forked from OSchip/llvm-project
1656 lines
64 KiB
C++
1656 lines
64 KiB
C++
//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the interfaces that X86 uses to lower LLVM code into a
|
|
// selection DAG.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
|
|
#define LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
|
|
|
|
#include "llvm/CodeGen/CallingConvLower.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
|
|
namespace llvm {
|
|
class X86Subtarget;
|
|
class X86TargetMachine;
|
|
|
|
namespace X86ISD {
|
|
// X86 Specific DAG Nodes
|
|
enum NodeType : unsigned {
|
|
// Start the numbering where the builtin ops leave off.
|
|
FIRST_NUMBER = ISD::BUILTIN_OP_END,
|
|
|
|
/// Bit scan forward.
|
|
BSF,
|
|
/// Bit scan reverse.
|
|
BSR,
|
|
|
|
/// Double shift instructions. These correspond to
|
|
/// X86::SHLDxx and X86::SHRDxx instructions.
|
|
SHLD,
|
|
SHRD,
|
|
|
|
/// Bitwise logical AND of floating point values. This corresponds
|
|
/// to X86::ANDPS or X86::ANDPD.
|
|
FAND,
|
|
|
|
/// Bitwise logical OR of floating point values. This corresponds
|
|
/// to X86::ORPS or X86::ORPD.
|
|
FOR,
|
|
|
|
/// Bitwise logical XOR of floating point values. This corresponds
|
|
/// to X86::XORPS or X86::XORPD.
|
|
FXOR,
|
|
|
|
/// Bitwise logical ANDNOT of floating point values. This
|
|
/// corresponds to X86::ANDNPS or X86::ANDNPD.
|
|
FANDN,
|
|
|
|
/// These operations represent an abstract X86 call
|
|
/// instruction, which includes a bunch of information. In particular the
|
|
/// operands of these node are:
|
|
///
|
|
/// #0 - The incoming token chain
|
|
/// #1 - The callee
|
|
/// #2 - The number of arg bytes the caller pushes on the stack.
|
|
/// #3 - The number of arg bytes the callee pops off the stack.
|
|
/// #4 - The value to pass in AL/AX/EAX (optional)
|
|
/// #5 - The value to pass in DL/DX/EDX (optional)
|
|
///
|
|
/// The result values of these nodes are:
|
|
///
|
|
/// #0 - The outgoing token chain
|
|
/// #1 - The first register result value (optional)
|
|
/// #2 - The second register result value (optional)
|
|
///
|
|
CALL,
|
|
|
|
/// Same as call except it adds the NoTrack prefix.
|
|
NT_CALL,
|
|
|
|
/// X86 compare and logical compare instructions.
|
|
CMP, COMI, UCOMI,
|
|
|
|
/// X86 bit-test instructions.
|
|
BT,
|
|
|
|
/// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
|
|
/// operand, usually produced by a CMP instruction.
|
|
SETCC,
|
|
|
|
/// X86 Select
|
|
SELECTS,
|
|
|
|
// Same as SETCC except it's materialized with a sbb and the value is all
|
|
// one's or all zero's.
|
|
SETCC_CARRY, // R = carry_bit ? ~0 : 0
|
|
|
|
/// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD.
|
|
/// Operands are two FP values to compare; result is a mask of
|
|
/// 0s or 1s. Generally DTRT for C/C++ with NaNs.
|
|
FSETCC,
|
|
|
|
/// X86 FP SETCC, similar to above, but with output as an i1 mask and
|
|
/// and a version with SAE.
|
|
FSETCCM, FSETCCM_SAE,
|
|
|
|
/// X86 conditional moves. Operand 0 and operand 1 are the two values
|
|
/// to select from. Operand 2 is the condition code, and operand 3 is the
|
|
/// flag operand produced by a CMP or TEST instruction. It also writes a
|
|
/// flag result.
|
|
CMOV,
|
|
|
|
/// X86 conditional branches. Operand 0 is the chain operand, operand 1
|
|
/// is the block to branch if condition is true, operand 2 is the
|
|
/// condition code, and operand 3 is the flag operand produced by a CMP
|
|
/// or TEST instruction.
|
|
BRCOND,
|
|
|
|
/// BRIND node with NoTrack prefix. Operand 0 is the chain operand and
|
|
/// operand 1 is the target address.
|
|
NT_BRIND,
|
|
|
|
/// Return with a flag operand. Operand 0 is the chain operand, operand
|
|
/// 1 is the number of bytes of stack to pop.
|
|
RET_FLAG,
|
|
|
|
/// Return from interrupt. Operand 0 is the number of bytes to pop.
|
|
IRET,
|
|
|
|
/// Repeat fill, corresponds to X86::REP_STOSx.
|
|
REP_STOS,
|
|
|
|
/// Repeat move, corresponds to X86::REP_MOVSx.
|
|
REP_MOVS,
|
|
|
|
/// On Darwin, this node represents the result of the popl
|
|
/// at function entry, used for PIC code.
|
|
GlobalBaseReg,
|
|
|
|
/// A wrapper node for TargetConstantPool, TargetJumpTable,
|
|
/// TargetExternalSymbol, TargetGlobalAddress, TargetGlobalTLSAddress,
|
|
/// MCSymbol and TargetBlockAddress.
|
|
Wrapper,
|
|
|
|
/// Special wrapper used under X86-64 PIC mode for RIP
|
|
/// relative displacements.
|
|
WrapperRIP,
|
|
|
|
/// Copies a 64-bit value from the low word of an XMM vector
|
|
/// to an MMX vector.
|
|
MOVDQ2Q,
|
|
|
|
/// Copies a 32-bit value from the low word of a MMX
|
|
/// vector to a GPR.
|
|
MMX_MOVD2W,
|
|
|
|
/// Copies a GPR into the low 32-bit word of a MMX vector
|
|
/// and zero out the high word.
|
|
MMX_MOVW2D,
|
|
|
|
/// Extract an 8-bit value from a vector and zero extend it to
|
|
/// i32, corresponds to X86::PEXTRB.
|
|
PEXTRB,
|
|
|
|
/// Extract a 16-bit value from a vector and zero extend it to
|
|
/// i32, corresponds to X86::PEXTRW.
|
|
PEXTRW,
|
|
|
|
/// Insert any element of a 4 x float vector into any element
|
|
/// of a destination 4 x floatvector.
|
|
INSERTPS,
|
|
|
|
/// Insert the lower 8-bits of a 32-bit value to a vector,
|
|
/// corresponds to X86::PINSRB.
|
|
PINSRB,
|
|
|
|
/// Insert the lower 16-bits of a 32-bit value to a vector,
|
|
/// corresponds to X86::PINSRW.
|
|
PINSRW,
|
|
|
|
/// Shuffle 16 8-bit values within a vector.
|
|
PSHUFB,
|
|
|
|
/// Compute Sum of Absolute Differences.
|
|
PSADBW,
|
|
/// Compute Double Block Packed Sum-Absolute-Differences
|
|
DBPSADBW,
|
|
|
|
/// Bitwise Logical AND NOT of Packed FP values.
|
|
ANDNP,
|
|
|
|
/// Blend where the selector is an immediate.
|
|
BLENDI,
|
|
|
|
/// Dynamic (non-constant condition) vector blend where only the sign bits
|
|
/// of the condition elements are used. This is used to enforce that the
|
|
/// condition mask is not valid for generic VSELECT optimizations. This
|
|
/// is also used to implement the intrinsics.
|
|
/// Operands are in VSELECT order: MASK, TRUE, FALSE
|
|
BLENDV,
|
|
|
|
/// Combined add and sub on an FP vector.
|
|
ADDSUB,
|
|
|
|
// FP vector ops with rounding mode.
|
|
FADD_RND, FADDS, FADDS_RND,
|
|
FSUB_RND, FSUBS, FSUBS_RND,
|
|
FMUL_RND, FMULS, FMULS_RND,
|
|
FDIV_RND, FDIVS, FDIVS_RND,
|
|
FMAX_SAE, FMAXS_SAE,
|
|
FMIN_SAE, FMINS_SAE,
|
|
FSQRT_RND, FSQRTS, FSQRTS_RND,
|
|
|
|
// FP vector get exponent.
|
|
FGETEXP, FGETEXP_SAE, FGETEXPS, FGETEXPS_SAE,
|
|
// Extract Normalized Mantissas.
|
|
VGETMANT, VGETMANT_SAE, VGETMANTS, VGETMANTS_SAE,
|
|
// FP Scale.
|
|
SCALEF, SCALEF_RND,
|
|
SCALEFS, SCALEFS_RND,
|
|
|
|
// Unsigned Integer average.
