llvm-project/clang-tools-extra/clang-tidy/modernize/LoopConvertUtils.cpp

916 lines
31 KiB
C++

//===--- LoopConvertUtils.cpp - clang-tidy --------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "LoopConvertUtils.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/Lambda.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TokenKinds.h"
#include "clang/Lex/Lexer.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <string>
#include <utility>
using namespace clang::ast_matchers;
namespace clang {
namespace tidy {
namespace modernize {
/// Tracks a stack of parent statements during traversal.
///
/// All this really does is inject push_back() before running
/// RecursiveASTVisitor::TraverseStmt() and pop_back() afterwards. The Stmt atop
/// the stack is the parent of the current statement (NULL for the topmost
/// statement).
bool StmtAncestorASTVisitor::TraverseStmt(Stmt *Statement) {
StmtAncestors.insert(std::make_pair(Statement, StmtStack.back()));
StmtStack.push_back(Statement);
RecursiveASTVisitor<StmtAncestorASTVisitor>::TraverseStmt(Statement);
StmtStack.pop_back();
return true;
}
/// Keep track of the DeclStmt associated with each VarDecl.
///
/// Combined with StmtAncestors, this provides roughly the same information as
/// Scope, as we can map a VarDecl to its DeclStmt, then walk up the parent tree
/// using StmtAncestors.
bool StmtAncestorASTVisitor::VisitDeclStmt(DeclStmt *Decls) {
for (const auto *Decl : Decls->decls()) {
if (const auto *V = dyn_cast<VarDecl>(Decl))
DeclParents.insert(std::make_pair(V, Decls));
}
return true;
}
/// record the DeclRefExpr as part of the parent expression.
bool ComponentFinderASTVisitor::VisitDeclRefExpr(DeclRefExpr *E) {
Components.push_back(E);
return true;
}
/// record the MemberExpr as part of the parent expression.
bool ComponentFinderASTVisitor::VisitMemberExpr(MemberExpr *Member) {
Components.push_back(Member);
return true;
}
/// Forward any DeclRefExprs to a check on the referenced variable
/// declaration.
bool DependencyFinderASTVisitor::VisitDeclRefExpr(DeclRefExpr *DeclRef) {
if (auto *V = dyn_cast_or_null<VarDecl>(DeclRef->getDecl()))
return VisitVarDecl(V);
return true;
}
/// Determine if any this variable is declared inside the ContainingStmt.
bool DependencyFinderASTVisitor::VisitVarDecl(VarDecl *V) {
const Stmt *Curr = DeclParents->lookup(V);
// First, see if the variable was declared within an inner scope of the loop.
while (Curr != nullptr) {
if (Curr == ContainingStmt) {
DependsOnInsideVariable = true;
return false;
}
Curr = StmtParents->lookup(Curr);
}
// Next, check if the variable was removed from existence by an earlier
// iteration.
for (const auto &I : *ReplacedVars) {
if (I.second == V) {
DependsOnInsideVariable = true;
return false;
}
}
return true;
}
/// If we already created a variable for TheLoop, check to make sure
/// that the name was not already taken.
bool DeclFinderASTVisitor::VisitForStmt(ForStmt *TheLoop) {
StmtGeneratedVarNameMap::const_iterator I = GeneratedDecls->find(TheLoop);
if (I != GeneratedDecls->end() && I->second == Name) {
Found = true;
return false;
}
return true;
}
/// If any named declaration within the AST subtree has the same name,
/// then consider Name already taken.
bool DeclFinderASTVisitor::VisitNamedDecl(NamedDecl *D) {
const IdentifierInfo *Ident = D->getIdentifier();
if (Ident && Ident->getName() == Name) {
Found = true;
return false;
}
return true;
}
/// Forward any declaration references to the actual check on the
/// referenced declaration.
bool DeclFinderASTVisitor::VisitDeclRefExpr(DeclRefExpr *DeclRef) {
if (auto *D = dyn_cast<NamedDecl>(DeclRef->getDecl()))
return VisitNamedDecl(D);
return true;
}
/// If the new variable name conflicts with any type used in the loop,
/// then we mark that variable name as taken.
