llvm-project/polly/lib/Analysis/ScopInfo.cpp

919 lines
29 KiB
C++

//===--------- ScopInfo.cpp - Create Scops from LLVM IR ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Create a polyhedral description for a static control flow region.
//
// The pass creates a polyhedral description of the Scops detected by the Scop
// detection derived from their LLVM-IR code.
//
// This represantation is shared among several tools in the polyhedral
// community, which are e.g. Cloog, Pluto, Loopo, Graphite.
//
//===----------------------------------------------------------------------===//
#include "polly/ScopInfo.h"
#include "polly/TempScopInfo.h"
#include "polly/LinkAllPasses.h"
#include "polly/Support/GICHelper.h"
#include "polly/Support/ScopHelper.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/RegionIterator.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/CommandLine.h"
#define DEBUG_TYPE "polly-scops"
#include "llvm/Support/Debug.h"
#include "isl/constraint.h"
#include "isl/set.h"
#include "isl/map.h"
#include <sstream>
#include <string>
#include <vector>
using namespace llvm;
using namespace polly;
STATISTIC(ScopFound, "Number of valid Scops");
STATISTIC(RichScopFound, "Number of Scops containing a loop");
//===----------------------------------------------------------------------===//
static void setCoefficient(const SCEV *Coeff, mpz_t v, bool negative,
bool isSigned = true) {
if (Coeff) {
const SCEVConstant *C = dyn_cast<SCEVConstant>(Coeff);
const APInt &CI = C->getValue()->getValue();
MPZ_from_APInt(v, negative ? (-CI) : CI, isSigned);
} else
isl_int_set_si(v, 0);
}
static isl_map *getValueOf(const SCEVAffFunc &AffFunc,
const ScopStmt *Statement, isl_dim *dim) {
const SmallVectorImpl<const SCEV*> &Params =
Statement->getParent()->getParams();
unsigned num_in = Statement->getNumIterators(), num_param = Params.size();
const char *dimname = isl_dim_get_tuple_name(dim, isl_dim_set);
dim = isl_dim_alloc(isl_dim_get_ctx(dim), num_param,
isl_dim_size(dim, isl_dim_set), 1);
dim = isl_dim_set_tuple_name(dim, isl_dim_in, dimname);
assert((AffFunc.getType() == SCEVAffFunc::Eq
|| AffFunc.getType() == SCEVAffFunc::ReadMem
|| AffFunc.getType() == SCEVAffFunc::WriteMem)
&& "AffFunc is not an equality");
isl_constraint *c = isl_equality_alloc(isl_dim_copy(dim));
isl_int v;
isl_int_init(v);
// Set single output dimension.
isl_int_set_si(v, -1);
isl_constraint_set_coefficient(c, isl_dim_out, 0, v);
// Set the coefficient for induction variables.
for (unsigned i = 0, e = num_in; i != e; ++i) {
setCoefficient(AffFunc.getCoeff(Statement->getSCEVForDimension(i)), v,
false, AffFunc.isSigned());
isl_constraint_set_coefficient(c, isl_dim_in, i, v);
}
// Set the coefficient of parameters
for (unsigned i = 0, e = num_param; i != e; ++i) {
setCoefficient(AffFunc.getCoeff(Params[i]), v, false, AffFunc.isSigned());
isl_constraint_set_coefficient(c, isl_dim_param, i, v);
}
// Set the constant.
setCoefficient(AffFunc.getTransComp(), v, false, AffFunc.isSigned());
isl_constraint_set_constant(c, v);
isl_int_clear(v);
isl_basic_map *BasicMap = isl_basic_map_universe(isl_dim_copy(dim));
BasicMap = isl_basic_map_add_constraint(BasicMap, c);
return isl_map_from_basic_map(BasicMap);
}
//===----------------------------------------------------------------------===//
MemoryAccess::~MemoryAccess() {
isl_map_free(getAccessFunction());
}
static void replace(std::string& str, const std::string& find,
const std::string& replace) {
size_t pos = 0;
while((pos = str.find(find, pos)) != std::string::npos)
{
str.replace(pos, find.length(), replace);
pos += replace.length();
}
}
static void makeIslCompatible(std::string& str) {
replace(str, ".", "_");
}
void MemoryAccess::setBaseName() {
raw_string_ostream OS(BaseName);
WriteAsOperand(OS, getBaseAddr(), false);
BaseName = OS.str();
// Remove the % in the name. This is not supported by isl.
