arg_end();
|
|
unsigned Idx = 1;
|
|
for (ArgListType::iterator I = $5->begin();
|
|
I != $5->end() && ArgIt != ArgEnd; ++I, ++ArgIt) {
|
|
delete I->Ty; // Delete the typeholder...
|
|
setValueName(ArgIt, I->Name); // Insert arg into symtab...
|
|
CHECK_FOR_ERROR
|
|
InsertValue(ArgIt);
|
|
Idx++;
|
|
}
|
|
|
|
delete $5; // We're now done with the argument list
|
|
}
|
|
CHECK_FOR_ERROR
|
|
};
|
|
|
|
BEGIN : BEGINTOK | '{'; // Allow BEGIN or '{' to start a function
|
|
|
|
FunctionHeader : FunctionDefineLinkage GVVisibilityStyle FunctionHeaderH BEGIN {
|
|
$$ = CurFun.CurrentFunction;
|
|
|
|
// Make sure that we keep track of the linkage type even if there was a
|
|
// previous "declare".
|
|
$$->setLinkage($1);
|
|
$$->setVisibility($2);
|
|
};
|
|
|
|
END : ENDTOK | '}'; // Allow end of '}' to end a function
|
|
|
|
Function : BasicBlockList END {
|
|
$$ = $1;
|
|
CHECK_FOR_ERROR
|
|
};
|
|
|
|
FunctionProto : FunctionDeclareLinkage GVVisibilityStyle FunctionHeaderH {
|
|
CurFun.CurrentFunction->setLinkage($1);
|
|
CurFun.CurrentFunction->setVisibility($2);
|
|
$$ = CurFun.CurrentFunction;
|
|
CurFun.FunctionDone();
|
|
CHECK_FOR_ERROR
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Rules to match Basic Blocks
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OptSideEffect : /* empty */ {
|
|
$$ = false;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| SIDEEFFECT {
|
|
$$ = true;
|
|
CHECK_FOR_ERROR
|
|
};
|
|
|
|
ConstValueRef : ESINT64VAL { // A reference to a direct constant
|
|
$$ = ValID::create($1);
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| EUINT64VAL {
|
|
$$ = ValID::create($1);
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| FPVAL { // Perhaps it's an FP constant?
|
|
$$ = ValID::create($1);
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| TRUETOK {
|
|
$$ = ValID::create(ConstantInt::getTrue());
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| FALSETOK {
|
|
$$ = ValID::create(ConstantInt::getFalse());
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| NULL_TOK {
|
|
$$ = ValID::createNull();
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| UNDEF {
|
|
$$ = ValID::createUndef();
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| ZEROINITIALIZER { // A vector zero constant.
|
|
$$ = ValID::createZeroInit();
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| '<' ConstVector '>' { // Nonempty unsized packed vector
|
|
const Type *ETy = (*$2)[0]->getType();
|
|
int NumElements = $2->size();
|
|
|
|
VectorType* pt = VectorType::get(ETy, NumElements);
|
|
PATypeHolder* PTy = new PATypeHolder(
|
|
HandleUpRefs(
|
|
VectorType::get(
|
|
ETy,
|
|
NumElements)
|
|
)
|
|
);
|
|
|
|
// Verify all elements are correct type!
|
|
for (unsigned i = 0; i < $2->size(); i++) {
|
|
if (ETy != (*$2)[i]->getType())
|
|
GEN_ERROR("Element #" + utostr(i) + " is not of type '" +
|
|
ETy->getDescription() +"' as required!\nIt is of type '" +
|
|
(*$2)[i]->getType()->getDescription() + "'.");
|
|
}
|
|
|
|
$$ = ValID::create(ConstantVector::get(pt, *$2));
|
|
delete PTy; delete $2;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| ConstExpr {
|
|
$$ = ValID::create($1);
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| ASM_TOK OptSideEffect STRINGCONSTANT ',' STRINGCONSTANT {
|
|
$$ = ValID::createInlineAsm(*$3, *$5, $2);
|
|
delete $3;
|
|
delete $5;
|
|
CHECK_FOR_ERROR
|
|
};
|
|
|
|
// SymbolicValueRef - Reference to one of two ways of symbolically refering to
|
|
// another value.
|
|
//
|
|
SymbolicValueRef : LOCALVAL_ID { // Is it an integer reference...?
|
|
$$ = ValID::createLocalID($1);
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| GLOBALVAL_ID {
|
|
$$ = ValID::createGlobalID($1);
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| LocalName { // Is it a named reference...?
|
|
$$ = ValID::createLocalName(*$1);
|
|
delete $1;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| GlobalName { // Is it a named reference...?
