forked from OSchip/llvm-project
2470 lines
86 KiB
C++
2470 lines
86 KiB
C++
//===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the PowerPC-specific support for the FastISel class. Some
|
|
// of the target-specific code is generated by tablegen in the file
|
|
// PPCGenFastISel.inc, which is #included here.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "MCTargetDesc/PPCPredicates.h"
|
|
#include "PPC.h"
|
|
#include "PPCCCState.h"
|
|
#include "PPCCallingConv.h"
|
|
#include "PPCISelLowering.h"
|
|
#include "PPCMachineFunctionInfo.h"
|
|
#include "PPCSubtarget.h"
|
|
#include "PPCTargetMachine.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/CodeGen/CallingConvLower.h"
|
|
#include "llvm/CodeGen/FastISel.h"
|
|
#include "llvm/CodeGen/FunctionLoweringInfo.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/IR/GetElementPtrTypeIterator.h"
|
|
#include "llvm/IR/GlobalAlias.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// TBD:
|
|
// fastLowerArguments: Handle simple cases.
|
|
// PPCMaterializeGV: Handle TLS.
|
|
// SelectCall: Handle function pointers.
|
|
// SelectCall: Handle multi-register return values.
|
|
// SelectCall: Optimize away nops for local calls.
|
|
// processCallArgs: Handle bit-converted arguments.
|
|
// finishCall: Handle multi-register return values.
|
|
// PPCComputeAddress: Handle parameter references as FrameIndex's.
|
|
// PPCEmitCmp: Handle immediate as operand 1.
|
|
// SelectCall: Handle small byval arguments.
|
|
// SelectIntrinsicCall: Implement.
|
|
// SelectSelect: Implement.
|
|
// Consider factoring isTypeLegal into the base class.
|
|
// Implement switches and jump tables.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "ppcfastisel"
|
|
|
|
namespace {
|
|
|
|
typedef struct Address {
|
|
enum {
|
|
RegBase,
|
|
FrameIndexBase
|
|
} BaseType;
|
|
|
|
union {
|
|
unsigned Reg;
|
|
int FI;
|
|
} Base;
|
|
|
|
long Offset;
|
|
|
|
// Innocuous defaults for our address.
|
|
Address()
|
|
: BaseType(RegBase), Offset(0) {
|
|
Base.Reg = 0;
|
|
}
|
|
} Address;
|
|
|
|
class PPCFastISel final : public FastISel {
|
|
|
|
const TargetMachine &TM;
|
|
const PPCSubtarget *PPCSubTarget;
|
|
const PPCSubtarget *Subtarget;
|
|
PPCFunctionInfo *PPCFuncInfo;
|
|
const TargetInstrInfo &TII;
|
|
const TargetLowering &TLI;
|
|
LLVMContext *Context;
|
|
|
|
public:
|
|
explicit PPCFastISel(FunctionLoweringInfo &FuncInfo,
|
|
const TargetLibraryInfo *LibInfo)
|
|
: FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()),
|
|
PPCSubTarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()),
|
|
Subtarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()),
|
|
PPCFuncInfo(FuncInfo.MF->getInfo<PPCFunctionInfo>()),
|
|
TII(*Subtarget->getInstrInfo()), TLI(*Subtarget->getTargetLowering()),
|
|
Context(&FuncInfo.Fn->getContext()) {}
|
|
|
|
// Backend specific FastISel code.
|
|
private:
|
|
bool fastSelectInstruction(const Instruction *I) override;
|
|
unsigned fastMaterializeConstant(const Constant *C) override;
|
|
unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
|
|
bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
|
|
const LoadInst *LI) override;
|
|
bool fastLowerArguments() override;
|
|
unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override;
|
|
unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC,
|
|
unsigned Op0, bool Op0IsKill,
|
|
uint64_t Imm);
|
|
unsigned fastEmitInst_r(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC,
|
|
unsigned Op0, bool Op0IsKill);
|
|
unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC,
|
|
unsigned Op0, bool Op0IsKill,
|
|
unsigned Op1, bool Op1IsKill);
|
|
|
|
bool fastLowerCall(CallLoweringInfo &CLI) override;
|
|
|
|
// Instruction selection routines.
|
|
private:
|
|
bool SelectLoad(const Instruction *I);
|
|
bool SelectStore(const Instruction *I);
|
|
bool SelectBranch(const Instruction *I);
|
|
bool SelectIndirectBr(const Instruction *I);
|
|
bool SelectFPExt(const Instruction *I);
|
|
bool SelectFPTrunc(const Instruction *I);
|
|
bool SelectIToFP(const Instruction *I, bool IsSigned);
|
|
bool SelectFPToI(const Instruction *I, bool IsSigned);
|
|
bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
|
|
bool SelectRet(const Instruction *I);
|
|
bool SelectTrunc(const Instruction *I);
|
|
bool SelectIntExt(const Instruction *I);
|
|
|
|
// Utility routines.
|
|
private:
|
|
bool isTypeLegal(Type *Ty, MVT &VT);
|
|
bool isLoadTypeLegal(Type *Ty, MVT &VT);
|
|
bool isValueAvailable(const Value *V) const;
|
|
bool isVSFRCRegClass(const TargetRegisterClass *RC) const {
|
|
return RC->getID() == PPC::VSFRCRegClassID;
|
|
}
|
|
bool isVSSRCRegClass(const TargetRegisterClass *RC) const {
|
|
return RC->getID() == PPC::VSSRCRegClassID;
|
|
}
|
|
unsigned copyRegToRegClass(const TargetRegisterClass *ToRC,
|
|
unsigned SrcReg, unsigned Flag = 0,
|
|
unsigned SubReg = 0) {
|
|
unsigned TmpReg = createResultReg(ToRC);
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(TargetOpcode::COPY), TmpReg).addReg(SrcReg, Flag, SubReg);
|
|
return TmpReg;
|
|
}
|
|
bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value,
|
|
bool isZExt, unsigned DestReg,
|
|
const PPC::Predicate Pred);
|
|
bool PPCEmitLoad(MVT VT, Register &ResultReg, Address &Addr,
|
|
const TargetRegisterClass *RC, bool IsZExt = true,
|
|
unsigned FP64LoadOpc = PPC::LFD);
|
|
bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr);
|
|
bool PPCComputeAddress(const Value *Obj, Address &Addr);
|
|
void PPCSimplifyAddress(Address &Addr, bool &UseOffset,
|
|
unsigned &IndexReg);
|
|
bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
|
|
unsigned DestReg, bool IsZExt);
|
|
unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT);
|
|
unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT);
|
|
unsigned PPCMaterializeInt(const ConstantInt *CI, MVT VT,
|
|
bool UseSExt = true);
|
|
unsigned PPCMaterialize32BitInt(int64_t Imm,
|
|
const TargetRegisterClass *RC);
|
|
unsigned PPCMaterialize64BitInt(int64_t Imm,
|
|
const TargetRegisterClass *RC);
|
|
unsigned PPCMoveToIntReg(const Instruction *I, MVT VT,
|
|
unsigned SrcReg, bool IsSigned);
|
|
unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned);
|
|
|
|
// Call handling routines.
|
|
private:
|
|
bool processCallArgs(SmallVectorImpl<Value*> &Args,
|
|
SmallVectorImpl<unsigned> &ArgRegs,
|
|
SmallVectorImpl<MVT> &ArgVTs,
|
|
SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
|
|
SmallVectorImpl<unsigned> &RegArgs,
|
|
CallingConv::ID CC,
|
|
unsigned &NumBytes,
|
|
bool IsVarArg);
|
|
bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes);
|
|
|
|
private:
|
|
#include "PPCGenFastISel.inc"
|
|
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) {
|
|
switch (Pred) {
|
|
// These are not representable with any single compare.
|
|
case CmpInst::FCMP_FALSE:
|
|
case CmpInst::FCMP_TRUE:
|
|
// Major concern about the following 6 cases is NaN result. The comparison
|
|
// result consists of 4 bits, indicating lt, eq, gt and un (unordered),
|
|
// only one of which will be set. The result is generated by fcmpu
|
|
// instruction. However, bc instruction only inspects one of the first 3
|
|
// bits, so when un is set, bc instruction may jump to an undesired
|
|
// place.
|
|
//
|
|
// More specifically, if we expect an unordered comparison and un is set, we
|
|
// expect to always go to true branch; in such case UEQ, UGT and ULT still
|
|
// give false, which are undesired; but UNE, UGE, ULE happen to give true,
|
|
// since they are tested by inspecting !eq, !lt, !gt, respectively.
|
|
//
|
|
// Similarly, for ordered comparison, when un is set, we always expect the
|
|
// result to be false. In such case OGT, OLT and OEQ is good, since they are
|
|
// actually testing GT, LT, and EQ respectively, which are false. OGE, OLE
|
|
// and ONE are tested through !lt, !gt and !eq, and these are true.
|
|
case CmpInst::FCMP_UEQ:
|
|
case CmpInst::FCMP_UGT:
|
|
case CmpInst::FCMP_ULT:
|
|
case CmpInst::FCMP_OGE:
|
|
case CmpInst::FCMP_OLE:
|
|
case CmpInst::FCMP_ONE:
|
|
default:
|
|
return Optional<PPC::Predicate>();
|
|
|
|
case CmpInst::FCMP_OEQ:
|
|
case CmpInst::ICMP_EQ:
|
|
return PPC::PRED_EQ;
|
|
|
|
case CmpInst::FCMP_OGT:
|
|
case CmpInst::ICMP_UGT:
|
|
case CmpInst::ICMP_SGT:
|
|
return PPC::PRED_GT;
|
|
|
|
case CmpInst::FCMP_UGE:
|
|
case CmpInst::ICMP_UGE:
|
|
case CmpInst::ICMP_SGE:
|
|
return PPC::PRED_GE;
|
|
|
|
case CmpInst::FCMP_OLT:
|
|
case CmpInst::ICMP_ULT:
|
|
case CmpInst::ICMP_SLT:
|
|
return PPC::PRED_LT;
|
|
|
|
case CmpInst::FCMP_ULE:
|
|
case CmpInst::ICMP_ULE:
|
|
case CmpInst::ICMP_SLE:
|
|
return PPC::PRED_LE;
|
|
|
|
case CmpInst::FCMP_UNE:
|
|
case CmpInst::ICMP_NE:
|
|
return PPC::PRED_NE;
|
|
|
|
case CmpInst::FCMP_ORD:
|
|
return PPC::PRED_NU;
|
|
|
|
case CmpInst::FCMP_UNO:
|
|
return PPC::PRED_UN;
|
|
}
|
|
}
|
|
|
|
// Determine whether the type Ty is simple enough to be handled by
|
|
// fast-isel, and return its equivalent machine type in VT.
|
|
// FIXME: Copied directly from ARM -- factor into base class?
|
|
bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) {
|
|
EVT Evt = TLI.getValueType(DL, Ty, true);
|
|
|
|
// Only handle simple types.
|
|
if (Evt == MVT::Other || !Evt.isSimple()) return false;
|
|
VT = Evt.getSimpleVT();
|
|
|
|
// Handle all legal types, i.e. a register that will directly hold this
|
|
// value.
|
|
return TLI.isTypeLegal(VT);
|
|
}
|
|
|
|
// Determine whether the type Ty is simple enough to be handled by
|
|
// fast-isel as a load target, and return its equivalent machine type in VT.
|
|
bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
|
|
if (isTypeLegal(Ty, VT)) return true;
|
|
|
|
// If this is a type than can be sign or zero-extended to a basic operation
|
|
// go ahead and accept it now.
|
|
if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool PPCFastISel::isValueAvailable(const Value *V) const {
|
|
if (!isa<Instruction>(V))
|
|
return true;
|
|
|
|
const auto *I = cast<Instruction>(V);
|
|
return FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB;
|
|
}
|
|
|
|
// Given a value Obj, create an Address object Addr that represents its
|
|
// address. Return false if we can't handle it.