|
|
AVG,
|
|
|
|
/// Integer horizontal add/sub.
|
|
HADD,
|
|
HSUB,
|
|
|
|
/// Floating point horizontal add/sub.
|
|
FHADD,
|
|
FHSUB,
|
|
|
|
// Detect Conflicts Within a Vector
|
|
CONFLICT,
|
|
|
|
/// Floating point max and min.
|
|
FMAX, FMIN,
|
|
|
|
/// Commutative FMIN and FMAX.
|
|
FMAXC, FMINC,
|
|
|
|
/// Scalar intrinsic floating point max and min.
|
|
FMAXS, FMINS,
|
|
|
|
/// Floating point reciprocal-sqrt and reciprocal approximation.
|
|
/// Note that these typically require refinement
|
|
/// in order to obtain suitable precision.
|
|
FRSQRT, FRCP,
|
|
|
|
// AVX-512 reciprocal approximations with a little more precision.
|
|
RSQRT14, RSQRT14S, RCP14, RCP14S,
|
|
|
|
// Thread Local Storage.
|
|
TLSADDR,
|
|
|
|
// Thread Local Storage. A call to get the start address
|
|
// of the TLS block for the current module.
|
|
TLSBASEADDR,
|
|
|
|
// Thread Local Storage. When calling to an OS provided
|
|
// thunk at the address from an earlier relocation.
|
|
TLSCALL,
|
|
|
|
// Exception Handling helpers.
|
|
EH_RETURN,
|
|
|
|
// SjLj exception handling setjmp.
|
|
EH_SJLJ_SETJMP,
|
|
|
|
// SjLj exception handling longjmp.
|
|
EH_SJLJ_LONGJMP,
|
|
|
|
// SjLj exception handling dispatch.
|
|
EH_SJLJ_SETUP_DISPATCH,
|
|
|
|
/// Tail call return. See X86TargetLowering::LowerCall for
|
|
/// the list of operands.
|
|
TC_RETURN,
|
|
|
|
// Vector move to low scalar and zero higher vector elements.
|
|
VZEXT_MOVL,
|
|
|
|
// Vector integer truncate.
|
|
VTRUNC,
|
|
// Vector integer truncate with unsigned/signed saturation.
|
|
VTRUNCUS, VTRUNCS,
|
|
|
|
// Masked version of the above. Used when less than a 128-bit result is
|
|
// produced since the mask only applies to the lower elements and can't
|
|
// be represented by a select.
|
|
// SRC, PASSTHRU, MASK
|
|
VMTRUNC, VMTRUNCUS, VMTRUNCS,
|
|
|
|
// Vector FP extend.
|
|
VFPEXT, VFPEXT_SAE, VFPEXTS, VFPEXTS_SAE,
|
|
|
|
// Vector FP round.
|
|
VFPROUND, VFPROUND_RND, VFPROUNDS, VFPROUNDS_RND,
|
|
|
|
// Masked version of above. Used for v2f64->v4f32.
|
|
// SRC, PASSTHRU, MASK
|
|
VMFPROUND,
|
|
|
|
// 128-bit vector logical left / right shift
|
|
VSHLDQ, VSRLDQ,
|
|
|
|
// Vector shift elements
|
|
VSHL, VSRL, VSRA,
|
|
|
|
// Vector variable shift
|
|
VSHLV, VSRLV, VSRAV,
|
|
|
|
// Vector shift elements by immediate
|
|
VSHLI, VSRLI, VSRAI,
|
|
|
|
// Shifts of mask registers.
|
|
KSHIFTL, KSHIFTR,
|
|
|
|
// Bit rotate by immediate
|
|
VROTLI, VROTRI,
|
|
|
|
// Vector packed double/float comparison.
|
|
CMPP,
|
|
|
|
// Vector integer comparisons.
|
|
PCMPEQ, PCMPGT,
|
|
|
|
// v8i16 Horizontal minimum and position.
|
|
PHMINPOS,
|
|
|
|
MULTISHIFT,
|
|
|
|
/// Vector comparison generating mask bits for fp and
|
|
/// integer signed and unsigned data types.
|
|
CMPM,
|
|
// Vector comparison with SAE for FP values
|
|
CMPM_SAE,
|
|
|
|
// Arithmetic operations with FLAGS results.
|
|
ADD, SUB, ADC, SBB, SMUL, UMUL,
|
|
OR, XOR, AND,
|
|
|
|
// Bit field extract.
|
|
BEXTR,
|
|
|
|
// Zero High Bits Starting with Specified Bit Position.
|
|
BZHI,
|
|
|
|
// X86-specific multiply by immediate.
|
|
MUL_IMM,
|
|
|
|
// Vector sign bit extraction.
|
|
MOVMSK,
|
|
|
|
// Vector bitwise comparisons.
|
|
PTEST,
|
|
|
|
// Vector packed fp sign bitwise comparisons.
|
|
TESTP,
|
|
|
|
// OR/AND test for masks.
|
|
KORTEST,
|
|
KTEST,
|
|
|
|
// ADD for masks.
|
|
KADD,
|
|
|
|
// Several flavors of instructions with vector shuffle behaviors.
|
|
// Saturated signed/unnsigned packing.
|
|
PACKSS,
|
|
PACKUS,
|
|
// Intra-lane alignr.
|
|
PALIGNR,
|
|
// AVX512 inter-lane alignr.
|
|
VALIGN,
|
|
PSHUFD,
|
|
PSHUFHW,
|
|
PSHUFLW,
|
|
SHUFP,
|
|
// VBMI2 Concat & Shift.
|
|
VSHLD,
|
|
VSHRD,
|
|
VSHLDV,
|
|
VSHRDV,
|
|
//Shuffle Packed Values at 128-bit granularity.
|
|
SHUF128,
|
|
MOVDDUP,
|
|
MOVSHDUP,
|
|
MOVSLDUP,
|
|
MOVLHPS,
|
|
MOVHLPS,
|
|
MOVSD,
|
|
MOVSS,
|
|
UNPCKL,
|
|
UNPCKH,
|
|
VPERMILPV,
|
|
VPERMILPI,
|
|
VPERMI,
|
|
VPERM2X128,
|
|
|
|
// Variable Permute (VPERM).
|
|
// Res = VPERMV MaskV, V0
|
|
VPERMV,
|
|
|
|
// 3-op Variable Permute (VPERMT2).
|
|
// Res = VPERMV3 V0, MaskV, V1
|
|
VPERMV3,
|
|
|
|
// Bitwise ternary logic.
|
|
VPTERNLOG,
|
|
// Fix Up Special Packed Float32/64 values.
|
|
VFIXUPIMM, VFIXUPIMM_SAE,
|
|
VFIXUPIMMS, VFIXUPIMMS_SAE,
|
|
// Range Restriction Calculation For Packed Pairs of Float32/64 values.
|
|
VRANGE, VRANGE_SAE, VRANGES, VRANGES_SAE,
|
|
// Reduce - Perform Reduction Transformation on scalar\packed FP.
|
|
VREDUCE, VREDUCE_SAE, VREDUCES, VREDUCES_SAE,
|
|
// RndScale - Round FP Values To Include A Given Number Of Fraction Bits.
|
|
// Also used by the legacy (V)ROUND intrinsics where we mask out the
|
|
// scaling part of the immediate.
|
|
VRNDSCALE, VRNDSCALE_SAE, VRNDSCALES, VRNDSCALES_SAE,
|
|
// Tests Types Of a FP Values for packed types.
|
|
VFPCLASS,
|
|
// Tests Types Of a FP Values for scalar types.
|
|
VFPCLASSS,
|
|
|
|
// Broadcast scalar to vector.
|
|
VBROADCAST,
|
|
// Broadcast mask to vector.
|
|
VBROADCASTM,
|
|
// Broadcast subvector to vector.
|
|
SUBV_BROADCAST,
|
|
|
|
/// SSE4A Extraction and Insertion.
|
|
EXTRQI, INSERTQI,
|
|
|
|
// XOP arithmetic/logical shifts.
|
|
VPSHA, VPSHL,
|
|
// XOP signed/unsigned integer comparisons.
|
|
VPCOM, VPCOMU,
|
|
// XOP packed permute bytes.
|
|
VPPERM,
|
|
// XOP two source permutation.
|
|
VPERMIL2,
|
|
|
|
// Vector multiply packed unsigned doubleword integers.
|
|
PMULUDQ,
|
|
// Vector multiply packed signed doubleword integers.