BaseName.erase(0,1);
makeIslCompatible(BaseName);
BaseName = "MemRef_" + BaseName;
}
std::string MemoryAccess::getAccessFunctionStr() const {
return stringFromIslObj(getAccessFunction());
}
isl_basic_map *MemoryAccess::createBasicAccessMap(ScopStmt *Statement) {
isl_dim *dim = isl_dim_alloc(Statement->getIslContext(),
Statement->getNumParams(),
Statement->getNumIterators(), 1);
setBaseName();
dim = isl_dim_set_tuple_name(dim, isl_dim_out, getBaseName().c_str());
dim = isl_dim_set_tuple_name(dim, isl_dim_in, Statement->getBaseName());
return isl_basic_map_universe(dim);
}
MemoryAccess::MemoryAccess(const SCEVAffFunc &AffFunc, ScopStmt *Statement) {
BaseAddr = AffFunc.getBaseAddr();
Type = AffFunc.isRead() ? Read : Write;
statement = Statement;
setBaseName();
isl_dim *dim = isl_dim_set_alloc(Statement->getIslContext(),
Statement->getNumParams(),
Statement->getNumIterators());
dim = isl_dim_set_tuple_name(dim, isl_dim_set, Statement->getBaseName());
AccessRelation = getValueOf(AffFunc, Statement, dim);
// Devide the access function by the size of the elements in the function.
isl_dim *dim2 = isl_dim_alloc(Statement->getIslContext(),
Statement->getNumParams(), 1, 1);
isl_basic_map *bmap = isl_basic_map_universe(isl_dim_copy(dim2));
isl_constraint *c = isl_equality_alloc(dim2);
isl_int v;
isl_int_init(v);
isl_int_set_si(v, -1);
isl_constraint_set_coefficient(c, isl_dim_in, 0, v);
isl_int_set_si(v, AffFunc.getElemSizeInBytes());
isl_constraint_set_coefficient(c, isl_dim_out, 0, v);
bmap = isl_basic_map_add_constraint(bmap, c);
isl_map* dataSizeMap = isl_map_from_basic_map(bmap);
AccessRelation = isl_map_apply_range(AccessRelation, dataSizeMap);
AccessRelation = isl_map_set_tuple_name(AccessRelation, isl_dim_out,
getBaseName().c_str());
}
MemoryAccess::MemoryAccess(const Value *BaseAddress, ScopStmt *Statement) {
BaseAddr = BaseAddress;
Type = Read;
statement = Statement;
isl_basic_map *BasicAccessMap = createBasicAccessMap(Statement);
AccessRelation = isl_map_from_basic_map(BasicAccessMap);
}
void MemoryAccess::print(raw_ostream &OS) const {
OS.indent(12) << (isRead() ? "Read" : "Write") << "Access := \n";
OS.indent(16) << getAccessFunctionStr() << ";\n";
}
void MemoryAccess::dump() const {
print(errs());
}
// Create a map in the size of the provided set domain, that maps from the
// one element of the provided set domain to another element of the provided
// set domain.
// The mapping is limited to all points that are equal in all but the last
// dimension and for which the last dimension of the input is strict smaller
// than the last dimension of the output.
//
// getEqualAndLarger(set[i0, i1, ..., iX]):
//
// set[i0, i1, ..., iX] -> set[o0, o1, ..., oX]
// : i0 = o0, i1 = o1, ..., i(X-1) = o(X-1), iX < oX
//
static isl_map *getEqualAndLarger(isl_dim *setDomain) {
isl_dim *mapDomain = isl_dim_map_from_set(setDomain);
isl_basic_map *bmap = isl_basic_map_universe(mapDomain);
// Set all but the last dimension to be equal for the input and output
//
// input[i0, i1, ..., iX] -> output[o0, o1, ..., oX]
// : i0 = o0, i1 = o1, ..., i(X-1) = o(X-1)
for (unsigned i = 0; i < isl_basic_map_n_in(bmap) - 1; ++i) {
isl_int v;
isl_int_init(v);
isl_constraint *c = isl_equality_alloc(isl_basic_map_get_dim(bmap));
isl_int_set_si(v, 1);
isl_constraint_set_coefficient(c, isl_dim_in, i, v);
isl_int_set_si(v, -1);
isl_constraint_set_coefficient(c, isl_dim_out, i, v);
bmap = isl_basic_map_add_constraint(bmap, c);
isl_int_clear(v);
}
// Set the last dimension of the input to be strict smaller than the
// last dimension of the output.
