llvm-project/clang/tools/libclang/CIndex.cpp

7399 lines
248 KiB
C++

//===- CIndex.cpp - Clang-C Source Indexing Library -----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the main API hooks in the Clang-C Source Indexing
// library.
//
//===----------------------------------------------------------------------===//
#include "CIndexer.h"
#include "CIndexDiagnostic.h"
#include "CLog.h"
#include "CXCursor.h"
#include "CXSourceLocation.h"
#include "CXString.h"
#include "CXTranslationUnit.h"
#include "CXType.h"
#include "CursorVisitor.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Mangle.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/DiagnosticCategories.h"
#include "clang/Basic/DiagnosticIDs.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/Version.h"
#include "clang/Frontend/ASTUnit.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Frontend/FrontendDiagnostic.h"
#include "clang/Index/CommentToXML.h"
#include "clang/Lex/HeaderSearch.h"
#include "clang/Lex/Lexer.h"
#include "clang/Lex/PreprocessingRecord.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Serialization/SerializationDiagnostic.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Mangler.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/CrashRecoveryContext.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/Program.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/Signals.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/Threading.h"
#include "llvm/Support/Timer.h"
#include "llvm/Support/raw_ostream.h"
#if LLVM_ENABLE_THREADS != 0 && defined(__APPLE__)
#define USE_DARWIN_THREADS
#endif
#ifdef USE_DARWIN_THREADS
#include <pthread.h>
#endif
using namespace clang;
using namespace clang::cxcursor;
using namespace clang::cxtu;
using namespace clang::cxindex;
CXTranslationUnit cxtu::MakeCXTranslationUnit(CIndexer *CIdx, ASTUnit *AU) {
if (!AU)
return nullptr;
assert(CIdx);
CXTranslationUnit D = new CXTranslationUnitImpl();
D->CIdx = CIdx;
D->TheASTUnit = AU;
D->StringPool = new cxstring::CXStringPool();
D->Diagnostics = nullptr;
D->OverridenCursorsPool = createOverridenCXCursorsPool();
D->CommentToXML = nullptr;
return D;
}
bool cxtu::isASTReadError(ASTUnit *AU) {
for (ASTUnit::stored_diag_iterator D = AU->stored_diag_begin(),
DEnd = AU->stored_diag_end();
D != DEnd; ++D) {
if (D->getLevel() >= DiagnosticsEngine::Error &&
DiagnosticIDs::getCategoryNumberForDiag(D->getID()) ==
diag::DiagCat_AST_Deserialization_Issue)
return true;
}
return false;
}
cxtu::CXTUOwner::~CXTUOwner() {
if (TU)
clang_disposeTranslationUnit(TU);
}
/// \brief Compare two source ranges to determine their relative position in
/// the translation unit.
static RangeComparisonResult RangeCompare(SourceManager &SM,
SourceRange R1,
SourceRange R2) {
assert(R1.isValid() && "First range is invalid?");
assert(R2.isValid() && "Second range is invalid?");
if (R1.getEnd() != R2.getBegin() &&
SM.isBeforeInTranslationUnit(R1.getEnd(), R2.getBegin()))
return RangeBefore;
if (R2.getEnd() != R1.getBegin() &&
SM.isBeforeInTranslationUnit(R2.getEnd(), R1.getBegin()))
return RangeAfter;
return RangeOverlap;
}
/// \brief Determine if a source location falls within, before, or after a
/// a given source range.
static RangeComparisonResult LocationCompare(SourceManager &SM,
SourceLocation L, SourceRange R) {
assert(R.isValid() && "First range is invalid?");
assert(L.isValid() && "Second range is invalid?");
if (L == R.getBegin() || L == R.getEnd())
return RangeOverlap;
if (SM.isBeforeInTranslationUnit(L, R.getBegin()))
return RangeBefore;
if (SM.isBeforeInTranslationUnit(R.getEnd(), L))
return RangeAfter;
return RangeOverlap;
}
/// \brief Translate a Clang source range into a CIndex source range.
///
/// Clang internally represents ranges where the end location points to the
/// start of the token at the end. However, for external clients it is more
/// useful to have a CXSourceRange be a proper half-open interval. This routine
/// does the appropriate translation.
CXSourceRange cxloc::translateSourceRange(const SourceManager &SM,
const LangOptions &LangOpts,
const CharSourceRange &R) {
// We want the last character in this location, so we will adjust the
// location accordingly.
SourceLocation EndLoc = R.getEnd();
if (EndLoc.isValid() && EndLoc.isMacroID() && !SM.isMacroArgExpansion(EndLoc))
EndLoc = SM.getExpansionRange(EndLoc).second;
if (R.isTokenRange() && !EndLoc.isInvalid()) {
unsigned Length = Lexer::MeasureTokenLength(SM.getSpellingLoc(EndLoc),
SM, LangOpts);
EndLoc = EndLoc.getLocWithOffset(Length);
}
CXSourceRange Result = {
{ &SM, &LangOpts },
R.getBegin().getRawEncoding(),
EndLoc.getRawEncoding()
};
return Result;
}
//===----------------------------------------------------------------------===//
// Cursor visitor.
//===----------------------------------------------------------------------===//
static SourceRange getRawCursorExtent(CXCursor C);
static SourceRange getFullCursorExtent(CXCursor C, SourceManager &SrcMgr);
RangeComparisonResult CursorVisitor::CompareRegionOfInterest(SourceRange R) {
return RangeCompare(AU->getSourceManager(), R, RegionOfInterest);
}
/// \brief Visit the given cursor and, if requested by the visitor,
/// its children.
///
/// \param Cursor the cursor to visit.
///
/// \param CheckedRegionOfInterest if true, then the caller already checked
/// that this cursor is within the region of interest.
///
/// \returns true if the visitation should be aborted, false if it
/// should continue.
bool CursorVisitor::Visit(CXCursor Cursor, bool CheckedRegionOfInterest) {
if (clang_isInvalid(Cursor.kind))
return false;
if (clang_isDeclaration(Cursor.kind)) {
const Decl *D = getCursorDecl(Cursor);
if (!D) {
assert(0 && "Invalid declaration cursor");
return true; // abort.
}
// Ignore implicit declarations, unless it's an objc method because
// currently we should report implicit methods for properties when indexing.
if (D->isImplicit() && !isa<ObjCMethodDecl>(D))
return false;
}
// If we have a range of interest, and this cursor doesn't intersect with it,
// we're done.
if (RegionOfInterest.isValid() && !CheckedRegionOfInterest) {
SourceRange Range = getRawCursorExtent(Cursor);
if (Range.isInvalid() || CompareRegionOfInterest(Range))
return false;
}
switch (Visitor(Cursor, Parent, ClientData)) {
case CXChildVisit_Break:
return true;
case CXChildVisit_Continue:
return false;
case CXChildVisit_Recurse: {
bool ret = VisitChildren(Cursor);
if (PostChildrenVisitor)
if (PostChildrenVisitor(Cursor, ClientData))
return true;
return ret;
}
}
llvm_unreachable("Invalid CXChildVisitResult!");
}
static bool visitPreprocessedEntitiesInRange(SourceRange R,
PreprocessingRecord &PPRec,
CursorVisitor &Visitor) {
SourceManager &SM = Visitor.getASTUnit()->getSourceManager();
FileID FID;
if (!Visitor.shouldVisitIncludedEntities()) {
// If the begin/end of the range lie in the same FileID, do the optimization
// where we skip preprocessed entities that do not come from the same FileID.
FID = SM.getFileID(SM.getFileLoc(R.getBegin()));
if (FID != SM.getFileID(SM.getFileLoc(R.getEnd())))
FID = FileID();
}
const auto &Entities = PPRec.getPreprocessedEntitiesInRange(R);
return Visitor.visitPreprocessedEntities(Entities.begin(), Entities.end(),
PPRec, FID);
}
bool CursorVisitor::visitFileRegion() {
if (RegionOfInterest.isInvalid())
return false;
ASTUnit *Unit = cxtu::getASTUnit(TU);
SourceManager &SM = Unit->getSourceManager();
std::pair<FileID, unsigned>
Begin = SM.getDecomposedLoc(SM.getFileLoc(RegionOfInterest.getBegin())),
End = SM.getDecomposedLoc(SM.getFileLoc(RegionOfInterest.getEnd()));
if (End.first != Begin.first) {
// If the end does not reside in the same file, try to recover by
// picking the end of the file of begin location.
End.first = Begin.first;
End.second = SM.getFileIDSize(Begin.first);
}
assert(Begin.first == End.first);
if (Begin.second > End.second)
return false;
FileID File = Begin.first;
unsigned Offset = Begin.second;
unsigned Length = End.second - Begin.second;
if (!VisitDeclsOnly && !VisitPreprocessorLast)
if (visitPreprocessedEntitiesInRegion())
return true; // visitation break.
if (visitDeclsFromFileRegion(File, Offset, Length))
return true; // visitation break.
if (!VisitDeclsOnly && VisitPreprocessorLast)
return visitPreprocessedEntitiesInRegion();
return false;
}
static bool isInLexicalContext(Decl *D, DeclContext *DC) {
if (!DC)
return false;
for (DeclContext *DeclDC = D->getLexicalDeclContext();
DeclDC; DeclDC = DeclDC->getLexicalParent()) {
if (DeclDC == DC)
return true;
}
return false;
}
bool CursorVisitor::visitDeclsFromFileRegion(FileID File,
unsigned Offset, unsigned Length) {
ASTUnit *Unit = cxtu::getASTUnit(TU);
SourceManager &SM = Unit->getSourceManager();
SourceRange Range = RegionOfInterest;
SmallVector<Decl *, 16> Decls;
Unit->findFileRegionDecls(File, Offset, Length, Decls);
// If we didn't find any file level decls for the file, try looking at the
// file that it was included from.
while (Decls.empty() || Decls.front()->isTopLevelDeclInObjCContainer()) {
bool Invalid = false;
const SrcMgr::SLocEntry &SLEntry = SM.getSLocEntry(File, &Invalid);
if (Invalid)
return false;
SourceLocation Outer;
if (SLEntry.isFile())
Outer = SLEntry.getFile().getIncludeLoc();
else
Outer = SLEntry.getExpansion().getExpansionLocStart();
if (Outer.isInvalid())
return false;
std::tie(File, Offset) = SM.getDecomposedExpansionLoc(Outer);
Length = 0;
Unit->findFileRegionDecls(File, Offset, Length, Decls);
}
assert(!Decls.empty());
bool VisitedAtLeastOnce = false;
DeclContext *CurDC = nullptr;
SmallVectorImpl<Decl *>::iterator DIt = Decls.begin();
for (SmallVectorImpl<Decl *>::iterator DE = Decls.end(); DIt != DE; ++DIt) {
Decl *D = *DIt;
if (D->getSourceRange().isInvalid())
continue;
if (isInLexicalContext(D, CurDC))
continue;
CurDC = dyn_cast<DeclContext>(D);
if (TagDecl *TD = dyn_cast<TagDecl>(D))
if (!TD->isFreeStanding())
continue;
RangeComparisonResult CompRes = RangeCompare(SM, D->getSourceRange(),Range);
if (CompRes == RangeBefore)
continue;
if (CompRes == RangeAfter)
break;
assert(CompRes == RangeOverlap);
VisitedAtLeastOnce = true;
if (isa<ObjCContainerDecl>(D)) {
FileDI_current = &DIt;
FileDE_current = DE;
} else {
FileDI_current = nullptr;
}
if (Visit(MakeCXCursor(D, TU, Range), /*CheckedRegionOfInterest=*/true))
return true; // visitation break.
}
if (VisitedAtLeastOnce)
return false;
// No Decls overlapped with the range. Move up the lexical context until there
// is a context that contains the range or we reach the translation unit
// level.
DeclContext *DC = DIt == Decls.begin() ? (*DIt)->getLexicalDeclContext()
: (*(DIt-1))->getLexicalDeclContext();
while (DC && !DC->isTranslationUnit()) {
Decl *D = cast<Decl>(DC);
SourceRange CurDeclRange = D->getSourceRange();
if (CurDeclRange.isInvalid())
break;
if (RangeCompare(SM, CurDeclRange, Range) == RangeOverlap) {
if (Visit(MakeCXCursor(D, TU, Range), /*CheckedRegionOfInterest=*/true))
return true; // visitation break.
}
DC = D->getLexicalDeclContext();
}
return false;
}
bool CursorVisitor::visitPreprocessedEntitiesInRegion() {
if (!AU->getPreprocessor().getPreprocessingRecord())
return false;
PreprocessingRecord &PPRec
= *AU->getPreprocessor().getPreprocessingRecord();
SourceManager &SM = AU->getSourceManager();
if (RegionOfInterest.isValid()) {
SourceRange MappedRange = AU->mapRangeToPreamble(RegionOfInterest);
SourceLocation B = MappedRange.getBegin();
SourceLocation E = MappedRange.getEnd();
if (AU->isInPreambleFileID(B)) {
if (SM.isLoadedSourceLocation(E))
return visitPreprocessedEntitiesInRange(SourceRange(B, E),
PPRec, *this);
// Beginning of range lies in the preamble but it also extends beyond
// it into the main file. Split the range into 2 parts, one covering
// the preamble and another covering the main file. This allows subsequent
// calls to visitPreprocessedEntitiesInRange to accept a source range that
// lies in the same FileID, allowing it to skip preprocessed entities that
// do not come from the same FileID.
bool breaked =
visitPreprocessedEntitiesInRange(
SourceRange(B, AU->getEndOfPreambleFileID()),
PPRec, *this);
if (breaked) return true;
return visitPreprocessedEntitiesInRange(
SourceRange(AU->getStartOfMainFileID(), E),
PPRec, *this);
}
return visitPreprocessedEntitiesInRange(SourceRange(B, E), PPRec, *this);
}
bool OnlyLocalDecls
= !AU->isMainFileAST() && AU->getOnlyLocalDecls();
if (OnlyLocalDecls)
return visitPreprocessedEntities(PPRec.local_begin(), PPRec.local_end(),
PPRec);
return visitPreprocessedEntities(PPRec.begin(), PPRec.end(), PPRec);
}
template<typename InputIterator>
bool CursorVisitor::visitPreprocessedEntities(InputIterator First,
InputIterator Last,
PreprocessingRecord &PPRec,
FileID FID) {
for (; First != Last; ++First) {
if (!FID.isInvalid() && !PPRec.isEntityInFileID(First, FID))
continue;
PreprocessedEntity *PPE = *First;
if (!PPE)
continue;
if (MacroExpansion *ME = dyn_cast<MacroExpansion>(PPE)) {
if (Visit(MakeMacroExpansionCursor(ME, TU)))
return true;
continue;
}
if (MacroDefinitionRecord *MD = dyn_cast<MacroDefinitionRecord>(PPE)) {
if (Visit(MakeMacroDefinitionCursor(MD, TU)))
return true;
continue;
}
if (InclusionDirective *ID = dyn_cast<InclusionDirective>(PPE)) {
if (Visit(MakeInclusionDirectiveCursor(ID, TU)))
return true;
continue;
}
}
return false;
}
/// \brief Visit the children of the given cursor.