|
|
PMULDQ,
|
|
// Vector Multiply Packed UnsignedIntegers with Round and Scale.
|
|
MULHRS,
|
|
|
|
// Multiply and Add Packed Integers.
|
|
VPMADDUBSW, VPMADDWD,
|
|
|
|
// AVX512IFMA multiply and add.
|
|
// NOTE: These are different than the instruction and perform
|
|
// op0 x op1 + op2.
|
|
VPMADD52L, VPMADD52H,
|
|
|
|
// VNNI
|
|
VPDPBUSD,
|
|
VPDPBUSDS,
|
|
VPDPWSSD,
|
|
VPDPWSSDS,
|
|
|
|
// FMA nodes.
|
|
// We use the target independent ISD::FMA for the non-inverted case.
|
|
FNMADD,
|
|
FMSUB,
|
|
FNMSUB,
|
|
FMADDSUB,
|
|
FMSUBADD,
|
|
|
|
// FMA with rounding mode.
|
|
FMADD_RND,
|
|
FNMADD_RND,
|
|
FMSUB_RND,
|
|
FNMSUB_RND,
|
|
FMADDSUB_RND,
|
|
FMSUBADD_RND,
|
|
|
|
// Compress and expand.
|
|
COMPRESS,
|
|
EXPAND,
|
|
|
|
// Bits shuffle
|
|
VPSHUFBITQMB,
|
|
|
|
// Convert Unsigned/Integer to Floating-Point Value with rounding mode.
|
|
SINT_TO_FP_RND, UINT_TO_FP_RND,
|
|
SCALAR_SINT_TO_FP, SCALAR_UINT_TO_FP,
|
|
SCALAR_SINT_TO_FP_RND, SCALAR_UINT_TO_FP_RND,
|
|
|
|
// Vector float/double to signed/unsigned integer.
|
|
CVTP2SI, CVTP2UI, CVTP2SI_RND, CVTP2UI_RND,
|
|
// Scalar float/double to signed/unsigned integer.
|
|
CVTS2SI, CVTS2UI, CVTS2SI_RND, CVTS2UI_RND,
|
|
|
|
// Vector float/double to signed/unsigned integer with truncation.
|
|
CVTTP2SI, CVTTP2UI, CVTTP2SI_SAE, CVTTP2UI_SAE,
|
|
// Scalar float/double to signed/unsigned integer with truncation.
|
|
CVTTS2SI, CVTTS2UI, CVTTS2SI_SAE, CVTTS2UI_SAE,
|
|
|
|
// Vector signed/unsigned integer to float/double.
|
|
CVTSI2P, CVTUI2P,
|
|
|
|
// Masked versions of above. Used for v2f64->v4f32.
|
|
// SRC, PASSTHRU, MASK
|
|
MCVTP2SI, MCVTP2UI, MCVTTP2SI, MCVTTP2UI,
|
|
MCVTSI2P, MCVTUI2P,
|
|
|
|
// Vector float to bfloat16.
|
|
// Convert TWO packed single data to one packed BF16 data
|
|
CVTNE2PS2BF16,
|
|
// Convert packed single data to packed BF16 data
|
|
CVTNEPS2BF16,
|
|
// Masked version of above.
|
|
// SRC, PASSTHRU, MASK
|
|
MCVTNEPS2BF16,
|
|
|
|
// Dot product of BF16 pairs to accumulated into
|
|
// packed single precision.
|
|
DPBF16PS,
|
|
|
|
// Save xmm argument registers to the stack, according to %al. An operator
|
|
// is needed so that this can be expanded with control flow.
|
|
VASTART_SAVE_XMM_REGS,
|
|
|
|
// Windows's _chkstk call to do stack probing.
|
|
WIN_ALLOCA,
|
|
|
|
// For allocating variable amounts of stack space when using
|
|
// segmented stacks. Check if the current stacklet has enough space, and
|
|
// falls back to heap allocation if not.
|
|
SEG_ALLOCA,
|
|
|
|
// Memory barriers.
|
|
MEMBARRIER,
|
|
MFENCE,
|
|
|
|
// Store FP status word into i16 register.
|
|
FNSTSW16r,
|
|
|
|
// Store contents of %ah into %eflags.
|
|
SAHF,
|
|
|
|
// Get a random integer and indicate whether it is valid in CF.
|
|
RDRAND,
|
|
|
|
// Get a NIST SP800-90B & C compliant random integer and
|
|
// indicate whether it is valid in CF.
|
|
RDSEED,
|
|
|
|
// Protection keys
|
|
// RDPKRU - Operand 0 is chain. Operand 1 is value for ECX.
|
|
// WRPKRU - Operand 0 is chain. Operand 1 is value for EDX. Operand 2 is
|
|
// value for ECX.
|
|
RDPKRU, WRPKRU,
|
|
|
|
// SSE42 string comparisons.
|
|
// These nodes produce 3 results, index, mask, and flags. X86ISelDAGToDAG
|
|
// will emit one or two instructions based on which results are used. If
|
|
// flags and index/mask this allows us to use a single instruction since
|
|
// we won't have to pick and opcode for flags. Instead we can rely on the
|
|
// DAG to CSE everything and decide at isel.
|
|
PCMPISTR,
|
|
PCMPESTR,
|
|
|
|
// Test if in transactional execution.
|
|
XTEST,
|
|
|
|
// ERI instructions.
|
|
RSQRT28, RSQRT28_SAE, RSQRT28S, RSQRT28S_SAE,
|
|
RCP28, RCP28_SAE, RCP28S, RCP28S_SAE, EXP2, EXP2_SAE,
|
|
|
|
// Conversions between float and half-float.
|
|
CVTPS2PH, CVTPH2PS, CVTPH2PS_SAE,
|
|
|
|
// Masked version of above.
|
|
// SRC, RND, PASSTHRU, MASK
|
|
MCVTPS2PH,
|
|
|
|
// Galois Field Arithmetic Instructions
|
|
GF2P8AFFINEINVQB, GF2P8AFFINEQB, GF2P8MULB,
|
|
|
|
// LWP insert record.
|
|
LWPINS,
|
|
|
|
// User level wait
|
|
UMWAIT, TPAUSE,
|
|
|
|
// Enqueue Stores Instructions
|
|
ENQCMD, ENQCMDS,
|
|
|
|
// For avx512-vp2intersect
|
|
VP2INTERSECT,
|
|
|
|
// Compare and swap.
|
|
LCMPXCHG_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
|
|
LCMPXCHG8_DAG,
|
|
LCMPXCHG16_DAG,
|
|
LCMPXCHG8_SAVE_EBX_DAG,
|
|
LCMPXCHG16_SAVE_RBX_DAG,
|
|
|
|
/// LOCK-prefixed arithmetic read-modify-write instructions.
|
|
/// EFLAGS, OUTCHAIN = LADD(INCHAIN, PTR, RHS)
|
|
LADD, LSUB, LOR, LXOR, LAND,
|
|
|
|
// Load, scalar_to_vector, and zero extend.
|
|
VZEXT_LOAD,
|
|
|
|
// extract_vector_elt, store.
|
|
VEXTRACT_STORE,
|
|
|
|
// Store FP control world into i16 memory.
|
|
FNSTCW16m,
|
|
|
|
/// This instruction implements FP_TO_SINT with the
|
|
/// integer destination in memory and a FP reg source. This corresponds
|
|
/// to the X86::FIST*m instructions and the rounding mode change stuff. It
|
|
/// has two inputs (token chain and address) and two outputs (int value
|
|
/// and token chain). Memory VT specifies the type to store to.
|
|
FP_TO_INT_IN_MEM,
|
|
|
|
/// This instruction implements SINT_TO_FP with the
|
|
/// integer source in memory and FP reg result. This corresponds to the
|
|
/// X86::FILD*m instructions. It has two inputs (token chain and address)
|
|
/// and two outputs (FP value and token chain). FILD_FLAG also produces a
|
|
/// flag). The integer source type is specified by the memory VT.
|
|
FILD,
|
|
FILD_FLAG,
|
|
|
|
/// This instruction implements a fp->int store from FP stack
|
|
/// slots. This corresponds to the fist instruction. It takes a
|
|
/// chain operand, value to store, address, and glue. The memory VT
|
|
/// specifies the type to store as.
|
|
FIST,
|
|
|
|
/// This instruction implements an extending load to FP stack slots.
|
|
/// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
|
|
/// operand, and ptr to load from. The memory VT specifies the type to
|
|
/// load from.
|
|
FLD,
|
|
|
|
/// This instruction implements a truncating store from FP stack
|
|
/// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
|
|
/// chain operand, value to store, address, and glue. The memory VT
|
|
/// specifies the type to store as.