|
|
bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) {
|
|
const User *U = nullptr;
|
|
unsigned Opcode = Instruction::UserOp1;
|
|
if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
|
|
// Don't walk into other basic blocks unless the object is an alloca from
|
|
// another block, otherwise it may not have a virtual register assigned.
|
|
if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
|
|
FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
|
|
Opcode = I->getOpcode();
|
|
U = I;
|
|
}
|
|
} else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
|
|
Opcode = C->getOpcode();
|
|
U = C;
|
|
}
|
|
|
|
switch (Opcode) {
|
|
default:
|
|
break;
|
|
case Instruction::BitCast:
|
|
// Look through bitcasts.
|
|
return PPCComputeAddress(U->getOperand(0), Addr);
|
|
case Instruction::IntToPtr:
|
|
// Look past no-op inttoptrs.
|
|
if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
|
|
TLI.getPointerTy(DL))
|
|
return PPCComputeAddress(U->getOperand(0), Addr);
|
|
break;
|
|
case Instruction::PtrToInt:
|
|
// Look past no-op ptrtoints.
|
|
if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
|
|
return PPCComputeAddress(U->getOperand(0), Addr);
|
|
break;
|
|
case Instruction::GetElementPtr: {
|
|
Address SavedAddr = Addr;
|
|
long TmpOffset = Addr.Offset;
|
|
|
|
// Iterate through the GEP folding the constants into offsets where
|
|
// we can.
|
|
gep_type_iterator GTI = gep_type_begin(U);
|
|
for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end();
|
|
II != IE; ++II, ++GTI) {
|
|
const Value *Op = *II;
|
|
if (StructType *STy = GTI.getStructTypeOrNull()) {
|
|
const StructLayout *SL = DL.getStructLayout(STy);
|
|
unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
|
|
TmpOffset += SL->getElementOffset(Idx);
|
|
} else {
|
|
uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
|
|
for (;;) {
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
|
|
// Constant-offset addressing.
|
|
TmpOffset += CI->getSExtValue() * S;
|
|
break;
|
|
}
|
|
if (canFoldAddIntoGEP(U, Op)) {
|
|
// A compatible add with a constant operand. Fold the constant.
|
|
ConstantInt *CI =
|
|
cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
|
|
TmpOffset += CI->getSExtValue() * S;
|
|
// Iterate on the other operand.
|
|
Op = cast<AddOperator>(Op)->getOperand(0);
|
|
continue;
|
|
}
|
|
// Unsupported
|
|
goto unsupported_gep;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Try to grab the base operand now.
|
|
Addr.Offset = TmpOffset;
|
|
if (PPCComputeAddress(U->getOperand(0), Addr)) return true;
|
|
|
|
// We failed, restore everything and try the other options.
|
|
Addr = SavedAddr;
|
|
|
|
unsupported_gep:
|
|
break;
|
|
}
|
|
case Instruction::Alloca: {
|
|
const AllocaInst *AI = cast<AllocaInst>(Obj);
|
|
DenseMap<const AllocaInst*, int>::iterator SI =
|
|
FuncInfo.StaticAllocaMap.find(AI);
|
|
if (SI != FuncInfo.StaticAllocaMap.end()) {
|
|
Addr.BaseType = Address::FrameIndexBase;
|
|
Addr.Base.FI = SI->second;
|
|
return true;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// FIXME: References to parameters fall through to the behavior
|
|
// below. They should be able to reference a frame index since
|
|
// they are stored to the stack, so we can get "ld rx, offset(r1)"
|
|
// instead of "addi ry, r1, offset / ld rx, 0(ry)". Obj will
|
|
// just contain the parameter. Try to handle this with a FI.
|
|
|
|
// Try to get this in a register if nothing else has worked.
|
|
if (Addr.Base.Reg == 0)
|
|
Addr.Base.Reg = getRegForValue(Obj);
|
|
|
|
// Prevent assignment of base register to X0, which is inappropriate
|
|
// for loads and stores alike.
|
|
if (Addr.Base.Reg != 0)
|
|
MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass);
|
|
|
|
return Addr.Base.Reg != 0;
|
|
}
|
|
|
|
// Fix up some addresses that can't be used directly. For example, if
|
|
// an offset won't fit in an instruction field, we may need to move it
|
|
// into an index register.
|
|
void PPCFastISel::PPCSimplifyAddress(Address &Addr, bool &UseOffset,
|
|
unsigned &IndexReg) {
|
|
|
|
// Check whether the offset fits in the instruction field.
|
|
if (!isInt<16>(Addr.Offset))
|
|
UseOffset = false;
|
|
|
|
// If this is a stack pointer and the offset needs to be simplified then
|
|
// put the alloca address into a register, set the base type back to
|
|
// register and continue. This should almost never happen.
|
|
if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) {
|
|
unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
|
|
ResultReg).addFrameIndex(Addr.Base.FI).addImm(0);
|
|
Addr.Base.Reg = ResultReg;
|
|
Addr.BaseType = Address::RegBase;
|
|
}
|
|
|
|
if (!UseOffset) {
|
|
IntegerType *OffsetTy = Type::getInt64Ty(*Context);
|
|
const ConstantInt *Offset =
|
|
ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset));
|
|
IndexReg = PPCMaterializeInt(Offset, MVT::i64);
|
|
assert(IndexReg && "Unexpected error in PPCMaterializeInt!");
|
|
}
|
|
}
|
|
|
|
// Emit a load instruction if possible, returning true if we succeeded,
|
|
// otherwise false. See commentary below for how the register class of
|
|
// the load is determined.
|
|
bool PPCFastISel::PPCEmitLoad(MVT VT, Register &ResultReg, Address &Addr,
|
|
const TargetRegisterClass *RC,
|
|
bool IsZExt, unsigned FP64LoadOpc) {
|
|
unsigned Opc;
|
|
bool UseOffset = true;
|
|
bool HasSPE = Subtarget->hasSPE();
|
|
|
|
// If ResultReg is given, it determines the register class of the load.
|
|
// Otherwise, RC is the register class to use. If the result of the
|
|
// load isn't anticipated in this block, both may be zero, in which
|
|
// case we must make a conservative guess. In particular, don't assign
|
|
// R0 or X0 to the result register, as the result may be used in a load,
|
|
// store, add-immediate, or isel that won't permit this. (Though
|
|
// perhaps the spill and reload of live-exit values would handle this?)
|
|
const TargetRegisterClass *UseRC =
|
|
(ResultReg ? MRI.getRegClass(ResultReg) :
|
|
(RC ? RC :
|
|
(VT == MVT::f64 ? (HasSPE ? &PPC::SPERCRegClass : &PPC::F8RCRegClass) :
|
|
(VT == MVT::f32 ? (HasSPE ? &PPC::GPRCRegClass : &PPC::F4RCRegClass) :
|
|
(VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
|
|
&PPC::GPRC_and_GPRC_NOR0RegClass)))));
|
|
|
|
bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass);
|
|
|
|
switch (VT.SimpleTy) {
|
|
default: // e.g., vector types not handled
|
|
return false;
|
|
case MVT::i8:
|
|
Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8;
|
|
break;
|
|
case MVT::i16:
|
|
Opc = (IsZExt ? (Is32BitInt ? PPC::LHZ : PPC::LHZ8)
|
|
: (Is32BitInt ? PPC::LHA : PPC::LHA8));
|
|
break;
|
|
case MVT::i32:
|
|
Opc = (IsZExt ? (Is32BitInt ? PPC::LWZ : PPC::LWZ8)
|
|
: (Is32BitInt ? PPC::LWA_32 : PPC::LWA));
|
|
if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0))
|
|
UseOffset = false;
|
|
break;
|
|
case MVT::i64:
|
|
Opc = PPC::LD;
|
|
assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) &&
|
|
"64-bit load with 32-bit target??");
|
|
UseOffset = ((Addr.Offset & 3) == 0);
|
|
break;
|
|
case MVT::f32:
|
|
Opc = Subtarget->hasSPE() ? PPC::SPELWZ : PPC::LFS;
|
|
break;
|
|
case MVT::f64:
|
|
Opc = FP64LoadOpc;
|
|
break;
|
|
}
|
|
|
|
// If necessary, materialize the offset into a register and use
|
|
// the indexed form. Also handle stack pointers with special needs.
|
|
unsigned IndexReg = 0;
|
|
PPCSimplifyAddress(Addr, UseOffset, IndexReg);
|
|
|
|
// If this is a potential VSX load with an offset of 0, a VSX indexed load can
|
|
// be used.
|
|
bool IsVSSRC = isVSSRCRegClass(UseRC);
|
|
bool IsVSFRC = isVSFRCRegClass(UseRC);
|
|
bool Is32VSXLoad = IsVSSRC && Opc == PPC::LFS;
|
|
bool Is64VSXLoad = IsVSFRC && Opc == PPC::LFD;
|
|
if ((Is32VSXLoad || Is64VSXLoad) &&
|
|
(Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
|
|
(Addr.Offset == 0)) {
|
|
UseOffset = false;
|
|
}
|
|
|
|
if (ResultReg == 0)
|
|
ResultReg = createResultReg(UseRC);
|
|
|
|
// Note: If we still have a frame index here, we know the offset is
|
|
// in range, as otherwise PPCSimplifyAddress would have converted it
|
|
// into a RegBase.
|
|
if (Addr.BaseType == Address::FrameIndexBase) {
|
|
// VSX only provides an indexed load.
|
|
if (Is32VSXLoad || Is64VSXLoad) return false;
|
|
|
|
MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
|
|
MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI,
|
|
Addr.Offset),
|
|
MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI),
|
|
MFI.getObjectAlign(Addr.Base.FI));
|
|
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
|
|
.addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO);
|
|
|
|
// Base reg with offset in range.
|
|
} else if (UseOffset) {
|
|
// VSX only provides an indexed load.
|
|
if (Is32VSXLoad || Is64VSXLoad) return false;
|
|
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
|
|
.addImm(Addr.Offset).addReg(Addr.Base.Reg);
|
|
|
|
// Indexed form.
|
|
} else {
|
|
// Get the RR opcode corresponding to the RI one. FIXME: It would be
|
|
// preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
|
|
// is hard to get at.
|
|
switch (Opc) {
|
|
default: llvm_unreachable("Unexpected opcode!");
|
|
case PPC::LBZ: Opc = PPC::LBZX; break;
|
|
case PPC::LBZ8: Opc = PPC::LBZX8; break;
|
|
case PPC::LHZ: Opc = PPC::LHZX; break;
|
|
case PPC::LHZ8: Opc = PPC::LHZX8; break;
|
|
case PPC::LHA: Opc = PPC::LHAX; break;
|
|
case PPC::LHA8: Opc = PPC::LHAX8; break;
|
|
case PPC::LWZ: Opc = PPC::LWZX; break;
|
|
case PPC::LWZ8: Opc = PPC::LWZX8; break;
|
|
case PPC::LWA: Opc = PPC::LWAX; break;
|
|
case PPC::LWA_32: Opc = PPC::LWAX_32; break;
|
|
case PPC::LD: Opc = PPC::LDX; break;
|
|
case PPC::LFS: Opc = IsVSSRC ? PPC::LXSSPX : PPC::LFSX; break;
|
|
case PPC::LFD: Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break;
|
|
case PPC::EVLDD: Opc = PPC::EVLDDX; break;
|
|
case PPC::SPELWZ: Opc = PPC::SPELWZX; break;
|
|
}
|
|
|
|
auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
|
|
ResultReg);
|
|
|
|
// If we have an index register defined we use it in the store inst,
|
|
// otherwise we use X0 as base as it makes the vector instructions to
|
|
// use zero in the computation of the effective address regardless the
|
|
// content of the register.