|
|
$$ = ValID::createGlobalName(*$1);
|
|
delete $1;
|
|
CHECK_FOR_ERROR
|
|
};
|
|
|
|
// ValueRef - A reference to a definition... either constant or symbolic
|
|
ValueRef : SymbolicValueRef | ConstValueRef;
|
|
|
|
|
|
// ResolvedVal - a <type> <value> pair. This is used only in cases where the
|
|
// type immediately preceeds the value reference, and allows complex constant
|
|
// pool references (for things like: 'ret [2 x int] [ int 12, int 42]')
|
|
ResolvedVal : Types ValueRef {
|
|
if (!UpRefs.empty())
|
|
GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
|
|
$$ = getVal(*$1, $2);
|
|
delete $1;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
;
|
|
|
|
ReturnedVal : ResolvedVal {
|
|
$$ = new std::vector<Value *>();
|
|
$$->push_back($1);
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| ReturnedVal ',' ResolvedVal {
|
|
($$=$1)->push_back($3);
|
|
CHECK_FOR_ERROR
|
|
};
|
|
|
|
BasicBlockList : BasicBlockList BasicBlock {
|
|
$$ = $1;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| FunctionHeader BasicBlock { // Do not allow functions with 0 basic blocks
|
|
$$ = $1;
|
|
CHECK_FOR_ERROR
|
|
};
|
|
|
|
|
|
// Basic blocks are terminated by branching instructions:
|
|
// br, br/cc, switch, ret
|
|
//
|
|
BasicBlock : InstructionList OptLocalAssign BBTerminatorInst {
|
|
setValueName($3, $2);
|
|
CHECK_FOR_ERROR
|
|
InsertValue($3);
|
|
$1->getInstList().push_back($3);
|
|
$$ = $1;
|
|
CHECK_FOR_ERROR
|
|
};
|
|
|
|
InstructionList : InstructionList Inst {
|
|
if (CastInst *CI1 = dyn_cast<CastInst>($2))
|
|
if (CastInst *CI2 = dyn_cast<CastInst>(CI1->getOperand(0)))
|
|
if (CI2->getParent() == 0)
|
|
$1->getInstList().push_back(CI2);
|
|
$1->getInstList().push_back($2);
|
|
$$ = $1;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| /* empty */ { // Empty space between instruction lists
|
|
$$ = defineBBVal(ValID::createLocalID(CurFun.NextValNum));
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| LABELSTR { // Labelled (named) basic block
|
|
$$ = defineBBVal(ValID::createLocalName(*$1));
|
|
delete $1;
|
|
CHECK_FOR_ERROR
|
|
|
|
};
|
|
|
|
BBTerminatorInst :
|
|
RET ReturnedVal { // Return with a result...
|
|
ValueList &VL = *$2;
|
|
assert(!VL.empty() && "Invalid ret operands!");
|
|
$$ = ReturnInst::Create(&VL[0], VL.size());
|
|
delete $2;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| RET VOID { // Return with no result...
|
|
$$ = ReturnInst::Create();
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| BR LABEL ValueRef { // Unconditional Branch...
|
|
BasicBlock* tmpBB = getBBVal($3);
|
|
CHECK_FOR_ERROR
|
|
$$ = BranchInst::Create(tmpBB);
|
|
} // Conditional Branch...
|
|
| BR INTTYPE ValueRef ',' LABEL ValueRef ',' LABEL ValueRef {
|
|
assert(cast<IntegerType>($2)->getBitWidth() == 1 && "Not Bool?");
|
|
BasicBlock* tmpBBA = getBBVal($6);
|
|
CHECK_FOR_ERROR
|
|
BasicBlock* tmpBBB = getBBVal($9);
|
|
CHECK_FOR_ERROR
|
|
Value* tmpVal = getVal(Type::Int1Ty, $3);
|
|
CHECK_FOR_ERROR
|
|
$$ = BranchInst::Create(tmpBBA, tmpBBB, tmpVal);
|
|
}
|
|
| SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' {
|
|
Value* tmpVal = getVal($2, $3);
|
|
CHECK_FOR_ERROR
|
|
BasicBlock* tmpBB = getBBVal($6);
|
|
CHECK_FOR_ERROR
|
|
SwitchInst *S = SwitchInst::Create(tmpVal, tmpBB, $8->size());
|
|
$$ = S;
|
|
|
|
std::vector<std::pair<Constant*,BasicBlock*> >::iterator I = $8->begin(),
|
|
E = $8->end();
|
|
for (; I != E; ++I) {
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(I->first))
|
|
S->addCase(CI, I->second);
|
|
else
|
|
GEN_ERROR("Switch case is constant, but not a simple integer");
|
|
}
|
|
delete $8;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| SWITCH IntType ValueRef ',' LABEL ValueRef '[' ']' {
|
|
Value* tmpVal = getVal($2, $3);
|
|
CHECK_FOR_ERROR
|
|
BasicBlock* tmpBB = getBBVal($6);
|
|
CHECK_FOR_ERROR
|
|
SwitchInst *S = SwitchInst::Create(tmpVal, tmpBB, 0);
|
|
$$ = S;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| INVOKE OptCallingConv ResultTypes ValueRef '(' ParamList ')' OptFuncAttrs
|
|
TO LABEL ValueRef UNWIND LABEL ValueRef {
|
|
|
|
// Handle the short syntax
|
|
const PointerType *PFTy = 0;
|
|
const FunctionType *Ty = 0;
|
|
if (!(PFTy = dyn_cast<PointerType>($3->get())) ||
|
|
!(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
|
|
// Pull out the types of all of the arguments...