|
|
FST,
|
|
|
|
/// This instruction grabs the address of the next argument
|
|
/// from a va_list. (reads and modifies the va_list in memory)
|
|
VAARG_64,
|
|
|
|
// Vector truncating store with unsigned/signed saturation
|
|
VTRUNCSTOREUS, VTRUNCSTORES,
|
|
// Vector truncating masked store with unsigned/signed saturation
|
|
VMTRUNCSTOREUS, VMTRUNCSTORES,
|
|
|
|
// X86 specific gather and scatter
|
|
MGATHER, MSCATTER,
|
|
|
|
// WARNING: Do not add anything in the end unless you want the node to
|
|
// have memop! In fact, starting from FIRST_TARGET_MEMORY_OPCODE all
|
|
// opcodes will be thought as target memory ops!
|
|
};
|
|
} // end namespace X86ISD
|
|
|
|
/// Define some predicates that are used for node matching.
|
|
namespace X86 {
|
|
/// Returns true if Elt is a constant zero or floating point constant +0.0.
|
|
bool isZeroNode(SDValue Elt);
|
|
|
|
/// Returns true of the given offset can be
|
|
/// fit into displacement field of the instruction.
|
|
bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
|
|
bool hasSymbolicDisplacement = true);
|
|
|
|
/// Determines whether the callee is required to pop its
|
|
/// own arguments. Callee pop is necessary to support tail calls.
|
|
bool isCalleePop(CallingConv::ID CallingConv,
|
|
bool is64Bit, bool IsVarArg, bool GuaranteeTCO);
|
|
|
|
} // end namespace X86
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// X86 Implementation of the TargetLowering interface
|
|
class X86TargetLowering final : public TargetLowering {
|
|
public:
|
|
explicit X86TargetLowering(const X86TargetMachine &TM,
|
|
const X86Subtarget &STI);
|
|
|
|
unsigned getJumpTableEncoding() const override;
|
|
bool useSoftFloat() const override;
|
|
|
|
void markLibCallAttributes(MachineFunction *MF, unsigned CC,
|
|
ArgListTy &Args) const override;
|
|
|
|
MVT getScalarShiftAmountTy(const DataLayout &, EVT VT) const override {
|
|
return MVT::i8;
|
|
}
|
|
|
|
const MCExpr *
|
|
LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
|
|
const MachineBasicBlock *MBB, unsigned uid,
|
|
MCContext &Ctx) const override;
|
|
|
|
/// Returns relocation base for the given PIC jumptable.
|
|
SDValue getPICJumpTableRelocBase(SDValue Table,
|
|
SelectionDAG &DAG) const override;
|
|
const MCExpr *
|
|
getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
|
|
unsigned JTI, MCContext &Ctx) const override;
|
|
|
|
/// Return the desired alignment for ByVal aggregate
|
|
/// function arguments in the caller parameter area. For X86, aggregates
|
|
/// that contains are placed at 16-byte boundaries while the rest are at
|
|
/// 4-byte boundaries.
|
|
unsigned getByValTypeAlignment(Type *Ty,
|
|
const DataLayout &DL) const override;
|
|
|
|
/// Returns the target specific optimal type for load
|
|
/// and store operations as a result of memset, memcpy, and memmove
|
|
/// lowering. If DstAlign is zero that means it's safe to destination
|
|
/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
|
|
/// means there isn't a need to check it against alignment requirement,
|
|
/// probably because the source does not need to be loaded. If 'IsMemset' is
|
|
/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
|
|
/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
|
|
/// source is constant so it does not need to be loaded.
|
|
/// It returns EVT::Other if the type should be determined using generic
|
|
/// target-independent logic.
|
|
EVT getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
|
|
bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
|
|
const AttributeList &FuncAttributes) const override;
|
|
|
|
/// Returns true if it's safe to use load / store of the
|
|
/// specified type to expand memcpy / memset inline. This is mostly true
|
|
/// for all types except for some special cases. For example, on X86
|
|
/// targets without SSE2 f64 load / store are done with fldl / fstpl which
|
|
/// also does type conversion. Note the specified type doesn't have to be
|
|
/// legal as the hook is used before type legalization.
|
|
bool isSafeMemOpType(MVT VT) const override;
|
|
|
|
/// Returns true if the target allows unaligned memory accesses of the
|
|
/// specified type. Returns whether it is "fast" in the last argument.
|
|
bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, unsigned Align,
|
|
MachineMemOperand::Flags Flags,
|
|
bool *Fast) const override;
|
|
|
|
/// Provide custom lowering hooks for some operations.
|
|
///
|
|
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
|
|
|
|
/// Places new result values for the node in Results (their number
|
|
/// and types must exactly match those of the original return values of
|
|
/// the node), or leaves Results empty, which indicates that the node is not
|
|
/// to be custom lowered after all.
|
|
void LowerOperationWrapper(SDNode *N,
|
|
SmallVectorImpl<SDValue> &Results,
|
|
SelectionDAG &DAG) const override;
|
|
|
|
/// Replace the results of node with an illegal result
|
|
/// type with new values built out of custom code.
|
|
///
|
|
void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
|
|
SelectionDAG &DAG) const override;
|
|
|
|
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
|
|
|
|
// Return true if it is profitable to combine a BUILD_VECTOR with a
|
|
// stride-pattern to a shuffle and a truncate.
|
|
// Example of such a combine:
|
|
// v4i32 build_vector((extract_elt V, 1),
|
|
// (extract_elt V, 3),
|
|
// (extract_elt V, 5),
|
|
// (extract_elt V, 7))
|
|
// -->
|
|
// v4i32 truncate (bitcast (shuffle<1,u,3,u,4,u,5,u,6,u,7,u> V, u) to
|
|
// v4i64)
|
|
bool isDesirableToCombineBuildVectorToShuffleTruncate(
|
|
ArrayRef<int> ShuffleMask, EVT SrcVT, EVT TruncVT) const override;
|
|
|
|
/// Return true if the target has native support for
|
|
/// the specified value type and it is 'desirable' to use the type for the
|
|
/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
|
|
/// instruction encodings are longer and some i16 instructions are slow.
|
|
bool isTypeDesirableForOp(unsigned Opc, EVT VT) const override;
|
|
|
|
/// Return true if the target has native support for the
|
|
/// specified value type and it is 'desirable' to use the type. e.g. On x86
|
|
/// i16 is legal, but undesirable since i16 instruction encodings are longer
|
|
/// and some i16 instructions are slow.
|
|
bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const override;
|
|
|
|
MachineBasicBlock *
|
|
EmitInstrWithCustomInserter(MachineInstr &MI,
|
|
MachineBasicBlock *MBB) const override;
|
|
|
|
/// This method returns the name of a target specific DAG node.
|
|
const char *getTargetNodeName(unsigned Opcode) const override;
|
|
|
|
/// Do not merge vector stores after legalization because that may conflict
|
|
/// with x86-specific store splitting optimizations.
|
|
bool mergeStoresAfterLegalization(EVT MemVT) const override {
|
|
return !MemVT.isVector();
|
|
}
|
|
|
|
bool canMergeStoresTo(unsigned AddressSpace, EVT MemVT,
|
|
const SelectionDAG &DAG) const override;
|
|
|
|
bool isCheapToSpeculateCttz() const override;
|
|
|
|
bool isCheapToSpeculateCtlz() const override;
|
|
|
|
bool isCtlzFast() const override;
|
|
|
|
bool hasBitPreservingFPLogic(EVT VT) const override {
|
|
return VT == MVT::f32 || VT == MVT::f64 || VT.isVector();
|
|
}
|
|
|
|
bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const override {
|
|
// If the pair to store is a mixture of float and int values, we will
|
|
// save two bitwise instructions and one float-to-int instruction and
|
|
// increase one store instruction. There is potentially a more
|
|
// significant benefit because it avoids the float->int domain switch
|
|
// for input value. So It is more likely a win.
|
|
if ((LTy.isFloatingPoint() && HTy.isInteger()) ||
|
|
(LTy.isInteger() && HTy.isFloatingPoint()))
|
|
return true;
|
|
// If the pair only contains int values, we will save two bitwise
|
|
// instructions and increase one store instruction (costing one more
|
|
// store buffer). Since the benefit is more blurred so we leave
|
|
// such pair out until we get testcase to prove it is a win.
