forked from OSchip/llvm-project
1099 lines
36 KiB
C++
1099 lines
36 KiB
C++
//===--- ARM.cpp - Implement ARM target feature support -------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements ARM TargetInfo objects.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ARM.h"
|
|
#include "clang/Basic/Builtins.h"
|
|
#include "clang/Basic/Diagnostic.h"
|
|
#include "clang/Basic/TargetBuiltins.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
|
|
using namespace clang;
|
|
using namespace clang::targets;
|
|
|
|
void ARMTargetInfo::setABIAAPCS() {
|
|
IsAAPCS = true;
|
|
|
|
DoubleAlign = LongLongAlign = LongDoubleAlign = SuitableAlign = 64;
|
|
const llvm::Triple &T = getTriple();
|
|
|
|
bool IsNetBSD = T.getOS() == llvm::Triple::NetBSD;
|
|
bool IsOpenBSD = T.getOS() == llvm::Triple::OpenBSD;
|
|
if (!T.isOSWindows() && !IsNetBSD && !IsOpenBSD)
|
|
WCharType = UnsignedInt;
|
|
|
|
UseBitFieldTypeAlignment = true;
|
|
|
|
ZeroLengthBitfieldBoundary = 0;
|
|
|
|
// Thumb1 add sp, #imm requires the immediate value be multiple of 4,
|
|
// so set preferred for small types to 32.
|
|
if (T.isOSBinFormatMachO()) {
|
|
resetDataLayout(BigEndian
|
|
? "E-m:o-p:32:32-i64:64-v128:64:128-a:0:32-n32-S64"
|
|
: "e-m:o-p:32:32-i64:64-v128:64:128-a:0:32-n32-S64");
|
|
} else if (T.isOSWindows()) {
|
|
assert(!BigEndian && "Windows on ARM does not support big endian");
|
|
resetDataLayout("e"
|
|
"-m:w"
|
|
"-p:32:32"
|
|
"-i64:64"
|
|
"-v128:64:128"
|
|
"-a:0:32"
|
|
"-n32"
|
|
"-S64");
|
|
} else if (T.isOSNaCl()) {
|
|
assert(!BigEndian && "NaCl on ARM does not support big endian");
|
|
resetDataLayout("e-m:e-p:32:32-i64:64-v128:64:128-a:0:32-n32-S128");
|
|
} else {
|
|
resetDataLayout(BigEndian
|
|
? "E-m:e-p:32:32-i64:64-v128:64:128-a:0:32-n32-S64"
|
|
: "e-m:e-p:32:32-i64:64-v128:64:128-a:0:32-n32-S64");
|
|
}
|
|
|
|
// FIXME: Enumerated types are variable width in straight AAPCS.
|
|
}
|
|
|
|
void ARMTargetInfo::setABIAPCS(bool IsAAPCS16) {
|
|
const llvm::Triple &T = getTriple();
|
|
|
|
IsAAPCS = false;
|
|
|
|
if (IsAAPCS16)
|
|
DoubleAlign = LongLongAlign = LongDoubleAlign = SuitableAlign = 64;
|
|
else
|
|
DoubleAlign = LongLongAlign = LongDoubleAlign = SuitableAlign = 32;
|
|
|
|
WCharType = SignedInt;
|
|
|
|
// Do not respect the alignment of bit-field types when laying out
|
|
// structures. This corresponds to PCC_BITFIELD_TYPE_MATTERS in gcc.
|
|
UseBitFieldTypeAlignment = false;
|
|
|
|
/// gcc forces the alignment to 4 bytes, regardless of the type of the
|
|
/// zero length bitfield. This corresponds to EMPTY_FIELD_BOUNDARY in
|
|
/// gcc.
|
|
ZeroLengthBitfieldBoundary = 32;
|
|
|
|
if (T.isOSBinFormatMachO() && IsAAPCS16) {
|
|
assert(!BigEndian && "AAPCS16 does not support big-endian");
|
|
resetDataLayout("e-m:o-p:32:32-i64:64-a:0:32-n32-S128");
|
|
} else if (T.isOSBinFormatMachO())
|
|
resetDataLayout(
|
|
BigEndian
|
|
? "E-m:o-p:32:32-f64:32:64-v64:32:64-v128:32:128-a:0:32-n32-S32"
|
|
: "e-m:o-p:32:32-f64:32:64-v64:32:64-v128:32:128-a:0:32-n32-S32");
|
|
else
|
|
resetDataLayout(
|
|
BigEndian
|
|
? "E-m:e-p:32:32-f64:32:64-v64:32:64-v128:32:128-a:0:32-n32-S32"
|
|
: "e-m:e-p:32:32-f64:32:64-v64:32:64-v128:32:128-a:0:32-n32-S32");
|
|
|
|
// FIXME: Override "preferred align" for double and long long.
|
|
}
|
|
|
|
void ARMTargetInfo::setArchInfo() {
|
|
StringRef ArchName = getTriple().getArchName();
|
|
|
|
ArchISA = llvm::ARM::parseArchISA(ArchName);
|
|
CPU = llvm::ARM::getDefaultCPU(ArchName);
|
|
llvm::ARM::ArchKind AK = llvm::ARM::parseArch(ArchName);
|
|
if (AK != llvm::ARM::ArchKind::INVALID)
|
|
ArchKind = AK;
|
|
setArchInfo(ArchKind);
|
|
}
|
|
|
|
void ARMTargetInfo::setArchInfo(llvm::ARM::ArchKind Kind) {
|
|
StringRef SubArch;
|
|
|
|
// cache TargetParser info
|
|
ArchKind = Kind;
|
|
SubArch = llvm::ARM::getSubArch(ArchKind);
|
|
ArchProfile = llvm::ARM::parseArchProfile(SubArch);
|
|
ArchVersion = llvm::ARM::parseArchVersion(SubArch);
|
|
|
|
// cache CPU related strings
|
|
CPUAttr = getCPUAttr();
|
|
CPUProfile = getCPUProfile();
|
|
}
|
|
|
|
void ARMTargetInfo::setAtomic() {
|
|
// when triple does not specify a sub arch,
|
|
// then we are not using inline atomics
|
|
bool ShouldUseInlineAtomic =
|
|
(ArchISA == llvm::ARM::ISAKind::ARM && ArchVersion >= 6) ||
|
|
(ArchISA == llvm::ARM::ISAKind::THUMB && ArchVersion >= 7);
|
|
// Cortex M does not support 8 byte atomics, while general Thumb2 does.