bool DeclFinderASTVisitor::VisitTypeLoc(TypeLoc TL) {
QualType QType = TL.getType();
// Check if our name conflicts with a type, to handle for typedefs.
if (QType.getAsString() == Name) {
Found = true;
return false;
}
// Check for base type conflicts. For example, when a struct is being
// referenced in the body of the loop, the above getAsString() will return the
// whole type (ex. "struct s"), but will be caught here.
if (const IdentifierInfo *Ident = QType.getBaseTypeIdentifier()) {
if (Ident->getName() == Name) {
Found = true;
return false;
}
}
return true;
}
/// Look through conversion/copy constructors and member functions to find the
/// explicit initialization expression, returning it is found.
///
/// The main idea is that given
/// vector<int> v;
/// we consider either of these initializations
/// vector<int>::iterator it = v.begin();
/// vector<int>::iterator it(v.begin());
/// vector<int>::const_iterator it(v.begin());
/// and retrieve `v.begin()` as the expression used to initialize `it` but do
/// not include
/// vector<int>::iterator it;
/// vector<int>::iterator it(v.begin(), 0); // if this constructor existed
/// as being initialized from `v.begin()`
const Expr *digThroughConstructorsConversions(const Expr *E) {
if (!E)
return nullptr;
E = E->IgnoreImplicit();
if (const auto *ConstructExpr = dyn_cast<CXXConstructExpr>(E)) {
// The initial constructor must take exactly one parameter, but base class
// and deferred constructors can take more.
if (ConstructExpr->getNumArgs() != 1 ||
ConstructExpr->getConstructionKind() != CXXConstructExpr::CK_Complete)
return nullptr;
E = ConstructExpr->getArg(0);
if (const auto *Temp = dyn_cast<MaterializeTemporaryExpr>(E))
E = Temp->getSubExpr();
return digThroughConstructorsConversions(E);
}
// If this is a conversion (as iterators commonly convert into their const
// iterator counterparts), dig through that as well.
if (const auto *ME = dyn_cast<CXXMemberCallExpr>(E))
if (isa<CXXConversionDecl>(ME->getMethodDecl()))
return digThroughConstructorsConversions(ME->getImplicitObjectArgument());
return E;
}
/// Returns true when two Exprs are equivalent.
bool areSameExpr(ASTContext *Context, const Expr *First, const Expr *Second) {
if (!First || !Second)
return false;
llvm::FoldingSetNodeID FirstID, SecondID;
First->Profile(FirstID, *Context, true);
Second->Profile(SecondID, *Context, true);
return FirstID == SecondID;
}
/// Returns the DeclRefExpr represented by E, or NULL if there isn't one.
const DeclRefExpr *getDeclRef(const Expr *E) {
return dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
}
/// Returns true when two ValueDecls are the same variable.
bool areSameVariable(const ValueDecl *First, const ValueDecl *Second) {
return First && Second &&
First->getCanonicalDecl() == Second->getCanonicalDecl();
}
/// Determines if an expression is a declaration reference to a
/// particular variable.
static bool exprReferencesVariable(const ValueDecl *Target, const Expr *E) {
if (!Target || !E)
return false;
const DeclRefExpr *Decl = getDeclRef(E);
return Decl && areSameVariable(Target, Decl->getDecl());
}
/// If the expression is a dereference or call to operator*(), return the
/// operand. Otherwise, return NULL.
static const Expr *getDereferenceOperand(const Expr *E) {
if (const auto *Uop = dyn_cast<UnaryOperator>(E))
return Uop->getOpcode() == UO_Deref ? Uop->getSubExpr() : nullptr;
if (const auto *OpCall = dyn_cast<CXXOperatorCallExpr>(E)) {
return OpCall->getOperator() == OO_Star && OpCall->getNumArgs() == 1
? OpCall->getArg(0)
: nullptr;
}
return nullptr;
}
/// Returns true when the Container contains an Expr equivalent to E.
template <typename ContainerT>
static bool containsExpr(ASTContext *Context, const ContainerT *Container,
const Expr *E) {
llvm::FoldingSetNodeID ID;
E->Profile(ID, *Context, true);
for (const auto &I : *Container) {
if (ID == I.second)
return true;
}
return false;
}
/// Returns true when the index expression is a declaration reference to
/// IndexVar.