|
|
if (IndexReg)
|
|
MIB.addReg(Addr.Base.Reg).addReg(IndexReg);
|
|
else
|
|
MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Attempt to fast-select a load instruction.
|
|
bool PPCFastISel::SelectLoad(const Instruction *I) {
|
|
// FIXME: No atomic loads are supported.
|
|
if (cast<LoadInst>(I)->isAtomic())
|
|
return false;
|
|
|
|
// Verify we have a legal type before going any further.
|
|
MVT VT;
|
|
if (!isLoadTypeLegal(I->getType(), VT))
|
|
return false;
|
|
|
|
// See if we can handle this address.
|
|
Address Addr;
|
|
if (!PPCComputeAddress(I->getOperand(0), Addr))
|
|
return false;
|
|
|
|
// Look at the currently assigned register for this instruction
|
|
// to determine the required register class. This is necessary
|
|
// to constrain RA from using R0/X0 when this is not legal.
|
|
unsigned AssignedReg = FuncInfo.ValueMap[I];
|
|
const TargetRegisterClass *RC =
|
|
AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
|
|
|
|
Register ResultReg = 0;
|
|
if (!PPCEmitLoad(VT, ResultReg, Addr, RC, true,
|
|
Subtarget->hasSPE() ? PPC::EVLDD : PPC::LFD))
|
|
return false;
|
|
updateValueMap(I, ResultReg);
|
|
return true;
|
|
}
|
|
|
|
// Emit a store instruction to store SrcReg at Addr.
|
|
bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) {
|
|
assert(SrcReg && "Nothing to store!");
|
|
unsigned Opc;
|
|
bool UseOffset = true;
|
|
|
|
const TargetRegisterClass *RC = MRI.getRegClass(SrcReg);
|
|
bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass);
|
|
|
|
switch (VT.SimpleTy) {
|
|
default: // e.g., vector types not handled
|
|
return false;
|
|
case MVT::i8:
|
|
Opc = Is32BitInt ? PPC::STB : PPC::STB8;
|
|
break;
|
|
case MVT::i16:
|
|
Opc = Is32BitInt ? PPC::STH : PPC::STH8;
|
|
break;
|
|
case MVT::i32:
|
|
assert(Is32BitInt && "Not GPRC for i32??");
|
|
Opc = PPC::STW;
|
|
break;
|
|
case MVT::i64:
|
|
Opc = PPC::STD;
|
|
UseOffset = ((Addr.Offset & 3) == 0);
|
|
break;
|
|
case MVT::f32:
|
|
Opc = Subtarget->hasSPE() ? PPC::SPESTW : PPC::STFS;
|
|
break;
|
|
case MVT::f64:
|
|
Opc = Subtarget->hasSPE() ? PPC::EVSTDD : PPC::STFD;
|
|
break;
|
|
}
|
|
|
|
// If necessary, materialize the offset into a register and use
|
|
// the indexed form. Also handle stack pointers with special needs.
|
|
unsigned IndexReg = 0;
|
|
PPCSimplifyAddress(Addr, UseOffset, IndexReg);
|
|
|
|
// If this is a potential VSX store with an offset of 0, a VSX indexed store
|
|
// can be used.
|
|
bool IsVSSRC = isVSSRCRegClass(RC);
|
|
bool IsVSFRC = isVSFRCRegClass(RC);
|
|
bool Is32VSXStore = IsVSSRC && Opc == PPC::STFS;
|
|
bool Is64VSXStore = IsVSFRC && Opc == PPC::STFD;
|
|
if ((Is32VSXStore || Is64VSXStore) &&
|
|
(Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
|
|
(Addr.Offset == 0)) {
|
|
UseOffset = false;
|
|
}
|
|
|
|
// Note: If we still have a frame index here, we know the offset is
|
|
// in range, as otherwise PPCSimplifyAddress would have converted it
|
|
// into a RegBase.
|
|
if (Addr.BaseType == Address::FrameIndexBase) {
|
|
// VSX only provides an indexed store.
|
|
if (Is32VSXStore || Is64VSXStore) return false;
|
|
|
|
MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
|
|
MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI,
|
|
Addr.Offset),
|
|
MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI),
|
|
MFI.getObjectAlign(Addr.Base.FI));
|
|
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
|
|
.addReg(SrcReg)
|
|
.addImm(Addr.Offset)
|
|
.addFrameIndex(Addr.Base.FI)
|
|
.addMemOperand(MMO);
|
|
|
|
// Base reg with offset in range.
|
|
} else if (UseOffset) {
|
|
// VSX only provides an indexed store.
|
|
if (Is32VSXStore || Is64VSXStore)
|
|
return false;
|
|
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
|
|
.addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg);
|
|
|
|
// Indexed form.
|
|
} else {
|
|
// Get the RR opcode corresponding to the RI one. FIXME: It would be
|
|
// preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
|
|
// is hard to get at.
|
|
switch (Opc) {
|
|
default: llvm_unreachable("Unexpected opcode!");
|
|
case PPC::STB: Opc = PPC::STBX; break;
|
|
case PPC::STH : Opc = PPC::STHX; break;
|
|
case PPC::STW : Opc = PPC::STWX; break;
|
|
case PPC::STB8: Opc = PPC::STBX8; break;
|
|
case PPC::STH8: Opc = PPC::STHX8; break;
|
|
case PPC::STW8: Opc = PPC::STWX8; break;
|
|
case PPC::STD: Opc = PPC::STDX; break;
|
|
case PPC::STFS: Opc = IsVSSRC ? PPC::STXSSPX : PPC::STFSX; break;
|
|
case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break;
|
|
case PPC::EVSTDD: Opc = PPC::EVSTDDX; break;
|
|
case PPC::SPESTW: Opc = PPC::SPESTWX; break;
|
|
}
|
|
|
|
auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
|
|
.addReg(SrcReg);
|
|
|
|
// If we have an index register defined we use it in the store inst,
|
|
// otherwise we use X0 as base as it makes the vector instructions to
|
|
// use zero in the computation of the effective address regardless the
|
|
// content of the register.
|
|
if (IndexReg)
|
|
MIB.addReg(Addr.Base.Reg).addReg(IndexReg);
|
|
else
|
|
MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Attempt to fast-select a store instruction.
|
|
bool PPCFastISel::SelectStore(const Instruction *I) {
|
|
Value *Op0 = I->getOperand(0);
|
|
unsigned SrcReg = 0;
|
|
|
|
// FIXME: No atomics loads are supported.
|
|
if (cast<StoreInst>(I)->isAtomic())
|
|
return false;
|
|
|
|
// Verify we have a legal type before going any further.
|
|
MVT VT;
|
|
if (!isLoadTypeLegal(Op0->getType(), VT))
|
|
return false;
|
|
|
|
// Get the value to be stored into a register.
|
|
SrcReg = getRegForValue(Op0);
|
|
if (SrcReg == 0)
|
|
return false;
|
|
|
|
// See if we can handle this address.
|
|
Address Addr;
|
|
if (!PPCComputeAddress(I->getOperand(1), Addr))
|
|
return false;
|
|
|
|
if (!PPCEmitStore(VT, SrcReg, Addr))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Attempt to fast-select a branch instruction.
|
|
bool PPCFastISel::SelectBranch(const Instruction *I) {
|
|
const BranchInst *BI = cast<BranchInst>(I);
|
|
MachineBasicBlock *BrBB = FuncInfo.MBB;
|
|
MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
|
|
MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
|
|
|
|
// For now, just try the simplest case where it's fed by a compare.
|
|
if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
|
|
if (isValueAvailable(CI)) {
|
|
Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate());
|
|
if (!OptPPCPred)
|
|
return false;
|
|
|
|
PPC::Predicate PPCPred = OptPPCPred.getValue();
|
|
|
|
// Take advantage of fall-through opportunities.
|
|
if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
|
|
std::swap(TBB, FBB);
|
|
PPCPred = PPC::InvertPredicate(PPCPred);
|
|
}
|
|
|
|
unsigned CondReg = createResultReg(&PPC::CRRCRegClass);
|
|
|
|
if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(),
|
|
CondReg, PPCPred))
|
|
return false;
|
|
|
|
BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC))
|
|
.addImm(Subtarget->hasSPE() ? PPC::PRED_SPE : PPCPred)
|
|
.addReg(CondReg)
|
|
.addMBB(TBB);
|
|
finishCondBranch(BI->getParent(), TBB, FBB);
|
|
return true;
|
|
}
|
|
} else if (const ConstantInt *CI =
|
|
dyn_cast<ConstantInt>(BI->getCondition())) {
|
|
uint64_t Imm = CI->getZExtValue();
|
|
MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
|
|
fastEmitBranch(Target, DbgLoc);
|
|
return true;
|
|
}
|
|
|
|
// FIXME: ARM looks for a case where the block containing the compare
|
|
// has been split from the block containing the branch. If this happens,
|
|
// there is a vreg available containing the result of the compare. I'm
|
|
// not sure we can do much, as we've lost the predicate information with
|
|
// the compare instruction -- we have a 4-bit CR but don't know which bit
|
|
// to test here.
|
|
return false;
|
|
}
|
|
|
|
// Attempt to emit a compare of the two source values. Signed and unsigned
|
|
// comparisons are supported. Return false if we can't handle it.
|
|
bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2,
|
|
bool IsZExt, unsigned DestReg,
|
|
const PPC::Predicate Pred) {
|
|
Type *Ty = SrcValue1->getType();
|
|
EVT SrcEVT = TLI.getValueType(DL, Ty, true);
|
|
if (!SrcEVT.isSimple())
|
|
return false;
|
|
MVT SrcVT = SrcEVT.getSimpleVT();
|
|
|
|
if (SrcVT == MVT::i1 && Subtarget->useCRBits())
|
|
return false;
|
|
|
|
// See if operand 2 is an immediate encodeable in the compare.
|
|
// FIXME: Operands are not in canonical order at -O0, so an immediate
|
|
// operand in position 1 is a lost opportunity for now. We are
|
|
// similar to ARM in this regard.
|
|
long Imm = 0;
|
|
bool UseImm = false;
|
|
const bool HasSPE = Subtarget->hasSPE();
|
|
|
|
// Only 16-bit integer constants can be represented in compares for
|
|
// PowerPC. Others will be materialized into a register.