|
|
return false;
|
|
}
|
|
|
|
bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override;
|
|
|
|
bool hasAndNotCompare(SDValue Y) const override;
|
|
|
|
bool hasAndNot(SDValue Y) const override;
|
|
|
|
bool shouldFoldConstantShiftPairToMask(const SDNode *N,
|
|
CombineLevel Level) const override;
|
|
|
|
bool shouldFoldMaskToVariableShiftPair(SDValue Y) const override;
|
|
|
|
bool
|
|
shouldTransformSignedTruncationCheck(EVT XVT,
|
|
unsigned KeptBits) const override {
|
|
// For vectors, we don't have a preference..
|
|
if (XVT.isVector())
|
|
return false;
|
|
|
|
auto VTIsOk = [](EVT VT) -> bool {
|
|
return VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 ||
|
|
VT == MVT::i64;
|
|
};
|
|
|
|
// We are ok with KeptBitsVT being byte/word/dword, what MOVS supports.
|
|
// XVT will be larger than KeptBitsVT.
|
|
MVT KeptBitsVT = MVT::getIntegerVT(KeptBits);
|
|
return VTIsOk(XVT) && VTIsOk(KeptBitsVT);
|
|
}
|
|
|
|
bool shouldExpandShift(SelectionDAG &DAG, SDNode *N) const override {
|
|
if (DAG.getMachineFunction().getFunction().hasMinSize())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool shouldSplatInsEltVarIndex(EVT VT) const override;
|
|
|
|
bool convertSetCCLogicToBitwiseLogic(EVT VT) const override {
|
|
return VT.isScalarInteger();
|
|
}
|
|
|
|
/// Vector-sized comparisons are fast using PCMPEQ + PMOVMSK or PTEST.
|
|
MVT hasFastEqualityCompare(unsigned NumBits) const override;
|
|
|
|
/// Allow multiple load pairs per block for smaller and faster code.
|
|
unsigned getMemcmpEqZeroLoadsPerBlock() const override {
|
|
return 2;
|
|
}
|
|
|
|
/// Return the value type to use for ISD::SETCC.
|
|
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
|
|
EVT VT) const override;
|
|
|
|
bool targetShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
|
|
TargetLoweringOpt &TLO) const override;
|
|
|
|
/// Determine which of the bits specified in Mask are known to be either
|
|
/// zero or one and return them in the KnownZero/KnownOne bitsets.
|
|
void computeKnownBitsForTargetNode(const SDValue Op,
|
|
KnownBits &Known,
|
|
const APInt &DemandedElts,
|
|
const SelectionDAG &DAG,
|
|
unsigned Depth = 0) const override;
|
|
|
|
/// Determine the number of bits in the operation that are sign bits.
|
|
unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
|
|
const APInt &DemandedElts,
|
|
const SelectionDAG &DAG,
|
|
unsigned Depth) const override;
|
|
|
|
bool SimplifyDemandedVectorEltsForTargetNode(SDValue Op,
|
|
const APInt &DemandedElts,
|
|
APInt &KnownUndef,
|
|
APInt &KnownZero,
|
|
TargetLoweringOpt &TLO,
|
|
unsigned Depth) const override;
|
|
|
|
bool SimplifyDemandedBitsForTargetNode(SDValue Op,
|
|
const APInt &DemandedBits,
|
|
const APInt &DemandedElts,
|
|
KnownBits &Known,
|
|
TargetLoweringOpt &TLO,
|
|
unsigned Depth) const override;
|
|
|
|
const Constant *getTargetConstantFromLoad(LoadSDNode *LD) const override;
|
|
|
|
SDValue unwrapAddress(SDValue N) const override;
|
|
|
|
SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const;
|
|
|
|
bool ExpandInlineAsm(CallInst *CI) const override;
|
|
|
|
ConstraintType getConstraintType(StringRef Constraint) const override;
|
|
|
|
/// Examine constraint string and operand type and determine a weight value.
|
|
/// The operand object must already have been set up with the operand type.
|
|
ConstraintWeight
|
|
getSingleConstraintMatchWeight(AsmOperandInfo &info,
|
|
const char *constraint) const override;
|
|
|
|
const char *LowerXConstraint(EVT ConstraintVT) const override;
|
|
|
|
/// Lower the specified operand into the Ops vector. If it is invalid, don't
|
|
/// add anything to Ops. If hasMemory is true it means one of the asm
|
|
/// constraint of the inline asm instruction being processed is 'm'.
|
|
void LowerAsmOperandForConstraint(SDValue Op,
|
|
std::string &Constraint,
|
|
std::vector<SDValue> &Ops,
|
|
SelectionDAG &DAG) const override;
|
|
|
|
unsigned
|
|
getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
|
|
if (ConstraintCode == "i")
|
|
return InlineAsm::Constraint_i;
|
|
else if (ConstraintCode == "o")
|
|
return InlineAsm::Constraint_o;
|
|
else if (ConstraintCode == "v")
|
|
return InlineAsm::Constraint_v;
|
|
else if (ConstraintCode == "X")
|
|
return InlineAsm::Constraint_X;
|
|
return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
|
|
}
|
|
|
|
/// Handle Lowering flag assembly outputs.
|
|
SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Flag, SDLoc DL,
|
|
const AsmOperandInfo &Constraint,
|
|
SelectionDAG &DAG) const override;
|
|
|
|
/// Given a physical register constraint
|
|
/// (e.g. {edx}), return the register number and the register class for the
|
|
/// register. This should only be used for C_Register constraints. On
|
|
/// error, this returns a register number of 0.
|
|
std::pair<unsigned, const TargetRegisterClass *>
|
|
getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
|
|
StringRef Constraint, MVT VT) const override;
|
|
|
|
/// Return true if the addressing mode represented
|
|
/// by AM is legal for this target, for a load/store of the specified type.
|
|
bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
|
|
Type *Ty, unsigned AS,
|
|
Instruction *I = nullptr) const override;
|
|
|
|
/// Return true if the specified immediate is legal
|
|
/// icmp immediate, that is the target has icmp instructions which can
|
|
/// compare a register against the immediate without having to materialize
|
|
/// the immediate into a register.
|
|
bool isLegalICmpImmediate(int64_t Imm) const override;
|
|
|
|
/// Return true if the specified immediate is legal
|
|
/// add immediate, that is the target has add instructions which can
|
|
/// add a register and the immediate without having to materialize
|
|
/// the immediate into a register.
|
|
bool isLegalAddImmediate(int64_t Imm) const override;
|
|
|
|
bool isLegalStoreImmediate(int64_t Imm) const override;
|
|
|
|
/// Return the cost of the scaling factor used in the addressing
|
|
/// mode represented by AM for this target, for a load/store
|
|
/// of the specified type.
|
|
/// If the AM is supported, the return value must be >= 0.
|
|
/// If the AM is not supported, it returns a negative value.
|
|
int getScalingFactorCost(const DataLayout &DL, const AddrMode &AM, Type *Ty,
|
|
unsigned AS) const override;
|
|
|
|
bool isVectorShiftByScalarCheap(Type *Ty) const override;
|
|
|
|
/// Add x86-specific opcodes to the default list.
|
|
bool isBinOp(unsigned Opcode) const override;
|
|
|
|
/// Returns true if the opcode is a commutative binary operation.
|
|
bool isCommutativeBinOp(unsigned Opcode) const override;
|
|
|
|
/// Return true if it's free to truncate a value of
|
|
/// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
|
|
/// register EAX to i16 by referencing its sub-register AX.
|
|
bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
|
|
bool isTruncateFree(EVT VT1, EVT VT2) const override;
|
|
|
|
bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override;
|
|
|
|
/// Return true if any actual instruction that defines a
|
|
/// value of type Ty1 implicit zero-extends the value to Ty2 in the result
|
|
/// register. This does not necessarily include registers defined in
|
|
/// unknown ways, such as incoming arguments, or copies from unknown
|
|
/// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
|
|
/// does not necessarily apply to truncate instructions. e.g. on x86-64,
|
|
/// all instructions that define 32-bit values implicit zero-extend the
|
|
/// result out to 64 bits.
|
|
bool isZExtFree(Type *Ty1, Type *Ty2) const override;
|
|
bool isZExtFree(EVT VT1, EVT VT2) const override;
|
|
bool isZExtFree(SDValue Val, EVT VT2) const override;
|
|
|
|
/// Return true if folding a vector load into ExtVal (a sign, zero, or any
|
|
/// extend node) is profitable.
|
|
bool isVectorLoadExtDesirable(SDValue) const override;
|
|
|
|
/// Return true if an FMA operation is faster than a pair of fmul and fadd
|
|
/// instructions. fmuladd intrinsics will be expanded to FMAs when this
|
|
/// method returns true, otherwise fmuladd is expanded to fmul + fadd.