///
/// \returns true if the visitation should be aborted, false if it
/// should continue.
bool CursorVisitor::VisitChildren(CXCursor Cursor) {
if (clang_isReference(Cursor.kind) &&
Cursor.kind != CXCursor_CXXBaseSpecifier) {
// By definition, references have no children.
return false;
}
// Set the Parent field to Cursor, then back to its old value once we're
// done.
SetParentRAII SetParent(Parent, StmtParent, Cursor);
if (clang_isDeclaration(Cursor.kind)) {
Decl *D = const_cast<Decl *>(getCursorDecl(Cursor));
if (!D)
return false;
return VisitAttributes(D) || Visit(D);
}
if (clang_isStatement(Cursor.kind)) {
if (const Stmt *S = getCursorStmt(Cursor))
return Visit(S);
return false;
}
if (clang_isExpression(Cursor.kind)) {
if (const Expr *E = getCursorExpr(Cursor))
return Visit(E);
return false;
}
if (clang_isTranslationUnit(Cursor.kind)) {
CXTranslationUnit TU = getCursorTU(Cursor);
ASTUnit *CXXUnit = cxtu::getASTUnit(TU);
int VisitOrder[2] = { VisitPreprocessorLast, !VisitPreprocessorLast };
for (unsigned I = 0; I != 2; ++I) {
if (VisitOrder[I]) {
if (!CXXUnit->isMainFileAST() && CXXUnit->getOnlyLocalDecls() &&
RegionOfInterest.isInvalid()) {
for (ASTUnit::top_level_iterator TL = CXXUnit->top_level_begin(),
TLEnd = CXXUnit->top_level_end();
TL != TLEnd; ++TL) {
if (Visit(MakeCXCursor(*TL, TU, RegionOfInterest), true))
return true;
}
} else if (VisitDeclContext(
CXXUnit->getASTContext().getTranslationUnitDecl()))
return true;
continue;
}
// Walk the preprocessing record.
if (CXXUnit->getPreprocessor().getPreprocessingRecord())
visitPreprocessedEntitiesInRegion();
}
return false;
}
if (Cursor.kind == CXCursor_CXXBaseSpecifier) {
if (const CXXBaseSpecifier *Base = getCursorCXXBaseSpecifier(Cursor)) {
if (TypeSourceInfo *BaseTSInfo = Base->getTypeSourceInfo()) {
return Visit(BaseTSInfo->getTypeLoc());
}
}
}
if (Cursor.kind == CXCursor_IBOutletCollectionAttr) {
const IBOutletCollectionAttr *A =
cast<IBOutletCollectionAttr>(cxcursor::getCursorAttr(Cursor));
if (const ObjCObjectType *ObjT = A->getInterface()->getAs<ObjCObjectType>())
return Visit(cxcursor::MakeCursorObjCClassRef(
ObjT->getInterface(),
A->getInterfaceLoc()->getTypeLoc().getLocStart(), TU));
}
// If pointing inside a macro definition, check if the token is an identifier
// that was ever defined as a macro. In such a case, create a "pseudo" macro
// expansion cursor for that token.
SourceLocation BeginLoc = RegionOfInterest.getBegin();
if (Cursor.kind == CXCursor_MacroDefinition &&
BeginLoc == RegionOfInterest.getEnd()) {
SourceLocation Loc = AU->mapLocationToPreamble(BeginLoc);
const MacroInfo *MI =
getMacroInfo(cxcursor::getCursorMacroDefinition(Cursor), TU);
if (MacroDefinitionRecord *MacroDef =
checkForMacroInMacroDefinition(MI, Loc, TU))
return Visit(cxcursor::MakeMacroExpansionCursor(MacroDef, BeginLoc, TU));
}
// Nothing to visit at the moment.
return false;
}
bool CursorVisitor::VisitBlockDecl(BlockDecl *B) {
if (TypeSourceInfo *TSInfo = B->getSignatureAsWritten())
if (Visit(TSInfo->getTypeLoc()))
return true;
if (Stmt *Body = B->getBody())
return Visit(MakeCXCursor(Body, StmtParent, TU, RegionOfInterest));
return false;
}
Optional<bool> CursorVisitor::shouldVisitCursor(CXCursor Cursor) {
if (RegionOfInterest.isValid()) {
SourceRange Range = getFullCursorExtent(Cursor, AU->getSourceManager());
if (Range.isInvalid())
return None;
switch (CompareRegionOfInterest(Range)) {
case RangeBefore:
// This declaration comes before the region of interest; skip it.
return None;
case RangeAfter:
// This declaration comes after the region of interest; we're done.
return false;
case RangeOverlap:
// This declaration overlaps the region of interest; visit it.
break;
}
}
return true;
}
bool CursorVisitor::VisitDeclContext(DeclContext *DC) {
DeclContext::decl_iterator I = DC->decls_begin(), E = DC->decls_end();
// FIXME: Eventually remove. This part of a hack to support proper
// iteration over all Decls contained lexically within an ObjC container.
SaveAndRestore<DeclContext::decl_iterator*> DI_saved(DI_current, &I);
SaveAndRestore<DeclContext::decl_iterator> DE_saved(DE_current, E);
for ( ; I != E; ++I) {
Decl *D = *I;
if (D->getLexicalDeclContext() != DC)
continue;
CXCursor Cursor = MakeCXCursor(D, TU, RegionOfInterest);
// Ignore synthesized ivars here, otherwise if we have something like:
// @synthesize prop = _prop;
// and '_prop' is not declared, we will encounter a '_prop' ivar before
// encountering the 'prop' synthesize declaration and we will think that
// we passed the region-of-interest.
if (ObjCIvarDecl *ivarD = dyn_cast<ObjCIvarDecl>(D)) {
if (ivarD->getSynthesize())
continue;
}
// FIXME: ObjCClassRef/ObjCProtocolRef for forward class/protocol
// declarations is a mismatch with the compiler semantics.
if (Cursor.kind == CXCursor_ObjCInterfaceDecl) {
ObjCInterfaceDecl *ID = cast<ObjCInterfaceDecl>(D);
if (!ID->isThisDeclarationADefinition())
Cursor = MakeCursorObjCClassRef(ID, ID->getLocation(), TU);
} else if (Cursor.kind == CXCursor_ObjCProtocolDecl) {
ObjCProtocolDecl *PD = cast<ObjCProtocolDecl>(D);
if (!PD->isThisDeclarationADefinition())
Cursor = MakeCursorObjCProtocolRef(PD, PD->getLocation(), TU);
}
const Optional<bool> &V = shouldVisitCursor(Cursor);
if (!V.hasValue())
continue;
if (!V.getValue())
return false;
if (Visit(Cursor, true))
return true;
}
return false;
}
bool CursorVisitor::VisitTranslationUnitDecl(TranslationUnitDecl *D) {
llvm_unreachable("Translation units are visited directly by Visit()");
}
bool CursorVisitor::VisitTypeAliasDecl(TypeAliasDecl *D) {
if (TypeSourceInfo *TSInfo = D->getTypeSourceInfo())
return Visit(TSInfo->getTypeLoc());
return false;
}
bool CursorVisitor::VisitTypedefDecl(TypedefDecl *D) {
if (TypeSourceInfo *TSInfo = D->getTypeSourceInfo())
return Visit(TSInfo->getTypeLoc());
return false;
}
bool CursorVisitor::VisitTagDecl(TagDecl *D) {
return VisitDeclContext(D);
}
bool CursorVisitor::VisitClassTemplateSpecializationDecl(
ClassTemplateSpecializationDecl *D) {
bool ShouldVisitBody = false;
switch (D->getSpecializationKind()) {
case TSK_Undeclared:
case TSK_ImplicitInstantiation:
// Nothing to visit
return false;
case TSK_ExplicitInstantiationDeclaration:
case TSK_ExplicitInstantiationDefinition:
break;
case TSK_ExplicitSpecialization:
ShouldVisitBody = true;
break;
}
// Visit the template arguments used in the specialization.
if (TypeSourceInfo *SpecType = D->getTypeAsWritten()) {
TypeLoc TL = SpecType->getTypeLoc();
if (TemplateSpecializationTypeLoc TSTLoc =
TL.getAs<TemplateSpecializationTypeLoc>()) {
for (unsigned I = 0, N = TSTLoc.getNumArgs(); I != N; ++I)
if (VisitTemplateArgumentLoc(TSTLoc.getArgLoc(I)))
return true;
}
}
if (ShouldVisitBody && VisitCXXRecordDecl(D))
return true;
return false;
}
bool CursorVisitor::VisitClassTemplatePartialSpecializationDecl(
ClassTemplatePartialSpecializationDecl *D) {
// FIXME: Visit the "outer" template parameter lists on the TagDecl
// before visiting these template parameters.
if (VisitTemplateParameters(D->getTemplateParameters()))
return true;
// Visit the partial specialization arguments.
const ASTTemplateArgumentListInfo *Info = D->getTemplateArgsAsWritten();
const TemplateArgumentLoc *TemplateArgs = Info->getTemplateArgs();
for (unsigned I = 0, N = Info->NumTemplateArgs; I != N; ++I)
if (VisitTemplateArgumentLoc(TemplateArgs[I]))
return true;
return VisitCXXRecordDecl(D);
}
bool CursorVisitor::VisitTemplateTypeParmDecl(TemplateTypeParmDecl *D) {
// Visit the default argument.
if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited())
if (TypeSourceInfo *DefArg = D->getDefaultArgumentInfo())
if (Visit(DefArg->getTypeLoc()))
return true;
return false;
}
bool CursorVisitor::VisitEnumConstantDecl(EnumConstantDecl *D) {
if (Expr *Init = D->getInitExpr())
return Visit(MakeCXCursor(Init, StmtParent, TU, RegionOfInterest));
return false;
}
bool CursorVisitor::VisitDeclaratorDecl(DeclaratorDecl *DD) {
unsigned NumParamList = DD->getNumTemplateParameterLists();
for (unsigned i = 0; i < NumParamList; i++) {
TemplateParameterList* Params = DD->getTemplateParameterList(i);
if (VisitTemplateParameters(Params))
return true;
}
if (TypeSourceInfo *TSInfo = DD->getTypeSourceInfo())
if (Visit(TSInfo->getTypeLoc()))
return true;
// Visit the nested-name-specifier, if present.
if (NestedNameSpecifierLoc QualifierLoc = DD->getQualifierLoc())
if (VisitNestedNameSpecifierLoc(QualifierLoc))
return true;
return false;
}
/// \brief Compare two base or member initializers based on their source order.
static int CompareCXXCtorInitializers(CXXCtorInitializer *const *X,
CXXCtorInitializer *const *Y) {
return (*X)->getSourceOrder() - (*Y)->getSourceOrder();
}
bool CursorVisitor::VisitFunctionDecl(FunctionDecl *ND) {
unsigned NumParamList = ND->getNumTemplateParameterLists();
for (unsigned i = 0; i < NumParamList; i++) {
TemplateParameterList* Params = ND->getTemplateParameterList(i);
if (VisitTemplateParameters(Params))
return true;
}
if (TypeSourceInfo *TSInfo = ND->getTypeSourceInfo()) {
// Visit the function declaration's syntactic components in the order
// written. This requires a bit of work.
TypeLoc TL = TSInfo->getTypeLoc().IgnoreParens();
FunctionTypeLoc FTL = TL.getAs<FunctionTypeLoc>();
// If we have a function declared directly (without the use of a typedef),
// visit just the return type. Otherwise, just visit the function's type
// now.
if ((FTL && !isa<CXXConversionDecl>(ND) && Visit(FTL.getReturnLoc())) ||
(!FTL && Visit(TL)))
return true;
// Visit the nested-name-specifier, if present.
if (NestedNameSpecifierLoc QualifierLoc = ND->getQualifierLoc())
if (VisitNestedNameSpecifierLoc(QualifierLoc))
return true;
// Visit the declaration name.
if (!isa<CXXDestructorDecl>(ND))
if (VisitDeclarationNameInfo(ND->getNameInfo()))
return true;
// FIXME: Visit explicitly-specified template arguments!
// Visit the function parameters, if we have a function type.
if (FTL && VisitFunctionTypeLoc(FTL, true))
return true;
// FIXME: Attributes?
}
if (ND->doesThisDeclarationHaveABody() && !ND->isLateTemplateParsed()) {
if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(ND)) {
// Find the initializers that were written in the source.
SmallVector<CXXCtorInitializer *, 4> WrittenInits;
for (auto *I : Constructor->inits()) {
if (!I->isWritten())
continue;
WrittenInits.push_back(I);
}
// Sort the initializers in source order
llvm::array_pod_sort(WrittenInits.begin(), WrittenInits.end(),
&CompareCXXCtorInitializers);
// Visit the initializers in source order
for (unsigned I = 0, N = WrittenInits.size(); I != N; ++I) {
CXXCtorInitializer *Init = WrittenInits[I];
if (Init->isAnyMemberInitializer()) {
if (Visit(MakeCursorMemberRef(Init->getAnyMember(),
Init->getMemberLocation(), TU)))
return true;
} else if (TypeSourceInfo *TInfo = Init->getTypeSourceInfo()) {
if (Visit(TInfo->getTypeLoc()))
return true;
}
// Visit the initializer value.
if (Expr *Initializer = Init->getInit())
if (Visit(MakeCXCursor(Initializer, ND, TU, RegionOfInterest)))
return true;
}
}
if (Visit(MakeCXCursor(ND->getBody(), StmtParent, TU, RegionOfInterest)))
return true;
}
return false;
}
bool CursorVisitor::VisitFieldDecl(FieldDecl *D) {
if (VisitDeclaratorDecl(D))
return true;
if (Expr *BitWidth = D->getBitWidth())
return Visit(MakeCXCursor(BitWidth, StmtParent, TU, RegionOfInterest));
return false;
}
bool CursorVisitor::VisitVarDecl(VarDecl *D) {
if (VisitDeclaratorDecl(D))
return true;
if (Expr *Init = D->getInit())
return Visit(MakeCXCursor(Init, StmtParent, TU, RegionOfInterest));
return false;
}
bool CursorVisitor::VisitNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D) {
if (VisitDeclaratorDecl(D))
return true;
if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited())
if (Expr *DefArg = D->getDefaultArgument())
return Visit(MakeCXCursor(DefArg, StmtParent, TU, RegionOfInterest));
return false;
}
bool CursorVisitor::VisitFunctionTemplateDecl(FunctionTemplateDecl *D) {
// FIXME: Visit the "outer" template parameter lists on the FunctionDecl
// before visiting these template parameters.