///
/// If the index variable is `index`, this function returns true on
/// arrayExpression[index];
/// containerExpression[index];
/// but not
/// containerExpression[notIndex];
static bool isIndexInSubscriptExpr(const Expr *IndexExpr,
const VarDecl *IndexVar) {
const DeclRefExpr *Idx = getDeclRef(IndexExpr);
return Idx && Idx->getType()->isIntegerType() &&
areSameVariable(IndexVar, Idx->getDecl());
}
/// Returns true when the index expression is a declaration reference to
/// IndexVar, Obj is the same expression as SourceExpr after all parens and
/// implicit casts are stripped off.
///
/// If PermitDeref is true, IndexExpression may
/// be a dereference (overloaded or builtin operator*).
///
/// This function is intended for array-like containers, as it makes sure that
/// both the container and the index match.
/// If the loop has index variable `index` and iterates over `container`, then
/// isIndexInSubscriptExpr returns true for
/// \code
/// container[index]
/// container.at(index)
/// container->at(index)
/// \endcode
/// but not for
/// \code
/// container[notIndex]
/// notContainer[index]
/// \endcode
/// If PermitDeref is true, then isIndexInSubscriptExpr additionally returns
/// true on these expressions:
/// \code
/// (*container)[index]
/// (*container).at(index)
/// \endcode
static bool isIndexInSubscriptExpr(ASTContext *Context, const Expr *IndexExpr,
const VarDecl *IndexVar, const Expr *Obj,
const Expr *SourceExpr, bool PermitDeref) {
if (!SourceExpr || !Obj || !isIndexInSubscriptExpr(IndexExpr, IndexVar))
return false;
if (areSameExpr(Context, SourceExpr->IgnoreParenImpCasts(),
Obj->IgnoreParenImpCasts()))
return true;
if (const Expr *InnerObj = getDereferenceOperand(Obj->IgnoreParenImpCasts()))
if (PermitDeref && areSameExpr(Context, SourceExpr->IgnoreParenImpCasts(),
InnerObj->IgnoreParenImpCasts()))
return true;
return false;
}
/// Returns true when Opcall is a call a one-parameter dereference of
/// IndexVar.
///
/// For example, if the index variable is `index`, returns true for
/// *index
/// but not
/// index
/// *notIndex
static bool isDereferenceOfOpCall(const CXXOperatorCallExpr *OpCall,
const VarDecl *IndexVar) {
return OpCall->getOperator() == OO_Star && OpCall->getNumArgs() == 1 &&
exprReferencesVariable(IndexVar, OpCall->getArg(0));
}
/// Returns true when Uop is a dereference of IndexVar.
///
/// For example, if the index variable is `index`, returns true for
/// *index
/// but not
/// index
/// *notIndex
static bool isDereferenceOfUop(const UnaryOperator *Uop,
const VarDecl *IndexVar) {
return Uop->getOpcode() == UO_Deref &&
exprReferencesVariable(IndexVar, Uop->getSubExpr());
}
/// Determines whether the given Decl defines a variable initialized to
/// the loop object.
///
/// This is intended to find cases such as
/// \code
/// for (int i = 0; i < arraySize(arr); ++i) {
/// T t = arr[i];
/// // use t, do not use i
/// }
/// \endcode
/// and
/// \code
/// for (iterator i = container.begin(), e = container.end(); i != e; ++i) {
/// T t = *i;
/// // use t, do not use i
/// }
/// \endcode
static bool isAliasDecl(ASTContext *Context, const Decl *TheDecl,
const VarDecl *IndexVar) {
const auto *VDecl = dyn_cast<VarDecl>(TheDecl);
if (!VDecl)
return false;
if (!VDecl->hasInit())
return false;
bool OnlyCasts = true;
const Expr *Init = VDecl->getInit()->IgnoreParenImpCasts();
if (isa_and_nonnull<CXXConstructExpr>(Init)) {
Init = digThroughConstructorsConversions(Init);
OnlyCasts = false;
}
if (!Init)
return false;
// Check that the declared type is the same as (or a reference to) the
// container type.