//
// input[?,?,?,...,iX] -> output[?,?,?,...,oX] : iX < oX
//
unsigned lastDimension = isl_basic_map_n_in(bmap) - 1;
isl_int v;
isl_int_init(v);
isl_constraint *c = isl_inequality_alloc(isl_basic_map_get_dim(bmap));
isl_int_set_si(v, -1);
isl_constraint_set_coefficient(c, isl_dim_in, lastDimension, v);
isl_int_set_si(v, 1);
isl_constraint_set_coefficient(c, isl_dim_out, lastDimension, v);
isl_int_set_si(v, -1);
isl_constraint_set_constant(c, v);
isl_int_clear(v);
bmap = isl_basic_map_add_constraint(bmap, c);
return isl_map_from_basic_map(bmap);
}
isl_set *MemoryAccess::getStride(const isl_set *domainSubset) const {
isl_map *accessRelation = isl_map_copy(getAccessFunction());
isl_set *scatteringDomain = isl_set_copy(const_cast<isl_set*>(domainSubset));
isl_map *scattering = isl_map_copy(getStatement()->getScattering());
scattering = isl_map_reverse(scattering);
int difference = isl_map_n_in(scattering) - isl_set_n_dim(scatteringDomain);
scattering = isl_map_project_out(scattering, isl_dim_in,
isl_set_n_dim(scatteringDomain),
difference);
// Remove all names of the scattering dimensions, as the names may be lost
// anyways during the project. This leads to consistent results.
scattering = isl_map_set_tuple_name(scattering, isl_dim_in, "");
scatteringDomain = isl_set_set_tuple_name(scatteringDomain, "");
isl_map *nextScatt = getEqualAndLarger(isl_set_get_dim(scatteringDomain));
nextScatt = isl_map_lexmin(nextScatt);
scattering = isl_map_intersect_domain(scattering, scatteringDomain);
nextScatt = isl_map_apply_range(nextScatt, isl_map_copy(scattering));
nextScatt = isl_map_apply_range(nextScatt, isl_map_copy(accessRelation));
nextScatt = isl_map_apply_domain(nextScatt, scattering);
nextScatt = isl_map_apply_domain(nextScatt, accessRelation);
return isl_map_deltas(nextScatt);
}
bool MemoryAccess::isStrideZero(const isl_set *domainSubset) const {
isl_set *stride = getStride(domainSubset);
isl_constraint *c = isl_equality_alloc(isl_set_get_dim(stride));
isl_int v;
isl_int_init(v);
isl_int_set_si(v, 1);
isl_constraint_set_coefficient(c, isl_dim_set, 0, v);
isl_int_set_si(v, 0);
isl_constraint_set_constant(c, v);
isl_int_clear(v);
isl_basic_set *bset = isl_basic_set_universe(isl_set_get_dim(stride));
bset = isl_basic_set_add_constraint(bset, c);
isl_set *strideZero = isl_set_from_basic_set(bset);
return isl_set_is_equal(stride, strideZero);
}
bool MemoryAccess::isStrideOne(const isl_set *domainSubset) const {
isl_set *stride = getStride(domainSubset);
isl_constraint *c = isl_equality_alloc(isl_set_get_dim(stride));
isl_int v;
isl_int_init(v);
isl_int_set_si(v, 1);
isl_constraint_set_coefficient(c, isl_dim_set, 0, v);
isl_int_set_si(v, -1);
isl_constraint_set_constant(c, v);
isl_int_clear(v);
isl_basic_set *bset = isl_basic_set_universe(isl_set_get_dim(stride));
bset = isl_basic_set_add_constraint(bset, c);
isl_set *strideZero = isl_set_from_basic_set(bset);
return isl_set_is_equal(stride, strideZero);
}
//===----------------------------------------------------------------------===//
void ScopStmt::buildScattering(SmallVectorImpl<unsigned> &Scatter) {
unsigned NumberOfIterators = getNumIterators();
unsigned ScatDim = Parent.getMaxLoopDepth() * 2 + 1;
isl_dim *dim = isl_dim_alloc(Parent.getCtx(), Parent.getNumParams(),
NumberOfIterators, ScatDim);
dim = isl_dim_set_tuple_name(dim, isl_dim_out, "scattering");
dim = isl_dim_set_tuple_name(dim, isl_dim_in, getBaseName());
isl_basic_map *bmap = isl_basic_map_universe(isl_dim_copy(dim));
isl_int v;
isl_int_init(v);
// Loop dimensions.