|
|
if (ArchProfile == llvm::ARM::ProfileKind::M) {
|
|
MaxAtomicPromoteWidth = 32;
|
|
if (ShouldUseInlineAtomic)
|
|
MaxAtomicInlineWidth = 32;
|
|
} else {
|
|
MaxAtomicPromoteWidth = 64;
|
|
if (ShouldUseInlineAtomic)
|
|
MaxAtomicInlineWidth = 64;
|
|
}
|
|
}
|
|
|
|
bool ARMTargetInfo::isThumb() const {
|
|
return ArchISA == llvm::ARM::ISAKind::THUMB;
|
|
}
|
|
|
|
bool ARMTargetInfo::supportsThumb() const {
|
|
return CPUAttr.count('T') || ArchVersion >= 6;
|
|
}
|
|
|
|
bool ARMTargetInfo::supportsThumb2() const {
|
|
return CPUAttr.equals("6T2") ||
|
|
(ArchVersion >= 7 && !CPUAttr.equals("8M_BASE"));
|
|
}
|
|
|
|
StringRef ARMTargetInfo::getCPUAttr() const {
|
|
// For most sub-arches, the build attribute CPU name is enough.
|
|
// For Cortex variants, it's slightly different.
|
|
switch (ArchKind) {
|
|
default:
|
|
return llvm::ARM::getCPUAttr(ArchKind);
|
|
case llvm::ARM::ArchKind::ARMV6M:
|
|
return "6M";
|
|
case llvm::ARM::ArchKind::ARMV7S:
|
|
return "7S";
|
|
case llvm::ARM::ArchKind::ARMV7A:
|
|
return "7A";
|
|
case llvm::ARM::ArchKind::ARMV7R:
|
|
return "7R";
|
|
case llvm::ARM::ArchKind::ARMV7M:
|
|
return "7M";
|
|
case llvm::ARM::ArchKind::ARMV7EM:
|
|
return "7EM";
|
|
case llvm::ARM::ArchKind::ARMV7VE:
|
|
return "7VE";
|
|
case llvm::ARM::ArchKind::ARMV8A:
|
|
return "8A";
|
|
case llvm::ARM::ArchKind::ARMV8_1A:
|
|
return "8_1A";
|
|
case llvm::ARM::ArchKind::ARMV8_2A:
|
|
return "8_2A";
|
|
case llvm::ARM::ArchKind::ARMV8MBaseline:
|
|
return "8M_BASE";
|
|
case llvm::ARM::ArchKind::ARMV8MMainline:
|
|
return "8M_MAIN";
|
|
case llvm::ARM::ArchKind::ARMV8R:
|
|
return "8R";
|
|
}
|
|
}
|
|
|
|
StringRef ARMTargetInfo::getCPUProfile() const {
|
|
switch (ArchProfile) {
|
|
case llvm::ARM::ProfileKind::A:
|
|
return "A";
|
|
case llvm::ARM::ProfileKind::R:
|
|
return "R";
|
|
case llvm::ARM::ProfileKind::M:
|
|
return "M";
|
|
default:
|
|
return "";
|
|
}
|
|
}
|
|
|
|
ARMTargetInfo::ARMTargetInfo(const llvm::Triple &Triple,
|
|
const TargetOptions &Opts)
|
|
: TargetInfo(Triple), FPMath(FP_Default), IsAAPCS(true), LDREX(0),
|
|
HW_FP(0) {
|
|
bool IsOpenBSD = Triple.getOS() == llvm::Triple::OpenBSD;
|
|
bool IsNetBSD = Triple.getOS() == llvm::Triple::NetBSD;
|
|
|
|
// FIXME: the isOSBinFormatMachO is a workaround for identifying a Darwin-like
|
|
// environment where size_t is `unsigned long` rather than `unsigned int`
|
|
|
|
PtrDiffType = IntPtrType =
|
|
(Triple.isOSDarwin() || Triple.isOSBinFormatMachO() || IsOpenBSD ||
|
|
IsNetBSD)
|
|
? SignedLong
|
|
: SignedInt;
|
|
|
|
SizeType = (Triple.isOSDarwin() || Triple.isOSBinFormatMachO() || IsOpenBSD ||
|
|
IsNetBSD)
|
|
? UnsignedLong
|
|
: UnsignedInt;
|
|
|
|
// ptrdiff_t is inconsistent on Darwin
|
|
if ((Triple.isOSDarwin() || Triple.isOSBinFormatMachO()) &&
|
|
!Triple.isWatchABI())
|
|
PtrDiffType = SignedInt;
|
|
|
|
// Cache arch related info.
|
|
setArchInfo();
|
|
|
|
// {} in inline assembly are neon specifiers, not assembly variant
|
|
// specifiers.
|
|
NoAsmVariants = true;
|
|
|
|
// FIXME: This duplicates code from the driver that sets the -target-abi
|
|
// option - this code is used if -target-abi isn't passed and should
|
|
// be unified in some way.
|
|
if (Triple.isOSBinFormatMachO()) {
|
|
// The backend is hardwired to assume AAPCS for M-class processors, ensure
|
|
// the frontend matches that.
|
|
if (Triple.getEnvironment() == llvm::Triple::EABI ||
|
|
Triple.getOS() == llvm::Triple::UnknownOS ||
|
|
ArchProfile == llvm::ARM::ProfileKind::M) {
|
|
setABI("aapcs");
|
|
} else if (Triple.isWatchABI()) {
|
|
setABI("aapcs16");
|
|
} else {
|
|
setABI("apcs-gnu");
|
|
}
|
|
} else if (Triple.isOSWindows()) {
|
|
// FIXME: this is invalid for WindowsCE
|
|
setABI("aapcs");
|
|
} else {
|
|
// Select the default based on the platform.
|
|
switch (Triple.getEnvironment()) {
|
|
case llvm::Triple::Android:
|
|
case llvm::Triple::GNUEABI:
|
|
case llvm::Triple::GNUEABIHF:
|
|
case llvm::Triple::MuslEABI:
|
|
case llvm::Triple::MuslEABIHF:
|
|
setABI("aapcs-linux");
|
|
break;
|
|
case llvm::Triple::EABIHF:
|
|
case llvm::Triple::EABI:
|
|
setABI("aapcs");
|
|
break;
|
|
case llvm::Triple::GNU:
|
|
setABI("apcs-gnu");
|
|
break;
|
|
default:
|
|
if (Triple.getOS() == llvm::Triple::NetBSD)
|
|
setABI("apcs-gnu");
|
|
else if (Triple.getOS() == llvm::Triple::OpenBSD)
|
|
setABI("aapcs-linux");
|
|
else
|
|
setABI("aapcs");
|
|
break;
|
|
}
|
|
}
|
|
|
|
// ARM targets default to using the ARM C++ ABI.