if (!OnlyCasts) {
QualType InitType = Init->getType();
QualType DeclarationType = VDecl->getType();
if (!DeclarationType.isNull() && DeclarationType->isReferenceType())
DeclarationType = DeclarationType.getNonReferenceType();
if (InitType.isNull() || DeclarationType.isNull() ||
!Context->hasSameUnqualifiedType(DeclarationType, InitType))
return false;
}
switch (Init->getStmtClass()) {
case Stmt::ArraySubscriptExprClass: {
const auto *E = cast<ArraySubscriptExpr>(Init);
// We don't really care which array is used here. We check to make sure
// it was the correct one later, since the AST will traverse it next.
return isIndexInSubscriptExpr(E->getIdx(), IndexVar);
}
case Stmt::UnaryOperatorClass:
return isDereferenceOfUop(cast<UnaryOperator>(Init), IndexVar);
case Stmt::CXXOperatorCallExprClass: {
const auto *OpCall = cast<CXXOperatorCallExpr>(Init);
if (OpCall->getOperator() == OO_Star)
return isDereferenceOfOpCall(OpCall, IndexVar);
if (OpCall->getOperator() == OO_Subscript) {
assert(OpCall->getNumArgs() == 2);
return isIndexInSubscriptExpr(OpCall->getArg(1), IndexVar);
}
break;
}
case Stmt::CXXMemberCallExprClass: {
const auto *MemCall = cast<CXXMemberCallExpr>(Init);
// This check is needed because getMethodDecl can return nullptr if the
// callee is a member function pointer.
const auto *MDecl = MemCall->getMethodDecl();
if (MDecl && !isa<CXXConversionDecl>(MDecl) &&
MDecl->getNameAsString() == "at" && MemCall->getNumArgs() == 1) {
return isIndexInSubscriptExpr(MemCall->getArg(0), IndexVar);
}
return false;
}
default:
break;
}
return false;
}
/// Determines whether the bound of a for loop condition expression is
/// the same as the statically computable size of ArrayType.
///
/// Given
/// \code
/// const int N = 5;
/// int arr[N];
/// \endcode
/// This is intended to permit
/// \code
/// for (int i = 0; i < N; ++i) { /* use arr[i] */ }
/// for (int i = 0; i < arraysize(arr); ++i) { /* use arr[i] */ }
/// \endcode
static bool arrayMatchesBoundExpr(ASTContext *Context,
const QualType &ArrayType,
const Expr *ConditionExpr) {
if (!ConditionExpr || ConditionExpr->isValueDependent())
return false;
const ConstantArrayType *ConstType =
Context->getAsConstantArrayType(ArrayType);
if (!ConstType)
return false;
Optional<llvm::APSInt> ConditionSize =
ConditionExpr->getIntegerConstantExpr(*Context);
if (!ConditionSize)
return false;
llvm::APSInt ArraySize(ConstType->getSize());
return llvm::APSInt::isSameValue(*ConditionSize, ArraySize);
}
ForLoopIndexUseVisitor::ForLoopIndexUseVisitor(ASTContext *Context,
const VarDecl *IndexVar,
const VarDecl *EndVar,
const Expr *ContainerExpr,
const Expr *ArrayBoundExpr,
bool ContainerNeedsDereference)
: Context(Context), IndexVar(IndexVar), EndVar(EndVar),
ContainerExpr(ContainerExpr), ArrayBoundExpr(ArrayBoundExpr),
ContainerNeedsDereference(ContainerNeedsDereference),
OnlyUsedAsIndex(true), AliasDecl(nullptr),
ConfidenceLevel(Confidence::CL_Safe), NextStmtParent(nullptr),
CurrStmtParent(nullptr), ReplaceWithAliasUse(false),
AliasFromForInit(false) {
if (ContainerExpr)
addComponent(ContainerExpr);
}
bool ForLoopIndexUseVisitor::findAndVerifyUsages(const Stmt *Body) {
TraverseStmt(const_cast<Stmt *>(Body));
return OnlyUsedAsIndex && ContainerExpr;
}
void ForLoopIndexUseVisitor::addComponents(const ComponentVector &Components) {
// FIXME: add sort(on ID)+unique to avoid extra work.