for (unsigned i = 0; i < NumberOfIterators; ++i) {
isl_constraint *c = isl_equality_alloc(isl_dim_copy(dim));
isl_int_set_si(v, 1);
isl_constraint_set_coefficient(c, isl_dim_out, 2 * i + 1, v);
isl_int_set_si(v, -1);
isl_constraint_set_coefficient(c, isl_dim_in, i, v);
bmap = isl_basic_map_add_constraint(bmap, c);
}
// Constant dimensions
for (unsigned i = 0; i < NumberOfIterators + 1; ++i) {
isl_constraint *c = isl_equality_alloc(isl_dim_copy(dim));
isl_int_set_si(v, -1);
isl_constraint_set_coefficient(c, isl_dim_out, 2 * i, v);
isl_int_set_si(v, Scatter[i]);
isl_constraint_set_constant(c, v);
bmap = isl_basic_map_add_constraint(bmap, c);
}
// Fill scattering dimensions.
for (unsigned i = 2 * NumberOfIterators + 1; i < ScatDim ; ++i) {
isl_constraint *c = isl_equality_alloc(isl_dim_copy(dim));
isl_int_set_si(v, 1);
isl_constraint_set_coefficient(c, isl_dim_out, i, v);
isl_int_set_si(v, 0);
isl_constraint_set_constant(c, v);
bmap = isl_basic_map_add_constraint(bmap, c);
}
isl_int_clear(v);
isl_dim_free(dim);
Scattering = isl_map_from_basic_map(bmap);
}
void ScopStmt::buildAccesses(TempScop &tempScop, const Region &CurRegion) {
const AccFuncSetType *AccFuncs = tempScop.getAccessFunctions(BB);
for (AccFuncSetType::const_iterator I = AccFuncs->begin(),
E = AccFuncs->end(); I != E; ++I) {
MemAccs.push_back(new MemoryAccess(I->first, this));
InstructionToAccess[I->second] = MemAccs.back();
}
}
static isl_map *MapValueToLHS(isl_ctx *Context, unsigned ParameterNumber) {
std::string MapString;
isl_map *Map;
MapString = "{[i0] -> [i0, o1]}";
Map = isl_map_read_from_str(Context, MapString.c_str(), -1);
return isl_map_add_dims(Map, isl_dim_param, ParameterNumber);
}
static isl_map *MapValueToRHS(isl_ctx *Context, unsigned ParameterNumber) {
std::string MapString;
isl_map *Map;
MapString = "{[i0] -> [o0, i0]}";
Map = isl_map_read_from_str(Context, MapString.c_str(), -1);
return isl_map_add_dims(Map, isl_dim_param, ParameterNumber);
}
static isl_set *getComparison(isl_ctx *Context, const ICmpInst::Predicate Pred,
unsigned ParameterNumber) {
std::string SetString;
switch (Pred) {
case ICmpInst::ICMP_EQ:
SetString = "{[i0, i1] : i0 = i1}";
break;
case ICmpInst::ICMP_NE:
SetString = "{[i0, i1] : i0 + 1 <= i1; [i0, i1] : i0 - 1 >= i1}";
break;
case ICmpInst::ICMP_SLT:
SetString = "{[i0, i1] : i0 + 1 <= i1}";
break;
case ICmpInst::ICMP_ULT:
SetString = "{[i0, i1] : i0 + 1 <= i1}";
break;
case ICmpInst::ICMP_SGT:
SetString = "{[i0, i1] : i0 >= i1 + 1}";
break;
case ICmpInst::ICMP_UGT:
SetString = "{[i0, i1] : i0 >= i1 + 1}";
break;
case ICmpInst::ICMP_SLE:
SetString = "{[i0, i1] : i0 <= i1}";
break;
case ICmpInst::ICMP_ULE:
SetString = "{[i0, i1] : i0 <= i1}";
break;
case ICmpInst::ICMP_SGE:
SetString = "{[i0, i1] : i0 >= i1}";
break;
case ICmpInst::ICMP_UGE:
SetString = "{[i0, i1] : i0 >= i1}";