|
|
bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
|
|
|
|
/// Return true if it's profitable to narrow
|
|
/// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
|
|
/// from i32 to i8 but not from i32 to i16.
|
|
bool isNarrowingProfitable(EVT VT1, EVT VT2) const override;
|
|
|
|
/// Given an intrinsic, checks if on the target the intrinsic will need to map
|
|
/// to a MemIntrinsicNode (touches memory). If this is the case, it returns
|
|
/// true and stores the intrinsic information into the IntrinsicInfo that was
|
|
/// passed to the function.
|
|
bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I,
|
|
MachineFunction &MF,
|
|
unsigned Intrinsic) const override;
|
|
|
|
/// Returns true if the target can instruction select the
|
|
/// specified FP immediate natively. If false, the legalizer will
|
|
/// materialize the FP immediate as a load from a constant pool.
|
|
bool isFPImmLegal(const APFloat &Imm, EVT VT,
|
|
bool ForCodeSize) const override;
|
|
|
|
/// Targets can use this to indicate that they only support *some*
|
|
/// VECTOR_SHUFFLE operations, those with specific masks. By default, if a
|
|
/// target supports the VECTOR_SHUFFLE node, all mask values are assumed to
|
|
/// be legal.
|
|
bool isShuffleMaskLegal(ArrayRef<int> Mask, EVT VT) const override;
|
|
|
|
/// Similar to isShuffleMaskLegal. Targets can use this to indicate if there
|
|
/// is a suitable VECTOR_SHUFFLE that can be used to replace a VAND with a
|
|
/// constant pool entry.
|
|
bool isVectorClearMaskLegal(ArrayRef<int> Mask, EVT VT) const override;
|
|
|
|
/// Returns true if lowering to a jump table is allowed.
|
|
bool areJTsAllowed(const Function *Fn) const override;
|
|
|
|
/// If true, then instruction selection should
|
|
/// seek to shrink the FP constant of the specified type to a smaller type
|
|
/// in order to save space and / or reduce runtime.
|
|
bool ShouldShrinkFPConstant(EVT VT) const override {
|
|
// Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
|
|
// expensive than a straight movsd. On the other hand, it's important to
|
|
// shrink long double fp constant since fldt is very slow.
|
|
return !X86ScalarSSEf64 || VT == MVT::f80;
|
|
}
|
|
|
|
/// Return true if we believe it is correct and profitable to reduce the
|
|
/// load node to a smaller type.
|
|
bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy,
|
|
EVT NewVT) const override;
|
|
|
|
/// Return true if the specified scalar FP type is computed in an SSE
|
|
/// register, not on the X87 floating point stack.
|
|
bool isScalarFPTypeInSSEReg(EVT VT) const {
|
|
return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
|
|
(VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1
|
|
}
|
|
|
|
/// Returns true if it is beneficial to convert a load of a constant
|
|
/// to just the constant itself.
|
|
bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
|
|
Type *Ty) const override;
|
|
|
|
bool reduceSelectOfFPConstantLoads(bool IsFPSetCC) const override;
|
|
|
|
bool convertSelectOfConstantsToMath(EVT VT) const override;
|
|
|
|
bool decomposeMulByConstant(EVT VT, SDValue C) const override;
|
|
|
|
bool shouldUseStrictFP_TO_INT(EVT FpVT, EVT IntVT,
|
|
bool IsSigned) const override;
|
|
|
|
/// Return true if EXTRACT_SUBVECTOR is cheap for this result type
|
|
/// with this index.
|
|
bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
|
|
unsigned Index) const override;
|
|
|
|
/// Scalar ops always have equal or better analysis/performance/power than
|
|
/// the vector equivalent, so this always makes sense if the scalar op is
|
|
/// supported.
|
|
bool shouldScalarizeBinop(SDValue) const override;
|
|
|
|
/// Extract of a scalar FP value from index 0 of a vector is free.
|
|
bool isExtractVecEltCheap(EVT VT, unsigned Index) const override {
|
|
EVT EltVT = VT.getScalarType();
|
|
return (EltVT == MVT::f32 || EltVT == MVT::f64) && Index == 0;
|
|
}
|
|
|
|
/// Overflow nodes should get combined/lowered to optimal instructions
|
|
/// (they should allow eliminating explicit compares by getting flags from
|
|
/// math ops).
|
|
bool shouldFormOverflowOp(unsigned Opcode, EVT VT) const override;
|
|
|
|
bool storeOfVectorConstantIsCheap(EVT MemVT, unsigned NumElem,
|
|
unsigned AddrSpace) const override {
|
|
// If we can replace more than 2 scalar stores, there will be a reduction
|
|
// in instructions even after we add a vector constant load.
|
|
return NumElem > 2;
|
|
}
|
|
|
|
bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT) const override;
|
|
|
|
/// Intel processors have a unified instruction and data cache
|
|
const char * getClearCacheBuiltinName() const override {
|
|
return nullptr; // nothing to do, move along.
|
|
}
|
|
|
|
unsigned getRegisterByName(const char* RegName, EVT VT,
|
|
SelectionDAG &DAG) const override;
|
|
|
|
/// If a physical register, this returns the register that receives the
|
|
/// exception address on entry to an EH pad.
|
|
unsigned
|
|
getExceptionPointerRegister(const Constant *PersonalityFn) const override;
|
|
|
|
/// If a physical register, this returns the register that receives the
|
|
/// exception typeid on entry to a landing pad.
|
|
unsigned
|
|
getExceptionSelectorRegister(const Constant *PersonalityFn) const override;
|
|
|
|
virtual bool needsFixedCatchObjects() const override;
|
|
|
|
/// This method returns a target specific FastISel object,
|
|
/// or null if the target does not support "fast" ISel.
|
|
FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
|
|
const TargetLibraryInfo *libInfo) const override;
|
|
|
|
/// If the target has a standard location for the stack protector cookie,
|
|
/// returns the address of that location. Otherwise, returns nullptr.
|
|
Value *getIRStackGuard(IRBuilder<> &IRB) const override;
|
|
|
|
bool useLoadStackGuardNode() const override;
|
|
bool useStackGuardXorFP() const override;
|
|
void insertSSPDeclarations(Module &M) const override;
|
|
Value *getSDagStackGuard(const Module &M) const override;
|
|
Function *getSSPStackGuardCheck(const Module &M) const override;
|
|
SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val,
|
|
const SDLoc &DL) const override;
|
|
|
|
|
|
/// Return true if the target stores SafeStack pointer at a fixed offset in
|
|
/// some non-standard address space, and populates the address space and
|
|
/// offset as appropriate.
|
|
Value *getSafeStackPointerLocation(IRBuilder<> &IRB) const override;
|
|
|
|
SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot,
|
|
SelectionDAG &DAG) const;
|
|
|
|
bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override;
|
|
|
|
/// Customize the preferred legalization strategy for certain types.
|
|
LegalizeTypeAction getPreferredVectorAction(MVT VT) const override;
|
|
|
|
MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC,
|
|
EVT VT) const override;
|
|
|
|
unsigned getNumRegistersForCallingConv(LLVMContext &Context,
|
|
CallingConv::ID CC,
|
|
EVT VT) const override;
|
|
|
|
bool isIntDivCheap(EVT VT, AttributeList Attr) const override;
|
|
|
|
bool supportSwiftError() const override;
|
|
|
|
StringRef getStackProbeSymbolName(MachineFunction &MF) const override;
|
|
|
|
bool hasVectorBlend() const override { return true; }
|
|
|
|
unsigned getMaxSupportedInterleaveFactor() const override { return 4; }
|
|
|
|
/// Lower interleaved load(s) into target specific
|
|
/// instructions/intrinsics.
|
|
bool lowerInterleavedLoad(LoadInst *LI,
|
|
ArrayRef<ShuffleVectorInst *> Shuffles,
|
|
ArrayRef<unsigned> Indices,
|
|
unsigned Factor) const override;
|
|
|
|
/// Lower interleaved store(s) into target specific
|
|
/// instructions/intrinsics.
|
|
bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI,
|
|
unsigned Factor) const override;
|
|
|
|
SDValue expandIndirectJTBranch(const SDLoc& dl, SDValue Value,
|
|
SDValue Addr, SelectionDAG &DAG)
|
|
const override;
|
|
|
|
protected:
|
|
std::pair<const TargetRegisterClass *, uint8_t>
|
|
findRepresentativeClass(const TargetRegisterInfo *TRI,
|
|
MVT VT) const override;
|
|
|
|
private:
|
|
/// Keep a reference to the X86Subtarget around so that we can
|
|
/// make the right decision when generating code for different targets.
