llvm-project/lldb/packages/Python/lldbsuite/test/tools/lldb-server/main.cpp

377 lines
13 KiB
C++

//===-- main.cpp ------------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include <cstdlib>
#include <cstring>
#include <errno.h>
#include <inttypes.h>
#include <memory>
#include <pthread.h>
#include <setjmp.h>
#include <signal.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <vector>
#if defined(__APPLE__)
__OSX_AVAILABLE_STARTING(__MAC_10_6, __IPHONE_3_2)
int pthread_threadid_np(pthread_t, __uint64_t *);
#elif defined(__linux__)
#include <sys/syscall.h>
#elif defined(__NetBSD__)
#include <lwp.h>
#endif
static const char *const RETVAL_PREFIX = "retval:";
static const char *const SLEEP_PREFIX = "sleep:";
static const char *const STDERR_PREFIX = "stderr:";
static const char *const SET_MESSAGE_PREFIX = "set-message:";
static const char *const PRINT_MESSAGE_COMMAND = "print-message:";
static const char *const GET_DATA_ADDRESS_PREFIX = "get-data-address-hex:";
static const char *const GET_STACK_ADDRESS_COMMAND = "get-stack-address-hex:";
static const char *const GET_HEAP_ADDRESS_COMMAND = "get-heap-address-hex:";
static const char *const GET_CODE_ADDRESS_PREFIX = "get-code-address-hex:";
static const char *const CALL_FUNCTION_PREFIX = "call-function:";
static const char *const THREAD_PREFIX = "thread:";
static const char *const THREAD_COMMAND_NEW = "new";
static const char *const THREAD_COMMAND_PRINT_IDS = "print-ids";
static const char *const THREAD_COMMAND_SEGFAULT = "segfault";
static const char *const PRINT_PID_COMMAND = "print-pid";
static bool g_print_thread_ids = false;
static pthread_mutex_t g_print_mutex = PTHREAD_MUTEX_INITIALIZER;
static bool g_threads_do_segfault = false;
static pthread_mutex_t g_jump_buffer_mutex = PTHREAD_MUTEX_INITIALIZER;
static jmp_buf g_jump_buffer;
static bool g_is_segfaulting = false;
static char g_message[256];
static volatile char g_c1 = '0';
static volatile char g_c2 = '1';
static void print_pid() {
fprintf(stderr, "PID: %d\n", getpid());
}
static void print_thread_id() {
// Put in the right magic here for your platform to spit out the thread id (tid)
// that debugserver/lldb-gdbserver would see as a TID. Otherwise, let the else
// clause print out the unsupported text so that the unit test knows to skip
// verifying thread ids.
#if defined(__APPLE__)
__uint64_t tid = 0;
pthread_threadid_np(pthread_self(), &tid);
printf("%" PRIx64, tid);
#elif defined(__linux__)
// This is a call to gettid() via syscall.
printf("%" PRIx64, static_cast<uint64_t>(syscall(__NR_gettid)));
#elif defined(__NetBSD__)
// Technically lwpid_t is 32-bit signed integer
printf("%" PRIx64, static_cast<uint64_t>(_lwp_self()));
#else
printf("{no-tid-support}");
#endif
}
static void signal_handler(int signo) {
const char *signal_name = nullptr;
switch (signo) {
case SIGUSR1:
signal_name = "SIGUSR1";
break;
case SIGSEGV:
signal_name = "SIGSEGV";
break;
default:
signal_name = nullptr;
}
// Print notice that we received the signal on a given thread.
pthread_mutex_lock(&g_print_mutex);
if (signal_name)
printf("received %s on thread id: ", signal_name);
else
printf("received signo %d (%s) on thread id: ", signo, strsignal(signo));
print_thread_id();
printf("\n");
pthread_mutex_unlock(&g_print_mutex);
// Reset the signal handler if we're one of the expected signal handlers.
switch (signo) {
case SIGSEGV:
if (g_is_segfaulting) {
// Fix up the pointer we're writing to. This needs to happen if nothing
// intercepts the SIGSEGV (i.e. if somebody runs this from the command
// line).
longjmp(g_jump_buffer, 1);
}
break;
case SIGUSR1:
if (g_is_segfaulting) {
// Fix up the pointer we're writing to. This is used to test gdb remote
// signal delivery. A SIGSEGV will be raised when the thread is created,
// switched out for a SIGUSR1, and then this code still needs to fix the
// seg fault. (i.e. if somebody runs this from the command line).
longjmp(g_jump_buffer, 1);
}
break;
}
// Reset the signal handler.