break;
default:
llvm_unreachable("Non integer predicate not supported");
}
isl_set *Set = isl_set_read_from_str(Context, SetString.c_str(), -1);
return isl_set_add_dims(Set, isl_dim_param, ParameterNumber);
}
static isl_set *compareValues(isl_map *LeftValue, isl_map *RightValue,
const ICmpInst::Predicate Predicate) {
isl_ctx *Context = isl_map_get_ctx(LeftValue);
unsigned NumberOfParameters = isl_map_n_param(LeftValue);
isl_map *MapToLHS = MapValueToLHS(Context, NumberOfParameters);
isl_map *MapToRHS = MapValueToRHS(Context, NumberOfParameters);
isl_map *LeftValueAtLHS = isl_map_apply_range(LeftValue, MapToLHS);
isl_map *RightValueAtRHS = isl_map_apply_range(RightValue, MapToRHS);
isl_map *BothValues = isl_map_intersect(LeftValueAtLHS, RightValueAtRHS);
isl_set *Comparison = getComparison(Context, Predicate, NumberOfParameters);
isl_map *ComparedValues = isl_map_intersect_range(BothValues, Comparison);
return isl_map_domain(ComparedValues);
}
isl_set *ScopStmt::toConditionSet(const Comparison &Comp, isl_dim *dim) const {
isl_map *LHSValue = getValueOf(*Comp.getLHS(), this, dim);
isl_map *RHSValue = getValueOf(*Comp.getRHS(), this, dim);
return compareValues(LHSValue, RHSValue, Comp.getPred());
}
isl_set *ScopStmt::toUpperLoopBound(const SCEVAffFunc &UpperBound, isl_dim *dim,
unsigned BoundedDimension) const {
// Set output dimension to bounded dimension.
isl_dim *RHSDim = isl_dim_alloc(Parent.getCtx(), getNumParams(),
getNumIterators(), 1);
RHSDim = isl_dim_set_tuple_name(RHSDim, isl_dim_in, getBaseName());
isl_constraint *c = isl_equality_alloc(isl_dim_copy(RHSDim));
isl_int v;
isl_int_init(v);
isl_int_set_si(v, 1);
isl_constraint_set_coefficient(c, isl_dim_in, BoundedDimension, v);
isl_int_set_si(v, -1);
isl_constraint_set_coefficient(c, isl_dim_out, 0, v);
isl_int_clear(v);
isl_basic_map *bmap = isl_basic_map_universe(RHSDim);
bmap = isl_basic_map_add_constraint(bmap, c);
isl_map *LHSValue = isl_map_from_basic_map(bmap);
isl_map *RHSValue = getValueOf(UpperBound, this, dim);
return compareValues(LHSValue, RHSValue, ICmpInst::ICMP_SLE);
}
void ScopStmt::buildIterationDomainFromLoops(TempScop &tempScop) {
isl_dim *dim = isl_dim_set_alloc(Parent.getCtx(), getNumParams(),
getNumIterators());
dim = isl_dim_set_tuple_name(dim, isl_dim_set, getBaseName());
Domain = isl_set_universe(isl_dim_copy(dim));
isl_int v;
isl_int_init(v);
for (int i = 0, e = getNumIterators(); i != e; ++i) {
// Lower bound: IV >= 0.
isl_basic_set *bset = isl_basic_set_universe(isl_dim_copy(dim));
isl_constraint *c = isl_inequality_alloc(isl_dim_copy(dim));
isl_int_set_si(v, 1);
isl_constraint_set_coefficient(c, isl_dim_set, i, v);
bset = isl_basic_set_add_constraint(bset, c);
Domain = isl_set_intersect(Domain, isl_set_from_basic_set(bset));
// Upper bound: IV <= NumberOfIterations.