for (const auto &I : Components)
addComponent(I);
}
void ForLoopIndexUseVisitor::addComponent(const Expr *E) {
llvm::FoldingSetNodeID ID;
const Expr *Node = E->IgnoreParenImpCasts();
Node->Profile(ID, *Context, true);
DependentExprs.push_back(std::make_pair(Node, ID));
}
void ForLoopIndexUseVisitor::addUsage(const Usage &U) {
SourceLocation Begin = U.Range.getBegin();
if (Begin.isMacroID())
Begin = Context->getSourceManager().getSpellingLoc(Begin);
if (UsageLocations.insert(Begin).second)
Usages.push_back(U);
}
/// If the unary operator is a dereference of IndexVar, include it
/// as a valid usage and prune the traversal.
///
/// For example, if container.begin() and container.end() both return pointers
/// to int, this makes sure that the initialization for `k` is not counted as an
/// unconvertible use of the iterator `i`.
/// \code
/// for (int *i = container.begin(), *e = container.end(); i != e; ++i) {
/// int k = *i + 2;
/// }
/// \endcode
bool ForLoopIndexUseVisitor::TraverseUnaryOperator(UnaryOperator *Uop) {
// If we dereference an iterator that's actually a pointer, count the
// occurrence.
if (isDereferenceOfUop(Uop, IndexVar)) {
addUsage(Usage(Uop));
return true;
}
return VisitorBase::TraverseUnaryOperator(Uop);
}
/// If the member expression is operator-> (overloaded or not) on
/// IndexVar, include it as a valid usage and prune the traversal.
///
/// For example, given
/// \code
/// struct Foo { int bar(); int x; };
/// vector<Foo> v;
/// \endcode
/// the following uses will be considered convertible:
/// \code
/// for (vector<Foo>::iterator i = v.begin(), e = v.end(); i != e; ++i) {
/// int b = i->bar();
/// int k = i->x + 1;
/// }
/// \endcode
/// though
/// \code
/// for (vector<Foo>::iterator i = v.begin(), e = v.end(); i != e; ++i) {
/// int k = i.insert(1);
/// }
/// for (vector<Foo>::iterator i = v.begin(), e = v.end(); i != e; ++i) {
/// int b = e->bar();
/// }
/// \endcode
/// will not.
bool ForLoopIndexUseVisitor::TraverseMemberExpr(MemberExpr *Member) {
const Expr *Base = Member->getBase();
const DeclRefExpr *Obj = getDeclRef(Base);
const Expr *ResultExpr = Member;
QualType ExprType;
if (const auto *Call =
dyn_cast<CXXOperatorCallExpr>(Base->IgnoreParenImpCasts())) {
// If operator->() is a MemberExpr containing a CXXOperatorCallExpr, then
// the MemberExpr does not have the expression we want. We therefore catch
// that instance here.
// For example, if vector<Foo>::iterator defines operator->(), then the
// example `i->bar()` at the top of this function is a CXXMemberCallExpr
// referring to `i->` as the member function called. We want just `i`, so
// we take the argument to operator->() as the base object.
if (Call->getOperator() == OO_Arrow) {
assert(Call->getNumArgs() == 1 &&
"Operator-> takes more than one argument");
Obj = getDeclRef(Call->getArg(0));
ResultExpr = Obj;
ExprType = Call->getCallReturnType(*Context);
}
}
if (Obj && exprReferencesVariable(IndexVar, Obj)) {
// Member calls on the iterator with '.' are not allowed.
if (!Member->isArrow()) {
OnlyUsedAsIndex = false;
return true;
}
if (ExprType.isNull())
ExprType = Obj->getType();
if (!ExprType->isPointerType())
return false;
// FIXME: This works around not having the location of the arrow operator.
// Consider adding OperatorLoc to MemberExpr?