|
|
std::vector<const Type*> ParamTypes;
|
|
ParamList::iterator I = $6->begin(), E = $6->end();
|
|
for (; I != E; ++I) {
|
|
const Type *Ty = I->Val->getType();
|
|
if (Ty == Type::VoidTy)
|
|
GEN_ERROR("Short call syntax cannot be used with varargs");
|
|
ParamTypes.push_back(Ty);
|
|
}
|
|
|
|
if (!FunctionType::isValidReturnType(*$3))
|
|
GEN_ERROR("Invalid result type for LLVM function");
|
|
|
|
Ty = FunctionType::get($3->get(), ParamTypes, false);
|
|
PFTy = PointerType::getUnqual(Ty);
|
|
}
|
|
|
|
delete $3;
|
|
|
|
Value *V = getVal(PFTy, $4); // Get the function we're calling...
|
|
CHECK_FOR_ERROR
|
|
BasicBlock *Normal = getBBVal($11);
|
|
CHECK_FOR_ERROR
|
|
BasicBlock *Except = getBBVal($14);
|
|
CHECK_FOR_ERROR
|
|
|
|
SmallVector<ParamAttrsWithIndex, 8> Attrs;
|
|
if ($8 != ParamAttr::None)
|
|
Attrs.push_back(ParamAttrsWithIndex::get(0, $8));
|
|
|
|
// Check the arguments
|
|
ValueList Args;
|
|
if ($6->empty()) { // Has no arguments?
|
|
// Make sure no arguments is a good thing!
|
|
if (Ty->getNumParams() != 0)
|
|
GEN_ERROR("No arguments passed to a function that "
|
|
"expects arguments");
|
|
} else { // Has arguments?
|
|
// Loop through FunctionType's arguments and ensure they are specified
|
|
// correctly!
|
|
FunctionType::param_iterator I = Ty->param_begin();
|
|
FunctionType::param_iterator E = Ty->param_end();
|
|
ParamList::iterator ArgI = $6->begin(), ArgE = $6->end();
|
|
unsigned index = 1;
|
|
|
|
for (; ArgI != ArgE && I != E; ++ArgI, ++I, ++index) {
|
|
if (ArgI->Val->getType() != *I)
|
|
GEN_ERROR("Parameter " + ArgI->Val->getName()+ " is not of type '" +
|
|
(*I)->getDescription() + "'");
|
|
Args.push_back(ArgI->Val);
|
|
if (ArgI->Attrs != ParamAttr::None)
|
|
Attrs.push_back(ParamAttrsWithIndex::get(index, ArgI->Attrs));
|
|
}
|
|
|
|
if (Ty->isVarArg()) {
|
|
if (I == E)
|
|
for (; ArgI != ArgE; ++ArgI, ++index) {
|
|
Args.push_back(ArgI->Val); // push the remaining varargs
|
|
if (ArgI->Attrs != ParamAttr::None)
|
|
Attrs.push_back(ParamAttrsWithIndex::get(index, ArgI->Attrs));
|
|
}
|
|
} else if (I != E || ArgI != ArgE)
|
|
GEN_ERROR("Invalid number of parameters detected");
|
|
}
|
|
|
|
PAListPtr PAL;
|
|
if (!Attrs.empty())
|
|
PAL = PAListPtr::get(Attrs.begin(), Attrs.end());
|
|
|
|
// Create the InvokeInst
|
|
InvokeInst *II = InvokeInst::Create(V, Normal, Except,
|
|
Args.begin(), Args.end());
|
|
II->setCallingConv($2);
|
|
II->setParamAttrs(PAL);
|
|
$$ = II;
|
|
delete $6;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| UNWIND {
|
|
$$ = new UnwindInst();
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| UNREACHABLE {
|
|
$$ = new UnreachableInst();
|
|
CHECK_FOR_ERROR
|
|
};
|
|
|
|
|
|
|
|
JumpTable : JumpTable IntType ConstValueRef ',' LABEL ValueRef {
|
|
$$ = $1;
|
|
Constant *V = cast<Constant>(getExistingVal($2, $3));
|
|
CHECK_FOR_ERROR
|
|
if (V == 0)
|
|
GEN_ERROR("May only switch on a constant pool value");
|
|
|
|
BasicBlock* tmpBB = getBBVal($6);
|
|
CHECK_FOR_ERROR
|
|
$$->push_back(std::make_pair(V, tmpBB));
|
|
}
|
|
| IntType ConstValueRef ',' LABEL ValueRef {
|
|
$$ = new std::vector<std::pair<Constant*, BasicBlock*> >();
|
|
Constant *V = cast<Constant>(getExistingVal($1, $2));
|
|
CHECK_FOR_ERROR
|
|
|
|
if (V == 0)
|
|
GEN_ERROR("May only switch on a constant pool value");
|
|
|
|
BasicBlock* tmpBB = getBBVal($5);
|
|
CHECK_FOR_ERROR
|
|
$$->push_back(std::make_pair(V, tmpBB));
|
|
};
|
|
|
|
Inst : OptLocalAssign InstVal {
|
|
// Is this definition named?? if so, assign the name...