|
|
if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) {
|
|
if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 ||
|
|
SrcVT == MVT::i8 || SrcVT == MVT::i1) {
|
|
const APInt &CIVal = ConstInt->getValue();
|
|
Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue();
|
|
if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm)))
|
|
UseImm = true;
|
|
}
|
|
}
|
|
|
|
unsigned SrcReg1 = getRegForValue(SrcValue1);
|
|
if (SrcReg1 == 0)
|
|
return false;
|
|
|
|
unsigned SrcReg2 = 0;
|
|
if (!UseImm) {
|
|
SrcReg2 = getRegForValue(SrcValue2);
|
|
if (SrcReg2 == 0)
|
|
return false;
|
|
}
|
|
|
|
unsigned CmpOpc;
|
|
bool NeedsExt = false;
|
|
|
|
auto RC1 = MRI.getRegClass(SrcReg1);
|
|
auto RC2 = SrcReg2 != 0 ? MRI.getRegClass(SrcReg2) : nullptr;
|
|
|
|
switch (SrcVT.SimpleTy) {
|
|
default: return false;
|
|
case MVT::f32:
|
|
if (HasSPE) {
|
|
switch (Pred) {
|
|
default: return false;
|
|
case PPC::PRED_EQ:
|
|
CmpOpc = PPC::EFSCMPEQ;
|
|
break;
|
|
case PPC::PRED_LT:
|
|
CmpOpc = PPC::EFSCMPLT;
|
|
break;
|
|
case PPC::PRED_GT:
|
|
CmpOpc = PPC::EFSCMPGT;
|
|
break;
|
|
}
|
|
} else {
|
|
CmpOpc = PPC::FCMPUS;
|
|
if (isVSSRCRegClass(RC1))
|
|
SrcReg1 = copyRegToRegClass(&PPC::F4RCRegClass, SrcReg1);
|
|
if (RC2 && isVSSRCRegClass(RC2))
|
|
SrcReg2 = copyRegToRegClass(&PPC::F4RCRegClass, SrcReg2);
|
|
}
|
|
break;
|
|
case MVT::f64:
|
|
if (HasSPE) {
|
|
switch (Pred) {
|
|
default: return false;
|
|
case PPC::PRED_EQ:
|
|
CmpOpc = PPC::EFDCMPEQ;
|
|
break;
|
|
case PPC::PRED_LT:
|
|
CmpOpc = PPC::EFDCMPLT;
|
|
break;
|
|
case PPC::PRED_GT:
|
|
CmpOpc = PPC::EFDCMPGT;
|
|
break;
|
|
}
|
|
} else if (isVSFRCRegClass(RC1) || (RC2 && isVSFRCRegClass(RC2))) {
|
|
CmpOpc = PPC::XSCMPUDP;
|
|
} else {
|
|
CmpOpc = PPC::FCMPUD;
|
|
}
|
|
break;
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
NeedsExt = true;
|
|
LLVM_FALLTHROUGH;
|
|
case MVT::i32:
|
|
if (!UseImm)
|
|
CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW;
|
|
else
|
|
CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI;
|
|
break;
|
|
case MVT::i64:
|
|
if (!UseImm)
|
|
CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD;
|
|
else
|
|
CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI;
|
|
break;
|
|
}
|
|
|
|
if (NeedsExt) {
|
|
unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
|
|
if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt))
|
|
return false;
|
|
SrcReg1 = ExtReg;
|
|
|
|
if (!UseImm) {
|
|
unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
|
|
if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt))
|
|
return false;
|
|
SrcReg2 = ExtReg;
|
|
}
|
|
}
|
|
|
|
if (!UseImm)
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
|
|
.addReg(SrcReg1).addReg(SrcReg2);
|
|
else
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
|
|
.addReg(SrcReg1).addImm(Imm);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Attempt to fast-select a floating-point extend instruction.
|
|
bool PPCFastISel::SelectFPExt(const Instruction *I) {
|
|
Value *Src = I->getOperand(0);
|
|
EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
|
|
EVT DestVT = TLI.getValueType(DL, I->getType(), true);
|
|
|
|
if (SrcVT != MVT::f32 || DestVT != MVT::f64)
|
|
return false;
|
|
|
|
unsigned SrcReg = getRegForValue(Src);
|
|
if (!SrcReg)
|
|
return false;
|
|
|
|
// No code is generated for a FP extend.
|
|
updateValueMap(I, SrcReg);
|
|
return true;
|
|
}
|
|
|
|
// Attempt to fast-select a floating-point truncate instruction.
|
|
bool PPCFastISel::SelectFPTrunc(const Instruction *I) {
|
|
Value *Src = I->getOperand(0);
|
|
EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
|
|
EVT DestVT = TLI.getValueType(DL, I->getType(), true);
|
|
|
|
if (SrcVT != MVT::f64 || DestVT != MVT::f32)
|
|
return false;
|
|
|
|
unsigned SrcReg = getRegForValue(Src);
|
|
if (!SrcReg)
|
|
return false;
|
|
|
|
// Round the result to single precision.
|
|
unsigned DestReg;
|
|
auto RC = MRI.getRegClass(SrcReg);
|
|
if (Subtarget->hasSPE()) {
|
|
DestReg = createResultReg(&PPC::GPRCRegClass);
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(PPC::EFSCFD), DestReg)
|
|
.addReg(SrcReg);
|
|
} else if (isVSFRCRegClass(RC)) {
|
|
DestReg = createResultReg(&PPC::VSSRCRegClass);
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(PPC::XSRSP), DestReg)
|
|
.addReg(SrcReg);
|
|
} else {
|
|
DestReg = createResultReg(&PPC::F4RCRegClass);
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(PPC::FRSP), DestReg)
|
|
.addReg(SrcReg);
|
|
}
|
|
|
|
updateValueMap(I, DestReg);
|
|
return true;
|
|
}
|
|
|
|
// Move an i32 or i64 value in a GPR to an f64 value in an FPR.
|
|
// FIXME: When direct register moves are implemented (see PowerISA 2.07),
|
|
// those should be used instead of moving via a stack slot when the
|
|
// subtarget permits.
|
|
// FIXME: The code here is sloppy for the 4-byte case. Can use a 4-byte
|
|
// stack slot and 4-byte store/load sequence. Or just sext the 4-byte
|
|
// case to 8 bytes which produces tighter code but wastes stack space.
|
|
unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg,
|
|
bool IsSigned) {
|
|
|
|
// If necessary, extend 32-bit int to 64-bit.
|
|
if (SrcVT == MVT::i32) {
|
|
unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
|
|
if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned))
|
|
return 0;
|
|
SrcReg = TmpReg;
|
|
}
|
|
|
|
// Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
|
|
Address Addr;
|
|
Addr.BaseType = Address::FrameIndexBase;
|
|
Addr.Base.FI = MFI.CreateStackObject(8, Align(8), false);
|
|
|
|
// Store the value from the GPR.
|
|
if (!PPCEmitStore(MVT::i64, SrcReg, Addr))
|
|
return 0;
|
|
|
|
// Load the integer value into an FPR. The kind of load used depends
|
|
// on a number of conditions.
|
|
unsigned LoadOpc = PPC::LFD;
|
|
|
|
if (SrcVT == MVT::i32) {
|
|
if (!IsSigned) {
|
|
LoadOpc = PPC::LFIWZX;
|
|
Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4;
|
|
} else if (Subtarget->hasLFIWAX()) {
|
|
LoadOpc = PPC::LFIWAX;
|
|
Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4;
|
|
}
|
|
}
|
|
|
|
const TargetRegisterClass *RC = &PPC::F8RCRegClass;
|
|
Register ResultReg = 0;
|
|
if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc))
|
|
return 0;
|
|
|
|
return ResultReg;
|
|
}
|
|
|
|
// Attempt to fast-select an integer-to-floating-point conversion.
|
|
// FIXME: Once fast-isel has better support for VSX, conversions using
|
|
// direct moves should be implemented.
|
|
bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) {
|
|
MVT DstVT;
|
|
Type *DstTy = I->getType();
|
|
if (!isTypeLegal(DstTy, DstVT))
|
|
return false;
|
|
|
|
if (DstVT != MVT::f32 && DstVT != MVT::f64)
|
|
return false;
|
|
|
|
Value *Src = I->getOperand(0);
|
|
EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true);
|
|
if (!SrcEVT.isSimple())
|
|
return false;
|
|
|
|
MVT SrcVT = SrcEVT.getSimpleVT();
|
|
|
|
if (SrcVT != MVT::i8 && SrcVT != MVT::i16 &&
|
|
SrcVT != MVT::i32 && SrcVT != MVT::i64)
|
|
return false;
|
|
|
|
unsigned SrcReg = getRegForValue(Src);
|
|
if (SrcReg == 0)
|
|
return false;
|
|
|
|
// Shortcut for SPE. Doesn't need to store/load, since it's all in the GPRs
|
|
if (Subtarget->hasSPE()) {
|
|
unsigned Opc;
|
|
if (DstVT == MVT::f32)
|
|
Opc = IsSigned ? PPC::EFSCFSI : PPC::EFSCFUI;
|
|
else
|
|
Opc = IsSigned ? PPC::EFDCFSI : PPC::EFDCFUI;
|
|
|
|
unsigned DestReg = createResultReg(&PPC::SPERCRegClass);
|
|
// Generate the convert.
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
|
|
.addReg(SrcReg);
|
|
updateValueMap(I, DestReg);
|
|
return true;
|
|
}
|
|
|
|
// We can only lower an unsigned convert if we have the newer
|
|
// floating-point conversion operations.
|
|
if (!IsSigned && !Subtarget->hasFPCVT())
|
|
return false;
|
|
|
|
// FIXME: For now we require the newer floating-point conversion operations
|
|
// (which are present only on P7 and A2 server models) when converting
|
|
// to single-precision float. Otherwise we have to generate a lot of
|
|
// fiddly code to avoid double rounding. If necessary, the fiddly code
|
|
// can be found in PPCTargetLowering::LowerINT_TO_FP().
|
|
if (DstVT == MVT::f32 && !Subtarget->hasFPCVT())
|
|
return false;
|
|
|
|
// Extend the input if necessary.
|
|
if (SrcVT == MVT::i8 || SrcVT == MVT::i16) {
|
|
unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
|
|
if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned))
|
|
return false;
|
|
SrcVT = MVT::i64;
|
|
SrcReg = TmpReg;
|
|
}
|
|
|
|
// Move the integer value to an FPR.
|
|
unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned);
|
|
if (FPReg == 0)
|
|
return false;
|
|
|
|
// Determine the opcode for the conversion.
|
|
const TargetRegisterClass *RC = &PPC::F8RCRegClass;
|
|
unsigned DestReg = createResultReg(RC);
|
|
unsigned Opc;
|
|
|
|
if (DstVT == MVT::f32)
|
|
Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS;
|
|
else
|
|
Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU;
|
|
|
|
// Generate the convert.
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
|
|
.addReg(FPReg);
|
|
|
|
updateValueMap(I, DestReg);
|
|
return true;
|
|
}
|
|
|
|
// Move the floating-point value in SrcReg into an integer destination
|
|
// register, and return the register (or zero if we can't handle it).
|
|
// FIXME: When direct register moves are implemented (see PowerISA 2.07),
|
|
// those should be used instead of moving via a stack slot when the
|
|
// subtarget permits.
|
|
unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT,
|
|
unsigned SrcReg, bool IsSigned) {
|
|
// Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
|
|
// Note that if have STFIWX available, we could use a 4-byte stack
|
|
// slot for i32, but this being fast-isel we'll just go with the
|
|
// easiest code gen possible.
|
|
Address Addr;
|
|
Addr.BaseType = Address::FrameIndexBase;
|
|
Addr.Base.FI = MFI.CreateStackObject(8, Align(8), false);
|
|
|
|
// Store the value from the FPR.
|
|
if (!PPCEmitStore(MVT::f64, SrcReg, Addr))
|
|
return 0;
|
|
|
|
// Reload it into a GPR. If we want an i32 on big endian, modify the
|
|
// address to have a 4-byte offset so we load from the right place.
|
|
if (VT == MVT::i32)
|
|
Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4;
|
|
|
|
// Look at the currently assigned register for this instruction
|
|
// to determine the required register class.
|
|
unsigned AssignedReg = FuncInfo.ValueMap[I];
|
|
const TargetRegisterClass *RC =
|
|
AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
|
|
|
|
Register ResultReg = 0;
|
|
if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned))
|
|
return 0;
|
|
|
|
return ResultReg;
|
|
}
|
|
|
|
// Attempt to fast-select a floating-point-to-integer conversion.
|
|
// FIXME: Once fast-isel has better support for VSX, conversions using
|
|
// direct moves should be implemented.
|
|
bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) {
|
|
MVT DstVT, SrcVT;
|
|
Type *DstTy = I->getType();
|
|
if (!isTypeLegal(DstTy, DstVT))
|
|
return false;
|
|
|
|
if (DstVT != MVT::i32 && DstVT != MVT::i64)
|
|
return false;
|
|
|
|
// If we don't have FCTIDUZ, or SPE, and we need it, punt to SelectionDAG.