SourceLocation ArrowLoc = Lexer::getLocForEndOfToken(
Base->getExprLoc(), 0, Context->getSourceManager(),
Context->getLangOpts());
// If something complicated is happening (i.e. the next token isn't an
// arrow), give up on making this work.
if (ArrowLoc.isValid()) {
addUsage(Usage(ResultExpr, Usage::UK_MemberThroughArrow,
SourceRange(Base->getExprLoc(), ArrowLoc)));
return true;
}
}
return VisitorBase::TraverseMemberExpr(Member);
}
/// If a member function call is the at() accessor on the container with
/// IndexVar as the single argument, include it as a valid usage and prune
/// the traversal.
///
/// Member calls on other objects will not be permitted.
/// Calls on the iterator object are not permitted, unless done through
/// operator->(). The one exception is allowing vector::at() for pseudoarrays.
bool ForLoopIndexUseVisitor::TraverseCXXMemberCallExpr(
CXXMemberCallExpr *MemberCall) {
auto *Member =
dyn_cast<MemberExpr>(MemberCall->getCallee()->IgnoreParenImpCasts());
if (!Member)
return VisitorBase::TraverseCXXMemberCallExpr(MemberCall);
// We specifically allow an accessor named "at" to let STL in, though
// this is restricted to pseudo-arrays by requiring a single, integer
// argument.
const IdentifierInfo *Ident = Member->getMemberDecl()->getIdentifier();
if (Ident && Ident->isStr("at") && MemberCall->getNumArgs() == 1) {
if (isIndexInSubscriptExpr(Context, MemberCall->getArg(0), IndexVar,
Member->getBase(), ContainerExpr,
ContainerNeedsDereference)) {
addUsage(Usage(MemberCall));
return true;
}
}
if (containsExpr(Context, &DependentExprs, Member->getBase()))
ConfidenceLevel.lowerTo(Confidence::CL_Risky);
return VisitorBase::TraverseCXXMemberCallExpr(MemberCall);
}
/// If an overloaded operator call is a dereference of IndexVar or
/// a subscript of the container with IndexVar as the single argument,
/// include it as a valid usage and prune the traversal.
///
/// For example, given
/// \code
/// struct Foo { int bar(); int x; };
/// vector<Foo> v;
/// void f(Foo);
/// \endcode
/// the following uses will be considered convertible:
/// \code
/// for (vector<Foo>::iterator i = v.begin(), e = v.end(); i != e; ++i) {
/// f(*i);
/// }
/// for (int i = 0; i < v.size(); ++i) {
/// int i = v[i] + 1;
/// }
/// \endcode
bool ForLoopIndexUseVisitor::TraverseCXXOperatorCallExpr(
CXXOperatorCallExpr *OpCall) {
switch (OpCall->getOperator()) {
case OO_Star:
if (isDereferenceOfOpCall(OpCall, IndexVar)) {
addUsage(Usage(OpCall));
return true;
}
break;
case OO_Subscript:
if (OpCall->getNumArgs() != 2)
break;
if (isIndexInSubscriptExpr(Context, OpCall->getArg(1), IndexVar,
OpCall->getArg(0), ContainerExpr,
ContainerNeedsDereference)) {
addUsage(Usage(OpCall));
return true;
}
break;
default:
break;
}
return VisitorBase::TraverseCXXOperatorCallExpr(OpCall);
}
/// If we encounter an array with IndexVar as the index of an
/// ArraySubscriptExpression, note it as a consistent usage and prune the
/// AST traversal.
///
/// For example, given
/// \code
/// const int N = 5;
/// int arr[N];
/// \endcode
/// This is intended to permit
/// \code
/// for (int i = 0; i < N; ++i) { /* use arr[i] */ }
/// \endcode
/// but not
/// \code
/// for (int i = 0; i < N; ++i) { /* use notArr[i] */ }
/// \endcode
/// and further checking needs to be done later to ensure that exactly one array
/// is referenced.
bool ForLoopIndexUseVisitor::TraverseArraySubscriptExpr(ArraySubscriptExpr *E) {
Expr *Arr = E->getBase();
if (!isIndexInSubscriptExpr(E->getIdx(), IndexVar))
return VisitorBase::TraverseArraySubscriptExpr(E);
if ((ContainerExpr &&
!areSameExpr(Context, Arr->IgnoreParenImpCasts(),
ContainerExpr->IgnoreParenImpCasts())) ||
!arrayMatchesBoundExpr(Context, Arr->IgnoreImpCasts()->getType(),
ArrayBoundExpr)) {
// If we have already discovered the array being indexed and this isn't it
// or this array doesn't match, mark this loop as unconvertible.