|
|
const X86Subtarget &Subtarget;
|
|
|
|
/// Select between SSE or x87 floating point ops.
|
|
/// When SSE is available, use it for f32 operations.
|
|
/// When SSE2 is available, use it for f64 operations.
|
|
bool X86ScalarSSEf32;
|
|
bool X86ScalarSSEf64;
|
|
|
|
/// A list of legal FP immediates.
|
|
std::vector<APFloat> LegalFPImmediates;
|
|
|
|
/// Indicate that this x86 target can instruction
|
|
/// select the specified FP immediate natively.
|
|
void addLegalFPImmediate(const APFloat& Imm) {
|
|
LegalFPImmediates.push_back(Imm);
|
|
}
|
|
|
|
SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
const SDLoc &dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals,
|
|
uint32_t *RegMask) const;
|
|
SDValue LowerMemArgument(SDValue Chain, CallingConv::ID CallConv,
|
|
const SmallVectorImpl<ISD::InputArg> &ArgInfo,
|
|
const SDLoc &dl, SelectionDAG &DAG,
|
|
const CCValAssign &VA, MachineFrameInfo &MFI,
|
|
unsigned i) const;
|
|
SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
|
|
const SDLoc &dl, SelectionDAG &DAG,
|
|
const CCValAssign &VA,
|
|
ISD::ArgFlagsTy Flags) const;
|
|
|
|
// Call lowering helpers.
|
|
|
|
/// Check whether the call is eligible for tail call optimization. Targets
|
|
/// that want to do tail call optimization should implement this function.
|
|
bool IsEligibleForTailCallOptimization(SDValue Callee,
|
|
CallingConv::ID CalleeCC,
|
|
bool isVarArg,
|
|
bool isCalleeStructRet,
|
|
bool isCallerStructRet,
|
|
Type *RetTy,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SelectionDAG& DAG) const;
|
|
SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
|
|
SDValue Chain, bool IsTailCall,
|
|
bool Is64Bit, int FPDiff,
|
|
const SDLoc &dl) const;
|
|
|
|
unsigned GetAlignedArgumentStackSize(unsigned StackSize,
|
|
SelectionDAG &DAG) const;
|
|
|
|
unsigned getAddressSpace(void) const;
|
|
|
|
SDValue FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool isSigned) const;
|
|
|
|
SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerVSELECT(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
|
|
|
|
unsigned getGlobalWrapperKind(const GlobalValue *GV = nullptr,
|
|
const unsigned char OpFlags = 0) const;
|
|
SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;
|
|
|
|
/// Creates target global address or external symbol nodes for calls or
|
|
/// other uses.
|
|
SDValue LowerGlobalOrExternal(SDValue Op, SelectionDAG &DAG,
|
|
bool ForCall) const;
|
|
|
|
SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerADDROFRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue lowerEH_SJLJ_SETUP_DISPATCH(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerGC_TRANSITION_START(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerGC_TRANSITION_END(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
|
|
|
|
SDValue
|
|
LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
const SDLoc &dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) const override;
|
|
SDValue LowerCall(CallLoweringInfo &CLI,
|
|
SmallVectorImpl<SDValue> &InVals) const override;
|
|
|
|
SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
const SDLoc &dl, SelectionDAG &DAG) const override;
|
|
|
|
bool supportSplitCSR(MachineFunction *MF) const override {
|
|
return MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
|
|
MF->getFunction().hasFnAttribute(Attribute::NoUnwind);
|
|
}
|
|
void initializeSplitCSR(MachineBasicBlock *Entry) const override;
|
|
void insertCopiesSplitCSR(
|
|
MachineBasicBlock *Entry,
|
|
const SmallVectorImpl<MachineBasicBlock *> &Exits) const override;
|
|
|
|
bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override;
|
|
|
|
bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
|
|
|
|
EVT getTypeForExtReturn(LLVMContext &Context, EVT VT,
|
|
ISD::NodeType ExtendKind) const override;
|
|
|
|
bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
|
|
bool isVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
LLVMContext &Context) const override;
|
|
|
|
const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
|
|
|
|
TargetLoweringBase::AtomicExpansionKind
|
|
shouldExpandAtomicLoadInIR(LoadInst *SI) const override;
|
|
bool shouldExpandAtomicStoreInIR(StoreInst *SI) const override;
|
|
TargetLoweringBase::AtomicExpansionKind
|
|
shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override;
|
|
|
|
LoadInst *
|
|
lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const override;
|
|
|
|
bool needsCmpXchgNb(Type *MemType) const;
|
|
|
|
void SetupEntryBlockForSjLj(MachineInstr &MI, MachineBasicBlock *MBB,
|
|
MachineBasicBlock *DispatchBB, int FI) const;
|
|
|
|
// Utility function to emit the low-level va_arg code for X86-64.
|
|
MachineBasicBlock *
|
|
EmitVAARG64WithCustomInserter(MachineInstr &MI,
|
|
MachineBasicBlock *MBB) const;
|
|
|
|
/// Utility function to emit the xmm reg save portion of va_start.
|
|
MachineBasicBlock *
|
|
EmitVAStartSaveXMMRegsWithCustomInserter(MachineInstr &BInstr,
|
|
MachineBasicBlock *BB) const;
|
|
|
|
MachineBasicBlock *EmitLoweredCascadedSelect(MachineInstr &MI1,
|
|
MachineInstr &MI2,
|
|
MachineBasicBlock *BB) const;
|
|
|
|
MachineBasicBlock *EmitLoweredSelect(MachineInstr &I,
|
|
MachineBasicBlock *BB) const;
|
|
|
|
MachineBasicBlock *EmitLoweredAtomicFP(MachineInstr &I,
|
|
MachineBasicBlock *BB) const;
|
|
|
|
MachineBasicBlock *EmitLoweredCatchRet(MachineInstr &MI,
|
|
MachineBasicBlock *BB) const;
|
|
|
|
MachineBasicBlock *EmitLoweredCatchPad(MachineInstr &MI,
|
|
MachineBasicBlock *BB) const;
|
|
|
|
MachineBasicBlock *EmitLoweredSegAlloca(MachineInstr &MI,
|
|
MachineBasicBlock *BB) const;
|
|
|
|
MachineBasicBlock *EmitLoweredTLSAddr(MachineInstr &MI,
|
|
MachineBasicBlock *BB) const;
|
|
|
|
MachineBasicBlock *EmitLoweredTLSCall(MachineInstr &MI,
|
|
MachineBasicBlock *BB) const;
|
|
|
|
MachineBasicBlock *EmitLoweredRetpoline(MachineInstr &MI,
|
|
MachineBasicBlock *BB) const;
|
|
|
|
MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr &MI,
|
|
MachineBasicBlock *MBB) const;
|
|
|
|
void emitSetJmpShadowStackFix(MachineInstr &MI,
|
|
MachineBasicBlock *MBB) const;
|
|
|
|
MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr &MI,
|
|
MachineBasicBlock *MBB) const;
|
|
|
|
MachineBasicBlock *emitLongJmpShadowStackFix(MachineInstr &MI,
|
|
MachineBasicBlock *MBB) const;
|
|
|
|
MachineBasicBlock *emitFMA3Instr(MachineInstr &MI,
|
|
MachineBasicBlock *MBB) const;
|
|
|
|
MachineBasicBlock *EmitSjLjDispatchBlock(MachineInstr &MI,
|
|
MachineBasicBlock *MBB) const;
|
|
|
|
/// Emit nodes that will be selected as "cmp Op0,Op1", or something
|
|
/// equivalent, for use with the given x86 condition code.
|
|
SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC, const SDLoc &dl,
|
|
SelectionDAG &DAG) const;
|
|
|
|
/// Convert a comparison if required by the subtarget.
|
|
SDValue ConvertCmpIfNecessary(SDValue Cmp, SelectionDAG &DAG) const;
|
|
|
|
/// Emit flags for the given setcc condition and operands. Also returns the
|
|
/// corresponding X86 condition code constant in X86CC.
|
|
SDValue emitFlagsForSetcc(SDValue Op0, SDValue Op1,
|
|
ISD::CondCode CC, const SDLoc &dl,
|
|
SelectionDAG &DAG,
|
|
SDValue &X86CC) const;
|
|
|
|
/// Check if replacement of SQRT with RSQRT should be disabled.
|
|
bool isFsqrtCheap(SDValue Operand, SelectionDAG &DAG) const override;
|
|
|
|
/// Use rsqrt* to speed up sqrt calculations.