|
|
TheCXXABI.set(TargetCXXABI::GenericARM);
|
|
|
|
// ARM has atomics up to 8 bytes
|
|
setAtomic();
|
|
|
|
// Maximum alignment for ARM NEON data types should be 64-bits (AAPCS)
|
|
if (IsAAPCS && (Triple.getEnvironment() != llvm::Triple::Android))
|
|
MaxVectorAlign = 64;
|
|
|
|
// Do force alignment of members that follow zero length bitfields. If
|
|
// the alignment of the zero-length bitfield is greater than the member
|
|
// that follows it, `bar', `bar' will be aligned as the type of the
|
|
// zero length bitfield.
|
|
UseZeroLengthBitfieldAlignment = true;
|
|
|
|
if (Triple.getOS() == llvm::Triple::Linux ||
|
|
Triple.getOS() == llvm::Triple::UnknownOS)
|
|
this->MCountName = Opts.EABIVersion == llvm::EABI::GNU
|
|
? "\01__gnu_mcount_nc"
|
|
: "\01mcount";
|
|
}
|
|
|
|
StringRef ARMTargetInfo::getABI() const { return ABI; }
|
|
|
|
bool ARMTargetInfo::setABI(const std::string &Name) {
|
|
ABI = Name;
|
|
|
|
// The defaults (above) are for AAPCS, check if we need to change them.
|
|
//
|
|
// FIXME: We need support for -meabi... we could just mangle it into the
|
|
// name.
|
|
if (Name == "apcs-gnu" || Name == "aapcs16") {
|
|
setABIAPCS(Name == "aapcs16");
|
|
return true;
|
|
}
|
|
if (Name == "aapcs" || Name == "aapcs-vfp" || Name == "aapcs-linux") {
|
|
setABIAAPCS();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// FIXME: This should be based on Arch attributes, not CPU names.
|
|
bool ARMTargetInfo::initFeatureMap(
|
|
llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU,
|
|
const std::vector<std::string> &FeaturesVec) const {
|
|
|
|
std::string ArchFeature;
|
|
std::vector<StringRef> TargetFeatures;
|
|
llvm::ARM::ArchKind Arch = llvm::ARM::parseArch(getTriple().getArchName());
|
|
|
|
// Map the base architecture to an appropriate target feature, so we don't
|
|
// rely on the target triple.
|
|
llvm::ARM::ArchKind CPUArch = llvm::ARM::parseCPUArch(CPU);
|
|
if (CPUArch == llvm::ARM::ArchKind::INVALID)
|
|
CPUArch = Arch;
|
|
if (CPUArch != llvm::ARM::ArchKind::INVALID) {
|
|
ArchFeature = ("+" + llvm::ARM::getArchName(CPUArch)).str();
|
|
TargetFeatures.push_back(ArchFeature);
|
|
}
|
|
|
|
// get default FPU features
|
|
unsigned FPUKind = llvm::ARM::getDefaultFPU(CPU, Arch);
|
|
llvm::ARM::getFPUFeatures(FPUKind, TargetFeatures);
|
|
|
|
// get default Extension features
|
|
unsigned Extensions = llvm::ARM::getDefaultExtensions(CPU, Arch);
|
|
llvm::ARM::getExtensionFeatures(Extensions, TargetFeatures);
|
|
|
|
for (auto Feature : TargetFeatures)
|
|
if (Feature[0] == '+')
|
|
Features[Feature.drop_front(1)] = true;
|
|
|
|
// Enable or disable thumb-mode explicitly per function to enable mixed
|
|
// ARM and Thumb code generation.
|
|
if (isThumb())
|
|
Features["thumb-mode"] = true;
|
|
else
|
|
Features["thumb-mode"] = false;
|
|
|
|
// Convert user-provided arm and thumb GNU target attributes to
|
|
// [-|+]thumb-mode target features respectively.
|
|
std::vector<std::string> UpdatedFeaturesVec(FeaturesVec);
|
|
for (auto &Feature : UpdatedFeaturesVec) {
|
|
if (Feature.compare("+arm") == 0)
|
|
Feature = "-thumb-mode";
|
|
else if (Feature.compare("+thumb") == 0)
|
|
Feature = "+thumb-mode";
|
|
}
|
|
|
|
return TargetInfo::initFeatureMap(Features, Diags, CPU, UpdatedFeaturesVec);
|
|
}
|
|
|
|
|
|
bool ARMTargetInfo::handleTargetFeatures(std::vector<std::string> &Features,
|
|
DiagnosticsEngine &Diags) {
|
|
FPU = 0;
|
|
CRC = 0;
|
|
Crypto = 0;
|
|
DSP = 0;
|
|
Unaligned = 1;
|
|
SoftFloat = SoftFloatABI = false;
|
|
HWDiv = 0;
|
|
DotProd = 0;
|
|
|
|
// This does not diagnose illegal cases like having both
|
|
// "+vfpv2" and "+vfpv3" or having "+neon" and "+fp-only-sp".