|
|
if (DstVT == MVT::i64 && !IsSigned && !Subtarget->hasFPCVT() &&
|
|
!Subtarget->hasSPE())
|
|
return false;
|
|
|
|
Value *Src = I->getOperand(0);
|
|
Type *SrcTy = Src->getType();
|
|
if (!isTypeLegal(SrcTy, SrcVT))
|
|
return false;
|
|
|
|
if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
|
|
return false;
|
|
|
|
unsigned SrcReg = getRegForValue(Src);
|
|
if (SrcReg == 0)
|
|
return false;
|
|
|
|
// Convert f32 to f64 or convert VSSRC to VSFRC if necessary. This is just a
|
|
// meaningless copy to get the register class right.
|
|
const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg);
|
|
if (InRC == &PPC::F4RCRegClass)
|
|
SrcReg = copyRegToRegClass(&PPC::F8RCRegClass, SrcReg);
|
|
else if (InRC == &PPC::VSSRCRegClass)
|
|
SrcReg = copyRegToRegClass(&PPC::VSFRCRegClass, SrcReg);
|
|
|
|
// Determine the opcode for the conversion, which takes place
|
|
// entirely within FPRs or VSRs.
|
|
unsigned DestReg;
|
|
unsigned Opc;
|
|
auto RC = MRI.getRegClass(SrcReg);
|
|
|
|
if (Subtarget->hasSPE()) {
|
|
DestReg = createResultReg(&PPC::GPRCRegClass);
|
|
if (IsSigned)
|
|
Opc = InRC == &PPC::GPRCRegClass ? PPC::EFSCTSIZ : PPC::EFDCTSIZ;
|
|
else
|
|
Opc = InRC == &PPC::GPRCRegClass ? PPC::EFSCTUIZ : PPC::EFDCTUIZ;
|
|
} else if (isVSFRCRegClass(RC)) {
|
|
DestReg = createResultReg(&PPC::VSFRCRegClass);
|
|
if (DstVT == MVT::i32)
|
|
Opc = IsSigned ? PPC::XSCVDPSXWS : PPC::XSCVDPUXWS;
|
|
else
|
|
Opc = IsSigned ? PPC::XSCVDPSXDS : PPC::XSCVDPUXDS;
|
|
} else {
|
|
DestReg = createResultReg(&PPC::F8RCRegClass);
|
|
if (DstVT == MVT::i32)
|
|
if (IsSigned)
|
|
Opc = PPC::FCTIWZ;
|
|
else
|
|
Opc = Subtarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ;
|
|
else
|
|
Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ;
|
|
}
|
|
|
|
// Generate the convert.
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
|
|
.addReg(SrcReg);
|
|
|
|
// Now move the integer value from a float register to an integer register.
|
|
unsigned IntReg = Subtarget->hasSPE()
|
|
? DestReg
|
|
: PPCMoveToIntReg(I, DstVT, DestReg, IsSigned);
|
|
|
|
if (IntReg == 0)
|
|
return false;
|
|
|
|
updateValueMap(I, IntReg);
|
|
return true;
|
|
}
|
|
|
|
// Attempt to fast-select a binary integer operation that isn't already
|
|
// handled automatically.
|
|
bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
|
|
EVT DestVT = TLI.getValueType(DL, I->getType(), true);
|
|
|
|
// We can get here in the case when we have a binary operation on a non-legal
|
|
// type and the target independent selector doesn't know how to handle it.
|
|
if (DestVT != MVT::i16 && DestVT != MVT::i8)
|
|
return false;
|
|
|
|
// Look at the currently assigned register for this instruction
|
|
// to determine the required register class. If there is no register,
|
|
// make a conservative choice (don't assign R0).
|
|
unsigned AssignedReg = FuncInfo.ValueMap[I];
|
|
const TargetRegisterClass *RC =
|
|
(AssignedReg ? MRI.getRegClass(AssignedReg) :
|
|
&PPC::GPRC_and_GPRC_NOR0RegClass);
|
|
bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
|
|
|
|
unsigned Opc;
|
|
switch (ISDOpcode) {
|
|
default: return false;
|
|
case ISD::ADD:
|
|
Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8;
|
|
break;
|
|
case ISD::OR:
|
|
Opc = IsGPRC ? PPC::OR : PPC::OR8;
|
|
break;
|
|
case ISD::SUB:
|
|
Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8;
|
|
break;
|
|
}
|
|
|
|
unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass);
|
|
unsigned SrcReg1 = getRegForValue(I->getOperand(0));
|
|
if (SrcReg1 == 0) return false;
|
|
|
|
// Handle case of small immediate operand.
|
|
if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) {
|
|
const APInt &CIVal = ConstInt->getValue();
|
|
int Imm = (int)CIVal.getSExtValue();
|
|
bool UseImm = true;
|
|
if (isInt<16>(Imm)) {
|
|
switch (Opc) {
|
|
default:
|
|
llvm_unreachable("Missing case!");
|
|
case PPC::ADD4:
|
|
Opc = PPC::ADDI;
|
|
MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
|
|
break;
|
|
case PPC::ADD8:
|
|
Opc = PPC::ADDI8;
|
|
MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
|
|
break;
|
|
case PPC::OR:
|
|
Opc = PPC::ORI;
|
|
break;
|
|
case PPC::OR8:
|
|
Opc = PPC::ORI8;
|
|
break;
|
|
case PPC::SUBF:
|
|
if (Imm == -32768)
|
|
UseImm = false;
|
|
else {
|
|
Opc = PPC::ADDI;
|
|
MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
|
|
Imm = -Imm;
|
|
}
|
|
break;
|
|
case PPC::SUBF8:
|
|
if (Imm == -32768)
|
|
UseImm = false;
|
|
else {
|
|
Opc = PPC::ADDI8;
|
|
MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
|
|
Imm = -Imm;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (UseImm) {
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
|
|
ResultReg)
|
|
.addReg(SrcReg1)
|
|
.addImm(Imm);
|
|
updateValueMap(I, ResultReg);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Reg-reg case.
|
|
unsigned SrcReg2 = getRegForValue(I->getOperand(1));
|
|
if (SrcReg2 == 0) return false;
|
|
|
|
// Reverse operands for subtract-from.
|
|
if (ISDOpcode == ISD::SUB)
|
|
std::swap(SrcReg1, SrcReg2);
|
|
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
|
|
.addReg(SrcReg1).addReg(SrcReg2);
|
|
updateValueMap(I, ResultReg);
|
|
return true;
|
|
}
|
|
|
|
// Handle arguments to a call that we're attempting to fast-select.
|
|
// Return false if the arguments are too complex for us at the moment.
|
|
bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args,
|
|
SmallVectorImpl<unsigned> &ArgRegs,
|
|
SmallVectorImpl<MVT> &ArgVTs,
|
|
SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
|
|
SmallVectorImpl<unsigned> &RegArgs,
|
|
CallingConv::ID CC,
|
|
unsigned &NumBytes,
|
|
bool IsVarArg) {
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context);
|
|
|
|
// Reserve space for the linkage area on the stack.
|
|
unsigned LinkageSize = Subtarget->getFrameLowering()->getLinkageSize();
|
|
CCInfo.AllocateStack(LinkageSize, Align(8));
|
|
|
|
CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS);
|
|
|
|
// Bail out if we can't handle any of the arguments.
|
|
for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
|
|
CCValAssign &VA = ArgLocs[I];
|
|
MVT ArgVT = ArgVTs[VA.getValNo()];
|
|
|
|
// Skip vector arguments for now, as well as long double and
|
|
// uint128_t, and anything that isn't passed in a register.
|
|
if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 ||
|
|
!VA.isRegLoc() || VA.needsCustom())
|
|
return false;
|
|
|
|
// Skip bit-converted arguments for now.
|
|
if (VA.getLocInfo() == CCValAssign::BCvt)
|
|
return false;
|
|
}
|
|
|
|
// Get a count of how many bytes are to be pushed onto the stack.
|
|
NumBytes = CCInfo.getNextStackOffset();
|
|
|
|
// The prolog code of the callee may store up to 8 GPR argument registers to
|
|
// the stack, allowing va_start to index over them in memory if its varargs.
|
|
// Because we cannot tell if this is needed on the caller side, we have to
|
|
// conservatively assume that it is needed. As such, make sure we have at
|
|
// least enough stack space for the caller to store the 8 GPRs.
|
|
// FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
|
|
NumBytes = std::max(NumBytes, LinkageSize + 64);
|
|
|
|
// Issue CALLSEQ_START.
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(TII.getCallFrameSetupOpcode()))
|
|
.addImm(NumBytes).addImm(0);
|
|
|
|
// Prepare to assign register arguments. Every argument uses up a
|
|
// GPR protocol register even if it's passed in a floating-point
|
|
// register (unless we're using the fast calling convention).
|
|
unsigned NextGPR = PPC::X3;
|
|
unsigned NextFPR = PPC::F1;
|
|
|
|
// Process arguments.
|
|
for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
|
|
CCValAssign &VA = ArgLocs[I];
|
|
unsigned Arg = ArgRegs[VA.getValNo()];
|
|
MVT ArgVT = ArgVTs[VA.getValNo()];
|
|
|
|
// Handle argument promotion and bitcasts.
|
|
switch (VA.getLocInfo()) {
|
|
default:
|
|
llvm_unreachable("Unknown loc info!");
|
|
case CCValAssign::Full:
|
|
break;
|
|
case CCValAssign::SExt: {
|
|
MVT DestVT = VA.getLocVT();
|
|
const TargetRegisterClass *RC =
|
|
(DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
|
|
unsigned TmpReg = createResultReg(RC);
|
|
if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false))
|
|
llvm_unreachable("Failed to emit a sext!");
|
|
ArgVT = DestVT;
|
|
Arg = TmpReg;
|
|
break;
|
|
}
|
|
case CCValAssign::AExt:
|
|
case CCValAssign::ZExt: {
|
|
MVT DestVT = VA.getLocVT();
|
|
const TargetRegisterClass *RC =
|
|
(DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
|
|
unsigned TmpReg = createResultReg(RC);
|
|
if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true))
|
|
llvm_unreachable("Failed to emit a zext!");
|
|
ArgVT = DestVT;
|
|
Arg = TmpReg;
|
|
break;
|
|
}
|
|
case CCValAssign::BCvt: {
|
|
// FIXME: Not yet handled.
|
|
llvm_unreachable("Should have bailed before getting here!");
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Copy this argument to the appropriate register.
|
|
unsigned ArgReg;
|
|
if (ArgVT == MVT::f32 || ArgVT == MVT::f64) {
|
|
ArgReg = NextFPR++;
|
|
if (CC != CallingConv::Fast)
|
|
++NextGPR;
|
|
} else
|
|
ArgReg = NextGPR++;
|
|
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg);
|
|
RegArgs.push_back(ArgReg);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// For a call that we've determined we can fast-select, finish the
|
|
// call sequence and generate a copy to obtain the return value (if any).
|
|
bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) {
|
|
CallingConv::ID CC = CLI.CallConv;
|
|
|
|
// Issue CallSEQ_END.