|
|
SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
|
|
int &RefinementSteps, bool &UseOneConstNR,
|
|
bool Reciprocal) const override;
|
|
|
|
/// Use rcp* to speed up fdiv calculations.
|
|
SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
|
|
int &RefinementSteps) const override;
|
|
|
|
/// Reassociate floating point divisions into multiply by reciprocal.
|
|
unsigned combineRepeatedFPDivisors() const override;
|
|
};
|
|
|
|
namespace X86 {
|
|
FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
|
|
const TargetLibraryInfo *libInfo);
|
|
} // end namespace X86
|
|
|
|
// Base class for all X86 non-masked store operations.
|
|
class X86StoreSDNode : public MemSDNode {
|
|
public:
|
|
X86StoreSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl,
|
|
SDVTList VTs, EVT MemVT,
|
|
MachineMemOperand *MMO)
|
|
:MemSDNode(Opcode, Order, dl, VTs, MemVT, MMO) {}
|
|
const SDValue &getValue() const { return getOperand(1); }
|
|
const SDValue &getBasePtr() const { return getOperand(2); }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == X86ISD::VTRUNCSTORES ||
|
|
N->getOpcode() == X86ISD::VTRUNCSTOREUS;
|
|
}
|
|
};
|
|
|
|
// Base class for all X86 masked store operations.
|
|
// The class has the same order of operands as MaskedStoreSDNode for
|
|
// convenience.
|
|
class X86MaskedStoreSDNode : public MemSDNode {
|
|
public:
|
|
X86MaskedStoreSDNode(unsigned Opcode, unsigned Order,
|
|
const DebugLoc &dl, SDVTList VTs, EVT MemVT,
|
|
MachineMemOperand *MMO)
|
|
: MemSDNode(Opcode, Order, dl, VTs, MemVT, MMO) {}
|
|
|
|
const SDValue &getValue() const { return getOperand(1); }
|
|
const SDValue &getBasePtr() const { return getOperand(2); }
|
|
const SDValue &getMask() const { return getOperand(3); }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == X86ISD::VMTRUNCSTORES ||
|
|
N->getOpcode() == X86ISD::VMTRUNCSTOREUS;
|
|
}
|
|
};
|
|
|
|
// X86 Truncating Store with Signed saturation.
|
|
class TruncSStoreSDNode : public X86StoreSDNode {
|
|
public:
|
|
TruncSStoreSDNode(unsigned Order, const DebugLoc &dl,
|
|
SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
|
|
: X86StoreSDNode(X86ISD::VTRUNCSTORES, Order, dl, VTs, MemVT, MMO) {}
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == X86ISD::VTRUNCSTORES;
|
|
}
|
|
};
|
|
|
|
// X86 Truncating Store with Unsigned saturation.
|
|
class TruncUSStoreSDNode : public X86StoreSDNode {
|
|
public:
|
|
TruncUSStoreSDNode(unsigned Order, const DebugLoc &dl,
|
|
SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
|
|
: X86StoreSDNode(X86ISD::VTRUNCSTOREUS, Order, dl, VTs, MemVT, MMO) {}
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == X86ISD::VTRUNCSTOREUS;
|
|
}
|
|
};
|
|
|
|
// X86 Truncating Masked Store with Signed saturation.
|
|
class MaskedTruncSStoreSDNode : public X86MaskedStoreSDNode {
|
|
public:
|
|
MaskedTruncSStoreSDNode(unsigned Order,
|
|
const DebugLoc &dl, SDVTList VTs, EVT MemVT,
|
|
MachineMemOperand *MMO)
|
|
: X86MaskedStoreSDNode(X86ISD::VMTRUNCSTORES, Order, dl, VTs, MemVT, MMO) {}
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == X86ISD::VMTRUNCSTORES;
|
|
}
|
|
};
|
|
|
|
// X86 Truncating Masked Store with Unsigned saturation.
|
|
class MaskedTruncUSStoreSDNode : public X86MaskedStoreSDNode {
|
|
public:
|
|
MaskedTruncUSStoreSDNode(unsigned Order,
|
|
const DebugLoc &dl, SDVTList VTs, EVT MemVT,
|
|
MachineMemOperand *MMO)
|
|
: X86MaskedStoreSDNode(X86ISD::VMTRUNCSTOREUS, Order, dl, VTs, MemVT, MMO) {}
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == X86ISD::VMTRUNCSTOREUS;
|
|
}
|
|
};
|
|
|
|
// X86 specific Gather/Scatter nodes.
|
|
// The class has the same order of operands as MaskedGatherScatterSDNode for
|
|
// convenience.
|
|
class X86MaskedGatherScatterSDNode : public MemSDNode {
|
|
public:
|
|
X86MaskedGatherScatterSDNode(unsigned Opc, unsigned Order,
|
|
const DebugLoc &dl, SDVTList VTs, EVT MemVT,
|
|
MachineMemOperand *MMO)
|
|
: MemSDNode(Opc, Order, dl, VTs, MemVT, MMO) {}
|
|
|
|
const SDValue &getBasePtr() const { return getOperand(3); }
|
|
const SDValue &getIndex() const { return getOperand(4); }
|
|
const SDValue &getMask() const { return getOperand(2); }
|
|
const SDValue &getScale() const { return getOperand(5); }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == X86ISD::MGATHER ||
|
|
N->getOpcode() == X86ISD::MSCATTER;
|
|
}
|
|
};
|
|
|
|
class X86MaskedGatherSDNode : public X86MaskedGatherScatterSDNode {
|
|
public:
|
|
X86MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
|
|
EVT MemVT, MachineMemOperand *MMO)
|
|
: X86MaskedGatherScatterSDNode(X86ISD::MGATHER, Order, dl, VTs, MemVT,
|
|
MMO) {}
|
|
|
|
const SDValue &getPassThru() const { return getOperand(1); }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == X86ISD::MGATHER;
|
|
}
|
|
};
|
|
|
|
class X86MaskedScatterSDNode : public X86MaskedGatherScatterSDNode {
|
|
public:
|
|
X86MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
|
|
EVT MemVT, MachineMemOperand *MMO)
|
|
: X86MaskedGatherScatterSDNode(X86ISD::MSCATTER, Order, dl, VTs, MemVT,
|
|
MMO) {}
|
|
|
|
const SDValue &getValue() const { return getOperand(1); }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == X86ISD::MSCATTER;
|
|
}
|
|
};
|
|
|
|
/// Generate unpacklo/unpackhi shuffle mask.
|
|
template <typename T = int>
|
|
void createUnpackShuffleMask(MVT VT, SmallVectorImpl<T> &Mask, bool Lo,
|
|
bool Unary) {
|
|
assert(Mask.empty() && "Expected an empty shuffle mask vector");
|
|
int NumElts = VT.getVectorNumElements();
|
|
int NumEltsInLane = 128 / VT.getScalarSizeInBits();
|
|
for (int i = 0; i < NumElts; ++i) {
|
|
unsigned LaneStart = (i / NumEltsInLane) * NumEltsInLane;
|
|
int Pos = (i % NumEltsInLane) / 2 + LaneStart;
|
|
Pos += (Unary ? 0 : NumElts * (i % 2));
|
|
Pos += (Lo ? 0 : NumEltsInLane / 2);
|
|
Mask.push_back(Pos);
|
|
}
|
|
}
|
|
|
|
/// Helper function to scale a shuffle or target shuffle mask, replacing each
|
|
/// mask index with the scaled sequential indices for an equivalent narrowed
|
|
/// mask. This is the reverse process to canWidenShuffleElements, but can
|
|
/// always succeed.
|
|
template <typename T>
|
|
void scaleShuffleMask(int Scale, ArrayRef<T> Mask,
|
|
SmallVectorImpl<T> &ScaledMask) {
|
|
assert(0 < Scale && "Unexpected scaling factor");
|
|
size_t NumElts = Mask.size();
|
|
ScaledMask.assign(NumElts * Scale, -1);
|
|
|
|
for (int i = 0; i != (int)NumElts; ++i) {
|
|
int M = Mask[i];
|
|
|
|
// Repeat sentinel values in every mask element.
|
|
if (M < 0) {
|
|
for (int s = 0; s != Scale; ++s)
|
|
ScaledMask[(Scale * i) + s] = M;
|
|
continue;
|
|
}
|
|
|
|
// Scale mask element and increment across each mask element.
|
|
for (int s = 0; s != Scale; ++s)
|
|
ScaledMask[(Scale * i) + s] = (Scale * M) + s;
|
|
}
|
|
}
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
|