sig_t sig_result = signal(signo, signal_handler);
if (sig_result == SIG_ERR) {
fprintf(stderr, "failed to set signal handler: errno=%d\n", errno);
exit(1);
}
}
static void swap_chars() {
g_c1 = '1';
g_c2 = '0';
g_c1 = '0';
g_c2 = '1';
}
static void hello() {
pthread_mutex_lock(&g_print_mutex);
printf("hello, world\n");
pthread_mutex_unlock(&g_print_mutex);
}
static void *thread_func(void *arg) {
static pthread_mutex_t s_thread_index_mutex = PTHREAD_MUTEX_INITIALIZER;
static int s_thread_index = 1;
pthread_mutex_lock(&s_thread_index_mutex);
const int this_thread_index = s_thread_index++;
pthread_mutex_unlock(&s_thread_index_mutex);
if (g_print_thread_ids) {
pthread_mutex_lock(&g_print_mutex);
printf("thread %d id: ", this_thread_index);
print_thread_id();
printf("\n");
pthread_mutex_unlock(&g_print_mutex);
}
if (g_threads_do_segfault) {
// Sleep for a number of seconds based on the thread index.
// TODO add ability to send commands to test exe so we can
// handle timing more precisely. This is clunky. All we're
// trying to do is add predictability as to the timing of
// signal generation by created threads.
int sleep_seconds = 2 * (this_thread_index - 1);
while (sleep_seconds > 0)
sleep_seconds = sleep(sleep_seconds);
// Test creating a SEGV.
pthread_mutex_lock(&g_jump_buffer_mutex);
g_is_segfaulting = true;
int *bad_p = nullptr;
if (setjmp(g_jump_buffer) == 0) {
// Force a seg fault signal on this thread.
*bad_p = 0;
} else {
// Tell the system we're no longer seg faulting.
// Used by the SIGUSR1 signal handler that we inject
// in place of the SIGSEGV so it only tries to
// recover from the SIGSEGV if this seg fault code
// was in play.
g_is_segfaulting = false;
}
pthread_mutex_unlock(&g_jump_buffer_mutex);
pthread_mutex_lock(&g_print_mutex);
printf("thread ");
print_thread_id();
printf(": past SIGSEGV\n");
pthread_mutex_unlock(&g_print_mutex);
}
int sleep_seconds_remaining = 60;
while (sleep_seconds_remaining > 0) {
sleep_seconds_remaining = sleep(sleep_seconds_remaining);
}
return nullptr;
}
int main(int argc, char **argv) {
lldb_enable_attach();
std::vector<pthread_t> threads;
std::unique_ptr<uint8_t[]> heap_array_up;
int return_value = 0;
// Set the signal handler.
sig_t sig_result = signal(SIGALRM, signal_handler);
if (sig_result == SIG_ERR) {
fprintf(stderr, "failed to set SIGALRM signal handler: errno=%d\n", errno);
exit(1);
}
sig_result = signal(SIGUSR1, signal_handler);
if (sig_result == SIG_ERR) {
fprintf(stderr, "failed to set SIGUSR1 handler: errno=%d\n", errno);
exit(1);
}
sig_result = signal(SIGSEGV, signal_handler);
if (sig_result == SIG_ERR) {
fprintf(stderr, "failed to set SIGUSR1 handler: errno=%d\n", errno);
exit(1);
}
// Process command line args.
for (int i = 1; i < argc; ++i) {
if (std::strstr(argv[i], STDERR_PREFIX)) {
// Treat remainder as text to go to stderr.
fprintf(stderr, "%s\n", (argv[i] + strlen(STDERR_PREFIX)));
} else if (std::strstr(argv[i], RETVAL_PREFIX)) {
// Treat as the return value for the program.
return_value = std::atoi(argv[i] + strlen(RETVAL_PREFIX));
} else if (std::strstr(argv[i], SLEEP_PREFIX)) {
// Treat as the amount of time to have this process sleep (in seconds).
int sleep_seconds_remaining = std::atoi(argv[i] + strlen(SLEEP_PREFIX));
// Loop around, sleeping until all sleep time is used up. Note that
// signals will cause sleep to end early with the number of seconds
// remaining.
for (int i = 0; sleep_seconds_remaining > 0; ++i) {
sleep_seconds_remaining = sleep(sleep_seconds_remaining);
// std::cout << "sleep result (call " << i << "): " <<
// sleep_seconds_remaining << std::endl;
}
} else if (std::strstr(argv[i], SET_MESSAGE_PREFIX)) {
// Copy the contents after "set-message:" to the g_message buffer.