if (VisitTemplateParameters(D->getTemplateParameters()))
return true;
return VisitFunctionDecl(D->getTemplatedDecl());
}
bool CursorVisitor::VisitClassTemplateDecl(ClassTemplateDecl *D) {
// FIXME: Visit the "outer" template parameter lists on the TagDecl
// before visiting these template parameters.
if (VisitTemplateParameters(D->getTemplateParameters()))
return true;
return VisitCXXRecordDecl(D->getTemplatedDecl());
}
bool CursorVisitor::VisitTemplateTemplateParmDecl(TemplateTemplateParmDecl *D) {
if (VisitTemplateParameters(D->getTemplateParameters()))
return true;
if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited() &&
VisitTemplateArgumentLoc(D->getDefaultArgument()))
return true;
return false;
}
bool CursorVisitor::VisitObjCTypeParamDecl(ObjCTypeParamDecl *D) {
// Visit the bound, if it's explicit.
if (D->hasExplicitBound()) {
if (auto TInfo = D->getTypeSourceInfo()) {
if (Visit(TInfo->getTypeLoc()))
return true;
}
}
return false;
}
bool CursorVisitor::VisitObjCMethodDecl(ObjCMethodDecl *ND) {
if (TypeSourceInfo *TSInfo = ND->getReturnTypeSourceInfo())
if (Visit(TSInfo->getTypeLoc()))
return true;
for (const auto *P : ND->params()) {
if (Visit(MakeCXCursor(P, TU, RegionOfInterest)))
return true;
}
if (ND->isThisDeclarationADefinition() &&
Visit(MakeCXCursor(ND->getBody(), StmtParent, TU, RegionOfInterest)))
return true;
return false;
}
template <typename DeclIt>
static void addRangedDeclsInContainer(DeclIt *DI_current, DeclIt DE_current,
SourceManager &SM, SourceLocation EndLoc,
SmallVectorImpl<Decl *> &Decls) {
DeclIt next = *DI_current;
while (++next != DE_current) {
Decl *D_next = *next;
if (!D_next)
break;
SourceLocation L = D_next->getLocStart();
if (!L.isValid())
break;
if (SM.isBeforeInTranslationUnit(L, EndLoc)) {
*DI_current = next;
Decls.push_back(D_next);
continue;
}
break;
}
}
bool CursorVisitor::VisitObjCContainerDecl(ObjCContainerDecl *D) {
// FIXME: Eventually convert back to just 'VisitDeclContext()'. Essentially
// an @implementation can lexically contain Decls that are not properly
// nested in the AST. When we identify such cases, we need to retrofit
// this nesting here.
if (!DI_current && !FileDI_current)
return VisitDeclContext(D);
// Scan the Decls that immediately come after the container
// in the current DeclContext. If any fall within the
// container's lexical region, stash them into a vector
// for later processing.
SmallVector<Decl *, 24> DeclsInContainer;
SourceLocation EndLoc = D->getSourceRange().getEnd();
SourceManager &SM = AU->getSourceManager();
if (EndLoc.isValid()) {
if (DI_current) {
addRangedDeclsInContainer(DI_current, DE_current, SM, EndLoc,
DeclsInContainer);
} else {
addRangedDeclsInContainer(FileDI_current, FileDE_current, SM, EndLoc,
DeclsInContainer);
}
}
// The common case.
if (DeclsInContainer.empty())
return VisitDeclContext(D);
// Get all the Decls in the DeclContext, and sort them with the
// additional ones we've collected. Then visit them.
for (auto *SubDecl : D->decls()) {
if (!SubDecl || SubDecl->getLexicalDeclContext() != D ||
SubDecl->getLocStart().isInvalid())
continue;
DeclsInContainer.push_back(SubDecl);
}
// Now sort the Decls so that they appear in lexical order.
std::sort(DeclsInContainer.begin(), DeclsInContainer.end(),
[&SM](Decl *A, Decl *B) {
SourceLocation L_A = A->getLocStart();
SourceLocation L_B = B->getLocStart();
assert(L_A.isValid() && L_B.isValid());
return SM.isBeforeInTranslationUnit(L_A, L_B);
});
// Now visit the decls.
for (SmallVectorImpl<Decl*>::iterator I = DeclsInContainer.begin(),
E = DeclsInContainer.end(); I != E; ++I) {
CXCursor Cursor = MakeCXCursor(*I, TU, RegionOfInterest);
const Optional<bool> &V = shouldVisitCursor(Cursor);
if (!V.hasValue())
continue;
if (!V.getValue())
return false;
if (Visit(Cursor, true))
return true;
}
return false;
}
bool CursorVisitor::VisitObjCCategoryDecl(ObjCCategoryDecl *ND) {
if (Visit(MakeCursorObjCClassRef(ND->getClassInterface(), ND->getLocation(),
TU)))
return true;
if (VisitObjCTypeParamList(ND->getTypeParamList()))
return true;
ObjCCategoryDecl::protocol_loc_iterator PL = ND->protocol_loc_begin();
for (ObjCCategoryDecl::protocol_iterator I = ND->protocol_begin(),
E = ND->protocol_end(); I != E; ++I, ++PL)
if (Visit(MakeCursorObjCProtocolRef(*I, *PL, TU)))
return true;
return VisitObjCContainerDecl(ND);
}
bool CursorVisitor::VisitObjCProtocolDecl(ObjCProtocolDecl *PID) {
if (!PID->isThisDeclarationADefinition())
return Visit(MakeCursorObjCProtocolRef(PID, PID->getLocation(), TU));
ObjCProtocolDecl::protocol_loc_iterator PL = PID->protocol_loc_begin();
for (ObjCProtocolDecl::protocol_iterator I = PID->protocol_begin(),
E = PID->protocol_end(); I != E; ++I, ++PL)
if (Visit(MakeCursorObjCProtocolRef(*I, *PL, TU)))
return true;
return VisitObjCContainerDecl(PID);
}
bool CursorVisitor::VisitObjCPropertyDecl(ObjCPropertyDecl *PD) {
if (PD->getTypeSourceInfo() && Visit(PD->getTypeSourceInfo()->getTypeLoc()))
return true;
// FIXME: This implements a workaround with @property declarations also being
// installed in the DeclContext for the @interface. Eventually this code
// should be removed.
ObjCCategoryDecl *CDecl = dyn_cast<ObjCCategoryDecl>(PD->getDeclContext());
if (!CDecl || !CDecl->IsClassExtension())
return false;
ObjCInterfaceDecl *ID = CDecl->getClassInterface();
if (!ID)
return false;
IdentifierInfo *PropertyId = PD->getIdentifier();
ObjCPropertyDecl *prevDecl =
ObjCPropertyDecl::findPropertyDecl(cast<DeclContext>(ID), PropertyId);
if (!prevDecl)
return false;
// Visit synthesized methods since they will be skipped when visiting
// the @interface.
if (ObjCMethodDecl *MD = prevDecl->getGetterMethodDecl())
if (MD->isPropertyAccessor() && MD->getLexicalDeclContext() == CDecl)
if (Visit(MakeCXCursor(MD, TU, RegionOfInterest)))
return true;
if (ObjCMethodDecl *MD = prevDecl->getSetterMethodDecl())
if (MD->isPropertyAccessor() && MD->getLexicalDeclContext() == CDecl)
if (Visit(MakeCXCursor(MD, TU, RegionOfInterest)))
return true;
return false;
}
bool CursorVisitor::VisitObjCTypeParamList(ObjCTypeParamList *typeParamList) {
if (!typeParamList)
return false;
for (auto *typeParam : *typeParamList) {
// Visit the type parameter.
if (Visit(MakeCXCursor(typeParam, TU, RegionOfInterest)))
return true;
}
return false;
}
bool CursorVisitor::VisitObjCInterfaceDecl(ObjCInterfaceDecl *D) {
if (!D->isThisDeclarationADefinition()) {
// Forward declaration is treated like a reference.
return Visit(MakeCursorObjCClassRef(D, D->getLocation(), TU));
}
// Objective-C type parameters.
if (VisitObjCTypeParamList(D->getTypeParamListAsWritten()))
return true;
// Issue callbacks for super class.
if (D->getSuperClass() &&
Visit(MakeCursorObjCSuperClassRef(D->getSuperClass(),
D->getSuperClassLoc(),
TU)))
return true;
if (TypeSourceInfo *SuperClassTInfo = D->getSuperClassTInfo())
if (Visit(SuperClassTInfo->getTypeLoc()))
return true;
ObjCInterfaceDecl::protocol_loc_iterator PL = D->protocol_loc_begin();
for (ObjCInterfaceDecl::protocol_iterator I = D->protocol_begin(),
E = D->protocol_end(); I != E; ++I, ++PL)
if (Visit(MakeCursorObjCProtocolRef(*I, *PL, TU)))
return true;
return VisitObjCContainerDecl(D);
}
bool CursorVisitor::VisitObjCImplDecl(ObjCImplDecl *D) {
return VisitObjCContainerDecl(D);
}
bool CursorVisitor::VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D) {
// 'ID' could be null when dealing with invalid code.
if (ObjCInterfaceDecl *ID = D->getClassInterface())
if (Visit(MakeCursorObjCClassRef(ID, D->getLocation(), TU)))
return true;
return VisitObjCImplDecl(D);
}
bool CursorVisitor::VisitObjCImplementationDecl(ObjCImplementationDecl *D) {
#if 0
// Issue callbacks for super class.
// FIXME: No source location information!
if (D->getSuperClass() &&
Visit(MakeCursorObjCSuperClassRef(D->getSuperClass(),
D->getSuperClassLoc(),
TU)))
return true;
#endif
return VisitObjCImplDecl(D);
}
bool CursorVisitor::VisitObjCPropertyImplDecl(ObjCPropertyImplDecl *PD) {
if (ObjCIvarDecl *Ivar = PD->getPropertyIvarDecl())
if (PD->isIvarNameSpecified())
return Visit(MakeCursorMemberRef(Ivar, PD->getPropertyIvarDeclLoc(), TU));
return false;
}
bool CursorVisitor::VisitNamespaceDecl(NamespaceDecl *D) {
return VisitDeclContext(D);
}
bool CursorVisitor::VisitNamespaceAliasDecl(NamespaceAliasDecl *D) {
// Visit nested-name-specifier.
if (NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc())
if (VisitNestedNameSpecifierLoc(QualifierLoc))
return true;
return Visit(MakeCursorNamespaceRef(D->getAliasedNamespace(),
D->getTargetNameLoc(), TU));
}
bool CursorVisitor::VisitUsingDecl(UsingDecl *D) {
// Visit nested-name-specifier.
if (NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc()) {
if (VisitNestedNameSpecifierLoc(QualifierLoc))
return true;
}
if (Visit(MakeCursorOverloadedDeclRef(D, D->getLocation(), TU)))
return true;
return VisitDeclarationNameInfo(D->getNameInfo());
}
bool CursorVisitor::VisitUsingDirectiveDecl(UsingDirectiveDecl *D) {
// Visit nested-name-specifier.
if (NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc())
if (VisitNestedNameSpecifierLoc(QualifierLoc))
return true;
return Visit(MakeCursorNamespaceRef(D->getNominatedNamespaceAsWritten(),
D->getIdentLocation(), TU));
}
bool CursorVisitor::VisitUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *D) {
// Visit nested-name-specifier.
if (NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc()) {
if (VisitNestedNameSpecifierLoc(QualifierLoc))
return true;
}
return VisitDeclarationNameInfo(D->getNameInfo());
}
bool CursorVisitor::VisitUnresolvedUsingTypenameDecl(
UnresolvedUsingTypenameDecl *D) {
// Visit nested-name-specifier.
if (NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc())
if (VisitNestedNameSpecifierLoc(QualifierLoc))
return true;
return false;
}
bool CursorVisitor::VisitDeclarationNameInfo(DeclarationNameInfo Name) {
switch (Name.getName().getNameKind()) {
case clang::DeclarationName::Identifier:
case clang::DeclarationName::CXXLiteralOperatorName:
case clang::DeclarationName::CXXOperatorName:
case clang::DeclarationName::CXXUsingDirective:
return false;
case clang::DeclarationName::CXXConstructorName:
case clang::DeclarationName::CXXDestructorName:
case clang::DeclarationName::CXXConversionFunctionName:
if (TypeSourceInfo *TSInfo = Name.getNamedTypeInfo())
return Visit(TSInfo->getTypeLoc());
return false;
case clang::DeclarationName::ObjCZeroArgSelector:
case clang::DeclarationName::ObjCOneArgSelector:
case clang::DeclarationName::ObjCMultiArgSelector:
// FIXME: Per-identifier location info?
return false;
}
llvm_unreachable("Invalid DeclarationName::Kind!");
}
bool CursorVisitor::VisitNestedNameSpecifier(NestedNameSpecifier *NNS,
SourceRange Range) {
// FIXME: This whole routine is a hack to work around the lack of proper
// source information in nested-name-specifiers (PR5791). Since we do have
// a beginning source location, we can visit the first component of the
// nested-name-specifier, if it's a single-token component.
if (!NNS)
return false;
// Get the first component in the nested-name-specifier.
while (NestedNameSpecifier *Prefix = NNS->getPrefix())
NNS = Prefix;
switch (NNS->getKind()) {
case NestedNameSpecifier::Namespace:
return Visit(MakeCursorNamespaceRef(NNS->getAsNamespace(), Range.getBegin(),
TU));
case NestedNameSpecifier::NamespaceAlias:
return Visit(MakeCursorNamespaceRef(NNS->getAsNamespaceAlias(),
Range.getBegin(), TU));
case NestedNameSpecifier::TypeSpec: {
// If the type has a form where we know that the beginning of the source
// range matches up with a reference cursor. Visit the appropriate reference
// cursor.