const Loop *L = getLoopForDimension(i);
const SCEVAffFunc &UpperBound = tempScop.getLoopBound(L);
isl_set *UpperBoundSet = toUpperLoopBound(UpperBound, isl_dim_copy(dim), i);
Domain = isl_set_intersect(Domain, UpperBoundSet);
}
isl_int_clear(v);
}
void ScopStmt::addConditionsToDomain(TempScop &tempScop,
const Region &CurRegion) {
isl_dim *dim = isl_set_get_dim(Domain);
const Region *TopR = tempScop.getMaxRegion().getParent(),
*CurR = &CurRegion;
const BasicBlock *CurEntry = BB;
// Build BB condition constrains, by traveling up the region tree.
do {
assert(CurR && "We exceed the top region?");
// Skip when multiple regions share the same entry.
if (CurEntry != CurR->getEntry()) {
if (const BBCond *Cnd = tempScop.getBBCond(CurEntry))
for (BBCond::const_iterator I = Cnd->begin(), E = Cnd->end();
I != E; ++I) {
isl_set *c = toConditionSet(*I, dim);
Domain = isl_set_intersect(Domain, c);
}
}
CurEntry = CurR->getEntry();
CurR = CurR->getParent();
} while (TopR != CurR);
isl_dim_free(dim);
}
void ScopStmt::buildIterationDomain(TempScop &tempScop, const Region &CurRegion)
{
buildIterationDomainFromLoops(tempScop);
addConditionsToDomain(tempScop, CurRegion);
}
ScopStmt::ScopStmt(Scop &parent, TempScop &tempScop,
const Region &CurRegion, BasicBlock &bb,
SmallVectorImpl<Loop*> &NestLoops,
SmallVectorImpl<unsigned> &Scatter)
: Parent(parent), BB(&bb), IVS(NestLoops.size()) {
// Setup the induction variables.
for (unsigned i = 0, e = NestLoops.size(); i < e; ++i) {
PHINode *PN = NestLoops[i]->getCanonicalInductionVariable();
assert(PN && "Non canonical IV in Scop!");
IVS[i] = std::make_pair(PN, NestLoops[i]);
}
raw_string_ostream OS(BaseName);
WriteAsOperand(OS, &bb, false);
BaseName = OS.str();
// Remove the % in the name. This is not supported by isl.
BaseName.erase(0, 1);
makeIslCompatible(BaseName);
BaseName = "Stmt_" + BaseName;
buildIterationDomain(tempScop, CurRegion);
buildScattering(Scatter);
buildAccesses(tempScop, CurRegion);
IsReduction = tempScop.is_Reduction(*BB);
}
ScopStmt::ScopStmt(Scop &parent, SmallVectorImpl<unsigned> &Scatter)
: Parent(parent), BB(NULL), IVS(0) {
BaseName = "FinalRead";
// Build iteration domain.
std::string IterationDomainString = "{[i0] : i0 = 0}";
Domain = isl_set_read_from_str(Parent.getCtx(), IterationDomainString.c_str(),
-1);
Domain = isl_set_add_dims(Domain, isl_dim_param, Parent.getNumParams());
Domain = isl_set_set_tuple_name(Domain, getBaseName());
// Build scattering.
unsigned ScatDim = Parent.getMaxLoopDepth() * 2 + 1;
isl_dim *dim = isl_dim_alloc(Parent.getCtx(), Parent.getNumParams(), 1,
ScatDim);
dim = isl_dim_set_tuple_name(dim, isl_dim_out, "scattering");
dim = isl_dim_set_tuple_name(dim, isl_dim_in, getBaseName());
isl_basic_map *bmap = isl_basic_map_universe(isl_dim_copy(dim));
isl_int v;
isl_int_init(v);
isl_constraint *c = isl_equality_alloc(dim);
isl_int_set_si(v, -1);
isl_constraint_set_coefficient(c, isl_dim_out, 0, v);
// TODO: This is incorrect. We should not use a very large number to ensure
// that this statement is executed last.
isl_int_set_si(v, 200000000);
isl_constraint_set_constant(c, v);
bmap = isl_basic_map_add_constraint(bmap, c);
isl_int_clear(v);
Scattering = isl_map_from_basic_map(bmap);
// Build memory accesses, use SetVector to keep the order of memory accesses
// and prevent the same memory access inserted more than once.
