Go to file
Sanjay Patel 57c3fe76a3 [x86] favor vector constant load to avoid GPR to XMM transfer
This build vector lowering pattern came up in D79886.
I've tried to limit the improvement to cases where it looks
clearly better to load, but we could remove the 'TODO'
predicates already if we are willing to overlook some
corner cases.

Differential Revision: https://reviews.llvm.org/D80013
2020-05-17 11:56:26 -04:00
clang [AVR] Explicitly set the address of the data section when invoking the linker 2020-05-18 02:24:51 +12:00
clang-tools-extra [clang-tidy] Transformer checks now store IncludeStyle option 2020-05-16 01:14:55 +01:00
compiler-rt [Compiler-rt] Emit error if builtins library cannot be found 2020-05-17 10:54:53 +08:00
debuginfo-tests Only run pretty-printer tests for builds with debug-info. 2020-05-14 09:19:43 +02:00
flang [flang] Constraint checks C751 to C760 2020-05-15 18:50:14 -07:00
libc [libc] Move implementations of expf and exp2f from the AOR to src/math. 2020-05-15 12:43:03 -07:00
libclc libclc: Pass system libraries to the linker after llvm libraries 2020-04-29 15:34:54 -07:00
libcxx [libcxx testing] Remove ALLOW_RETRIES from last futures test 2020-05-16 07:11:49 -04:00
libcxxabi [demangler] Support for 'this' expressions 2020-05-13 22:28:51 -04:00
libunwind unwind: fix unwind build without heap 2020-05-15 14:45:22 -07:00
lld [LLD][ELF] Use offset in thin archives to disambiguate thinLTO members 2020-05-15 12:02:08 -07:00
lldb [lldb/Commands] Add ability to run shell command on the host. 2020-05-15 22:14:39 +02:00
llvm [x86] favor vector constant load to avoid GPR to XMM transfer 2020-05-17 11:56:26 -04:00
mlir [mlir] NFC - VectorTransforms use OpBuilder where relevant 2020-05-17 10:17:12 -04:00
openmp [OpenMP] Fix race condition in the completion/freeing of detached tasks 2020-05-17 12:28:38 +02:00
parallel-libs [arcconfig] Delete subproject arcconfigs 2020-02-24 16:20:36 -08:00
polly AllocaInst should store Align instead of MaybeAlign. 2020-05-16 14:53:16 -07:00
pstl [pstl] Added missing double-underscore prefixes to some types 2020-04-15 22:06:58 +02:00
utils/arcanist Use in-tree clang-format-diff.py as Arcanist linter 2020-04-06 12:02:20 -04:00
.arcconfig [arcconfig] Default base to previous revision 2020-02-24 16:20:25 -08:00
.arclint Fix .arclint on Windows 2020-04-28 09:55:48 -07:00
.clang-format
.clang-tidy
.git-blame-ignore-revs Add some libc++ revisions to .git-blame-ignore-revs 2020-03-17 17:30:20 -04:00
.gitignore
CONTRIBUTING.md
README.md Revert "This is a test commit." 2020-04-11 15:55:07 -07:00

README.md

The LLVM Compiler Infrastructure

This directory and its sub-directories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from https://llvm.org/docs/GettingStarted.html.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and converts it into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang front end. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • mkdir build

    • cd build

    • cmake -G <generator> [options] ../llvm

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some Common options:

      • -DLLVM_ENABLE_PROJECTS='...' --- semicolon-separated list of the LLVM sub-projects you'd like to additionally build. Can include any of: clang, clang-tools-extra, libcxx, libcxxabi, libunwind, lldb, compiler-rt, lld, polly, or debuginfo-tests.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local).

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build . [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs, e.g. the number of CPUs you have.

    • For more information see CMake

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.