|
|
setValueName($2, $1);
|
|
CHECK_FOR_ERROR
|
|
InsertValue($2);
|
|
$$ = $2;
|
|
CHECK_FOR_ERROR
|
|
};
|
|
|
|
|
|
PHIList : Types '[' ValueRef ',' ValueRef ']' { // Used for PHI nodes
|
|
if (!UpRefs.empty())
|
|
GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
|
|
$$ = new std::list<std::pair<Value*, BasicBlock*> >();
|
|
Value* tmpVal = getVal(*$1, $3);
|
|
CHECK_FOR_ERROR
|
|
BasicBlock* tmpBB = getBBVal($5);
|
|
CHECK_FOR_ERROR
|
|
$$->push_back(std::make_pair(tmpVal, tmpBB));
|
|
delete $1;
|
|
}
|
|
| PHIList ',' '[' ValueRef ',' ValueRef ']' {
|
|
$$ = $1;
|
|
Value* tmpVal = getVal($1->front().first->getType(), $4);
|
|
CHECK_FOR_ERROR
|
|
BasicBlock* tmpBB = getBBVal($6);
|
|
CHECK_FOR_ERROR
|
|
$1->push_back(std::make_pair(tmpVal, tmpBB));
|
|
};
|
|
|
|
|
|
ParamList : Types OptParamAttrs ValueRef OptParamAttrs {
|
|
// FIXME: Remove trailing OptParamAttrs in LLVM 3.0, it was a mistake in 2.0
|
|
if (!UpRefs.empty())
|
|
GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
|
|
// Used for call and invoke instructions
|
|
$$ = new ParamList();
|
|
ParamListEntry E; E.Attrs = $2 | $4; E.Val = getVal($1->get(), $3);
|
|
$$->push_back(E);
|
|
delete $1;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| LABEL OptParamAttrs ValueRef OptParamAttrs {
|
|
// FIXME: Remove trailing OptParamAttrs in LLVM 3.0, it was a mistake in 2.0
|
|
// Labels are only valid in ASMs
|
|
$$ = new ParamList();
|
|
ParamListEntry E; E.Attrs = $2 | $4; E.Val = getBBVal($3);
|
|
$$->push_back(E);
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| ParamList ',' Types OptParamAttrs ValueRef OptParamAttrs {
|
|
// FIXME: Remove trailing OptParamAttrs in LLVM 3.0, it was a mistake in 2.0
|
|
if (!UpRefs.empty())
|
|
GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
|
|
$$ = $1;
|
|
ParamListEntry E; E.Attrs = $4 | $6; E.Val = getVal($3->get(), $5);
|
|
$$->push_back(E);
|
|
delete $3;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| ParamList ',' LABEL OptParamAttrs ValueRef OptParamAttrs {
|
|
// FIXME: Remove trailing OptParamAttrs in LLVM 3.0, it was a mistake in 2.0
|
|
$$ = $1;
|
|
ParamListEntry E; E.Attrs = $4 | $6; E.Val = getBBVal($5);
|
|
$$->push_back(E);
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| /*empty*/ { $$ = new ParamList(); };
|
|
|
|
IndexList // Used for gep instructions and constant expressions
|
|
: /*empty*/ { $$ = new std::vector<Value*>(); }
|
|
| IndexList ',' ResolvedVal {
|
|
$$ = $1;
|
|
$$->push_back($3);
|
|
CHECK_FOR_ERROR
|
|
}
|
|
;
|
|
|
|
OptTailCall : TAIL CALL {
|
|
$$ = true;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| CALL {
|
|
$$ = false;
|
|
CHECK_FOR_ERROR
|
|
};
|
|
|
|
InstVal : ArithmeticOps Types ValueRef ',' ValueRef {
|
|
if (!UpRefs.empty())
|
|
GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
|
|
if (!(*$2)->isInteger() && !(*$2)->isFloatingPoint() &&
|
|
!isa<VectorType>((*$2).get()))
|
|
GEN_ERROR(
|
|
"Arithmetic operator requires integer, FP, or packed operands");
|
|
Value* val1 = getVal(*$2, $3);
|
|
CHECK_FOR_ERROR
|
|
Value* val2 = getVal(*$2, $5);
|
|
CHECK_FOR_ERROR
|
|
$$ = BinaryOperator::create($1, val1, val2);
|
|
if ($$ == 0)
|
|
GEN_ERROR("binary operator returned null");
|
|
delete $2;
|
|
}
|
|
| LogicalOps Types ValueRef ',' ValueRef {
|
|
if (!UpRefs.empty())
|
|
GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
|
|