|
|
uint32_t HW_FP_remove = 0;
|
|
for (const auto &Feature : Features) {
|
|
if (Feature == "+soft-float") {
|
|
SoftFloat = true;
|
|
} else if (Feature == "+soft-float-abi") {
|
|
SoftFloatABI = true;
|
|
} else if (Feature == "+vfp2") {
|
|
FPU |= VFP2FPU;
|
|
HW_FP |= HW_FP_SP | HW_FP_DP;
|
|
} else if (Feature == "+vfp3") {
|
|
FPU |= VFP3FPU;
|
|
HW_FP |= HW_FP_SP | HW_FP_DP;
|
|
} else if (Feature == "+vfp4") {
|
|
FPU |= VFP4FPU;
|
|
HW_FP |= HW_FP_SP | HW_FP_DP | HW_FP_HP;
|
|
} else if (Feature == "+fp-armv8") {
|
|
FPU |= FPARMV8;
|
|
HW_FP |= HW_FP_SP | HW_FP_DP | HW_FP_HP;
|
|
} else if (Feature == "+neon") {
|
|
FPU |= NeonFPU;
|
|
HW_FP |= HW_FP_SP | HW_FP_DP;
|
|
} else if (Feature == "+hwdiv") {
|
|
HWDiv |= HWDivThumb;
|
|
} else if (Feature == "+hwdiv-arm") {
|
|
HWDiv |= HWDivARM;
|
|
} else if (Feature == "+crc") {
|
|
CRC = 1;
|
|
} else if (Feature == "+crypto") {
|
|
Crypto = 1;
|
|
} else if (Feature == "+dsp") {
|
|
DSP = 1;
|
|
} else if (Feature == "+fp-only-sp") {
|
|
HW_FP_remove |= HW_FP_DP;
|
|
} else if (Feature == "+strict-align") {
|
|
Unaligned = 0;
|
|
} else if (Feature == "+fp16") {
|
|
HW_FP |= HW_FP_HP;
|
|
} else if (Feature == "+fullfp16") {
|
|
HasLegalHalfType = true;
|
|
} else if (Feature == "+dotprod") {
|
|
DotProd = true;
|
|
}
|
|
}
|
|
HW_FP &= ~HW_FP_remove;
|
|
|
|
switch (ArchVersion) {
|
|
case 6:
|
|
if (ArchProfile == llvm::ARM::ProfileKind::M)
|
|
LDREX = 0;
|
|
else if (ArchKind == llvm::ARM::ArchKind::ARMV6K)
|
|
LDREX = LDREX_D | LDREX_W | LDREX_H | LDREX_B;
|
|
else
|
|
LDREX = LDREX_W;
|
|
break;
|
|
case 7:
|
|
if (ArchProfile == llvm::ARM::ProfileKind::M)
|
|
LDREX = LDREX_W | LDREX_H | LDREX_B;
|
|
else
|
|
LDREX = LDREX_D | LDREX_W | LDREX_H | LDREX_B;
|
|
break;
|
|
case 8:
|
|
LDREX = LDREX_D | LDREX_W | LDREX_H | LDREX_B;
|
|
}
|
|
|
|
if (!(FPU & NeonFPU) && FPMath == FP_Neon) {
|
|
Diags.Report(diag::err_target_unsupported_fpmath) << "neon";
|
|
return false;
|
|
}
|
|
|
|
if (FPMath == FP_Neon)
|
|
Features.push_back("+neonfp");
|
|
else if (FPMath == FP_VFP)
|
|
Features.push_back("-neonfp");
|
|
|
|
// Remove front-end specific options which the backend handles differently.
|
|
auto Feature = std::find(Features.begin(), Features.end(), "+soft-float-abi");
|
|
if (Feature != Features.end())
|
|
Features.erase(Feature);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ARMTargetInfo::hasFeature(StringRef Feature) const {
|
|
return llvm::StringSwitch<bool>(Feature)
|
|
.Case("arm", true)
|
|
.Case("aarch32", true)
|
|
.Case("softfloat", SoftFloat)
|
|
.Case("thumb", isThumb())
|
|
.Case("neon", (FPU & NeonFPU) && !SoftFloat)
|
|
.Case("vfp", FPU && !SoftFloat)
|
|
.Case("hwdiv", HWDiv & HWDivThumb)
|
|
.Case("hwdiv-arm", HWDiv & HWDivARM)
|
|
.Default(false);
|
|
}
|
|
|
|
bool ARMTargetInfo::isValidCPUName(StringRef Name) const {
|
|
return Name == "generic" ||
|
|
llvm::ARM::parseCPUArch(Name) != llvm::ARM::ArchKind::INVALID;
|
|
}
|
|
|
|
void ARMTargetInfo::fillValidCPUList(SmallVectorImpl<StringRef> &Values) const {
|
|
llvm::ARM::fillValidCPUArchList(Values);
|
|
}
|
|
|
|
bool ARMTargetInfo::setCPU(const std::string &Name) {
|
|
if (Name != "generic")
|
|
setArchInfo(llvm::ARM::parseCPUArch(Name));
|
|
|
|
if (ArchKind == llvm::ARM::ArchKind::INVALID)
|
|
return false;
|
|
setAtomic();
|
|
CPU = Name;
|
|
return true;
|
|
}
|
|
|
|
bool ARMTargetInfo::setFPMath(StringRef Name) {
|
|
if (Name == "neon") {
|
|
FPMath = FP_Neon;
|
|
return true;
|
|
} else if (Name == "vfp" || Name == "vfp2" || Name == "vfp3" ||
|
|
Name == "vfp4") {
|
|
FPMath = FP_VFP;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void ARMTargetInfo::getTargetDefinesARMV81A(const LangOptions &Opts,
|
|
MacroBuilder &Builder) const {
|
|
Builder.defineMacro("__ARM_FEATURE_QRDMX", "1");
|
|
}
|
|
|
|
void ARMTargetInfo::getTargetDefinesARMV82A(const LangOptions &Opts,
|
|
MacroBuilder &Builder) const {
|
|
// Also include the ARMv8.1-A defines
|
|
getTargetDefinesARMV81A(Opts, Builder);
|
|
}
|
|
|
|
void ARMTargetInfo::getTargetDefines(const LangOptions &Opts,
|
|
MacroBuilder &Builder) const {
|
|
// Target identification.
|
|
Builder.defineMacro("__arm");
|
|
Builder.defineMacro("__arm__");
|
|
// For bare-metal none-eabi.
|
|
if (getTriple().getOS() == llvm::Triple::UnknownOS &&
|
|
(getTriple().getEnvironment() == llvm::Triple::EABI ||
|
|
getTriple().getEnvironment() == llvm::Triple::EABIHF))
|
|
Builder.defineMacro("__ELF__");
|
|
|
|
// Target properties.
|
|
Builder.defineMacro("__REGISTER_PREFIX__", "");
|
|
|
|
// Unfortunately, __ARM_ARCH_7K__ is now more of an ABI descriptor. The CPU
|
|
// happens to be Cortex-A7 though, so it should still get __ARM_ARCH_7A__.
|
|
if (getTriple().isWatchABI())
|
|
Builder.defineMacro("__ARM_ARCH_7K__", "2");
|
|
|
|
if (!CPUAttr.empty())
|
|
Builder.defineMacro("__ARM_ARCH_" + CPUAttr + "__");
|
|
|
|
// ACLE 6.4.1 ARM/Thumb instruction set architecture
|
|
// __ARM_ARCH is defined as an integer value indicating the current ARM ISA
|
|
Builder.defineMacro("__ARM_ARCH", Twine(ArchVersion));
|
|
|
|
if (ArchVersion >= 8) {
|
|
// ACLE 6.5.7 Crypto Extension
|
|
if (Crypto)
|
|
Builder.defineMacro("__ARM_FEATURE_CRYPTO", "1");
|
|
// ACLE 6.5.8 CRC32 Extension
|
|
if (CRC)
|
|
Builder.defineMacro("__ARM_FEATURE_CRC32", "1");
|
|
// ACLE 6.5.10 Numeric Maximum and Minimum
|
|
Builder.defineMacro("__ARM_FEATURE_NUMERIC_MAXMIN", "1");
|
|
// ACLE 6.5.9 Directed Rounding
|
|
Builder.defineMacro("__ARM_FEATURE_DIRECTED_ROUNDING", "1");
|
|
}
|
|
|
|
// __ARM_ARCH_ISA_ARM is defined to 1 if the core supports the ARM ISA. It
|
|
// is not defined for the M-profile.