// Used for reading inferior memory and verifying contents match
// expectations.
strncpy(g_message, argv[i] + strlen(SET_MESSAGE_PREFIX),
sizeof(g_message));
// Ensure we're null terminated.
g_message[sizeof(g_message) - 1] = '\0';
} else if (std::strstr(argv[i], PRINT_MESSAGE_COMMAND)) {
pthread_mutex_lock(&g_print_mutex);
printf("message: %s\n", g_message);
pthread_mutex_unlock(&g_print_mutex);
} else if (std::strstr(argv[i], GET_DATA_ADDRESS_PREFIX)) {
volatile void *data_p = nullptr;
if (std::strstr(argv[i] + strlen(GET_DATA_ADDRESS_PREFIX), "g_message"))
data_p = &g_message[0];
else if (std::strstr(argv[i] + strlen(GET_DATA_ADDRESS_PREFIX), "g_c1"))
data_p = &g_c1;
else if (std::strstr(argv[i] + strlen(GET_DATA_ADDRESS_PREFIX), "g_c2"))
data_p = &g_c2;
pthread_mutex_lock(&g_print_mutex);
printf("data address: %p\n", data_p);
pthread_mutex_unlock(&g_print_mutex);
} else if (std::strstr(argv[i], GET_HEAP_ADDRESS_COMMAND)) {
// Create a byte array if not already present.
if (!heap_array_up)
heap_array_up.reset(new uint8_t[32]);
pthread_mutex_lock(&g_print_mutex);
printf("heap address: %p\n", heap_array_up.get());
pthread_mutex_unlock(&g_print_mutex);
} else if (std::strstr(argv[i], GET_STACK_ADDRESS_COMMAND)) {
pthread_mutex_lock(&g_print_mutex);
printf("stack address: %p\n", &return_value);
pthread_mutex_unlock(&g_print_mutex);
} else if (std::strstr(argv[i], GET_CODE_ADDRESS_PREFIX)) {
void (*func_p)() = nullptr;
if (std::strstr(argv[i] + strlen(GET_CODE_ADDRESS_PREFIX), "hello"))
func_p = hello;
else if (std::strstr(argv[i] + strlen(GET_CODE_ADDRESS_PREFIX),
"swap_chars"))
func_p = swap_chars;
pthread_mutex_lock(&g_print_mutex);
printf("code address: %p\n", func_p);
pthread_mutex_unlock(&g_print_mutex);
} else if (std::strstr(argv[i], CALL_FUNCTION_PREFIX)) {
void (*func_p)() = nullptr;
// Defaut to providing the address of main.
if (std::strcmp(argv[i] + strlen(CALL_FUNCTION_PREFIX), "hello") == 0)
func_p = hello;
else if (std::strcmp(argv[i] + strlen(CALL_FUNCTION_PREFIX),
"swap_chars") == 0)
func_p = swap_chars;
else {
pthread_mutex_lock(&g_print_mutex);
printf("unknown function: %s\n",
argv[i] + strlen(CALL_FUNCTION_PREFIX));
pthread_mutex_unlock(&g_print_mutex);
}
if (func_p)
func_p();
} else if (std::strstr(argv[i], THREAD_PREFIX)) {
// Check if we're creating a new thread.
if (std::strstr(argv[i] + strlen(THREAD_PREFIX), THREAD_COMMAND_NEW)) {
// Create a new thread.
pthread_t new_thread;
const int err =
::pthread_create(&new_thread, nullptr, thread_func, nullptr);
if (err) {
fprintf(stderr, "pthread_create() failed with error code %d\n", err);
exit(err);
}
threads.push_back(new_thread);
} else if (std::strstr(argv[i] + strlen(THREAD_PREFIX),
THREAD_COMMAND_PRINT_IDS)) {
// Turn on thread id announcing.
g_print_thread_ids = true;
// And announce us.
pthread_mutex_lock(&g_print_mutex);
printf("thread 0 id: ");
print_thread_id();
printf("\n");
pthread_mutex_unlock(&g_print_mutex);
} else if (std::strstr(argv[i] + strlen(THREAD_PREFIX),
THREAD_COMMAND_SEGFAULT)) {
g_threads_do_segfault = true;
} else {
// At this point we don't do anything else with threads.
// Later use thread index and send command to thread.
}
} else if (std::strstr(argv[i], PRINT_PID_COMMAND)) {
print_pid();
} else {
// Treat the argument as text for stdout.
printf("%s\n", argv[i]);
}
}
// If we launched any threads, join them
for (std::vector<pthread_t>::iterator it = threads.begin();
it != threads.end(); ++it) {
void *thread_retval = nullptr;
const int err = ::pthread_join(*it, &thread_retval);
if (err != 0)
fprintf(stderr, "pthread_join() failed with error code %d\n", err);
}
return return_value;
}