if (!(*$2)->isInteger()) {
|
|
if (Instruction::isShift($1) || !isa<VectorType>($2->get()) ||
|
|
!cast<VectorType>($2->get())->getElementType()->isInteger())
|
|
GEN_ERROR("Logical operator requires integral operands");
|
|
}
|
|
Value* tmpVal1 = getVal(*$2, $3);
|
|
CHECK_FOR_ERROR
|
|
Value* tmpVal2 = getVal(*$2, $5);
|
|
CHECK_FOR_ERROR
|
|
$$ = BinaryOperator::create($1, tmpVal1, tmpVal2);
|
|
if ($$ == 0)
|
|
GEN_ERROR("binary operator returned null");
|
|
delete $2;
|
|
}
|
|
| ICMP IPredicates Types ValueRef ',' ValueRef {
|
|
if (!UpRefs.empty())
|
|
GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
|
|
if (isa<VectorType>((*$3).get()))
|
|
GEN_ERROR("Vector types not supported by icmp instruction");
|
|
Value* tmpVal1 = getVal(*$3, $4);
|
|
CHECK_FOR_ERROR
|
|
Value* tmpVal2 = getVal(*$3, $6);
|
|
CHECK_FOR_ERROR
|
|
$$ = CmpInst::create($1, $2, tmpVal1, tmpVal2);
|
|
if ($$ == 0)
|
|
GEN_ERROR("icmp operator returned null");
|
|
delete $3;
|
|
}
|
|
| FCMP FPredicates Types ValueRef ',' ValueRef {
|
|
if (!UpRefs.empty())
|
|
GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
|
|
if (isa<VectorType>((*$3).get()))
|
|
GEN_ERROR("Vector types not supported by fcmp instruction");
|
|
Value* tmpVal1 = getVal(*$3, $4);
|
|
CHECK_FOR_ERROR
|
|
Value* tmpVal2 = getVal(*$3, $6);
|
|
CHECK_FOR_ERROR
|
|
$$ = CmpInst::create($1, $2, tmpVal1, tmpVal2);
|
|
if ($$ == 0)
|
|
GEN_ERROR("fcmp operator returned null");
|
|
delete $3;
|
|
}
|
|
| VICMP IPredicates Types ValueRef ',' ValueRef {
|
|
if (!UpRefs.empty())
|
|
GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
|
|
if (!isa<VectorType>((*$3).get()))
|
|
GEN_ERROR("Scalar types not supported by vicmp instruction");
|
|
Value* tmpVal1 = getVal(*$3, $4);
|
|
CHECK_FOR_ERROR
|
|
Value* tmpVal2 = getVal(*$3, $6);
|
|
CHECK_FOR_ERROR
|
|
$$ = CmpInst::create($1, $2, tmpVal1, tmpVal2);
|
|
if ($$ == 0)
|
|
GEN_ERROR("icmp operator returned null");
|
|
delete $3;
|
|
}
|
|
| VFCMP FPredicates Types ValueRef ',' ValueRef {
|
|
if (!UpRefs.empty())
|
|
GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
|
|
if (!isa<VectorType>((*$3).get()))
|
|
GEN_ERROR("Scalar types not supported by vfcmp instruction");
|
|
Value* tmpVal1 = getVal(*$3, $4);
|
|
CHECK_FOR_ERROR
|
|
Value* tmpVal2 = getVal(*$3, $6);
|
|
CHECK_FOR_ERROR
|
|
$$ = CmpInst::create($1, $2, tmpVal1, tmpVal2);
|
|
if ($$ == 0)
|
|
GEN_ERROR("fcmp operator returned null");
|
|
delete $3;
|
|
}
|
|
| CastOps ResolvedVal TO Types {
|
|
if (!UpRefs.empty())
|
|
GEN_ERROR("Invalid upreference in type: " + (*$4)->getDescription());
|
|
Value* Val = $2;
|
|
const Type* DestTy = $4->get();
|
|
if (!CastInst::castIsValid($1, Val, DestTy))
|
|
GEN_ERROR("invalid cast opcode for cast from '" +
|
|
Val->getType()->getDescription() + "' to '" +
|
|
DestTy->getDescription() + "'");
|
|
$$ = CastInst::create($1, Val, DestTy);
|
|
delete $4;
|
|
}
|
|
| SELECT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
|
|
if ($2->getType() != Type::Int1Ty)
|
|
GEN_ERROR("select condition must be boolean");
|
|
if ($4->getType() != $6->getType())
|
|
GEN_ERROR("select value types should match");
|
|
$$ = SelectInst::Create($2, $4, $6);
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| VAARG ResolvedVal ',' Types {
|
|
if (!UpRefs.empty())
|
|
GEN_ERROR("Invalid upreference in type: " + (*$4)->getDescription());
|
|
$$ = new VAArgInst($2, *$4);