|
|
// NOTE that the default profile is assumed to be 'A'
|
|
if (CPUProfile.empty() || ArchProfile != llvm::ARM::ProfileKind::M)
|
|
Builder.defineMacro("__ARM_ARCH_ISA_ARM", "1");
|
|
|
|
// __ARM_ARCH_ISA_THUMB is defined to 1 if the core supports the original
|
|
// Thumb ISA (including v6-M and v8-M Baseline). It is set to 2 if the
|
|
// core supports the Thumb-2 ISA as found in the v6T2 architecture and all
|
|
// v7 and v8 architectures excluding v8-M Baseline.
|
|
if (supportsThumb2())
|
|
Builder.defineMacro("__ARM_ARCH_ISA_THUMB", "2");
|
|
else if (supportsThumb())
|
|
Builder.defineMacro("__ARM_ARCH_ISA_THUMB", "1");
|
|
|
|
// __ARM_32BIT_STATE is defined to 1 if code is being generated for a 32-bit
|
|
// instruction set such as ARM or Thumb.
|
|
Builder.defineMacro("__ARM_32BIT_STATE", "1");
|
|
|
|
// ACLE 6.4.2 Architectural Profile (A, R, M or pre-Cortex)
|
|
|
|
// __ARM_ARCH_PROFILE is defined as 'A', 'R', 'M' or 'S', or unset.
|
|
if (!CPUProfile.empty())
|
|
Builder.defineMacro("__ARM_ARCH_PROFILE", "'" + CPUProfile + "'");
|
|
|
|
// ACLE 6.4.3 Unaligned access supported in hardware
|
|
if (Unaligned)
|
|
Builder.defineMacro("__ARM_FEATURE_UNALIGNED", "1");
|
|
|
|
// ACLE 6.4.4 LDREX/STREX
|
|
if (LDREX)
|
|
Builder.defineMacro("__ARM_FEATURE_LDREX", "0x" + Twine::utohexstr(LDREX));
|
|
|
|
// ACLE 6.4.5 CLZ
|
|
if (ArchVersion == 5 || (ArchVersion == 6 && CPUProfile != "M") ||
|
|
ArchVersion > 6)
|
|
Builder.defineMacro("__ARM_FEATURE_CLZ", "1");
|
|
|
|
// ACLE 6.5.1 Hardware Floating Point
|
|
if (HW_FP)
|
|
Builder.defineMacro("__ARM_FP", "0x" + Twine::utohexstr(HW_FP));
|
|
|
|
// ACLE predefines.
|
|
Builder.defineMacro("__ARM_ACLE", "200");
|
|
|
|
// FP16 support (we currently only support IEEE format).
|
|
Builder.defineMacro("__ARM_FP16_FORMAT_IEEE", "1");
|
|
Builder.defineMacro("__ARM_FP16_ARGS", "1");
|
|
|
|
// ACLE 6.5.3 Fused multiply-accumulate (FMA)
|
|
if (ArchVersion >= 7 && (FPU & VFP4FPU))
|
|
Builder.defineMacro("__ARM_FEATURE_FMA", "1");
|
|
|
|
// Subtarget options.
|
|
|
|
// FIXME: It's more complicated than this and we don't really support
|
|
// interworking.
|
|
// Windows on ARM does not "support" interworking
|
|
if (5 <= ArchVersion && ArchVersion <= 8 && !getTriple().isOSWindows())
|
|
Builder.defineMacro("__THUMB_INTERWORK__");
|
|
|
|
if (ABI == "aapcs" || ABI == "aapcs-linux" || ABI == "aapcs-vfp") {
|
|
// Embedded targets on Darwin follow AAPCS, but not EABI.
|
|
// Windows on ARM follows AAPCS VFP, but does not conform to EABI.
|
|
if (!getTriple().isOSBinFormatMachO() && !getTriple().isOSWindows())
|
|
Builder.defineMacro("__ARM_EABI__");
|
|
Builder.defineMacro("__ARM_PCS", "1");
|
|
}
|
|
|
|
if ((!SoftFloat && !SoftFloatABI) || ABI == "aapcs-vfp" || ABI == "aapcs16")
|
|
Builder.defineMacro("__ARM_PCS_VFP", "1");
|
|
|
|
if (SoftFloat)
|
|
Builder.defineMacro("__SOFTFP__");
|
|
|
|
if (ArchKind == llvm::ARM::ArchKind::XSCALE)
|
|
Builder.defineMacro("__XSCALE__");
|
|
|
|
if (isThumb()) {
|
|
Builder.defineMacro("__THUMBEL__");
|
|
Builder.defineMacro("__thumb__");
|
|
if (supportsThumb2())
|
|
Builder.defineMacro("__thumb2__");
|
|
}
|
|
|
|
// ACLE 6.4.9 32-bit SIMD instructions
|
|
if (ArchVersion >= 6 && (CPUProfile != "M" || CPUAttr == "7EM"))
|
|
Builder.defineMacro("__ARM_FEATURE_SIMD32", "1");
|
|
|
|
// ACLE 6.4.10 Hardware Integer Divide
|
|
if (((HWDiv & HWDivThumb) && isThumb()) ||
|
|
((HWDiv & HWDivARM) && !isThumb())) {
|
|
Builder.defineMacro("__ARM_FEATURE_IDIV", "1");
|
|
Builder.defineMacro("__ARM_ARCH_EXT_IDIV__", "1");
|
|
}
|
|
|
|
// Note, this is always on in gcc, even though it doesn't make sense.
|
|
Builder.defineMacro("__APCS_32__");
|
|
|
|
if (FPUModeIsVFP((FPUMode)FPU)) {
|
|
Builder.defineMacro("__VFP_FP__");
|
|
if (FPU & VFP2FPU)
|
|
Builder.defineMacro("__ARM_VFPV2__");
|
|
if (FPU & VFP3FPU)
|
|
Builder.defineMacro("__ARM_VFPV3__");
|
|
if (FPU & VFP4FPU)
|
|
Builder.defineMacro("__ARM_VFPV4__");
|
|
if (FPU & FPARMV8)
|
|
Builder.defineMacro("__ARM_FPV5__");
|
|
}
|
|
|
|
// This only gets set when Neon instructions are actually available, unlike
|
|
// the VFP define, hence the soft float and arch check. This is subtly
|
|
// different from gcc, we follow the intent which was that it should be set
|
|
// when Neon instructions are actually available.