OnlyUsedAsIndex = false;
return VisitorBase::TraverseArraySubscriptExpr(E);
}
if (!ContainerExpr)
ContainerExpr = Arr;
addUsage(Usage(E));
return true;
}
/// If we encounter a reference to IndexVar in an unpruned branch of the
/// traversal, mark this loop as unconvertible.
///
/// This determines the set of convertible loops: any usages of IndexVar
/// not explicitly considered convertible by this traversal will be caught by
/// this function.
///
/// Additionally, if the container expression is more complex than just a
/// DeclRefExpr, and some part of it is appears elsewhere in the loop, lower
/// our confidence in the transformation.
///
/// For example, these are not permitted:
/// \code
/// for (int i = 0; i < N; ++i) { printf("arr[%d] = %d", i, arr[i]); }
/// for (vector<int>::iterator i = container.begin(), e = container.end();
/// i != e; ++i)
/// i.insert(0);
/// for (vector<int>::iterator i = container.begin(), e = container.end();
/// i != e; ++i)
/// if (i + 1 != e)
/// printf("%d", *i);
/// \endcode
///
/// And these will raise the risk level:
/// \code
/// int arr[10][20];
/// int l = 5;
/// for (int j = 0; j < 20; ++j)
/// int k = arr[l][j] + l; // using l outside arr[l] is considered risky
/// for (int i = 0; i < obj.getVector().size(); ++i)
/// obj.foo(10); // using `obj` is considered risky
/// \endcode
bool ForLoopIndexUseVisitor::VisitDeclRefExpr(DeclRefExpr *E) {
const ValueDecl *TheDecl = E->getDecl();
if (areSameVariable(IndexVar, TheDecl) ||
exprReferencesVariable(IndexVar, E) || areSameVariable(EndVar, TheDecl) ||
exprReferencesVariable(EndVar, E))
OnlyUsedAsIndex = false;
if (containsExpr(Context, &DependentExprs, E))
ConfidenceLevel.lowerTo(Confidence::CL_Risky);
return true;
}
/// If the loop index is captured by a lambda, replace this capture
/// by the range-for loop variable.
///
/// For example:
/// \code
/// for (int i = 0; i < N; ++i) {
/// auto f = [v, i](int k) {
/// printf("%d\n", v[i] + k);
/// };
/// f(v[i]);
/// }
/// \endcode
///
/// Will be replaced by:
/// \code
/// for (auto & elem : v) {
/// auto f = [v, elem](int k) {
/// printf("%d\n", elem + k);
/// };
/// f(elem);
/// }
/// \endcode
bool ForLoopIndexUseVisitor::TraverseLambdaCapture(LambdaExpr *LE,
const LambdaCapture *C,
Expr *Init) {
if (C->capturesVariable()) {
const VarDecl *VDecl = C->getCapturedVar();
if (areSameVariable(IndexVar, cast<ValueDecl>(VDecl))) {
// FIXME: if the index is captured, it will count as an usage and the
// alias (if any) won't work, because it is only used in case of having
// exactly one usage.
addUsage(Usage(nullptr,
C->getCaptureKind() == LCK_ByCopy ? Usage::UK_CaptureByCopy
: Usage::UK_CaptureByRef,
C->getLocation()));
}
}
return VisitorBase::TraverseLambdaCapture(LE, C, Init);
}
/// If we find that another variable is created just to refer to the loop
/// element, note it for reuse as the loop variable.