const Type *T = NNS->getAsType();
if (const TypedefType *Typedef = dyn_cast<TypedefType>(T))
return Visit(MakeCursorTypeRef(Typedef->getDecl(), Range.getBegin(), TU));
if (const TagType *Tag = dyn_cast<TagType>(T))
return Visit(MakeCursorTypeRef(Tag->getDecl(), Range.getBegin(), TU));
if (const TemplateSpecializationType *TST
= dyn_cast<TemplateSpecializationType>(T))
return VisitTemplateName(TST->getTemplateName(), Range.getBegin());
break;
}
case NestedNameSpecifier::TypeSpecWithTemplate:
case NestedNameSpecifier::Global:
case NestedNameSpecifier::Identifier:
case NestedNameSpecifier::Super:
break;
}
return false;
}
bool
CursorVisitor::VisitNestedNameSpecifierLoc(NestedNameSpecifierLoc Qualifier) {
SmallVector<NestedNameSpecifierLoc, 4> Qualifiers;
for (; Qualifier; Qualifier = Qualifier.getPrefix())
Qualifiers.push_back(Qualifier);
while (!Qualifiers.empty()) {
NestedNameSpecifierLoc Q = Qualifiers.pop_back_val();
NestedNameSpecifier *NNS = Q.getNestedNameSpecifier();
switch (NNS->getKind()) {
case NestedNameSpecifier::Namespace:
if (Visit(MakeCursorNamespaceRef(NNS->getAsNamespace(),
Q.getLocalBeginLoc(),
TU)))
return true;
break;
case NestedNameSpecifier::NamespaceAlias:
if (Visit(MakeCursorNamespaceRef(NNS->getAsNamespaceAlias(),
Q.getLocalBeginLoc(),
TU)))
return true;
break;
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate:
if (Visit(Q.getTypeLoc()))
return true;
break;
case NestedNameSpecifier::Global:
case NestedNameSpecifier::Identifier:
case NestedNameSpecifier::Super:
break;
}
}
return false;
}
bool CursorVisitor::VisitTemplateParameters(
const TemplateParameterList *Params) {
if (!Params)
return false;
for (TemplateParameterList::const_iterator P = Params->begin(),
PEnd = Params->end();
P != PEnd; ++P) {
if (Visit(MakeCXCursor(*P, TU, RegionOfInterest)))
return true;
}
return false;
}
bool CursorVisitor::VisitTemplateName(TemplateName Name, SourceLocation Loc) {
switch (Name.getKind()) {
case TemplateName::Template:
return Visit(MakeCursorTemplateRef(Name.getAsTemplateDecl(), Loc, TU));
case TemplateName::OverloadedTemplate:
// Visit the overloaded template set.
if (Visit(MakeCursorOverloadedDeclRef(Name, Loc, TU)))
return true;
return false;
case TemplateName::DependentTemplate:
// FIXME: Visit nested-name-specifier.
return false;
case TemplateName::QualifiedTemplate:
// FIXME: Visit nested-name-specifier.
return Visit(MakeCursorTemplateRef(
Name.getAsQualifiedTemplateName()->getDecl(),
Loc, TU));
case TemplateName::SubstTemplateTemplateParm:
return Visit(MakeCursorTemplateRef(
Name.getAsSubstTemplateTemplateParm()->getParameter(),
Loc, TU));
case TemplateName::SubstTemplateTemplateParmPack:
return Visit(MakeCursorTemplateRef(
Name.getAsSubstTemplateTemplateParmPack()->getParameterPack(),
Loc, TU));
}
llvm_unreachable("Invalid TemplateName::Kind!");
}
bool CursorVisitor::VisitTemplateArgumentLoc(const TemplateArgumentLoc &TAL) {
switch (TAL.getArgument().getKind()) {
case TemplateArgument::Null:
case TemplateArgument::Integral:
case TemplateArgument::Pack:
return false;
case TemplateArgument::Type:
if (TypeSourceInfo *TSInfo = TAL.getTypeSourceInfo())
return Visit(TSInfo->getTypeLoc());
return false;
case TemplateArgument::Declaration:
if (Expr *E = TAL.getSourceDeclExpression())
return Visit(MakeCXCursor(E, StmtParent, TU, RegionOfInterest));
return false;
case TemplateArgument::NullPtr:
if (Expr *E = TAL.getSourceNullPtrExpression())
return Visit(MakeCXCursor(E, StmtParent, TU, RegionOfInterest));
return false;
case TemplateArgument::Expression:
if (Expr *E = TAL.getSourceExpression())
return Visit(MakeCXCursor(E, StmtParent, TU, RegionOfInterest));
return false;
case TemplateArgument::Template:
case TemplateArgument::TemplateExpansion:
if (VisitNestedNameSpecifierLoc(TAL.getTemplateQualifierLoc()))
return true;
return VisitTemplateName(TAL.getArgument().getAsTemplateOrTemplatePattern(),
TAL.getTemplateNameLoc());
}
llvm_unreachable("Invalid TemplateArgument::Kind!");
}
bool CursorVisitor::VisitLinkageSpecDecl(LinkageSpecDecl *D) {
return VisitDeclContext(D);
}
bool CursorVisitor::VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
return Visit(TL.getUnqualifiedLoc());
}
bool CursorVisitor::VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
ASTContext &Context = AU->getASTContext();
// Some builtin types (such as Objective-C's "id", "sel", and
// "Class") have associated declarations. Create cursors for those.
QualType VisitType;
switch (TL.getTypePtr()->getKind()) {
case BuiltinType::Void:
case BuiltinType::NullPtr:
case BuiltinType::Dependent:
case BuiltinType::OCLImage1d:
case BuiltinType::OCLImage1dArray:
case BuiltinType::OCLImage1dBuffer:
case BuiltinType::OCLImage2d:
case BuiltinType::OCLImage2dArray:
case BuiltinType::OCLImage3d:
case BuiltinType::OCLSampler:
case BuiltinType::OCLEvent:
#define BUILTIN_TYPE(Id, SingletonId)
#define SIGNED_TYPE(Id, SingletonId) case BuiltinType::Id:
#define UNSIGNED_TYPE(Id, SingletonId) case BuiltinType::Id:
#define FLOATING_TYPE(Id, SingletonId) case BuiltinType::Id:
#define PLACEHOLDER_TYPE(Id, SingletonId) case BuiltinType::Id:
#include "clang/AST/BuiltinTypes.def"
break;
case BuiltinType::ObjCId:
VisitType = Context.getObjCIdType();
break;
case BuiltinType::ObjCClass:
VisitType = Context.getObjCClassType();
break;
case BuiltinType::ObjCSel:
VisitType = Context.getObjCSelType();
break;
}
if (!VisitType.isNull()) {
if (const TypedefType *Typedef = VisitType->getAs<TypedefType>())
return Visit(MakeCursorTypeRef(Typedef->getDecl(), TL.getBuiltinLoc(),
TU));
}
return false;
}
bool CursorVisitor::VisitTypedefTypeLoc(TypedefTypeLoc TL) {
return Visit(MakeCursorTypeRef(TL.getTypedefNameDecl(), TL.getNameLoc(), TU));
}
bool CursorVisitor::VisitUnresolvedUsingTypeLoc(UnresolvedUsingTypeLoc TL) {
return Visit(MakeCursorTypeRef(TL.getDecl(), TL.getNameLoc(), TU));
}
bool CursorVisitor::VisitTagTypeLoc(TagTypeLoc TL) {
if (TL.isDefinition())
return Visit(MakeCXCursor(TL.getDecl(), TU, RegionOfInterest));
return Visit(MakeCursorTypeRef(TL.getDecl(), TL.getNameLoc(), TU));
}
bool CursorVisitor::VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
return Visit(MakeCursorTypeRef(TL.getDecl(), TL.getNameLoc(), TU));
}
bool CursorVisitor::VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
if (Visit(MakeCursorObjCClassRef(TL.getIFaceDecl(), TL.getNameLoc(), TU)))
return true;
return false;
}
bool CursorVisitor::VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
if (TL.hasBaseTypeAsWritten() && Visit(TL.getBaseLoc()))
return true;
for (unsigned I = 0, N = TL.getNumTypeArgs(); I != N; ++I) {
if (Visit(TL.getTypeArgTInfo(I)->getTypeLoc()))
return true;
}
for (unsigned I = 0, N = TL.getNumProtocols(); I != N; ++I) {
if (Visit(MakeCursorObjCProtocolRef(TL.getProtocol(I), TL.getProtocolLoc(I),
TU)))
return true;
}
return false;
}
bool CursorVisitor::VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
return Visit(TL.getPointeeLoc());
}
bool CursorVisitor::VisitParenTypeLoc(ParenTypeLoc TL) {
return Visit(TL.getInnerLoc());
}
bool CursorVisitor::VisitPointerTypeLoc(PointerTypeLoc TL) {
return Visit(TL.getPointeeLoc());
}
bool CursorVisitor::VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
return Visit(TL.getPointeeLoc());
}
bool CursorVisitor::VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
return Visit(TL.getPointeeLoc());
}
bool CursorVisitor::VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
return Visit(TL.getPointeeLoc());
}
bool CursorVisitor::VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
return Visit(TL.getPointeeLoc());
}
bool CursorVisitor::VisitAttributedTypeLoc(AttributedTypeLoc TL) {
return Visit(TL.getModifiedLoc());
}
bool CursorVisitor::VisitFunctionTypeLoc(FunctionTypeLoc TL,
bool SkipResultType) {
if (!SkipResultType && Visit(TL.getReturnLoc()))
return true;
for (unsigned I = 0, N = TL.getNumParams(); I != N; ++I)
if (Decl *D = TL.getParam(I))
if (Visit(MakeCXCursor(D, TU, RegionOfInterest)))
return true;
return false;
}
bool CursorVisitor::VisitArrayTypeLoc(ArrayTypeLoc TL) {
if (Visit(TL.getElementLoc()))
return true;
if (Expr *Size = TL.getSizeExpr())
return Visit(MakeCXCursor(Size, StmtParent, TU, RegionOfInterest));
return false;
}
bool CursorVisitor::VisitDecayedTypeLoc(DecayedTypeLoc TL) {
return Visit(TL.getOriginalLoc());
}
bool CursorVisitor::VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
return Visit(TL.getOriginalLoc());
}
bool CursorVisitor::VisitTemplateSpecializationTypeLoc(
TemplateSpecializationTypeLoc TL) {
// Visit the template name.
if (VisitTemplateName(TL.getTypePtr()->getTemplateName(),
TL.getTemplateNameLoc()))
return true;
// Visit the template arguments.
for (unsigned I = 0, N = TL.getNumArgs(); I != N; ++I)
if (VisitTemplateArgumentLoc(TL.getArgLoc(I)))
return true;
return false;
}
bool CursorVisitor::VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
return Visit(MakeCXCursor(TL.getUnderlyingExpr(), StmtParent, TU));
}
bool CursorVisitor::VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
if (TypeSourceInfo *TSInfo = TL.getUnderlyingTInfo())
return Visit(TSInfo->getTypeLoc());
return false;
}
bool CursorVisitor::VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
if (TypeSourceInfo *TSInfo = TL.getUnderlyingTInfo())
return Visit(TSInfo->getTypeLoc());
return false;
}
bool CursorVisitor::VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
if (VisitNestedNameSpecifierLoc(TL.getQualifierLoc()))
return true;
return false;
}
bool CursorVisitor::VisitDependentTemplateSpecializationTypeLoc(
DependentTemplateSpecializationTypeLoc TL) {
// Visit the nested-name-specifier, if there is one.
if (TL.getQualifierLoc() &&
VisitNestedNameSpecifierLoc(TL.getQualifierLoc()))
return true;
// Visit the template arguments.
for (unsigned I = 0, N = TL.getNumArgs(); I != N; ++I)
if (VisitTemplateArgumentLoc(TL.getArgLoc(I)))
return true;
return false;
}
bool CursorVisitor::VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
if (VisitNestedNameSpecifierLoc(TL.getQualifierLoc()))
return true;
return Visit(TL.getNamedTypeLoc());
}
bool CursorVisitor::VisitPackExpansionTypeLoc(PackExpansionTypeLoc TL) {
return Visit(TL.getPatternLoc());
}
bool CursorVisitor::VisitDecltypeTypeLoc(DecltypeTypeLoc TL) {
if (Expr *E = TL.getUnderlyingExpr())
return Visit(MakeCXCursor(E, StmtParent, TU));
return false;
}
bool CursorVisitor::VisitInjectedClassNameTypeLoc(InjectedClassNameTypeLoc TL) {
return Visit(MakeCursorTypeRef(TL.getDecl(), TL.getNameLoc(), TU));
}
bool CursorVisitor::VisitAtomicTypeLoc(AtomicTypeLoc TL) {
return Visit(TL.getValueLoc());
}
#define DEFAULT_TYPELOC_IMPL(CLASS, PARENT) \
bool CursorVisitor::Visit##CLASS##TypeLoc(CLASS##TypeLoc TL) { \
return Visit##PARENT##Loc(TL); \
}
DEFAULT_TYPELOC_IMPL(Complex, Type)
DEFAULT_TYPELOC_IMPL(ConstantArray, ArrayType)
DEFAULT_TYPELOC_IMPL(IncompleteArray, ArrayType)
DEFAULT_TYPELOC_IMPL(VariableArray, ArrayType)
DEFAULT_TYPELOC_IMPL(DependentSizedArray, ArrayType)
DEFAULT_TYPELOC_IMPL(DependentSizedExtVector, Type)
DEFAULT_TYPELOC_IMPL(Vector, Type)
DEFAULT_TYPELOC_IMPL(ExtVector, VectorType)
DEFAULT_TYPELOC_IMPL(FunctionProto, FunctionType)
DEFAULT_TYPELOC_IMPL(FunctionNoProto, FunctionType)
DEFAULT_TYPELOC_IMPL(Record, TagType)
DEFAULT_TYPELOC_IMPL(Enum, TagType)
DEFAULT_TYPELOC_IMPL(SubstTemplateTypeParm, Type)
DEFAULT_TYPELOC_IMPL(SubstTemplateTypeParmPack, Type)
DEFAULT_TYPELOC_IMPL(Auto, Type)
bool CursorVisitor::VisitCXXRecordDecl(CXXRecordDecl *D) {
// Visit the nested-name-specifier, if present.
if (NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc())
if (VisitNestedNameSpecifierLoc(QualifierLoc))
return true;
if (D->isCompleteDefinition()) {
for (const auto &I : D->bases()) {
if (Visit(cxcursor::MakeCursorCXXBaseSpecifier(&I, TU)))
return true;
}
}
return VisitTagDecl(D);
}
bool CursorVisitor::VisitAttributes(Decl *D) {
for (const auto *I : D->attrs())
if (Visit(MakeCXCursor(I, D, TU)))
return true;
return false;
}
//===----------------------------------------------------------------------===//
// Data-recursive visitor methods.