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(TII.getCallFrameDestroyOpcode()))
|
|
.addImm(NumBytes).addImm(0);
|
|
|
|
// Next, generate a copy to obtain the return value.
|
|
// FIXME: No multi-register return values yet, though I don't foresee
|
|
// any real difficulties there.
|
|
if (RetVT != MVT::isVoid) {
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
|
|
CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
|
|
CCValAssign &VA = RVLocs[0];
|
|
assert(RVLocs.size() == 1 && "No support for multi-reg return values!");
|
|
assert(VA.isRegLoc() && "Can only return in registers!");
|
|
|
|
MVT DestVT = VA.getValVT();
|
|
MVT CopyVT = DestVT;
|
|
|
|
// Ints smaller than a register still arrive in a full 64-bit
|
|
// register, so make sure we recognize this.
|
|
if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32)
|
|
CopyVT = MVT::i64;
|
|
|
|
unsigned SourcePhysReg = VA.getLocReg();
|
|
unsigned ResultReg = 0;
|
|
|
|
if (RetVT == CopyVT) {
|
|
const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT);
|
|
ResultReg = copyRegToRegClass(CpyRC, SourcePhysReg);
|
|
|
|
// If necessary, round the floating result to single precision.
|
|
} else if (CopyVT == MVT::f64) {
|
|
ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP),
|
|
ResultReg).addReg(SourcePhysReg);
|
|
|
|
// If only the low half of a general register is needed, generate
|
|
// a GPRC copy instead of a G8RC copy. (EXTRACT_SUBREG can't be
|
|
// used along the fast-isel path (not lowered), and downstream logic
|
|
// also doesn't like a direct subreg copy on a physical reg.)
|
|
} else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) {
|
|
// Convert physical register from G8RC to GPRC.
|
|
SourcePhysReg -= PPC::X0 - PPC::R0;
|
|
ResultReg = copyRegToRegClass(&PPC::GPRCRegClass, SourcePhysReg);
|
|
}
|
|
|
|
assert(ResultReg && "ResultReg unset!");
|
|
CLI.InRegs.push_back(SourcePhysReg);
|
|
CLI.ResultReg = ResultReg;
|
|
CLI.NumResultRegs = 1;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) {
|
|
CallingConv::ID CC = CLI.CallConv;
|
|
bool IsTailCall = CLI.IsTailCall;
|
|
bool IsVarArg = CLI.IsVarArg;
|
|
const Value *Callee = CLI.Callee;
|
|
const MCSymbol *Symbol = CLI.Symbol;
|
|
|
|
if (!Callee && !Symbol)
|
|
return false;
|
|
|
|
// Allow SelectionDAG isel to handle tail calls.
|
|
if (IsTailCall)
|
|
return false;
|
|
|
|
// Let SDISel handle vararg functions.
|
|
if (IsVarArg)
|
|
return false;
|
|
|
|
// Handle simple calls for now, with legal return types and
|
|
// those that can be extended.
|
|
Type *RetTy = CLI.RetTy;
|
|
MVT RetVT;
|
|
if (RetTy->isVoidTy())
|
|
RetVT = MVT::isVoid;
|
|
else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
|
|
RetVT != MVT::i8)
|
|
return false;
|
|
else if (RetVT == MVT::i1 && Subtarget->useCRBits())
|
|
// We can't handle boolean returns when CR bits are in use.
|
|
return false;
|
|
|
|
// FIXME: No multi-register return values yet.
|
|
if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 &&
|
|
RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 &&
|
|
RetVT != MVT::f64) {
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context);
|
|
CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
|
|
if (RVLocs.size() > 1)
|
|
return false;
|
|
}
|
|
|
|
// Bail early if more than 8 arguments, as we only currently
|
|
// handle arguments passed in registers.
|
|
unsigned NumArgs = CLI.OutVals.size();
|
|
if (NumArgs > 8)
|
|
return false;
|
|
|
|
// Set up the argument vectors.
|
|
SmallVector<Value*, 8> Args;
|
|
SmallVector<unsigned, 8> ArgRegs;
|
|
SmallVector<MVT, 8> ArgVTs;
|
|
SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
|
|
|
|
Args.reserve(NumArgs);
|
|
ArgRegs.reserve(NumArgs);
|
|
ArgVTs.reserve(NumArgs);
|
|
ArgFlags.reserve(NumArgs);
|
|
|
|
for (unsigned i = 0, ie = NumArgs; i != ie; ++i) {
|
|
// Only handle easy calls for now. It would be reasonably easy
|
|
// to handle <= 8-byte structures passed ByVal in registers, but we
|
|
// have to ensure they are right-justified in the register.
|
|
ISD::ArgFlagsTy Flags = CLI.OutFlags[i];
|
|
if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal())
|
|
return false;
|
|
|
|
Value *ArgValue = CLI.OutVals[i];
|
|
Type *ArgTy = ArgValue->getType();
|
|
MVT ArgVT;
|
|
if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8)
|
|
return false;
|
|
|
|
if (ArgVT.isVector())
|
|
return false;
|
|
|
|
unsigned Arg = getRegForValue(ArgValue);
|
|
if (Arg == 0)
|
|
return false;
|
|
|
|
Args.push_back(ArgValue);
|
|
ArgRegs.push_back(Arg);
|
|
ArgVTs.push_back(ArgVT);
|
|
ArgFlags.push_back(Flags);
|
|
}
|
|
|
|
// Process the arguments.
|
|
SmallVector<unsigned, 8> RegArgs;
|
|
unsigned NumBytes;
|
|
|
|
if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
|
|
RegArgs, CC, NumBytes, IsVarArg))
|
|
return false;
|
|
|
|
MachineInstrBuilder MIB;
|
|
// FIXME: No handling for function pointers yet. This requires
|
|
// implementing the function descriptor (OPD) setup.
|
|
const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
|
|
if (!GV) {
|
|
// patchpoints are a special case; they always dispatch to a pointer value.
|
|
// However, we don't actually want to generate the indirect call sequence
|
|
// here (that will be generated, as necessary, during asm printing), and
|
|
// the call we generate here will be erased by FastISel::selectPatchpoint,
|
|
// so don't try very hard...
|
|
if (CLI.IsPatchPoint)
|
|
MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::NOP));
|
|
else
|
|
return false;
|
|
} else {
|
|
// Build direct call with NOP for TOC restore.
|
|
// FIXME: We can and should optimize away the NOP for local calls.
|
|
MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(PPC::BL8_NOP));
|
|
// Add callee.
|
|
MIB.addGlobalAddress(GV);
|
|
}
|
|
|
|
// Add implicit physical register uses to the call.
|
|
for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II)
|
|
MIB.addReg(RegArgs[II], RegState::Implicit);
|
|
|
|
// Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live
|
|
// into the call.
|
|
PPCFuncInfo->setUsesTOCBasePtr();
|
|
MIB.addReg(PPC::X2, RegState::Implicit);
|
|
|
|
// Add a register mask with the call-preserved registers. Proper
|
|
// defs for return values will be added by setPhysRegsDeadExcept().
|
|
MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
|
|
|
|
CLI.Call = MIB;
|
|
|
|
// Finish off the call including any return values.
|
|
return finishCall(RetVT, CLI, NumBytes);
|
|
}
|
|
|
|
// Attempt to fast-select a return instruction.
|
|
bool PPCFastISel::SelectRet(const Instruction *I) {
|
|
|
|
if (!FuncInfo.CanLowerReturn)
|
|
return false;
|
|
|
|
const ReturnInst *Ret = cast<ReturnInst>(I);
|
|
const Function &F = *I->getParent()->getParent();
|
|
|
|
// Build a list of return value registers.
|
|
SmallVector<unsigned, 4> RetRegs;
|
|
CallingConv::ID CC = F.getCallingConv();
|
|
|
|
if (Ret->getNumOperands() > 0) {
|
|
SmallVector<ISD::OutputArg, 4> Outs;
|
|
GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
|
|
|
|
// Analyze operands of the call, assigning locations to each operand.
|
|
SmallVector<CCValAssign, 16> ValLocs;
|
|
CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context);
|
|
CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS);
|
|
const Value *RV = Ret->getOperand(0);
|
|
|
|
// FIXME: Only one output register for now.
|
|
if (ValLocs.size() > 1)
|
|
return false;
|
|
|
|
// Special case for returning a constant integer of any size - materialize
|
|
// the constant as an i64 and copy it to the return register.
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(RV)) {
|
|
CCValAssign &VA = ValLocs[0];
|
|
|
|
Register RetReg = VA.getLocReg();
|
|
// We still need to worry about properly extending the sign. For example,
|
|
// we could have only a single bit or a constant that needs zero
|
|
// extension rather than sign extension. Make sure we pass the return
|
|
// value extension property to integer materialization.
|
|
unsigned SrcReg =
|
|
PPCMaterializeInt(CI, MVT::i64, VA.getLocInfo() != CCValAssign::ZExt);
|
|
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg);
|
|
|
|
RetRegs.push_back(RetReg);
|
|
|
|
} else {
|
|
unsigned Reg = getRegForValue(RV);
|
|
|
|
if (Reg == 0)
|
|
return false;
|
|
|
|
// Copy the result values into the output registers.
|
|
for (unsigned i = 0; i < ValLocs.size(); ++i) {
|
|
|
|
CCValAssign &VA = ValLocs[i];
|
|
assert(VA.isRegLoc() && "Can only return in registers!");
|
|
RetRegs.push_back(VA.getLocReg());
|
|
unsigned SrcReg = Reg + VA.getValNo();
|
|
|
|
EVT RVEVT = TLI.getValueType(DL, RV->getType());
|
|
if (!RVEVT.isSimple())
|
|
return false;
|
|
MVT RVVT = RVEVT.getSimpleVT();
|
|
MVT DestVT = VA.getLocVT();
|
|
|
|
if (RVVT != DestVT && RVVT != MVT::i8 &&
|
|
RVVT != MVT::i16 && RVVT != MVT::i32)
|
|
return false;
|
|
|
|
if (RVVT != DestVT) {
|
|
switch (VA.getLocInfo()) {
|
|
default:
|
|
llvm_unreachable("Unknown loc info!");
|
|
case CCValAssign::Full:
|
|
llvm_unreachable("Full value assign but types don't match?");
|
|
case CCValAssign::AExt:
|
|
case CCValAssign::ZExt: {
|
|
const TargetRegisterClass *RC =
|
|
(DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
|
|
unsigned TmpReg = createResultReg(RC);
|
|
if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true))
|
|
return false;
|
|
SrcReg = TmpReg;
|
|
break;
|
|
}
|
|
case CCValAssign::SExt: {
|
|
const TargetRegisterClass *RC =
|
|
(DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
|
|
unsigned TmpReg = createResultReg(RC);
|
|
if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false))
|
|
return false;
|
|
SrcReg = TmpReg;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(TargetOpcode::COPY), RetRegs[i])
|
|
.addReg(SrcReg);
|
|
}
|
|
}
|
|
}
|
|
|
|
MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(PPC::BLR8));
|
|
|
|
for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
|
|
MIB.addReg(RetRegs[i], RegState::Implicit);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Attempt to emit an integer extend of SrcReg into DestReg. Both
|
|
// signed and zero extensions are supported. Return false if we
|
|
// can't handle it.
|
|
bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
|
|
unsigned DestReg, bool IsZExt) {
|
|
if (DestVT != MVT::i32 && DestVT != MVT::i64)
|
|
return false;
|
|
if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32)
|
|
return false;
|
|
|
|
// Signed extensions use EXTSB, EXTSH, EXTSW.
|
|
if (!IsZExt) {
|
|
unsigned Opc;
|
|
if (SrcVT == MVT::i8)
|
|
Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64;
|
|
else if (SrcVT == MVT::i16)
|
|
Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64;
|
|
else {
|
|
assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??");
|
|
Opc = PPC::EXTSW_32_64;
|
|
}
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
|
|
.addReg(SrcReg);
|
|
|
|
// Unsigned 32-bit extensions use RLWINM.
|
|
} else if (DestVT == MVT::i32) {
|
|
unsigned MB;
|
|
if (SrcVT == MVT::i8)
|
|
MB = 24;
|
|
else {
|
|
assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??");
|
|
MB = 16;
|
|
}
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLWINM),
|
|
DestReg)
|
|
.addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31);
|
|
|
|
// Unsigned 64-bit extensions use RLDICL (with a 32-bit source).