SetVector<const Value*> BaseAddressSet;
for (Scop::const_iterator SI = Parent.begin(), SE = Parent.end(); SI != SE;
++SI) {
ScopStmt *Stmt = *SI;
for (MemoryAccessVec::const_iterator I = Stmt->memacc_begin(),
E = Stmt->memacc_end(); I != E; ++I)
BaseAddressSet.insert((*I)->getBaseAddr());
}
for (SetVector<const Value*>::iterator BI = BaseAddressSet.begin(),
BE = BaseAddressSet.end(); BI != BE; ++BI)
MemAccs.push_back(new MemoryAccess(*BI, this));
IsReduction = false;
}
std::string ScopStmt::getDomainStr() const {
isl_set *domain = getDomain();
std::string string = stringFromIslObj(domain);
isl_set_free(domain);
return string;
}
std::string ScopStmt::getScatteringStr() const {
return stringFromIslObj(getScattering());
}
unsigned ScopStmt::getNumParams() const {
return Parent.getNumParams();
}
unsigned ScopStmt::getNumIterators() const {
// The final read has one dimension with one element.
if (!BB)
return 1;
return IVS.size();
}
unsigned ScopStmt::getNumScattering() const {
return isl_map_dim(Scattering, isl_dim_out);
}
const char *ScopStmt::getBaseName() const { return BaseName.c_str(); }
const PHINode *ScopStmt::getInductionVariableForDimension(unsigned Dimension)
const {
return IVS[Dimension].first;
}
const Loop *ScopStmt::getLoopForDimension(unsigned Dimension) const {
return IVS[Dimension].second;
}
const SCEVAddRecExpr *ScopStmt::getSCEVForDimension(unsigned Dimension)
const {
PHINode *PN =
const_cast<PHINode*>(getInductionVariableForDimension(Dimension));
return cast<SCEVAddRecExpr>(getParent()->getSE()->getSCEV(PN));
}
isl_ctx *ScopStmt::getIslContext() {
return Parent.getCtx();
}
isl_set *ScopStmt::getDomain() const {
return isl_set_copy(Domain);
}
ScopStmt::~ScopStmt() {
while (!MemAccs.empty()) {
delete MemAccs.back();
MemAccs.pop_back();
}
isl_set_free(Domain);
isl_map_free(Scattering);
}
void ScopStmt::print(raw_ostream &OS) const {
OS << "\t" << getBaseName() << "\n";
OS.indent(12) << "Domain :=\n";
if (Domain) {
OS.indent(16) << getDomainStr() << ";\n";
} else
OS.indent(16) << "n/a\n";
OS.indent(12) << "Scattering :=\n";
if (Domain) {
OS.indent(16) << getScatteringStr() << ";\n";
} else
OS.indent(16) << "n/a\n";
for (MemoryAccessVec::const_iterator I = MemAccs.begin(), E = MemAccs.end();
I != E; ++I)
(*I)->print(OS);
}
void ScopStmt::dump() const { print(dbgs()); }
//===----------------------------------------------------------------------===//
/// Scop class implement
Scop::Scop(TempScop &tempScop, LoopInfo &LI, ScalarEvolution &ScalarEvolution)
: SE(&ScalarEvolution), R(tempScop.getMaxRegion()),
MaxLoopDepth(tempScop.getMaxLoopDepth()) {
isl_ctx *ctx = isl_ctx_alloc();
ParamSetType &Params = tempScop.getParamSet();
Parameters.insert(Parameters.begin(), Params.begin(), Params.end());
isl_dim *dim = isl_dim_set_alloc(ctx, getNumParams(), 0);
// TODO: Insert relations between parameters.
// TODO: Insert constraints on parameters.