//===----------------------------------------------------------------------===//
namespace {
#define DEF_JOB(NAME, DATA, KIND)\
class NAME : public VisitorJob {\
public:\
NAME(const DATA *d, CXCursor parent) : \
VisitorJob(parent, VisitorJob::KIND, d) {} \
static bool classof(const VisitorJob *VJ) { return VJ->getKind() == KIND; }\
const DATA *get() const { return static_cast<const DATA*>(data[0]); }\
};
DEF_JOB(StmtVisit, Stmt, StmtVisitKind)
DEF_JOB(MemberExprParts, MemberExpr, MemberExprPartsKind)
DEF_JOB(DeclRefExprParts, DeclRefExpr, DeclRefExprPartsKind)
DEF_JOB(OverloadExprParts, OverloadExpr, OverloadExprPartsKind)
DEF_JOB(ExplicitTemplateArgsVisit, ASTTemplateArgumentListInfo,
ExplicitTemplateArgsVisitKind)
DEF_JOB(SizeOfPackExprParts, SizeOfPackExpr, SizeOfPackExprPartsKind)
DEF_JOB(LambdaExprParts, LambdaExpr, LambdaExprPartsKind)
DEF_JOB(PostChildrenVisit, void, PostChildrenVisitKind)
#undef DEF_JOB
class DeclVisit : public VisitorJob {
public:
DeclVisit(const Decl *D, CXCursor parent, bool isFirst) :
VisitorJob(parent, VisitorJob::DeclVisitKind,
D, isFirst ? (void*) 1 : (void*) nullptr) {}
static bool classof(const VisitorJob *VJ) {
return VJ->getKind() == DeclVisitKind;
}
const Decl *get() const { return static_cast<const Decl *>(data[0]); }
bool isFirst() const { return data[1] != nullptr; }
};
class TypeLocVisit : public VisitorJob {
public:
TypeLocVisit(TypeLoc tl, CXCursor parent) :
VisitorJob(parent, VisitorJob::TypeLocVisitKind,
tl.getType().getAsOpaquePtr(), tl.getOpaqueData()) {}
static bool classof(const VisitorJob *VJ) {
return VJ->getKind() == TypeLocVisitKind;
}
TypeLoc get() const {
QualType T = QualType::getFromOpaquePtr(data[0]);
return TypeLoc(T, const_cast<void *>(data[1]));
}
};
class LabelRefVisit : public VisitorJob {
public:
LabelRefVisit(LabelDecl *LD, SourceLocation labelLoc, CXCursor parent)
: VisitorJob(parent, VisitorJob::LabelRefVisitKind, LD,
labelLoc.getPtrEncoding()) {}
static bool classof(const VisitorJob *VJ) {
return VJ->getKind() == VisitorJob::LabelRefVisitKind;
}
const LabelDecl *get() const {
return static_cast<const LabelDecl *>(data[0]);
}
SourceLocation getLoc() const {
return SourceLocation::getFromPtrEncoding(data[1]); }
};
class NestedNameSpecifierLocVisit : public VisitorJob {
public:
NestedNameSpecifierLocVisit(NestedNameSpecifierLoc Qualifier, CXCursor parent)
: VisitorJob(parent, VisitorJob::NestedNameSpecifierLocVisitKind,
Qualifier.getNestedNameSpecifier(),
Qualifier.getOpaqueData()) { }
static bool classof(const VisitorJob *VJ) {
return VJ->getKind() == VisitorJob::NestedNameSpecifierLocVisitKind;
}
NestedNameSpecifierLoc get() const {
return NestedNameSpecifierLoc(
const_cast<NestedNameSpecifier *>(
static_cast<const NestedNameSpecifier *>(data[0])),
const_cast<void *>(data[1]));
}
};
class DeclarationNameInfoVisit : public VisitorJob {
public:
DeclarationNameInfoVisit(const Stmt *S, CXCursor parent)
: VisitorJob(parent, VisitorJob::DeclarationNameInfoVisitKind, S) {}
static bool classof(const VisitorJob *VJ) {
return VJ->getKind() == VisitorJob::DeclarationNameInfoVisitKind;
}
DeclarationNameInfo get() const {
const Stmt *S = static_cast<const Stmt *>(data[0]);
switch (S->getStmtClass()) {
default:
llvm_unreachable("Unhandled Stmt");
case clang::Stmt::MSDependentExistsStmtClass:
return cast<MSDependentExistsStmt>(S)->getNameInfo();
case Stmt::CXXDependentScopeMemberExprClass:
return cast<CXXDependentScopeMemberExpr>(S)->getMemberNameInfo();
case Stmt::DependentScopeDeclRefExprClass:
return cast<DependentScopeDeclRefExpr>(S)->getNameInfo();
case Stmt::OMPCriticalDirectiveClass:
return cast<OMPCriticalDirective>(S)->getDirectiveName();
}
}
};
class MemberRefVisit : public VisitorJob {
public:
MemberRefVisit(const FieldDecl *D, SourceLocation L, CXCursor parent)
: VisitorJob(parent, VisitorJob::MemberRefVisitKind, D,
L.getPtrEncoding()) {}
static bool classof(const VisitorJob *VJ) {
return VJ->getKind() == VisitorJob::MemberRefVisitKind;
}
const FieldDecl *get() const {
return static_cast<const FieldDecl *>(data[0]);
}
SourceLocation getLoc() const {
return SourceLocation::getFromRawEncoding((unsigned)(uintptr_t) data[1]);
}
};
class EnqueueVisitor : public ConstStmtVisitor<EnqueueVisitor, void> {
friend class OMPClauseEnqueue;
VisitorWorkList &WL;
CXCursor Parent;
public:
EnqueueVisitor(VisitorWorkList &wl, CXCursor parent)
: WL(wl), Parent(parent) {}
void VisitAddrLabelExpr(const AddrLabelExpr *E);
void VisitBlockExpr(const BlockExpr *B);
void VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
void VisitCompoundStmt(const CompoundStmt *S);
void VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) { /* Do nothing. */ }
void VisitMSDependentExistsStmt(const MSDependentExistsStmt *S);
void VisitCXXDependentScopeMemberExpr(const CXXDependentScopeMemberExpr *E);
void VisitCXXNewExpr(const CXXNewExpr *E);
void VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E);
void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *E);
void VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
void VisitCXXTemporaryObjectExpr(const CXXTemporaryObjectExpr *E);
void VisitCXXTypeidExpr(const CXXTypeidExpr *E);
void VisitCXXUnresolvedConstructExpr(const CXXUnresolvedConstructExpr *E);
void VisitCXXUuidofExpr(const CXXUuidofExpr *E);
void VisitCXXCatchStmt(const CXXCatchStmt *S);
void VisitCXXForRangeStmt(const CXXForRangeStmt *S);
void VisitDeclRefExpr(const DeclRefExpr *D);
void VisitDeclStmt(const DeclStmt *S);
void VisitDependentScopeDeclRefExpr(const DependentScopeDeclRefExpr *E);
void VisitDesignatedInitExpr(const DesignatedInitExpr *E);
void VisitExplicitCastExpr(const ExplicitCastExpr *E);
void VisitForStmt(const ForStmt *FS);
void VisitGotoStmt(const GotoStmt *GS);
void VisitIfStmt(const IfStmt *If);
void VisitInitListExpr(const InitListExpr *IE);
void VisitMemberExpr(const MemberExpr *M);
void VisitOffsetOfExpr(const OffsetOfExpr *E);
void VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
void VisitObjCMessageExpr(const ObjCMessageExpr *M);
void VisitOverloadExpr(const OverloadExpr *E);
void VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
void VisitStmt(const Stmt *S);
void VisitSwitchStmt(const SwitchStmt *S);
void VisitWhileStmt(const WhileStmt *W);
void VisitTypeTraitExpr(const TypeTraitExpr *E);
void VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E);
void VisitExpressionTraitExpr(const ExpressionTraitExpr *E);
void VisitUnresolvedMemberExpr(const UnresolvedMemberExpr *U);
void VisitVAArgExpr(const VAArgExpr *E);
void VisitSizeOfPackExpr(const SizeOfPackExpr *E);
void VisitPseudoObjectExpr(const PseudoObjectExpr *E);
void VisitOpaqueValueExpr(const OpaqueValueExpr *E);
void VisitLambdaExpr(const LambdaExpr *E);
void VisitOMPExecutableDirective(const OMPExecutableDirective *D);
void VisitOMPLoopDirective(const OMPLoopDirective *D);
void VisitOMPParallelDirective(const OMPParallelDirective *D);
void VisitOMPSimdDirective(const OMPSimdDirective *D);
void VisitOMPForDirective(const OMPForDirective *D);
void VisitOMPForSimdDirective(const OMPForSimdDirective *D);
void VisitOMPSectionsDirective(const OMPSectionsDirective *D);
void VisitOMPSectionDirective(const OMPSectionDirective *D);
void VisitOMPSingleDirective(const OMPSingleDirective *D);
void VisitOMPMasterDirective(const OMPMasterDirective *D);
void VisitOMPCriticalDirective(const OMPCriticalDirective *D);
void VisitOMPParallelForDirective(const OMPParallelForDirective *D);
void VisitOMPParallelForSimdDirective(const OMPParallelForSimdDirective *D);
void VisitOMPParallelSectionsDirective(const OMPParallelSectionsDirective *D);
void VisitOMPTaskDirective(const OMPTaskDirective *D);
void VisitOMPTaskyieldDirective(const OMPTaskyieldDirective *D);
void VisitOMPBarrierDirective(const OMPBarrierDirective *D);
void VisitOMPTaskwaitDirective(const OMPTaskwaitDirective *D);
void VisitOMPTaskgroupDirective(const OMPTaskgroupDirective *D);
void
VisitOMPCancellationPointDirective(const OMPCancellationPointDirective *D);
void VisitOMPCancelDirective(const OMPCancelDirective *D);
void VisitOMPFlushDirective(const OMPFlushDirective *D);
void VisitOMPOrderedDirective(const OMPOrderedDirective *D);
void VisitOMPAtomicDirective(const OMPAtomicDirective *D);
void VisitOMPTargetDirective(const OMPTargetDirective *D);
void VisitOMPTargetDataDirective(const OMPTargetDataDirective *D);
void VisitOMPTeamsDirective(const OMPTeamsDirective *D);
private:
void AddDeclarationNameInfo(const Stmt *S);
void AddNestedNameSpecifierLoc(NestedNameSpecifierLoc Qualifier);
void AddExplicitTemplateArgs(const ASTTemplateArgumentListInfo *A);
void AddMemberRef(const FieldDecl *D, SourceLocation L);
void AddStmt(const Stmt *S);
void AddDecl(const Decl *D, bool isFirst = true);
void AddTypeLoc(TypeSourceInfo *TI);
void EnqueueChildren(const Stmt *S);
void EnqueueChildren(const OMPClause *S);
};
} // end anonyous namespace
void EnqueueVisitor::AddDeclarationNameInfo(const Stmt *S) {
// 'S' should always be non-null, since it comes from the
// statement we are visiting.
WL.push_back(DeclarationNameInfoVisit(S, Parent));
}
void
EnqueueVisitor::AddNestedNameSpecifierLoc(NestedNameSpecifierLoc Qualifier) {
if (Qualifier)
WL.push_back(NestedNameSpecifierLocVisit(Qualifier, Parent));
}
void EnqueueVisitor::AddStmt(const Stmt *S) {
if (S)
WL.push_back(StmtVisit(S, Parent));
}
void EnqueueVisitor::AddDecl(const Decl *D, bool isFirst) {
if (D)
WL.push_back(DeclVisit(D, Parent, isFirst));
}
void EnqueueVisitor::
AddExplicitTemplateArgs(const ASTTemplateArgumentListInfo *A) {
if (A)
WL.push_back(ExplicitTemplateArgsVisit(A, Parent));
}
void EnqueueVisitor::AddMemberRef(const FieldDecl *D, SourceLocation L) {
if (D)
WL.push_back(MemberRefVisit(D, L, Parent));
}
void EnqueueVisitor::AddTypeLoc(TypeSourceInfo *TI) {
if (TI)
WL.push_back(TypeLocVisit(TI->getTypeLoc(), Parent));
}
void EnqueueVisitor::EnqueueChildren(const Stmt *S) {
unsigned size = WL.size();
for (const Stmt *SubStmt : S->children()) {
AddStmt(SubStmt);
}
if (size == WL.size())
return;
// Now reverse the entries we just added. This will match the DFS
// ordering performed by the worklist.
VisitorWorkList::iterator I = WL.begin() + size, E = WL.end();
std::reverse(I, E);
}
namespace {
class OMPClauseEnqueue : public ConstOMPClauseVisitor<OMPClauseEnqueue> {
EnqueueVisitor *Visitor;
/// \brief Process clauses with list of variables.