|
|
delete $4;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| EXTRACTELEMENT ResolvedVal ',' ResolvedVal {
|
|
if (!ExtractElementInst::isValidOperands($2, $4))
|
|
GEN_ERROR("Invalid extractelement operands");
|
|
$$ = new ExtractElementInst($2, $4);
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| INSERTELEMENT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
|
|
if (!InsertElementInst::isValidOperands($2, $4, $6))
|
|
GEN_ERROR("Invalid insertelement operands");
|
|
$$ = InsertElementInst::Create($2, $4, $6);
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| SHUFFLEVECTOR ResolvedVal ',' ResolvedVal ',' ResolvedVal {
|
|
if (!ShuffleVectorInst::isValidOperands($2, $4, $6))
|
|
GEN_ERROR("Invalid shufflevector operands");
|
|
$$ = new ShuffleVectorInst($2, $4, $6);
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| PHI_TOK PHIList {
|
|
const Type *Ty = $2->front().first->getType();
|
|
if (!Ty->isFirstClassType())
|
|
GEN_ERROR("PHI node operands must be of first class type");
|
|
$$ = PHINode::Create(Ty);
|
|
((PHINode*)$$)->reserveOperandSpace($2->size());
|
|
while ($2->begin() != $2->end()) {
|
|
if ($2->front().first->getType() != Ty)
|
|
GEN_ERROR("All elements of a PHI node must be of the same type");
|
|
cast<PHINode>($$)->addIncoming($2->front().first, $2->front().second);
|
|
$2->pop_front();
|
|
}
|
|
delete $2; // Free the list...
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| OptTailCall OptCallingConv ResultTypes ValueRef '(' ParamList ')'
|
|
OptFuncAttrs {
|
|
|
|
// Handle the short syntax
|
|
const PointerType *PFTy = 0;
|
|
const FunctionType *Ty = 0;
|
|
if (!(PFTy = dyn_cast<PointerType>($3->get())) ||
|
|
!(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
|
|
// Pull out the types of all of the arguments...
|
|
std::vector<const Type*> ParamTypes;
|
|
ParamList::iterator I = $6->begin(), E = $6->end();
|
|
for (; I != E; ++I) {
|
|
const Type *Ty = I->Val->getType();
|
|
if (Ty == Type::VoidTy)
|
|
GEN_ERROR("Short call syntax cannot be used with varargs");
|
|
ParamTypes.push_back(Ty);
|
|
}
|
|
|
|
if (!FunctionType::isValidReturnType(*$3))
|
|
GEN_ERROR("Invalid result type for LLVM function");
|
|
|
|
Ty = FunctionType::get($3->get(), ParamTypes, false);
|
|
PFTy = PointerType::getUnqual(Ty);
|
|
}
|
|
|
|
Value *V = getVal(PFTy, $4); // Get the function we're calling...
|
|
CHECK_FOR_ERROR
|
|
|
|
// Check for call to invalid intrinsic to avoid crashing later.
|
|
if (Function *theF = dyn_cast<Function>(V)) {
|
|
if (theF->hasName() && (theF->getValueName()->getKeyLength() >= 5) &&
|
|
(0 == strncmp(theF->getValueName()->getKeyData(), "llvm.", 5)) &&
|
|
!theF->getIntrinsicID(true))
|
|
GEN_ERROR("Call to invalid LLVM intrinsic function '" +
|
|
theF->getName() + "'");
|
|
}
|
|
|
|
// Set up the ParamAttrs for the function
|
|
SmallVector<ParamAttrsWithIndex, 8> Attrs;
|
|
if ($8 != ParamAttr::None)
|
|
Attrs.push_back(ParamAttrsWithIndex::get(0, $8));
|
|
// Check the arguments
|
|
ValueList Args;
|
|
if ($6->empty()) { // Has no arguments?
|
|
// Make sure no arguments is a good thing!
|
|
if (Ty->getNumParams() != 0)
|
|
GEN_ERROR("No arguments passed to a function that "
|
|
"expects arguments");
|
|
} else { // Has arguments?
|
|
// Loop through FunctionType's arguments and ensure they are specified
|
|
// correctly. Also, gather any parameter attributes.