///
/// See the comments for isAliasDecl.
bool ForLoopIndexUseVisitor::VisitDeclStmt(DeclStmt *S) {
if (!AliasDecl && S->isSingleDecl() &&
isAliasDecl(Context, S->getSingleDecl(), IndexVar)) {
AliasDecl = S;
if (CurrStmtParent) {
if (isa<IfStmt>(CurrStmtParent) || isa<WhileStmt>(CurrStmtParent) ||
isa<SwitchStmt>(CurrStmtParent))
ReplaceWithAliasUse = true;
else if (isa<ForStmt>(CurrStmtParent)) {
if (cast<ForStmt>(CurrStmtParent)->getConditionVariableDeclStmt() == S)
ReplaceWithAliasUse = true;
else
// It's assumed S came the for loop's init clause.
AliasFromForInit = true;
}
}
}
return true;
}
bool ForLoopIndexUseVisitor::TraverseStmt(Stmt *S) {
// If this is an initialization expression for a lambda capture, prune the
// traversal so that we don't end up diagnosing the contained DeclRefExpr as
// inconsistent usage. No need to record the usage here -- this is done in
// TraverseLambdaCapture().
if (const auto *LE = dyn_cast_or_null<LambdaExpr>(NextStmtParent)) {
// Any child of a LambdaExpr that isn't the body is an initialization
// expression.
if (S != LE->getBody()) {
return true;
}
}
// All this pointer swapping is a mechanism for tracking immediate parentage
// of Stmts.
const Stmt *OldNextParent = NextStmtParent;
CurrStmtParent = NextStmtParent;
NextStmtParent = S;
bool Result = VisitorBase::TraverseStmt(S);
NextStmtParent = OldNextParent;
return Result;
}
std::string VariableNamer::createIndexName() {
// FIXME: Add in naming conventions to handle:
// - How to handle conflicts.
// - An interactive process for naming.
std::string IteratorName;
StringRef ContainerName;
if (TheContainer)
ContainerName = TheContainer->getName();
size_t Len = ContainerName.size();
if (Len > 1 && ContainerName.endswith(Style == NS_UpperCase ? "S" : "s")) {
IteratorName = std::string(ContainerName.substr(0, Len - 1));
// E.g.: (auto thing : things)
if (!declarationExists(IteratorName) || IteratorName == OldIndex->getName())
return IteratorName;
}
if (Len > 2 && ContainerName.endswith(Style == NS_UpperCase ? "S_" : "s_")) {
IteratorName = std::string(ContainerName.substr(0, Len - 2));
// E.g.: (auto thing : things_)
if (!declarationExists(IteratorName) || IteratorName == OldIndex->getName())
return IteratorName;
}
return std::string(OldIndex->getName());
}
/// Determines whether or not the name \a Symbol conflicts with
/// language keywords or defined macros. Also checks if the name exists in
/// LoopContext, any of its parent contexts, or any of its child statements.
///
/// We also check to see if the same identifier was generated by this loop
/// converter in a loop nested within SourceStmt.
bool VariableNamer::declarationExists(StringRef Symbol) {
assert(Context != nullptr && "Expected an ASTContext");
IdentifierInfo &Ident = Context->Idents.get(Symbol);
// Check if the symbol is not an identifier (ie. is a keyword or alias).
if (!isAnyIdentifier(Ident.getTokenID()))
return true;
// Check for conflicting macro definitions.
if (Ident.hasMacroDefinition())
return true;
// Determine if the symbol was generated in a parent context.
for (const Stmt *S = SourceStmt; S != nullptr; S = ReverseAST->lookup(S)) {
StmtGeneratedVarNameMap::const_iterator I = GeneratedDecls->find(S);
if (I != GeneratedDecls->end() && I->second == Symbol)
return true;
}
// FIXME: Rather than detecting conflicts at their usages, we should check the
// parent context.
// For some reason, lookup() always returns the pair (NULL, NULL) because its
// StoredDeclsMap is not initialized (i.e. LookupPtr.getInt() is false inside
// of DeclContext::lookup()). Why is this?
// Finally, determine if the symbol was used in the loop or a child context.
DeclFinderASTVisitor DeclFinder(std::string(Symbol), GeneratedDecls);
return DeclFinder.findUsages(SourceStmt);
}
} // namespace modernize
} // namespace tidy
} // namespace clang