|
|
} else {
|
|
unsigned MB;
|
|
if (SrcVT == MVT::i8)
|
|
MB = 56;
|
|
else if (SrcVT == MVT::i16)
|
|
MB = 48;
|
|
else
|
|
MB = 32;
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(PPC::RLDICL_32_64), DestReg)
|
|
.addReg(SrcReg).addImm(/*SH=*/0).addImm(MB);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Attempt to fast-select an indirect branch instruction.
|
|
bool PPCFastISel::SelectIndirectBr(const Instruction *I) {
|
|
unsigned AddrReg = getRegForValue(I->getOperand(0));
|
|
if (AddrReg == 0)
|
|
return false;
|
|
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::MTCTR8))
|
|
.addReg(AddrReg);
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCTR8));
|
|
|
|
const IndirectBrInst *IB = cast<IndirectBrInst>(I);
|
|
for (const BasicBlock *SuccBB : IB->successors())
|
|
FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Attempt to fast-select an integer truncate instruction.
|
|
bool PPCFastISel::SelectTrunc(const Instruction *I) {
|
|
Value *Src = I->getOperand(0);
|
|
EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
|
|
EVT DestVT = TLI.getValueType(DL, I->getType(), true);
|
|
|
|
if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16)
|
|
return false;
|
|
|
|
if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
|
|
return false;
|
|
|
|
unsigned SrcReg = getRegForValue(Src);
|
|
if (!SrcReg)
|
|
return false;
|
|
|
|
// The only interesting case is when we need to switch register classes.
|
|
if (SrcVT == MVT::i64)
|
|
SrcReg = copyRegToRegClass(&PPC::GPRCRegClass, SrcReg, 0, PPC::sub_32);
|
|
|
|
updateValueMap(I, SrcReg);
|
|
return true;
|
|
}
|
|
|
|
// Attempt to fast-select an integer extend instruction.
|
|
bool PPCFastISel::SelectIntExt(const Instruction *I) {
|
|
Type *DestTy = I->getType();
|
|
Value *Src = I->getOperand(0);
|
|
Type *SrcTy = Src->getType();
|
|
|
|
bool IsZExt = isa<ZExtInst>(I);
|
|
unsigned SrcReg = getRegForValue(Src);
|
|
if (!SrcReg) return false;
|
|
|
|
EVT SrcEVT, DestEVT;
|
|
SrcEVT = TLI.getValueType(DL, SrcTy, true);
|
|
DestEVT = TLI.getValueType(DL, DestTy, true);
|
|
if (!SrcEVT.isSimple())
|
|
return false;
|
|
if (!DestEVT.isSimple())
|
|
return false;
|
|
|
|
MVT SrcVT = SrcEVT.getSimpleVT();
|
|
MVT DestVT = DestEVT.getSimpleVT();
|
|
|
|
// If we know the register class needed for the result of this
|
|
// instruction, use it. Otherwise pick the register class of the
|
|
// correct size that does not contain X0/R0, since we don't know
|
|
// whether downstream uses permit that assignment.
|
|
unsigned AssignedReg = FuncInfo.ValueMap[I];
|
|
const TargetRegisterClass *RC =
|
|
(AssignedReg ? MRI.getRegClass(AssignedReg) :
|
|
(DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
|
|
&PPC::GPRC_and_GPRC_NOR0RegClass));
|
|
unsigned ResultReg = createResultReg(RC);
|
|
|
|
if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt))
|
|
return false;
|
|
|
|
updateValueMap(I, ResultReg);
|
|
return true;
|
|
}
|
|
|
|
// Attempt to fast-select an instruction that wasn't handled by
|
|
// the table-generated machinery.
|
|
bool PPCFastISel::fastSelectInstruction(const Instruction *I) {
|
|
|
|
switch (I->getOpcode()) {
|
|
case Instruction::Load:
|
|
return SelectLoad(I);
|
|
case Instruction::Store:
|
|
return SelectStore(I);
|
|
case Instruction::Br:
|
|
return SelectBranch(I);
|
|
case Instruction::IndirectBr:
|
|
return SelectIndirectBr(I);
|
|
case Instruction::FPExt:
|
|
return SelectFPExt(I);
|
|
case Instruction::FPTrunc:
|
|
return SelectFPTrunc(I);
|
|
case Instruction::SIToFP:
|
|
return SelectIToFP(I, /*IsSigned*/ true);
|
|
case Instruction::UIToFP:
|
|
return SelectIToFP(I, /*IsSigned*/ false);
|
|
case Instruction::FPToSI:
|
|
return SelectFPToI(I, /*IsSigned*/ true);
|
|
case Instruction::FPToUI:
|
|
return SelectFPToI(I, /*IsSigned*/ false);
|
|
case Instruction::Add:
|
|
return SelectBinaryIntOp(I, ISD::ADD);
|
|
case Instruction::Or:
|
|
return SelectBinaryIntOp(I, ISD::OR);
|
|
case Instruction::Sub:
|
|
return SelectBinaryIntOp(I, ISD::SUB);
|
|
case Instruction::Call:
|
|
// On AIX, call lowering uses the DAG-ISEL path currently so that the
|
|
// callee of the direct function call instruction will be mapped to the
|
|
// symbol for the function's entry point, which is distinct from the
|
|
// function descriptor symbol. The latter is the symbol whose XCOFF symbol
|
|
// name is the C-linkage name of the source level function.
|
|
if (TM.getTargetTriple().isOSAIX())
|
|
break;
|
|
return selectCall(I);
|
|
case Instruction::Ret:
|
|
return SelectRet(I);
|
|
case Instruction::Trunc:
|
|
return SelectTrunc(I);
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
return SelectIntExt(I);
|
|
// Here add other flavors of Instruction::XXX that automated
|
|
// cases don't catch. For example, switches are terminators
|
|
// that aren't yet handled.
|
|
default:
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Materialize a floating-point constant into a register, and return
|
|
// the register number (or zero if we failed to handle it).
|
|
unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) {
|
|
// No plans to handle long double here.
|
|
if (VT != MVT::f32 && VT != MVT::f64)
|
|
return 0;
|
|
|
|
// All FP constants are loaded from the constant pool.
|
|
Align Alignment = DL.getPrefTypeAlign(CFP->getType());
|
|
unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Alignment);
|
|
const bool HasSPE = Subtarget->hasSPE();
|
|
const TargetRegisterClass *RC;
|
|
if (HasSPE)
|
|
RC = ((VT == MVT::f32) ? &PPC::GPRCRegClass : &PPC::SPERCRegClass);
|
|
else
|
|
RC = ((VT == MVT::f32) ? &PPC::F4RCRegClass : &PPC::F8RCRegClass);
|
|
|
|
unsigned DestReg = createResultReg(RC);
|
|
CodeModel::Model CModel = TM.getCodeModel();
|
|
|
|
MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
|
|
MachinePointerInfo::getConstantPool(*FuncInfo.MF),
|
|
MachineMemOperand::MOLoad, (VT == MVT::f32) ? 4 : 8, Alignment);
|
|
|
|
unsigned Opc;
|
|
|
|
if (HasSPE)
|
|
Opc = ((VT == MVT::f32) ? PPC::SPELWZ : PPC::EVLDD);
|
|
else
|
|
Opc = ((VT == MVT::f32) ? PPC::LFS : PPC::LFD);
|
|
|
|
unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
|
|
|
|
PPCFuncInfo->setUsesTOCBasePtr();
|
|
// For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)).
|
|
if (CModel == CodeModel::Small) {
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocCPT),
|
|
TmpReg)
|
|
.addConstantPoolIndex(Idx).addReg(PPC::X2);
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
|
|
.addImm(0).addReg(TmpReg).addMemOperand(MMO);
|
|
} else {
|
|
// Otherwise we generate LF[SD](Idx[lo], ADDIStocHA8(X2, Idx)).
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA8),
|
|
TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx);
|
|
// But for large code model, we must generate a LDtocL followed
|
|
// by the LF[SD].
|
|
if (CModel == CodeModel::Large) {
|
|
unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
|
|
TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg);
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
|
|
.addImm(0)
|
|
.addReg(TmpReg2);
|
|
} else
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
|
|
.addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO)
|
|
.addReg(TmpReg)
|
|
.addMemOperand(MMO);
|
|
}
|
|
|
|
return DestReg;
|
|
}
|
|
|
|
// Materialize the address of a global value into a register, and return
|
|
// the register number (or zero if we failed to handle it).
|
|
unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) {
|
|
assert(VT == MVT::i64 && "Non-address!");
|
|
const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass;
|
|
unsigned DestReg = createResultReg(RC);
|
|
|
|
// Global values may be plain old object addresses, TLS object
|
|
// addresses, constant pool entries, or jump tables. How we generate
|
|
// code for these may depend on small, medium, or large code model.
|
|
CodeModel::Model CModel = TM.getCodeModel();
|
|
|
|
// FIXME: Jump tables are not yet required because fast-isel doesn't
|
|
// handle switches; if that changes, we need them as well. For now,
|
|
// what follows assumes everything's a generic (or TLS) global address.
|
|
|
|
// FIXME: We don't yet handle the complexity of TLS.
|
|
if (GV->isThreadLocal())
|
|
return 0;
|
|
|
|
PPCFuncInfo->setUsesTOCBasePtr();
|
|
// For small code model, generate a simple TOC load.
|
|
if (CModel == CodeModel::Small)
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtoc),
|
|
DestReg)
|
|
.addGlobalAddress(GV)
|
|
.addReg(PPC::X2);
|
|
else {
|
|
// If the address is an externally defined symbol, a symbol with common
|
|
// or externally available linkage, a non-local function address, or a
|
|
// jump table address (not yet needed), or if we are generating code
|
|
// for large code model, we generate:
|
|
// LDtocL(GV, ADDIStocHA8(%x2, GV))
|
|
// Otherwise we generate:
|
|
// ADDItocL(ADDIStocHA8(%x2, GV), GV)
|
|
// Either way, start with the ADDIStocHA8:
|
|
unsigned HighPartReg = createResultReg(RC);
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA8),
|
|
HighPartReg).addReg(PPC::X2).addGlobalAddress(GV);
|
|
|
|
if (Subtarget->isGVIndirectSymbol(GV)) {
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
|
|
DestReg).addGlobalAddress(GV).addReg(HighPartReg);
|
|
} else {
|
|
// Otherwise generate the ADDItocL.
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDItocL),
|
|
DestReg).addReg(HighPartReg).addGlobalAddress(GV);
|
|
}
|
|
}
|
|
|
|
return DestReg;
|
|
}
|
|
|
|
// Materialize a 32-bit integer constant into a register, and return
|
|
// the register number (or zero if we failed to handle it).
|
|
unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm,
|
|
const TargetRegisterClass *RC) {
|
|
unsigned Lo = Imm & 0xFFFF;
|
|
unsigned Hi = (Imm >> 16) & 0xFFFF;
|
|
|
|
unsigned ResultReg = createResultReg(RC);
|
|
bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
|
|
|
|
if (isInt<16>(Imm))
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg)
|
|
.addImm(Imm);
|
|
else if (Lo) {
|
|
// Both Lo and Hi have nonzero bits.
|
|
unsigned TmpReg = createResultReg(RC);
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg)
|
|
.addImm(Hi);
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg)
|
|
.addReg(TmpReg).addImm(Lo);
|
|
} else
|
|
// Just Hi bits.