|
|
FunctionType::param_iterator I = Ty->param_begin();
|
|
FunctionType::param_iterator E = Ty->param_end();
|
|
ParamList::iterator ArgI = $6->begin(), ArgE = $6->end();
|
|
unsigned index = 1;
|
|
|
|
for (; ArgI != ArgE && I != E; ++ArgI, ++I, ++index) {
|
|
if (ArgI->Val->getType() != *I)
|
|
GEN_ERROR("Parameter " + ArgI->Val->getName()+ " is not of type '" +
|
|
(*I)->getDescription() + "'");
|
|
Args.push_back(ArgI->Val);
|
|
if (ArgI->Attrs != ParamAttr::None)
|
|
Attrs.push_back(ParamAttrsWithIndex::get(index, ArgI->Attrs));
|
|
}
|
|
if (Ty->isVarArg()) {
|
|
if (I == E)
|
|
for (; ArgI != ArgE; ++ArgI, ++index) {
|
|
Args.push_back(ArgI->Val); // push the remaining varargs
|
|
if (ArgI->Attrs != ParamAttr::None)
|
|
Attrs.push_back(ParamAttrsWithIndex::get(index, ArgI->Attrs));
|
|
}
|
|
} else if (I != E || ArgI != ArgE)
|
|
GEN_ERROR("Invalid number of parameters detected");
|
|
}
|
|
|
|
// Finish off the ParamAttrs and check them
|
|
PAListPtr PAL;
|
|
if (!Attrs.empty())
|
|
PAL = PAListPtr::get(Attrs.begin(), Attrs.end());
|
|
|
|
// Create the call node
|
|
CallInst *CI = CallInst::Create(V, Args.begin(), Args.end());
|
|
CI->setTailCall($1);
|
|
CI->setCallingConv($2);
|
|
CI->setParamAttrs(PAL);
|
|
$$ = CI;
|
|
delete $6;
|
|
delete $3;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| MemoryInst {
|
|
$$ = $1;
|
|
CHECK_FOR_ERROR
|
|
};
|
|
|
|
OptVolatile : VOLATILE {
|
|
$$ = true;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| /* empty */ {
|
|
$$ = false;
|
|
CHECK_FOR_ERROR
|
|
};
|
|
|
|
|
|
|
|
MemoryInst : MALLOC Types OptCAlign {
|
|
if (!UpRefs.empty())
|
|
GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
|
|
$$ = new MallocInst(*$2, 0, $3);
|
|
delete $2;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| MALLOC Types ',' INTTYPE ValueRef OptCAlign {
|
|
if (!UpRefs.empty())
|
|
GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
|
|
Value* tmpVal = getVal($4, $5);
|
|
CHECK_FOR_ERROR
|
|
$$ = new MallocInst(*$2, tmpVal, $6);
|
|
delete $2;
|
|
}
|
|
| ALLOCA Types OptCAlign {
|
|
if (!UpRefs.empty())
|
|
GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
|
|
$$ = new AllocaInst(*$2, 0, $3);
|
|
delete $2;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| ALLOCA Types ',' INTTYPE ValueRef OptCAlign {
|
|
if (!UpRefs.empty())
|
|
GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
|
|
Value* tmpVal = getVal($4, $5);
|
|
CHECK_FOR_ERROR
|
|
$$ = new AllocaInst(*$2, tmpVal, $6);
|
|
delete $2;
|
|
}
|
|
| FREE ResolvedVal {
|
|
if (!isa<PointerType>($2->getType()))
|
|
GEN_ERROR("Trying to free nonpointer type " +
|
|
$2->getType()->getDescription() + "");
|
|
$$ = new FreeInst($2);
|
|
CHECK_FOR_ERROR
|
|
}
|
|
|
|
| OptVolatile LOAD Types ValueRef OptCAlign {
|
|
if (!UpRefs.empty())
|
|
GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
|
|
if (!isa<PointerType>($3->get()))
|
|
GEN_ERROR("Can't load from nonpointer type: " +
|
|
(*$3)->getDescription());
|
|
if (!cast<PointerType>($3->get())->getElementType()->isFirstClassType())
|
|
GEN_ERROR("Can't load from pointer of non-first-class type: " +
|
|
(*$3)->getDescription());
|
|
Value* tmpVal = getVal(*$3, $4);
|
|
CHECK_FOR_ERROR
|
|
$$ = new LoadInst(tmpVal, "", $1, $5);
|
|
delete $3;
|
|
}
|
|
| OptVolatile STORE ResolvedVal ',' Types ValueRef OptCAlign {
|
|
if (!UpRefs.empty())
|
|
GEN_ERROR("Invalid upreference in type: " + (*$5)->getDescription());
|
|
const PointerType *PT = dyn_cast<PointerType>($5->get());
|
|
if (!PT)
|
|
GEN_ERROR("Can't store to a nonpointer type: " +