template <typename T>
void VisitOMPClauseList(T *Node);
public:
OMPClauseEnqueue(EnqueueVisitor *Visitor) : Visitor(Visitor) { }
#define OPENMP_CLAUSE(Name, Class) \
void Visit##Class(const Class *C);
#include "clang/Basic/OpenMPKinds.def"
};
void OMPClauseEnqueue::VisitOMPIfClause(const OMPIfClause *C) {
Visitor->AddStmt(C->getCondition());
}
void OMPClauseEnqueue::VisitOMPFinalClause(const OMPFinalClause *C) {
Visitor->AddStmt(C->getCondition());
}
void OMPClauseEnqueue::VisitOMPNumThreadsClause(const OMPNumThreadsClause *C) {
Visitor->AddStmt(C->getNumThreads());
}
void OMPClauseEnqueue::VisitOMPSafelenClause(const OMPSafelenClause *C) {
Visitor->AddStmt(C->getSafelen());
}
void OMPClauseEnqueue::VisitOMPSimdlenClause(const OMPSimdlenClause *C) {
Visitor->AddStmt(C->getSimdlen());
}
void OMPClauseEnqueue::VisitOMPCollapseClause(const OMPCollapseClause *C) {
Visitor->AddStmt(C->getNumForLoops());
}
void OMPClauseEnqueue::VisitOMPDefaultClause(const OMPDefaultClause *C) { }
void OMPClauseEnqueue::VisitOMPProcBindClause(const OMPProcBindClause *C) { }
void OMPClauseEnqueue::VisitOMPScheduleClause(const OMPScheduleClause *C) {
Visitor->AddStmt(C->getChunkSize());
Visitor->AddStmt(C->getHelperChunkSize());
}
void OMPClauseEnqueue::VisitOMPOrderedClause(const OMPOrderedClause *C) {
Visitor->AddStmt(C->getNumForLoops());
}
void OMPClauseEnqueue::VisitOMPNowaitClause(const OMPNowaitClause *) {}
void OMPClauseEnqueue::VisitOMPUntiedClause(const OMPUntiedClause *) {}
void OMPClauseEnqueue::VisitOMPMergeableClause(const OMPMergeableClause *) {}
void OMPClauseEnqueue::VisitOMPReadClause(const OMPReadClause *) {}
void OMPClauseEnqueue::VisitOMPWriteClause(const OMPWriteClause *) {}
void OMPClauseEnqueue::VisitOMPUpdateClause(const OMPUpdateClause *) {}
void OMPClauseEnqueue::VisitOMPCaptureClause(const OMPCaptureClause *) {}
void OMPClauseEnqueue::VisitOMPSeqCstClause(const OMPSeqCstClause *) {}
void OMPClauseEnqueue::VisitOMPDeviceClause(const OMPDeviceClause *C) {
Visitor->AddStmt(C->getDevice());
}
template<typename T>
void OMPClauseEnqueue::VisitOMPClauseList(T *Node) {
for (const auto *I : Node->varlists()) {
Visitor->AddStmt(I);
}
}
void OMPClauseEnqueue::VisitOMPPrivateClause(const OMPPrivateClause *C) {
VisitOMPClauseList(C);
for (const auto *E : C->private_copies()) {
Visitor->AddStmt(E);
}
}
void OMPClauseEnqueue::VisitOMPFirstprivateClause(
const OMPFirstprivateClause *C) {
VisitOMPClauseList(C);
}
void OMPClauseEnqueue::VisitOMPLastprivateClause(
const OMPLastprivateClause *C) {
VisitOMPClauseList(C);
for (auto *E : C->private_copies()) {
Visitor->AddStmt(E);
}
for (auto *E : C->source_exprs()) {
Visitor->AddStmt(E);
}
for (auto *E : C->destination_exprs()) {
Visitor->AddStmt(E);
}
for (auto *E : C->assignment_ops()) {
Visitor->AddStmt(E);
}
}
void OMPClauseEnqueue::VisitOMPSharedClause(const OMPSharedClause *C) {
VisitOMPClauseList(C);
}
void OMPClauseEnqueue::VisitOMPReductionClause(const OMPReductionClause *C) {
VisitOMPClauseList(C);
for (auto *E : C->lhs_exprs()) {
Visitor->AddStmt(E);
}
for (auto *E : C->rhs_exprs()) {
Visitor->AddStmt(E);
}
for (auto *E : C->reduction_ops()) {
Visitor->AddStmt(E);
}
}
void OMPClauseEnqueue::VisitOMPLinearClause(const OMPLinearClause *C) {
VisitOMPClauseList(C);
for (const auto *E : C->privates()) {
Visitor->AddStmt(E);
}
for (const auto *E : C->inits()) {
Visitor->AddStmt(E);
}
for (const auto *E : C->updates()) {
Visitor->AddStmt(E);
}
for (const auto *E : C->finals()) {
Visitor->AddStmt(E);
}
Visitor->AddStmt(C->getStep());
Visitor->AddStmt(C->getCalcStep());
}
void OMPClauseEnqueue::VisitOMPAlignedClause(const OMPAlignedClause *C) {
VisitOMPClauseList(C);
Visitor->AddStmt(C->getAlignment());
}
void OMPClauseEnqueue::VisitOMPCopyinClause(const OMPCopyinClause *C) {
VisitOMPClauseList(C);
for (auto *E : C->source_exprs()) {
Visitor->AddStmt(E);
}
for (auto *E : C->destination_exprs()) {
Visitor->AddStmt(E);
}
for (auto *E : C->assignment_ops()) {
Visitor->AddStmt(E);
}
}
void
OMPClauseEnqueue::VisitOMPCopyprivateClause(const OMPCopyprivateClause *C) {
VisitOMPClauseList(C);
for (auto *E : C->source_exprs()) {
Visitor->AddStmt(E);
}
for (auto *E : C->destination_exprs()) {
Visitor->AddStmt(E);
}
for (auto *E : C->assignment_ops()) {
Visitor->AddStmt(E);
}
}
void OMPClauseEnqueue::VisitOMPFlushClause(const OMPFlushClause *C) {
VisitOMPClauseList(C);
}
void OMPClauseEnqueue::VisitOMPDependClause(const OMPDependClause *C) {
VisitOMPClauseList(C);
}
}
void EnqueueVisitor::EnqueueChildren(const OMPClause *S) {
unsigned size = WL.size();
OMPClauseEnqueue Visitor(this);
Visitor.Visit(S);
if (size == WL.size())
return;
// Now reverse the entries we just added. This will match the DFS
// ordering performed by the worklist.
VisitorWorkList::iterator I = WL.begin() + size, E = WL.end();
std::reverse(I, E);
}
void EnqueueVisitor::VisitAddrLabelExpr(const AddrLabelExpr *E) {
WL.push_back(LabelRefVisit(E->getLabel(), E->getLabelLoc(), Parent));
}
void EnqueueVisitor::VisitBlockExpr(const BlockExpr *B) {
AddDecl(B->getBlockDecl());
}
void EnqueueVisitor::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
EnqueueChildren(E);
AddTypeLoc(E->getTypeSourceInfo());
}
void EnqueueVisitor::VisitCompoundStmt(const CompoundStmt *S) {
for (auto &I : llvm::reverse(S->body()))
AddStmt(I);
}
void EnqueueVisitor::
VisitMSDependentExistsStmt(const MSDependentExistsStmt *S) {
AddStmt(S->getSubStmt());
AddDeclarationNameInfo(S);
if (NestedNameSpecifierLoc QualifierLoc = S->getQualifierLoc())
AddNestedNameSpecifierLoc(QualifierLoc);
}
void EnqueueVisitor::
VisitCXXDependentScopeMemberExpr(const CXXDependentScopeMemberExpr *E) {
AddExplicitTemplateArgs(E->getOptionalExplicitTemplateArgs());
AddDeclarationNameInfo(E);
if (NestedNameSpecifierLoc QualifierLoc = E->getQualifierLoc())
AddNestedNameSpecifierLoc(QualifierLoc);
if (!E->isImplicitAccess())
AddStmt(E->getBase());
}
void EnqueueVisitor::VisitCXXNewExpr(const CXXNewExpr *E) {
// Enqueue the initializer , if any.
AddStmt(E->getInitializer());
// Enqueue the array size, if any.
AddStmt(E->getArraySize());
// Enqueue the allocated type.
AddTypeLoc(E->getAllocatedTypeSourceInfo());
// Enqueue the placement arguments.
for (unsigned I = E->getNumPlacementArgs(); I > 0; --I)
AddStmt(E->getPlacementArg(I-1));
}
void EnqueueVisitor::VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *CE) {
for (unsigned I = CE->getNumArgs(); I > 1 /* Yes, this is 1 */; --I)
AddStmt(CE->getArg(I-1));
AddStmt(CE->getCallee());
AddStmt(CE->getArg(0));
}
void EnqueueVisitor::VisitCXXPseudoDestructorExpr(
const CXXPseudoDestructorExpr *E) {
// Visit the name of the type being destroyed.
AddTypeLoc(E->getDestroyedTypeInfo());
// Visit the scope type that looks disturbingly like the nested-name-specifier
// but isn't.
AddTypeLoc(E->getScopeTypeInfo());
// Visit the nested-name-specifier.
if (NestedNameSpecifierLoc QualifierLoc = E->getQualifierLoc())
AddNestedNameSpecifierLoc(QualifierLoc);
// Visit base expression.
AddStmt(E->getBase());
}
void EnqueueVisitor::VisitCXXScalarValueInitExpr(
const CXXScalarValueInitExpr *E) {
AddTypeLoc(E->getTypeSourceInfo());
}
void EnqueueVisitor::VisitCXXTemporaryObjectExpr(
const CXXTemporaryObjectExpr *E) {
EnqueueChildren(E);
AddTypeLoc(E->getTypeSourceInfo());
}
void EnqueueVisitor::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
EnqueueChildren(E);
if (E->isTypeOperand())
AddTypeLoc(E->getTypeOperandSourceInfo());
}
void EnqueueVisitor::VisitCXXUnresolvedConstructExpr(
const CXXUnresolvedConstructExpr *E) {
EnqueueChildren(E);
AddTypeLoc(E->getTypeSourceInfo());
}
void EnqueueVisitor::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
EnqueueChildren(E);
if (E->isTypeOperand())
AddTypeLoc(E->getTypeOperandSourceInfo());
}
void EnqueueVisitor::VisitCXXCatchStmt(const CXXCatchStmt *S) {
EnqueueChildren(S);
AddDecl(S->getExceptionDecl());
}
void EnqueueVisitor::VisitCXXForRangeStmt(const CXXForRangeStmt *S) {
AddStmt(S->getBody());
AddStmt(S->getRangeInit());
AddDecl(S->getLoopVariable());
}
void EnqueueVisitor::VisitDeclRefExpr(const DeclRefExpr *DR) {
if (DR->hasExplicitTemplateArgs()) {
AddExplicitTemplateArgs(&DR->getExplicitTemplateArgs());
}
WL.push_back(DeclRefExprParts(DR, Parent));
}
void EnqueueVisitor::VisitDependentScopeDeclRefExpr(
const DependentScopeDeclRefExpr *E) {
AddExplicitTemplateArgs(E->getOptionalExplicitTemplateArgs());
AddDeclarationNameInfo(E);
AddNestedNameSpecifierLoc(E->getQualifierLoc());
}
void EnqueueVisitor::VisitDeclStmt(const DeclStmt *S) {
unsigned size = WL.size();
bool isFirst = true;
for (const auto *D : S->decls()) {
AddDecl(D, isFirst);
isFirst = false;
}
if (size == WL.size())
return;
// Now reverse the entries we just added. This will match the DFS
// ordering performed by the worklist.
VisitorWorkList::iterator I = WL.begin() + size, E = WL.end();
std::reverse(I, E);
}
void EnqueueVisitor::VisitDesignatedInitExpr(const DesignatedInitExpr *E) {
AddStmt(E->getInit());
for (DesignatedInitExpr::const_reverse_designators_iterator
D = E->designators_rbegin(), DEnd = E->designators_rend();
D != DEnd; ++D) {
if (D->isFieldDesignator()) {
if (FieldDecl *Field = D->getField())
AddMemberRef(Field, D->getFieldLoc());
continue;
}
if (D->isArrayDesignator()) {
AddStmt(E->getArrayIndex(*D));
continue;
}
assert(D->isArrayRangeDesignator() && "Unknown designator kind");
AddStmt(E->getArrayRangeEnd(*D));
AddStmt(E->getArrayRangeStart(*D));
}
}
void EnqueueVisitor::VisitExplicitCastExpr(const ExplicitCastExpr *E) {
EnqueueChildren(E);
AddTypeLoc(E->getTypeInfoAsWritten());
}
void EnqueueVisitor::VisitForStmt(const ForStmt *FS) {
AddStmt(FS->getBody());
AddStmt(FS->getInc());
AddStmt(FS->getCond());
AddDecl(FS->getConditionVariable());
AddStmt(FS->getInit());
}
void EnqueueVisitor::VisitGotoStmt(const GotoStmt *GS) {
WL.push_back(LabelRefVisit(GS->getLabel(), GS->getLabelLoc(), Parent));
}
void EnqueueVisitor::VisitIfStmt(const IfStmt *If) {
AddStmt(If->getElse());
AddStmt(If->getThen());
AddStmt(If->getCond());
AddDecl(If->getConditionVariable());
}
void EnqueueVisitor::VisitInitListExpr(const InitListExpr *IE) {
// We care about the syntactic form of the initializer list, only.
if (InitListExpr *Syntactic = IE->getSyntacticForm())
IE = Syntactic;
EnqueueChildren(IE);
}
void EnqueueVisitor::VisitMemberExpr(const MemberExpr *M) {
WL.push_back(MemberExprParts(M, Parent));
// If the base of the member access expression is an implicit 'this', don't
// visit it.
// FIXME: If we ever want to show these implicit accesses, this will be
// unfortunate. However, clang_getCursor() relies on this behavior.
if (M->isImplicitAccess())
return;
// Ignore base anonymous struct/union fields, otherwise they will shadow the
// real field that that we are interested in.
if (auto *SubME = dyn_cast<MemberExpr>(M->getBase())) {
if (auto *FD = dyn_cast_or_null<FieldDecl>(SubME->getMemberDecl())) {
if (FD->isAnonymousStructOrUnion()) {
AddStmt(SubME->getBase());
return;
}
}
}
AddStmt(M->getBase());
}
void EnqueueVisitor::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
AddTypeLoc(E->getEncodedTypeSourceInfo());
}
void EnqueueVisitor::VisitObjCMessageExpr(const ObjCMessageExpr *M) {
EnqueueChildren(M);
AddTypeLoc(M->getClassReceiverTypeInfo());
}
void EnqueueVisitor::VisitOffsetOfExpr(const OffsetOfExpr *E) {
// Visit the components of the offsetof expression.
for (unsigned N = E->getNumComponents(), I = N; I > 0; --I) {
typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
const OffsetOfNode &Node = E->getComponent(I-1);
switch (Node.getKind()) {
case OffsetOfNode::Array:
AddStmt(E->getIndexExpr(Node.getArrayExprIndex()));
break;
case OffsetOfNode::Field:
AddMemberRef(Node.getField(), Node.getSourceRange().getEnd());
break;
case OffsetOfNode::Identifier:
case OffsetOfNode::Base:
continue;
}
}
// Visit the type into which we're computing the offset.
AddTypeLoc(E->getTypeSourceInfo());
}
void EnqueueVisitor::VisitOverloadExpr(const OverloadExpr *E) {
AddExplicitTemplateArgs(E->getOptionalExplicitTemplateArgs());
WL.push_back(OverloadExprParts(E, Parent));
}
void EnqueueVisitor::VisitUnaryExprOrTypeTraitExpr(
const UnaryExprOrTypeTraitExpr *E) {
EnqueueChildren(E);
if (E->isArgumentType())
AddTypeLoc(E->getArgumentTypeInfo());
}
void EnqueueVisitor::VisitStmt(const Stmt *S) {
EnqueueChildren(S);
}
void EnqueueVisitor::VisitSwitchStmt(const SwitchStmt *S) {
AddStmt(S->getBody());
AddStmt(S->getCond());
AddDecl(S->getConditionVariable());
}
void EnqueueVisitor::VisitWhileStmt(const WhileStmt *W) {
AddStmt(W->getBody());
AddStmt(W->getCond());
AddDecl(W->getConditionVariable());
}
void EnqueueVisitor::VisitTypeTraitExpr(const TypeTraitExpr *E) {
for (unsigned I = E->getNumArgs(); I > 0; --I)
AddTypeLoc(E->getArg(I-1));
}
void EnqueueVisitor::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
AddTypeLoc(E->getQueriedTypeSourceInfo());
}
void EnqueueVisitor::VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
EnqueueChildren(E);
}
void EnqueueVisitor::VisitUnresolvedMemberExpr(const UnresolvedMemberExpr *U) {
VisitOverloadExpr(U);
if (!U->isImplicitAccess())
AddStmt(U->getBase());
}
void EnqueueVisitor::VisitVAArgExpr(const VAArgExpr *E) {
AddStmt(E->getSubExpr());
AddTypeLoc(E->getWrittenTypeInfo());
}
void EnqueueVisitor::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
WL.push_back(SizeOfPackExprParts(E, Parent));
}
void EnqueueVisitor::VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
// If the opaque value has a source expression, just transparently
// visit that. This is useful for (e.g.) pseudo-object expressions.
if (Expr *SourceExpr = E->getSourceExpr())
return Visit(SourceExpr);
}
void EnqueueVisitor::VisitLambdaExpr(const LambdaExpr *E) {
AddStmt(E->getBody());
WL.push_back(LambdaExprParts(E, Parent));
}
void EnqueueVisitor::VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
// Treat the expression like its syntactic form.