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg)
|
|
.addImm(Hi);
|
|
|
|
return ResultReg;
|
|
}
|
|
|
|
// Materialize a 64-bit integer constant into a register, and return
|
|
// the register number (or zero if we failed to handle it).
|
|
unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm,
|
|
const TargetRegisterClass *RC) {
|
|
unsigned Remainder = 0;
|
|
unsigned Shift = 0;
|
|
|
|
// If the value doesn't fit in 32 bits, see if we can shift it
|
|
// so that it fits in 32 bits.
|
|
if (!isInt<32>(Imm)) {
|
|
Shift = countTrailingZeros<uint64_t>(Imm);
|
|
int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
|
|
|
|
if (isInt<32>(ImmSh))
|
|
Imm = ImmSh;
|
|
else {
|
|
Remainder = Imm;
|
|
Shift = 32;
|
|
Imm >>= 32;
|
|
}
|
|
}
|
|
|
|
// Handle the high-order 32 bits (if shifted) or the whole 32 bits
|
|
// (if not shifted).
|
|
unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC);
|
|
if (!Shift)
|
|
return TmpReg1;
|
|
|
|
// If upper 32 bits were not zero, we've built them and need to shift
|
|
// them into place.
|
|
unsigned TmpReg2;
|
|
if (Imm) {
|
|
TmpReg2 = createResultReg(RC);
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLDICR),
|
|
TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift);
|
|
} else
|
|
TmpReg2 = TmpReg1;
|
|
|
|
unsigned TmpReg3, Hi, Lo;
|
|
if ((Hi = (Remainder >> 16) & 0xFFFF)) {
|
|
TmpReg3 = createResultReg(RC);
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORIS8),
|
|
TmpReg3).addReg(TmpReg2).addImm(Hi);
|
|
} else
|
|
TmpReg3 = TmpReg2;
|
|
|
|
if ((Lo = Remainder & 0xFFFF)) {
|
|
unsigned ResultReg = createResultReg(RC);
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORI8),
|
|
ResultReg).addReg(TmpReg3).addImm(Lo);
|
|
return ResultReg;
|
|
}
|
|
|
|
return TmpReg3;
|
|
}
|
|
|
|
// Materialize an integer constant into a register, and return
|
|
// the register number (or zero if we failed to handle it).
|
|
unsigned PPCFastISel::PPCMaterializeInt(const ConstantInt *CI, MVT VT,
|
|
bool UseSExt) {
|
|
// If we're using CR bit registers for i1 values, handle that as a special
|
|
// case first.
|
|
if (VT == MVT::i1 && Subtarget->useCRBits()) {
|
|
unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass);
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg);
|
|
return ImmReg;
|
|
}
|
|
|
|
if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 &&
|
|
VT != MVT::i1)
|
|
return 0;
|
|
|
|
const TargetRegisterClass *RC =
|
|
((VT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass);
|
|
int64_t Imm = UseSExt ? CI->getSExtValue() : CI->getZExtValue();
|
|
|
|
// If the constant is in range, use a load-immediate.
|
|
// Since LI will sign extend the constant we need to make sure that for
|
|
// our zeroext constants that the sign extended constant fits into 16-bits -
|
|
// a range of 0..0x7fff.
|
|
if (isInt<16>(Imm)) {
|
|
unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI;
|
|
unsigned ImmReg = createResultReg(RC);
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg)
|
|
.addImm(Imm);
|
|
return ImmReg;
|
|
}
|
|
|
|
// Construct the constant piecewise.
|
|
if (VT == MVT::i64)
|
|
return PPCMaterialize64BitInt(Imm, RC);
|
|
else if (VT == MVT::i32)
|
|
return PPCMaterialize32BitInt(Imm, RC);
|
|
|
|
return 0;
|
|
}
|
|
|
|
// Materialize a constant into a register, and return the register
|
|
// number (or zero if we failed to handle it).
|
|
unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) {
|
|
EVT CEVT = TLI.getValueType(DL, C->getType(), true);
|
|
|
|
// Only handle simple types.
|
|
if (!CEVT.isSimple()) return 0;
|
|
MVT VT = CEVT.getSimpleVT();
|
|
|
|
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
|
|
return PPCMaterializeFP(CFP, VT);
|
|
else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
|
|
return PPCMaterializeGV(GV, VT);
|
|
else if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
|
|
// Note that the code in FunctionLoweringInfo::ComputePHILiveOutRegInfo
|
|
// assumes that constant PHI operands will be zero extended, and failure to
|
|
// match that assumption will cause problems if we sign extend here but
|
|
// some user of a PHI is in a block for which we fall back to full SDAG
|
|
// instruction selection.
|
|
return PPCMaterializeInt(CI, VT, false);
|
|
|
|
return 0;
|
|
}
|
|
|
|
// Materialize the address created by an alloca into a register, and
|
|
// return the register number (or zero if we failed to handle it).
|
|
unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
|
|
// Don't handle dynamic allocas.
|
|
if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
|
|
|
|
MVT VT;
|
|
if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
|
|
|
|
DenseMap<const AllocaInst*, int>::iterator SI =
|
|
FuncInfo.StaticAllocaMap.find(AI);
|
|
|
|
if (SI != FuncInfo.StaticAllocaMap.end()) {
|
|
unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
|
|
ResultReg).addFrameIndex(SI->second).addImm(0);
|
|
return ResultReg;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
// Fold loads into extends when possible.
|
|
// FIXME: We can have multiple redundant extend/trunc instructions
|
|
// following a load. The folding only picks up one. Extend this
|
|
// to check subsequent instructions for the same pattern and remove
|
|
// them. Thus ResultReg should be the def reg for the last redundant
|
|
// instruction in a chain, and all intervening instructions can be
|
|
// removed from parent. Change test/CodeGen/PowerPC/fast-isel-fold.ll
|
|
// to add ELF64-NOT: rldicl to the appropriate tests when this works.
|
|
bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
|
|
const LoadInst *LI) {
|
|
// Verify we have a legal type before going any further.
|
|
MVT VT;
|
|
if (!isLoadTypeLegal(LI->getType(), VT))
|
|
return false;
|
|
|
|
// Combine load followed by zero- or sign-extend.
|
|
bool IsZExt = false;
|
|
switch(MI->getOpcode()) {
|
|
default:
|
|
return false;
|
|
|
|
case PPC::RLDICL:
|
|
case PPC::RLDICL_32_64: {
|
|
IsZExt = true;
|
|
unsigned MB = MI->getOperand(3).getImm();
|
|
if ((VT == MVT::i8 && MB <= 56) ||
|
|
(VT == MVT::i16 && MB <= 48) ||
|
|
(VT == MVT::i32 && MB <= 32))
|
|
break;
|
|
return false;
|
|
}
|
|
|
|
case PPC::RLWINM:
|
|
case PPC::RLWINM8: {
|
|
IsZExt = true;
|
|
unsigned MB = MI->getOperand(3).getImm();
|
|
if ((VT == MVT::i8 && MB <= 24) ||
|
|
(VT == MVT::i16 && MB <= 16))
|
|
break;
|
|
return false;
|
|
}
|
|
|
|
case PPC::EXTSB:
|
|
case PPC::EXTSB8:
|
|
case PPC::EXTSB8_32_64:
|
|
/* There is no sign-extending load-byte instruction. */
|
|
return false;
|
|
|
|
case PPC::EXTSH:
|
|
case PPC::EXTSH8:
|
|
case PPC::EXTSH8_32_64: {
|
|
if (VT != MVT::i16 && VT != MVT::i8)
|
|
return false;
|
|
break;
|
|
}
|
|
|
|
case PPC::EXTSW:
|
|
case PPC::EXTSW_32:
|
|
case PPC::EXTSW_32_64: {
|
|
if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8)
|
|
return false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// See if we can handle this address.
|
|
Address Addr;
|
|
if (!PPCComputeAddress(LI->getOperand(0), Addr))
|
|
return false;
|
|
|
|
Register ResultReg = MI->getOperand(0).getReg();
|
|
|
|
if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt,
|
|
Subtarget->hasSPE() ? PPC::EVLDD : PPC::LFD))
|
|
return false;
|
|
|
|
MachineBasicBlock::iterator I(MI);
|
|
removeDeadCode(I, std::next(I));
|
|
return true;
|
|
}
|
|
|
|
// Attempt to lower call arguments in a faster way than done by
|
|
// the selection DAG code.
|
|
bool PPCFastISel::fastLowerArguments() {
|
|
// Defer to normal argument lowering for now. It's reasonably
|
|
// efficient. Consider doing something like ARM to handle the
|
|
// case where all args fit in registers, no varargs, no float
|
|
// or vector args.
|
|
return false;
|
|
}
|
|
|
|
// Handle materializing integer constants into a register. This is not
|
|
// automatically generated for PowerPC, so must be explicitly created here.
|
|
unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) {
|
|
|
|
if (Opc != ISD::Constant)
|
|
return 0;
|
|
|
|
// If we're using CR bit registers for i1 values, handle that as a special
|
|
// case first.
|
|
if (VT == MVT::i1 && Subtarget->useCRBits()) {
|
|
unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass);
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg);
|
|
return ImmReg;
|
|
}
|
|
|
|
if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 &&
|
|
VT != MVT::i1)
|
|
return 0;
|
|
|
|
const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass :
|
|
&PPC::GPRCRegClass);
|
|
if (VT == MVT::i64)
|
|
return PPCMaterialize64BitInt(Imm, RC);
|
|
else
|
|
return PPCMaterialize32BitInt(Imm, RC);
|
|
}
|
|
|
|
// Override for ADDI and ADDI8 to set the correct register class
|
|
// on RHS operand 0. The automatic infrastructure naively assumes
|
|
// GPRC for i32 and G8RC for i64; the concept of "no R0" is lost
|
|
// for these cases. At the moment, none of the other automatically
|
|
// generated RI instructions require special treatment. However, once
|
|
// SelectSelect is implemented, "isel" requires similar handling.
|
|
//
|
|
// Also be conservative about the output register class. Avoid
|
|
// assigning R0 or X0 to the output register for GPRC and G8RC
|
|
// register classes, as any such result could be used in ADDI, etc.,
|
|
// where those regs have another meaning.
|
|
unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC,
|
|
unsigned Op0, bool Op0IsKill,
|
|
uint64_t Imm) {
|
|
if (MachineInstOpcode == PPC::ADDI)
|
|
MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass);
|
|
else if (MachineInstOpcode == PPC::ADDI8)
|
|
MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass);
|
|
|
|
const TargetRegisterClass *UseRC =
|
|
(RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
|
|
(RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
|
|
|
|
return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC,
|
|
Op0, Op0IsKill, Imm);
|
|
}
|
|
|
|
// Override for instructions with one register operand to avoid use of
|
|
// R0/X0. The automatic infrastructure isn't aware of the context so
|
|
// we must be conservative.
|
|
unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass* RC,
|
|
unsigned Op0, bool Op0IsKill) {
|
|
const TargetRegisterClass *UseRC =
|
|
(RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
|
|
(RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
|
|
|
|
return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill);
|
|
}
|
|
|
|
// Override for instructions with two register operands to avoid use
|
|
// of R0/X0. The automatic infrastructure isn't aware of the context
|
|
// so we must be conservative.
|
|
unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass* RC,
|
|
unsigned Op0, bool Op0IsKill,
|
|
unsigned Op1, bool Op1IsKill) {
|
|
const TargetRegisterClass *UseRC =
|
|
(RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
|
|
(RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
|
|
|
|
return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill,
|
|
Op1, Op1IsKill);
|
|
}
|
|
|
|
namespace llvm {
|
|
// Create the fast instruction selector for PowerPC64 ELF.
|
|
FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo,
|
|
const TargetLibraryInfo *LibInfo) {
|
|
// Only available on 64-bit ELF for now.
|
|
const PPCSubtarget &Subtarget = FuncInfo.MF->getSubtarget<PPCSubtarget>();
|
|
if (Subtarget.is64BitELFABI())
|
|
return new PPCFastISel(FuncInfo, LibInfo);
|
|
return nullptr;
|
|
}
|
|
}
|