|
|
if ((FPU & NeonFPU) && !SoftFloat && ArchVersion >= 7) {
|
|
Builder.defineMacro("__ARM_NEON", "1");
|
|
Builder.defineMacro("__ARM_NEON__");
|
|
// current AArch32 NEON implementations do not support double-precision
|
|
// floating-point even when it is present in VFP.
|
|
Builder.defineMacro("__ARM_NEON_FP",
|
|
"0x" + Twine::utohexstr(HW_FP & ~HW_FP_DP));
|
|
}
|
|
|
|
Builder.defineMacro("__ARM_SIZEOF_WCHAR_T",
|
|
Twine(Opts.WCharSize ? Opts.WCharSize : 4));
|
|
|
|
Builder.defineMacro("__ARM_SIZEOF_MINIMAL_ENUM", Opts.ShortEnums ? "1" : "4");
|
|
|
|
if (ArchVersion >= 6 && CPUAttr != "6M" && CPUAttr != "8M_BASE") {
|
|
Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_1");
|
|
Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_2");
|
|
Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4");
|
|
Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_8");
|
|
}
|
|
|
|
// ACLE 6.4.7 DSP instructions
|
|
if (DSP) {
|
|
Builder.defineMacro("__ARM_FEATURE_DSP", "1");
|
|
}
|
|
|
|
// ACLE 6.4.8 Saturation instructions
|
|
bool SAT = false;
|
|
if ((ArchVersion == 6 && CPUProfile != "M") || ArchVersion > 6) {
|
|
Builder.defineMacro("__ARM_FEATURE_SAT", "1");
|
|
SAT = true;
|
|
}
|
|
|
|
// ACLE 6.4.6 Q (saturation) flag
|
|
if (DSP || SAT)
|
|
Builder.defineMacro("__ARM_FEATURE_QBIT", "1");
|
|
|
|
if (Opts.UnsafeFPMath)
|
|
Builder.defineMacro("__ARM_FP_FAST", "1");
|
|
|
|
// Armv8.2-A FP16 vector intrinsic
|
|
if ((FPU & NeonFPU) && HasLegalHalfType)
|
|
Builder.defineMacro("__ARM_FEATURE_FP16_VECTOR_ARITHMETIC", "1");
|
|
|
|
// Armv8.2-A FP16 scalar intrinsics
|
|
if (HasLegalHalfType)
|
|
Builder.defineMacro("__ARM_FEATURE_FP16_SCALAR_ARITHMETIC", "1");
|
|
|
|
// Armv8.2-A dot product intrinsics
|
|
if (DotProd)
|
|
Builder.defineMacro("__ARM_FEATURE_DOTPROD", "1");
|
|
|
|
switch (ArchKind) {
|
|
default:
|
|
break;
|
|
case llvm::ARM::ArchKind::ARMV8_1A:
|
|
getTargetDefinesARMV81A(Opts, Builder);
|
|
break;
|
|
case llvm::ARM::ArchKind::ARMV8_2A:
|
|
getTargetDefinesARMV82A(Opts, Builder);
|
|
break;
|
|
}
|
|
}
|
|
|
|
const Builtin::Info ARMTargetInfo::BuiltinInfo[] = {
|
|
#define BUILTIN(ID, TYPE, ATTRS) \
|
|
{#ID, TYPE, ATTRS, nullptr, ALL_LANGUAGES, nullptr},
|
|
#define LIBBUILTIN(ID, TYPE, ATTRS, HEADER) \
|
|
{#ID, TYPE, ATTRS, HEADER, ALL_LANGUAGES, nullptr},
|
|
#include "clang/Basic/BuiltinsNEON.def"
|
|
|
|
#define BUILTIN(ID, TYPE, ATTRS) \
|
|
{#ID, TYPE, ATTRS, nullptr, ALL_LANGUAGES, nullptr},
|
|
#define LANGBUILTIN(ID, TYPE, ATTRS, LANG) \
|
|
{#ID, TYPE, ATTRS, nullptr, LANG, nullptr},
|
|
#define LIBBUILTIN(ID, TYPE, ATTRS, HEADER) \
|
|
{#ID, TYPE, ATTRS, HEADER, ALL_LANGUAGES, nullptr},
|
|
#define TARGET_HEADER_BUILTIN(ID, TYPE, ATTRS, HEADER, LANGS, FEATURE) \
|
|
{#ID, TYPE, ATTRS, HEADER, LANGS, FEATURE},
|
|
#include "clang/Basic/BuiltinsARM.def"
|
|
};
|
|
|
|
ArrayRef<Builtin::Info> ARMTargetInfo::getTargetBuiltins() const {
|
|
return llvm::makeArrayRef(BuiltinInfo, clang::ARM::LastTSBuiltin -
|
|
Builtin::FirstTSBuiltin);
|
|
}
|
|
|
|
bool ARMTargetInfo::isCLZForZeroUndef() const { return false; }
|
|
TargetInfo::BuiltinVaListKind ARMTargetInfo::getBuiltinVaListKind() const {
|
|
return IsAAPCS
|
|
? AAPCSABIBuiltinVaList
|
|
: (getTriple().isWatchABI() ? TargetInfo::CharPtrBuiltinVaList
|
|
: TargetInfo::VoidPtrBuiltinVaList);
|
|
}
|
|
|
|
const char *const ARMTargetInfo::GCCRegNames[] = {
|
|
// Integer registers
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11",
|
|
"r12", "sp", "lr", "pc",
|
|
|
|
// Float registers
|
|
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", "s8", "s9", "s10", "s11",
|
|
"s12", "s13", "s14", "s15", "s16", "s17", "s18", "s19", "s20", "s21", "s22",
|
|
"s23", "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31",
|
|
|
|
// Double registers
|
|
"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", "d8", "d9", "d10", "d11",
|
|
"d12", "d13", "d14", "d15", "d16", "d17", "d18", "d19", "d20", "d21", "d22",
|
|
"d23", "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31",
|
|
|
|
// Quad registers
|
|
"q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7", "q8", "q9", "q10", "q11",
|
|
"q12", "q13", "q14", "q15"};
|
|
|
|
ArrayRef<const char *> ARMTargetInfo::getGCCRegNames() const {
|
|
return llvm::makeArrayRef(GCCRegNames);
|
|
}
|
|
|
|
const TargetInfo::GCCRegAlias ARMTargetInfo::GCCRegAliases[] = {
|
|
{{"a1"}, "r0"}, {{"a2"}, "r1"}, {{"a3"}, "r2"}, {{"a4"}, "r3"},
|
|
{{"v1"}, "r4"}, {{"v2"}, "r5"}, {{"v3"}, "r6"}, {{"v4"}, "r7"},
|
|
{{"v5"}, "r8"}, {{"v6", "rfp"}, "r9"}, {{"sl"}, "r10"}, {{"fp"}, "r11"},
|
|
{{"ip"}, "r12"}, {{"r13"}, "sp"}, {{"r14"}, "lr"}, {{"r15"}, "pc"},
|
|
// The S, D and Q registers overlap, but aren't really aliases; we
|
|
// don't want to substitute one of these for a different-sized one.