Visit(E->getSyntacticForm());
}
void EnqueueVisitor::VisitOMPExecutableDirective(
const OMPExecutableDirective *D) {
EnqueueChildren(D);
for (ArrayRef<OMPClause *>::iterator I = D->clauses().begin(),
E = D->clauses().end();
I != E; ++I)
EnqueueChildren(*I);
}
void EnqueueVisitor::VisitOMPLoopDirective(const OMPLoopDirective *D) {
VisitOMPExecutableDirective(D);
}
void EnqueueVisitor::VisitOMPParallelDirective(const OMPParallelDirective *D) {
VisitOMPExecutableDirective(D);
}
void EnqueueVisitor::VisitOMPSimdDirective(const OMPSimdDirective *D) {
VisitOMPLoopDirective(D);
}
void EnqueueVisitor::VisitOMPForDirective(const OMPForDirective *D) {
VisitOMPLoopDirective(D);
}
void EnqueueVisitor::VisitOMPForSimdDirective(const OMPForSimdDirective *D) {
VisitOMPLoopDirective(D);
}
void EnqueueVisitor::VisitOMPSectionsDirective(const OMPSectionsDirective *D) {
VisitOMPExecutableDirective(D);
}
void EnqueueVisitor::VisitOMPSectionDirective(const OMPSectionDirective *D) {
VisitOMPExecutableDirective(D);
}
void EnqueueVisitor::VisitOMPSingleDirective(const OMPSingleDirective *D) {
VisitOMPExecutableDirective(D);
}
void EnqueueVisitor::VisitOMPMasterDirective(const OMPMasterDirective *D) {
VisitOMPExecutableDirective(D);
}
void EnqueueVisitor::VisitOMPCriticalDirective(const OMPCriticalDirective *D) {
VisitOMPExecutableDirective(D);
AddDeclarationNameInfo(D);
}
void
EnqueueVisitor::VisitOMPParallelForDirective(const OMPParallelForDirective *D) {
VisitOMPLoopDirective(D);
}
void EnqueueVisitor::VisitOMPParallelForSimdDirective(
const OMPParallelForSimdDirective *D) {
VisitOMPLoopDirective(D);
}
void EnqueueVisitor::VisitOMPParallelSectionsDirective(
const OMPParallelSectionsDirective *D) {
VisitOMPExecutableDirective(D);
}
void EnqueueVisitor::VisitOMPTaskDirective(const OMPTaskDirective *D) {
VisitOMPExecutableDirective(D);
}
void
EnqueueVisitor::VisitOMPTaskyieldDirective(const OMPTaskyieldDirective *D) {
VisitOMPExecutableDirective(D);
}
void EnqueueVisitor::VisitOMPBarrierDirective(const OMPBarrierDirective *D) {
VisitOMPExecutableDirective(D);
}
void EnqueueVisitor::VisitOMPTaskwaitDirective(const OMPTaskwaitDirective *D) {
VisitOMPExecutableDirective(D);
}
void EnqueueVisitor::VisitOMPTaskgroupDirective(
const OMPTaskgroupDirective *D) {
VisitOMPExecutableDirective(D);
}
void EnqueueVisitor::VisitOMPFlushDirective(const OMPFlushDirective *D) {
VisitOMPExecutableDirective(D);
}
void EnqueueVisitor::VisitOMPOrderedDirective(const OMPOrderedDirective *D) {
VisitOMPExecutableDirective(D);
}
void EnqueueVisitor::VisitOMPAtomicDirective(const OMPAtomicDirective *D) {
VisitOMPExecutableDirective(D);
}
void EnqueueVisitor::VisitOMPTargetDirective(const OMPTargetDirective *D) {
VisitOMPExecutableDirective(D);
}
void EnqueueVisitor::VisitOMPTargetDataDirective(const
OMPTargetDataDirective *D) {
VisitOMPExecutableDirective(D);
}
void EnqueueVisitor::VisitOMPTeamsDirective(const OMPTeamsDirective *D) {
VisitOMPExecutableDirective(D);
}
void EnqueueVisitor::VisitOMPCancellationPointDirective(
const OMPCancellationPointDirective *D) {
VisitOMPExecutableDirective(D);
}
void EnqueueVisitor::VisitOMPCancelDirective(const OMPCancelDirective *D) {
VisitOMPExecutableDirective(D);
}
void CursorVisitor::EnqueueWorkList(VisitorWorkList &WL, const Stmt *S) {
EnqueueVisitor(WL, MakeCXCursor(S, StmtParent, TU,RegionOfInterest)).Visit(S);
}
bool CursorVisitor::IsInRegionOfInterest(CXCursor C) {
if (RegionOfInterest.isValid()) {
SourceRange Range = getRawCursorExtent(C);
if (Range.isInvalid() || CompareRegionOfInterest(Range))
return false;
}
return true;
}
bool CursorVisitor::RunVisitorWorkList(VisitorWorkList &WL) {
while (!WL.empty()) {
// Dequeue the worklist item.
VisitorJob LI = WL.pop_back_val();
// Set the Parent field, then back to its old value once we're done.
SetParentRAII SetParent(Parent, StmtParent, LI.getParent());
switch (LI.getKind()) {
case VisitorJob::DeclVisitKind: {
const Decl *D = cast<DeclVisit>(&LI)->get();
if (!D)
continue;
// For now, perform default visitation for Decls.
if (Visit(MakeCXCursor(D, TU, RegionOfInterest,
cast<DeclVisit>(&LI)->isFirst())))
return true;
continue;
}
case VisitorJob::ExplicitTemplateArgsVisitKind: {
const ASTTemplateArgumentListInfo *ArgList =
cast<ExplicitTemplateArgsVisit>(&LI)->get();
for (const TemplateArgumentLoc *Arg = ArgList->getTemplateArgs(),
*ArgEnd = Arg + ArgList->NumTemplateArgs;
Arg != ArgEnd; ++Arg) {
if (VisitTemplateArgumentLoc(*Arg))
return true;
}
continue;
}
case VisitorJob::TypeLocVisitKind: {
// Perform default visitation for TypeLocs.
if (Visit(cast<TypeLocVisit>(&LI)->get()))
return true;
continue;
}
case VisitorJob::LabelRefVisitKind: {
const LabelDecl *LS = cast<LabelRefVisit>(&LI)->get();
if (LabelStmt *stmt = LS->getStmt()) {
if (Visit(MakeCursorLabelRef(stmt, cast<LabelRefVisit>(&LI)->getLoc(),
TU))) {
return true;
}
}
continue;
}
case VisitorJob::NestedNameSpecifierLocVisitKind: {
NestedNameSpecifierLocVisit *V = cast<NestedNameSpecifierLocVisit>(&LI);
if (VisitNestedNameSpecifierLoc(V->get()))
return true;
continue;
}
case VisitorJob::DeclarationNameInfoVisitKind: {
if (VisitDeclarationNameInfo(cast<DeclarationNameInfoVisit>(&LI)
->get()))
return true;
continue;
}
case VisitorJob::MemberRefVisitKind: {
MemberRefVisit *V = cast<MemberRefVisit>(&LI);
if (Visit(MakeCursorMemberRef(V->get(), V->getLoc(), TU)))
return true;
continue;
}
case VisitorJob::StmtVisitKind: {
const Stmt *S = cast<StmtVisit>(&LI)->get();
if (!S)
continue;
// Update the current cursor.
CXCursor Cursor = MakeCXCursor(S, StmtParent, TU, RegionOfInterest);
if (!IsInRegionOfInterest(Cursor))
continue;
switch (Visitor(Cursor, Parent, ClientData)) {
case CXChildVisit_Break: return true;
case CXChildVisit_Continue: break;
case CXChildVisit_Recurse:
if (PostChildrenVisitor)
WL.push_back(PostChildrenVisit(nullptr, Cursor));
EnqueueWorkList(WL, S);
break;
}
continue;
}
case VisitorJob::MemberExprPartsKind: {
// Handle the other pieces in the MemberExpr besides the base.
const MemberExpr *M = cast<MemberExprParts>(&LI)->get();
// Visit the nested-name-specifier
if (NestedNameSpecifierLoc QualifierLoc = M->getQualifierLoc())
if (VisitNestedNameSpecifierLoc(QualifierLoc))
return true;
// Visit the declaration name.
if (VisitDeclarationNameInfo(M->getMemberNameInfo()))
return true;
// Visit the explicitly-specified template arguments, if any.
if (M->hasExplicitTemplateArgs()) {
for (const TemplateArgumentLoc *Arg = M->getTemplateArgs(),
*ArgEnd = Arg + M->getNumTemplateArgs();
Arg != ArgEnd; ++Arg) {
if (VisitTemplateArgumentLoc(*Arg))
return true;
}
}
continue;
}
case VisitorJob::DeclRefExprPartsKind: {
const DeclRefExpr *DR = cast<DeclRefExprParts>(&LI)->get();
// Visit nested-name-specifier, if present.
if (NestedNameSpecifierLoc QualifierLoc = DR->getQualifierLoc())
if (VisitNestedNameSpecifierLoc(QualifierLoc))
return true;
// Visit declaration name.
if (VisitDeclarationNameInfo(DR->getNameInfo()))
return true;
continue;
}
case VisitorJob::OverloadExprPartsKind: {
const OverloadExpr *O = cast<OverloadExprParts>(&LI)->get();
// Visit the nested-name-specifier.
if (NestedNameSpecifierLoc QualifierLoc = O->getQualifierLoc())
if (VisitNestedNameSpecifierLoc(QualifierLoc))
return true;
// Visit the declaration name.
if (VisitDeclarationNameInfo(O->getNameInfo()))
return true;
// Visit the overloaded declaration reference.
if (Visit(MakeCursorOverloadedDeclRef(O, TU)))
return true;
continue;
}
case VisitorJob::SizeOfPackExprPartsKind: {
const SizeOfPackExpr *E = cast<SizeOfPackExprParts>(&LI)->get();
NamedDecl *Pack = E->getPack();
if (isa<TemplateTypeParmDecl>(Pack)) {
if (Visit(MakeCursorTypeRef(cast<TemplateTypeParmDecl>(Pack),
E->getPackLoc(), TU)))
return true;
continue;
}
if (isa<TemplateTemplateParmDecl>(Pack)) {
if (Visit(MakeCursorTemplateRef(cast<TemplateTemplateParmDecl>(Pack),
E->getPackLoc(), TU)))
return true;
continue;
}
// Non-type template parameter packs and function parameter packs are
// treated like DeclRefExpr cursors.
continue;
}
case VisitorJob::LambdaExprPartsKind: {
// Visit captures.
const LambdaExpr *E = cast<LambdaExprParts>(&LI)->get();
for (LambdaExpr::capture_iterator C = E->explicit_capture_begin(),
CEnd = E->explicit_capture_end();
C != CEnd; ++C) {
// FIXME: Lambda init-captures.
if (!C->capturesVariable())
continue;
if (Visit(MakeCursorVariableRef(C->getCapturedVar(),
C->getLocation(),
TU)))
return true;
}
// Visit parameters and return type, if present.
if (E->hasExplicitParameters() || E->hasExplicitResultType()) {
TypeLoc TL = E->getCallOperator()->getTypeSourceInfo()->getTypeLoc();
if (E->hasExplicitParameters() && E->hasExplicitResultType()) {
// Visit the whole type.
if (Visit(TL))
return true;
} else if (FunctionProtoTypeLoc Proto =
TL.getAs<FunctionProtoTypeLoc>()) {
if (E->hasExplicitParameters()) {
// Visit parameters.
for (unsigned I = 0, N = Proto.getNumParams(); I != N; ++I)
if (Visit(MakeCXCursor(Proto.getParam(I), TU)))
return true;
} else {
// Visit result type.
if (Visit(Proto.getReturnLoc()))
return true;
}
}
}
break;
}
case VisitorJob::PostChildrenVisitKind:
if (PostChildrenVisitor(Parent, ClientData))
return true;
break;
}
}
return false;
}
bool CursorVisitor::Visit(const Stmt *S) {
VisitorWorkList *WL = nullptr;
if (!WorkListFreeList.empty()) {
WL = WorkListFreeList.back();
WL->clear();
WorkListFreeList.pop_back();
}
else {
WL = new VisitorWorkList();
WorkListCache.push_back(WL);
}
EnqueueWorkList(*WL, S);
bool result = RunVisitorWorkList(*WL);
WorkListFreeList.push_back(WL);
return result;
}
namespace {
typedef SmallVector<SourceRange, 4> RefNamePieces;
RefNamePieces
buildPieces(unsigned NameFlags, bool IsMemberRefExpr,
const DeclarationNameInfo &NI, const SourceRange &QLoc,
const ASTTemplateArgumentListInfo *TemplateArgs = nullptr) {
const bool WantQualifier = NameFlags & CXNameRange_WantQualifier;
const bool WantTemplateArgs = NameFlags & CXNameRange_WantTemplateArgs;
const bool WantSinglePiece = NameFlags & CXNameRange_WantSinglePiece;
const DeclarationName::NameKind Kind = NI.getName().getNameKind();
RefNamePieces Pieces;
if (WantQualifier && QLoc.isValid())
Pieces.push_back(QLoc);
if (Kind != DeclarationName::CXXOperatorName || IsMemberRefExpr)
Pieces.push_back(NI.getLoc());
if (WantTemplateArgs && TemplateArgs)
Pieces.push_back(SourceRange(TemplateArgs->LAngleLoc,
TemplateArgs->RAngleLoc));
if (Kind == DeclarationName::CXXOperatorName) {
Pieces.push_back(SourceLocation::getFromRawEncoding(
NI.getInfo().CXXOperatorName.BeginOpNameLoc));
Pieces.push_back(SourceLocation::getFromRawEncoding(
NI.getInfo().CXXOperatorName.EndOpNameLoc));
}
if (WantSinglePiece) {
SourceRange R(Pieces.front().getBegin(), Pieces.back().getEnd());
Pieces.clear();
Pieces.push_back(R);
}
return Pieces;
}
}
//===----------------------------------------------------------------------===//
// Misc. API hooks.
//===----------------------------------------------------------------------===//
static void fatal_error_handler(void *user_data, const std::string& reason,
bool gen_crash_diag) {
// Write the result out to stderr avoiding errs() because raw_ostreams can
// call report_fatal_error.
fprintf(stderr, "LIBCLANG FATAL ERROR: %s\n", reason.c_str());
::abort();
}
namespace {
struct RegisterFatalErrorHandler {
RegisterFatalErrorHandler() {
llvm::install_fatal_error_handler(fatal_error_handler, nullptr);
}
};
}
static llvm::ManagedStatic<RegisterFatalErrorHandler> RegisterFatalErrorHandlerOnce;
extern "C" {
CXIndex clang_createIndex(int excludeDeclarationsFromPCH,
int displayDiagnostics) {
// We use crash recovery to make some of our APIs more reliable, implicitly
// enable it.
if (!getenv("LIBCLANG_DISABLE_CRASH_RECOVERY"))
llvm::CrashRecoveryContext::Enable();
// Look through the managed static to trigger construction of the managed
// static which registers our fatal error handler. This ensures it is only
// registered once.