|
|
(*$5)->getDescription());
|
|
const Type *ElTy = PT->getElementType();
|
|
if (ElTy != $3->getType())
|
|
GEN_ERROR("Can't store '" + $3->getType()->getDescription() +
|
|
"' into space of type '" + ElTy->getDescription() + "'");
|
|
|
|
Value* tmpVal = getVal(*$5, $6);
|
|
CHECK_FOR_ERROR
|
|
$$ = new StoreInst($3, tmpVal, $1, $7);
|
|
delete $5;
|
|
}
|
|
| GETRESULT Types ValueRef ',' EUINT64VAL {
|
|
Value *TmpVal = getVal($2->get(), $3);
|
|
if (!GetResultInst::isValidOperands(TmpVal, $5))
|
|
GEN_ERROR("Invalid getresult operands");
|
|
$$ = new GetResultInst(TmpVal, $5);
|
|
delete $2;
|
|
CHECK_FOR_ERROR
|
|
}
|
|
| GETELEMENTPTR Types ValueRef IndexList {
|
|
if (!UpRefs.empty())
|
|
GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
|
|
if (!isa<PointerType>($2->get()))
|
|
GEN_ERROR("getelementptr insn requires pointer operand");
|
|
|
|
if (!GetElementPtrInst::getIndexedType(*$2, $4->begin(), $4->end()))
|
|
GEN_ERROR("Invalid getelementptr indices for type '" +
|
|
(*$2)->getDescription()+ "'");
|
|
Value* tmpVal = getVal(*$2, $3);
|
|
CHECK_FOR_ERROR
|
|
$$ = GetElementPtrInst::Create(tmpVal, $4->begin(), $4->end());
|
|
delete $2;
|
|
delete $4;
|
|
};
|
|
|
|
|
|
%%
|
|
|
|
// common code from the two 'RunVMAsmParser' functions
|
|
static Module* RunParser(Module * M) {
|
|
CurModule.CurrentModule = M;
|
|
// Check to make sure the parser succeeded
|
|
if (yyparse()) {
|
|
if (ParserResult)
|
|
delete ParserResult;
|
|
return 0;
|
|
}
|
|
|
|
// Emit an error if there are any unresolved types left.
|
|
if (!CurModule.LateResolveTypes.empty()) {
|
|
const ValID &DID = CurModule.LateResolveTypes.begin()->first;
|
|
if (DID.Type == ValID::LocalName) {
|
|
GenerateError("Undefined type remains at eof: '"+DID.getName() + "'");
|
|
} else {
|
|
GenerateError("Undefined type remains at eof: #" + itostr(DID.Num));
|
|
}
|
|
if (ParserResult)
|
|
delete ParserResult;
|
|
return 0;
|
|
}
|
|
|
|
// Emit an error if there are any unresolved values left.
|
|
if (!CurModule.LateResolveValues.empty()) {
|
|
Value *V = CurModule.LateResolveValues.back();
|
|
std::map<Value*, std::pair<ValID, int> >::iterator I =
|
|
CurModule.PlaceHolderInfo.find(V);
|
|
|
|
if (I != CurModule.PlaceHolderInfo.end()) {
|
|
ValID &DID = I->second.first;
|
|
if (DID.Type == ValID::LocalName) {
|
|
GenerateError("Undefined value remains at eof: "+DID.getName() + "'");
|
|
} else {
|
|
GenerateError("Undefined value remains at eof: #" + itostr(DID.Num));
|
|
}
|
|
if (ParserResult)
|
|
delete ParserResult;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// Check to make sure that parsing produced a result
|
|
if (!ParserResult)
|
|
return 0;
|
|
|
|
// Reset ParserResult variable while saving its value for the result.
|
|
Module *Result = ParserResult;
|
|
ParserResult = 0;
|
|
|
|
return Result;
|
|
}
|
|
|
|
void llvm::GenerateError(const std::string &message, int LineNo) {
|
|
if (LineNo == -1) LineNo = LLLgetLineNo();
|
|
// TODO: column number in exception
|
|
if (TheParseError)
|
|
TheParseError->setError(LLLgetFilename(), message, LineNo);
|
|
TriggerError = 1;
|
|
}
|
|
|
|
int yyerror(const char *ErrorMsg) {
|
|
std::string where = LLLgetFilename() + ":" + utostr(LLLgetLineNo()) + ": ";
|
|
std::string errMsg = where + "error: " + std::string(ErrorMsg);
|
|
if (yychar != YYEMPTY && yychar != 0) {
|
|
errMsg += " while reading token: '";
|
|
errMsg += std::string(LLLgetTokenStart(),
|
|
LLLgetTokenStart()+LLLgetTokenLength()) + "'";
|
|
}
|
|
GenerateError(errMsg);
|
|
return 0;
|
|
}
|