Context = isl_set_universe (dim);
SmallVector<Loop*, 8> NestLoops;
SmallVector<unsigned, 8> Scatter;
Scatter.assign(MaxLoopDepth + 1, 0);
// Build the iteration domain, access functions and scattering functions
// traversing the region tree.
buildScop(tempScop, getRegion(), NestLoops, Scatter, LI);
Stmts.push_back(new ScopStmt(*this, Scatter));
assert(NestLoops.empty() && "NestLoops not empty at top level!");
}
Scop::~Scop() {
isl_set_free(Context);
// Free the statements;
for (iterator I = begin(), E = end(); I != E; ++I)
delete *I;
// Do we need a singleton to manage this?
//isl_ctx_free(ctx);
}
std::string Scop::getContextStr() const {
return stringFromIslObj(getContext());
}
std::string Scop::getNameStr() const {
std::string ExitName, EntryName;
raw_string_ostream ExitStr(ExitName);
raw_string_ostream EntryStr(EntryName);
WriteAsOperand(EntryStr, R.getEntry(), false);
EntryStr.str();
if (R.getExit()) {
WriteAsOperand(ExitStr, R.getExit(), false);
ExitStr.str();
} else
ExitName = "FunctionExit";
return EntryName + "---" + ExitName;
}
void Scop::printContext(raw_ostream &OS) const {
OS << "Context:\n";
if (!Context) {
OS.indent(4) << "n/a\n\n";
return;
}
OS.indent(4) << getContextStr() << "\n";
}
void Scop::printStatements(raw_ostream &OS) const {
OS << "Statements {\n";
for (const_iterator SI = begin(), SE = end();SI != SE; ++SI)
OS.indent(4) << (**SI);
OS.indent(4) << "}\n";
}
void Scop::print(raw_ostream &OS) const {
printContext(OS.indent(4));
printStatements(OS.indent(4));
}
void Scop::dump() const { print(dbgs()); }
isl_ctx *Scop::getCtx() const { return isl_set_get_ctx(Context); }
ScalarEvolution *Scop::getSE() const { return SE; }
bool Scop::isTrivialBB(BasicBlock *BB, TempScop &tempScop) {
if (tempScop.getAccessFunctions(BB))
return false;
return true;
}
void Scop::buildScop(TempScop &tempScop,
const Region &CurRegion,
SmallVectorImpl<Loop*> &NestLoops,
SmallVectorImpl<unsigned> &Scatter,
LoopInfo &LI) {
Loop *L = castToLoop(CurRegion, LI);
if (L)
NestLoops.push_back(L);
unsigned loopDepth = NestLoops.size();
assert(Scatter.size() > loopDepth && "Scatter not big enough!");
for (Region::const_element_iterator I = CurRegion.element_begin(),
E = CurRegion.element_end(); I != E; ++I)
if (I->isSubRegion())
buildScop(tempScop, *(I->getNodeAs<Region>()), NestLoops, Scatter, LI);
else {
BasicBlock *BB = I->getNodeAs<BasicBlock>();
if (isTrivialBB(BB, tempScop))
continue;
Stmts.push_back(new ScopStmt(*this, tempScop, CurRegion, *BB, NestLoops,
Scatter));
// Increasing the Scattering function is OK for the moment, because
// we are using a depth first iterator and the program is well structured.
++Scatter[loopDepth];
}
if (!L)
return;
// Exiting a loop region.
Scatter[loopDepth] = 0;
NestLoops.pop_back();
++Scatter[loopDepth-1];
}
//===----------------------------------------------------------------------===//
void ScopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<LoopInfo>();
AU.addRequired<RegionInfo>();
AU.addRequired<ScalarEvolution>();
AU.addRequired<TempScopInfo>();
AU.setPreservesAll();
}
bool ScopInfo::runOnRegion(Region *R, RGPassManager &RGM) {
LoopInfo &LI = getAnalysis<LoopInfo>();
ScalarEvolution &SE = getAnalysis<ScalarEvolution>();
TempScop *tempScop = getAnalysis<TempScopInfo>().getTempScop(R);
// This region is no Scop.
if (!tempScop) {
scop = 0;
return false;
}
// Statistics.
++ScopFound;
if (tempScop->getMaxLoopDepth() > 0) ++RichScopFound;
scop = new Scop(*tempScop, LI, SE);
return false;
}
char ScopInfo::ID = 0;
static RegisterPass<ScopInfo>
X("polly-scops", "Polly - Create polyhedral description of Scops");
Pass *polly::createScopInfoPass() {
return new ScopInfo();
}