|
|
};
|
|
|
|
ArrayRef<TargetInfo::GCCRegAlias> ARMTargetInfo::getGCCRegAliases() const {
|
|
return llvm::makeArrayRef(GCCRegAliases);
|
|
}
|
|
|
|
bool ARMTargetInfo::validateAsmConstraint(
|
|
const char *&Name, TargetInfo::ConstraintInfo &Info) const {
|
|
switch (*Name) {
|
|
default:
|
|
break;
|
|
case 'l': // r0-r7
|
|
case 'h': // r8-r15
|
|
case 't': // VFP Floating point register single precision
|
|
case 'w': // VFP Floating point register double precision
|
|
Info.setAllowsRegister();
|
|
return true;
|
|
case 'I':
|
|
case 'J':
|
|
case 'K':
|
|
case 'L':
|
|
case 'M':
|
|
// FIXME
|
|
return true;
|
|
case 'Q': // A memory address that is a single base register.
|
|
Info.setAllowsMemory();
|
|
return true;
|
|
case 'U': // a memory reference...
|
|
switch (Name[1]) {
|
|
case 'q': // ...ARMV4 ldrsb
|
|
case 'v': // ...VFP load/store (reg+constant offset)
|
|
case 'y': // ...iWMMXt load/store
|
|
case 't': // address valid for load/store opaque types wider
|
|
// than 128-bits
|
|
case 'n': // valid address for Neon doubleword vector load/store
|
|
case 'm': // valid address for Neon element and structure load/store
|
|
case 's': // valid address for non-offset loads/stores of quad-word
|
|
// values in four ARM registers
|
|
Info.setAllowsMemory();
|
|
Name++;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
std::string ARMTargetInfo::convertConstraint(const char *&Constraint) const {
|
|
std::string R;
|
|
switch (*Constraint) {
|
|
case 'U': // Two-character constraint; add "^" hint for later parsing.
|
|
R = std::string("^") + std::string(Constraint, 2);
|
|
Constraint++;
|
|
break;
|
|
case 'p': // 'p' should be translated to 'r' by default.
|
|
R = std::string("r");
|
|
break;
|
|
default:
|
|
return std::string(1, *Constraint);
|
|
}
|
|
return R;
|
|
}
|
|
|
|
bool ARMTargetInfo::validateConstraintModifier(
|
|
StringRef Constraint, char Modifier, unsigned Size,
|
|
std::string &SuggestedModifier) const {
|
|
bool isOutput = (Constraint[0] == '=');
|
|
bool isInOut = (Constraint[0] == '+');
|
|
|
|
// Strip off constraint modifiers.
|
|
while (Constraint[0] == '=' || Constraint[0] == '+' || Constraint[0] == '&')
|
|
Constraint = Constraint.substr(1);
|
|
|
|
switch (Constraint[0]) {
|
|
default:
|
|
break;
|
|
case 'r': {
|
|
switch (Modifier) {
|
|
default:
|
|
return (isInOut || isOutput || Size <= 64);
|
|
case 'q':
|
|
// A register of size 32 cannot fit a vector type.
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
const char *ARMTargetInfo::getClobbers() const {
|
|
// FIXME: Is this really right?
|
|
return "";
|
|
}
|
|
|
|
TargetInfo::CallingConvCheckResult
|
|
ARMTargetInfo::checkCallingConvention(CallingConv CC) const {
|
|
switch (CC) {
|
|
case CC_AAPCS:
|
|
case CC_AAPCS_VFP:
|
|
case CC_Swift:
|
|
case CC_OpenCLKernel:
|
|
return CCCR_OK;
|
|
default:
|
|
return CCCR_Warning;
|
|
}
|
|
}
|
|
|
|
int ARMTargetInfo::getEHDataRegisterNumber(unsigned RegNo) const {
|
|
if (RegNo == 0)
|
|
return 0;
|
|
if (RegNo == 1)
|
|
return 1;
|
|
return -1;
|
|
}
|
|
|
|
bool ARMTargetInfo::hasSjLjLowering() const { return true; }
|
|
|
|
ARMleTargetInfo::ARMleTargetInfo(const llvm::Triple &Triple,
|
|
const TargetOptions &Opts)
|
|
: ARMTargetInfo(Triple, Opts) {}
|
|
|
|
void ARMleTargetInfo::getTargetDefines(const LangOptions &Opts,
|
|
MacroBuilder &Builder) const {
|
|
Builder.defineMacro("__ARMEL__");
|
|
ARMTargetInfo::getTargetDefines(Opts, Builder);
|
|
}
|
|
|
|
ARMbeTargetInfo::ARMbeTargetInfo(const llvm::Triple &Triple,
|
|
const TargetOptions &Opts)
|
|
: ARMTargetInfo(Triple, Opts) {}
|
|
|
|
void ARMbeTargetInfo::getTargetDefines(const LangOptions &Opts,
|
|
MacroBuilder &Builder) const {
|
|
Builder.defineMacro("__ARMEB__");
|
|
Builder.defineMacro("__ARM_BIG_ENDIAN");
|
|
ARMTargetInfo::getTargetDefines(Opts, Builder);
|
|
}
|
|
|
|
WindowsARMTargetInfo::WindowsARMTargetInfo(const llvm::Triple &Triple,
|
|
const TargetOptions &Opts)
|
|
: WindowsTargetInfo<ARMleTargetInfo>(Triple, Opts), Triple(Triple) {
|
|
}
|
|
|
|
void WindowsARMTargetInfo::getVisualStudioDefines(const LangOptions &Opts,
|
|
MacroBuilder &Builder) const {
|
|
WindowsTargetInfo<ARMleTargetInfo>::getVisualStudioDefines(Opts, Builder);
|
|
|
|
// FIXME: this is invalid for WindowsCE
|
|
Builder.defineMacro("_M_ARM_NT", "1");
|
|
Builder.defineMacro("_M_ARMT", "_M_ARM");
|
|
Builder.defineMacro("_M_THUMB", "_M_ARM");
|
|
|
|
assert((Triple.getArch() == llvm::Triple::arm ||
|
|
Triple.getArch() == llvm::Triple::thumb) &&
|
|
"invalid architecture for Windows ARM target info");
|
|
unsigned Offset = Triple.getArch() == llvm::Triple::arm ? 4 : 6;
|
|
Builder.defineMacro("_M_ARM", Triple.getArchName().substr(Offset));
|
|
|
|
// TODO map the complete set of values
|
|
// 31: VFPv3 40: VFPv4
|
|
Builder.defineMacro("_M_ARM_FP", "31");
|
|
}
|
|
|
|
TargetInfo::BuiltinVaListKind
|
|
WindowsARMTargetInfo::getBuiltinVaListKind() const {
|
|
return TargetInfo::CharPtrBuiltinVaList;
|
|
}
|
|
|
|
TargetInfo::CallingConvCheckResult
|
|
WindowsARMTargetInfo::checkCallingConvention(CallingConv CC) const {
|
|
switch (CC) {
|
|
case CC_X86StdCall:
|
|
case CC_X86ThisCall:
|
|
case CC_X86FastCall:
|
|
case CC_X86VectorCall:
|
|
return CCCR_Ignore;
|
|
case CC_C:
|
|
case CC_OpenCLKernel:
|
|
case CC_PreserveMost:
|
|
case CC_PreserveAll:
|
|
return CCCR_OK;
|
|
default:
|
|
return CCCR_Warning;
|
|
}
|
|
}
|
|
|
|
// Windows ARM + Itanium C++ ABI Target
|
|
ItaniumWindowsARMleTargetInfo::ItaniumWindowsARMleTargetInfo(
|
|
const llvm::Triple &Triple, const TargetOptions &Opts)
|
|
: WindowsARMTargetInfo(Triple, Opts) {
|
|
TheCXXABI.set(TargetCXXABI::GenericARM);
|
|
}
|
|
|
|
void ItaniumWindowsARMleTargetInfo::getTargetDefines(
|
|
const LangOptions &Opts, MacroBuilder &Builder) const {
|
|
WindowsARMTargetInfo::getTargetDefines(Opts, Builder);
|
|
|
|
if (Opts.MSVCCompat)
|
|
WindowsARMTargetInfo::getVisualStudioDefines(Opts, Builder);
|
|
}
|
|
|
|
// Windows ARM, MS (C++) ABI
|
|
MicrosoftARMleTargetInfo::MicrosoftARMleTargetInfo(const llvm::Triple &Triple,
|
|
const TargetOptions &Opts)
|
|
: WindowsARMTargetInfo(Triple, Opts) {
|
|
TheCXXABI.set(TargetCXXABI::Microsoft);
|
|
}
|
|
|
|
void MicrosoftARMleTargetInfo::getTargetDefines(const LangOptions &Opts,
|
|
MacroBuilder &Builder) const {
|
|
WindowsARMTargetInfo::getTargetDefines(Opts, Builder);
|
|
WindowsARMTargetInfo::getVisualStudioDefines(Opts, Builder);
|
|
}
|
|
|
|
MinGWARMTargetInfo::MinGWARMTargetInfo(const llvm::Triple &Triple,
|
|
const TargetOptions &Opts)
|
|
: WindowsARMTargetInfo(Triple, Opts) {
|
|
TheCXXABI.set(TargetCXXABI::GenericARM);
|
|
}
|
|
|
|
void MinGWARMTargetInfo::getTargetDefines(const LangOptions &Opts,
|
|
MacroBuilder &Builder) const {
|
|
WindowsARMTargetInfo::getTargetDefines(Opts, Builder);
|
|
Builder.defineMacro("_ARM_");
|
|
}
|
|
|
|
CygwinARMTargetInfo::CygwinARMTargetInfo(const llvm::Triple &Triple,
|
|
const TargetOptions &Opts)
|
|
: ARMleTargetInfo(Triple, Opts) {
|
|
this->WCharType = TargetInfo::UnsignedShort;
|
|
TLSSupported = false;
|
|
DoubleAlign = LongLongAlign = 64;
|
|
resetDataLayout("e-m:e-p:32:32-i64:64-v128:64:128-a:0:32-n32-S64");
|
|
}
|
|
|
|
void CygwinARMTargetInfo::getTargetDefines(const LangOptions &Opts,
|
|
MacroBuilder &Builder) const {
|
|
ARMleTargetInfo::getTargetDefines(Opts, Builder);
|
|
Builder.defineMacro("_ARM_");
|
|
Builder.defineMacro("__CYGWIN__");
|
|
Builder.defineMacro("__CYGWIN32__");
|
|
DefineStd(Builder, "unix", Opts);
|
|
if (Opts.CPlusPlus)
|
|
Builder.defineMacro("_GNU_SOURCE");
|
|
}
|
|
|
|
DarwinARMTargetInfo::DarwinARMTargetInfo(const llvm::Triple &Triple,
|
|
const TargetOptions &Opts)
|
|
: DarwinTargetInfo<ARMleTargetInfo>(Triple, Opts) {
|
|
HasAlignMac68kSupport = true;
|
|
// iOS always has 64-bit atomic instructions.
|
|
// FIXME: This should be based off of the target features in
|
|
// ARMleTargetInfo.
|
|
MaxAtomicInlineWidth = 64;
|
|
|
|
if (Triple.isWatchABI()) {
|
|
// Darwin on iOS uses a variant of the ARM C++ ABI.
|
|
TheCXXABI.set(TargetCXXABI::WatchOS);
|
|
|
|
// BOOL should be a real boolean on the new ABI
|
|
UseSignedCharForObjCBool = false;
|
|
} else
|
|
TheCXXABI.set(TargetCXXABI::iOS);
|
|
}
|
|
|
|
void DarwinARMTargetInfo::getOSDefines(const LangOptions &Opts,
|
|
const llvm::Triple &Triple,
|
|
MacroBuilder &Builder) const {
|
|
getDarwinDefines(Builder, Opts, Triple, PlatformName, PlatformMinVersion);
|
|
}
|
|
|
|
RenderScript32TargetInfo::RenderScript32TargetInfo(const llvm::Triple &Triple,
|
|
const TargetOptions &Opts)
|
|
: ARMleTargetInfo(llvm::Triple("armv7", Triple.getVendorName(),
|
|
Triple.getOSName(),
|
|
Triple.getEnvironmentName()),
|
|
Opts) {
|
|
IsRenderScriptTarget = true;
|
|
LongWidth = LongAlign = 64;
|
|
}
|
|
|
|
void RenderScript32TargetInfo::getTargetDefines(const LangOptions &Opts,
|
|
MacroBuilder &Builder) const {
|
|
Builder.defineMacro("__RENDERSCRIPT__");
|
|
ARMleTargetInfo::getTargetDefines(Opts, Builder);
|
|
}
|