(void)*RegisterFatalErrorHandlerOnce;
// Initialize targets for clang module support.
llvm::InitializeAllTargets();
llvm::InitializeAllTargetMCs();
llvm::InitializeAllAsmPrinters();
llvm::InitializeAllAsmParsers();
CIndexer *CIdxr = new CIndexer();
if (excludeDeclarationsFromPCH)
CIdxr->setOnlyLocalDecls();
if (displayDiagnostics)
CIdxr->setDisplayDiagnostics();
if (getenv("LIBCLANG_BGPRIO_INDEX"))
CIdxr->setCXGlobalOptFlags(CIdxr->getCXGlobalOptFlags() |
CXGlobalOpt_ThreadBackgroundPriorityForIndexing);
if (getenv("LIBCLANG_BGPRIO_EDIT"))
CIdxr->setCXGlobalOptFlags(CIdxr->getCXGlobalOptFlags() |
CXGlobalOpt_ThreadBackgroundPriorityForEditing);
return CIdxr;
}
void clang_disposeIndex(CXIndex CIdx) {
if (CIdx)
delete static_cast<CIndexer *>(CIdx);
}
void clang_CXIndex_setGlobalOptions(CXIndex CIdx, unsigned options) {
if (CIdx)
static_cast<CIndexer *>(CIdx)->setCXGlobalOptFlags(options);
}
unsigned clang_CXIndex_getGlobalOptions(CXIndex CIdx) {
if (CIdx)
return static_cast<CIndexer *>(CIdx)->getCXGlobalOptFlags();
return 0;
}
void clang_toggleCrashRecovery(unsigned isEnabled) {
if (isEnabled)
llvm::CrashRecoveryContext::Enable();
else
llvm::CrashRecoveryContext::Disable();
}
CXTranslationUnit clang_createTranslationUnit(CXIndex CIdx,
const char *ast_filename) {
CXTranslationUnit TU;
enum CXErrorCode Result =
clang_createTranslationUnit2(CIdx, ast_filename, &TU);
(void)Result;
assert((TU && Result == CXError_Success) ||
(!TU && Result != CXError_Success));
return TU;
}
enum CXErrorCode clang_createTranslationUnit2(CXIndex CIdx,
const char *ast_filename,
CXTranslationUnit *out_TU) {
if (out_TU)
*out_TU = nullptr;
if (!CIdx || !ast_filename || !out_TU)
return CXError_InvalidArguments;
LOG_FUNC_SECTION {
*Log << ast_filename;
}
CIndexer *CXXIdx = static_cast<CIndexer *>(CIdx);
FileSystemOptions FileSystemOpts;
IntrusiveRefCntPtr<DiagnosticsEngine> Diags =
CompilerInstance::createDiagnostics(new DiagnosticOptions());
std::unique_ptr<ASTUnit> AU = ASTUnit::LoadFromASTFile(
ast_filename, CXXIdx->getPCHContainerOperations()->getRawReader(), Diags,
FileSystemOpts, /*UseDebugInfo=*/false,
CXXIdx->getOnlyLocalDecls(), None,
/*CaptureDiagnostics=*/true,
/*AllowPCHWithCompilerErrors=*/true,
/*UserFilesAreVolatile=*/true);
*out_TU = MakeCXTranslationUnit(CXXIdx, AU.release());
return *out_TU ? CXError_Success : CXError_Failure;
}
unsigned clang_defaultEditingTranslationUnitOptions() {
return CXTranslationUnit_PrecompiledPreamble |
CXTranslationUnit_CacheCompletionResults;
}
CXTranslationUnit
clang_createTranslationUnitFromSourceFile(CXIndex CIdx,
const char *source_filename,
int num_command_line_args,
const char * const *command_line_args,
unsigned num_unsaved_files,
struct CXUnsavedFile *unsaved_files) {
unsigned Options = CXTranslationUnit_DetailedPreprocessingRecord;
return clang_parseTranslationUnit(CIdx, source_filename,
command_line_args, num_command_line_args,
unsaved_files, num_unsaved_files,
Options);
}
static CXErrorCode
clang_parseTranslationUnit_Impl(CXIndex CIdx, const char *source_filename,
const char *const *command_line_args,
int num_command_line_args,
ArrayRef<CXUnsavedFile> unsaved_files,
unsigned options, CXTranslationUnit *out_TU) {
// Set up the initial return values.
if (out_TU)
*out_TU = nullptr;
// Check arguments.
if (!CIdx || !out_TU)
return CXError_InvalidArguments;
CIndexer *CXXIdx = static_cast<CIndexer *>(CIdx);
if (CXXIdx->isOptEnabled(CXGlobalOpt_ThreadBackgroundPriorityForIndexing))
setThreadBackgroundPriority();
bool PrecompilePreamble = options & CXTranslationUnit_PrecompiledPreamble;
// FIXME: Add a flag for modules.
TranslationUnitKind TUKind
= (options & CXTranslationUnit_Incomplete)? TU_Prefix : TU_Complete;
bool CacheCodeCompletionResults
= options & CXTranslationUnit_CacheCompletionResults;
bool IncludeBriefCommentsInCodeCompletion
= options & CXTranslationUnit_IncludeBriefCommentsInCodeCompletion;
bool SkipFunctionBodies = options & CXTranslationUnit_SkipFunctionBodies;
bool ForSerialization = options & CXTranslationUnit_ForSerialization;
// Configure the diagnostics.
IntrusiveRefCntPtr<DiagnosticsEngine>
Diags(CompilerInstance::createDiagnostics(new DiagnosticOptions));
// Recover resources if we crash before exiting this function.
llvm::CrashRecoveryContextCleanupRegistrar<DiagnosticsEngine,
llvm::CrashRecoveryContextReleaseRefCleanup<DiagnosticsEngine> >
DiagCleanup(Diags.get());
std::unique_ptr<std::vector<ASTUnit::RemappedFile>> RemappedFiles(
new std::vector<ASTUnit::RemappedFile>());
// Recover resources if we crash before exiting this function.
llvm::CrashRecoveryContextCleanupRegistrar<
std::vector<ASTUnit::RemappedFile> > RemappedCleanup(RemappedFiles.get());
for (auto &UF : unsaved_files) {
std::unique_ptr<llvm::MemoryBuffer> MB =
llvm::MemoryBuffer::getMemBufferCopy(getContents(UF), UF.Filename);
RemappedFiles->push_back(std::make_pair(UF.Filename, MB.release()));
}
std::unique_ptr<std::vector<const char *>> Args(
new std::vector<const char *>());
// Recover resources if we crash before exiting this method.
llvm::CrashRecoveryContextCleanupRegistrar<std::vector<const char*> >
ArgsCleanup(Args.get());
// Since the Clang C library is primarily used by batch tools dealing with
// (often very broken) source code, where spell-checking can have a
// significant negative impact on performance (particularly when
// precompiled headers are involved), we disable it by default.
// Only do this if we haven't found a spell-checking-related argument.
bool FoundSpellCheckingArgument = false;
for (int I = 0; I != num_command_line_args; ++I) {
if (strcmp(command_line_args[I], "-fno-spell-checking") == 0 ||
strcmp(command_line_args[I], "-fspell-checking") == 0) {
FoundSpellCheckingArgument = true;
break;
}
}
if (!FoundSpellCheckingArgument)
Args->push_back("-fno-spell-checking");
Args->insert(Args->end(), command_line_args,
command_line_args + num_command_line_args);
// The 'source_filename' argument is optional. If the caller does not
// specify it then it is assumed that the source file is specified
// in the actual argument list.
// Put the source file after command_line_args otherwise if '-x' flag is
// present it will be unused.
if (source_filename)
Args->push_back(source_filename);
// Do we need the detailed preprocessing record?
if (options & CXTranslationUnit_DetailedPreprocessingRecord) {
Args->push_back("-Xclang");
Args->push_back("-detailed-preprocessing-record");
}
unsigned NumErrors = Diags->getClient()->getNumErrors();
std::unique_ptr<ASTUnit> ErrUnit;
std::unique_ptr<ASTUnit> Unit(ASTUnit::LoadFromCommandLine(
Args->data(), Args->data() + Args->size(),
CXXIdx->getPCHContainerOperations(), Diags,
CXXIdx->getClangResourcesPath(), CXXIdx->getOnlyLocalDecls(),
/*CaptureDiagnostics=*/true, *RemappedFiles.get(),
/*RemappedFilesKeepOriginalName=*/true, PrecompilePreamble, TUKind,
CacheCodeCompletionResults, IncludeBriefCommentsInCodeCompletion,
/*AllowPCHWithCompilerErrors=*/true, SkipFunctionBodies,
/*UserFilesAreVolatile=*/true, ForSerialization, &ErrUnit));
// Early failures in LoadFromCommandLine may return with ErrUnit unset.
if (!Unit && !ErrUnit)
return CXError_ASTReadError;
if (NumErrors != Diags->getClient()->getNumErrors()) {
// Make sure to check that 'Unit' is non-NULL.
if (CXXIdx->getDisplayDiagnostics())
printDiagsToStderr(Unit ? Unit.get() : ErrUnit.get());
}
if (isASTReadError(Unit ? Unit.get() : ErrUnit.get()))
return CXError_ASTReadError;
*out_TU = MakeCXTranslationUnit(CXXIdx, Unit.release());
return *out_TU ? CXError_Success : CXError_Failure;
}
CXTranslationUnit
clang_parseTranslationUnit(CXIndex CIdx,
const char *source_filename,
const char *const *command_line_args,
int num_command_line_args,
struct CXUnsavedFile *unsaved_files,
unsigned num_unsaved_files,
unsigned options) {
CXTranslationUnit TU;
enum CXErrorCode Result = clang_parseTranslationUnit2(
CIdx, source_filename, command_line_args, num_command_line_args,
unsaved_files, num_unsaved_files, options, &TU);
(void)Result;
assert((TU && Result == CXError_Success) ||
(!TU && Result != CXError_Success));
return TU;
}
enum CXErrorCode clang_parseTranslationUnit2(
CXIndex CIdx,
const char *source_filename,
const char *const *command_line_args,
int num_command_line_args,
struct CXUnsavedFile *unsaved_files,
unsigned num_unsaved_files,
unsigned options,
CXTranslationUnit *out_TU) {
LOG_FUNC_SECTION {
*Log << source_filename << ": ";
for (int i = 0; i != num_command_line_args; ++i)
*Log << command_line_args[i] << " ";
}
if (num_unsaved_files && !unsaved_files)
return CXError_InvalidArguments;
CXErrorCode result = CXError_Failure;
auto ParseTranslationUnitImpl = [=, &result] {
result = clang_parseTranslationUnit_Impl(
CIdx, source_filename, command_line_args, num_command_line_args,
llvm::makeArrayRef(unsaved_files, num_unsaved_files), options, out_TU);
};
llvm::CrashRecoveryContext CRC;
if (!RunSafely(CRC, ParseTranslationUnitImpl)) {
fprintf(stderr, "libclang: crash detected during parsing: {\n");
fprintf(stderr, " 'source_filename' : '%s'\n", source_filename);
fprintf(stderr, " 'command_line_args' : [");
for (int i = 0; i != num_command_line_args; ++i) {
if (i)
fprintf(stderr, ", ");
fprintf(stderr, "'%s'", command_line_args[i]);
}
fprintf(stderr, "],\n");
fprintf(stderr, " 'unsaved_files' : [");
for (unsigned i = 0; i != num_unsaved_files; ++i) {
if (i)
fprintf(stderr, ", ");
fprintf(stderr, "('%s', '...', %ld)", unsaved_files[i].Filename,
unsaved_files[i].Length);
}
fprintf(stderr, "],\n");
fprintf(stderr, " 'options' : %d,\n", options);
fprintf(stderr, "}\n");
return CXError_Crashed;
} else if (getenv("LIBCLANG_RESOURCE_USAGE")) {
if (CXTranslationUnit *TU = out_TU)
PrintLibclangResourceUsage(*TU);
}
return result;
}
unsigned clang_defaultSaveOptions(CXTranslationUnit TU) {
return CXSaveTranslationUnit_None;
}
static CXSaveError clang_saveTranslationUnit_Impl(CXTranslationUnit TU,
const char *FileName,
unsigned options) {
CIndexer *CXXIdx = TU->CIdx;
if (CXXIdx->isOptEnabled(CXGlobalOpt_ThreadBackgroundPriorityForIndexing))
setThreadBackgroundPriority();
bool hadError = cxtu::getASTUnit(TU)->Save(FileName);
return hadError ? CXSaveError_Unknown : CXSaveError_None;
}
int clang_saveTranslationUnit(CXTranslationUnit TU, const char *FileName,
unsigned options) {
LOG_FUNC_SECTION {
*Log << TU << ' ' << FileName;
}
if (isNotUsableTU(TU)) {
LOG_BAD_TU(TU);
return CXSaveError_InvalidTU;
}
ASTUnit *CXXUnit = cxtu::getASTUnit(TU);
ASTUnit::ConcurrencyCheck Check(*CXXUnit);
if (!CXXUnit->hasSema())
return CXSaveError_InvalidTU;
CXSaveError result;
auto SaveTranslationUnitImpl = [=, &result]() {
result = clang_saveTranslationUnit_Impl(TU, FileName, options);
};
if (!CXXUnit->getDiagnostics().hasUnrecoverableErrorOccurred() ||
getenv("LIBCLANG_NOTHREADS")) {
SaveTranslationUnitImpl();
if (getenv("LIBCLANG_RESOURCE_USAGE"))
PrintLibclangResourceUsage(TU);
return result;
}
// We have an AST that has invalid nodes due to compiler errors.
// Use a crash recovery thread for protection.
llvm::CrashRecoveryContext CRC;
if (!RunSafely(CRC, SaveTranslationUnitImpl)) {
fprintf(stderr, "libclang: crash detected during AST saving: {\n");
fprintf(stderr, " 'filename' : '%s'\n", FileName);
fprintf(stderr, " 'options' : %d,\n", options);
fprintf(stderr, "}\n");
return CXSaveError_Unknown;
} else if (getenv("LIBCLANG_RESOURCE_USAGE")) {
PrintLibclangResourceUsage(TU);
}
return result;
}
void clang_disposeTranslationUnit(CXTranslationUnit CTUnit) {
if (CTUnit) {
// If the translation unit has been marked as unsafe to free, just discard
// it.
ASTUnit *Unit = cxtu::getASTUnit(CTUnit);
if (Unit && Unit->isUnsafeToFree())
return;
delete cxtu::getASTUnit(CTUnit);
delete CTUnit->StringPool;
delete static_cast<CXDiagnosticSetImpl *>(CTUnit->Diagnostics);
disposeOverridenCXCursorsPool(CTUnit->OverridenCursorsPool);
delete CTUnit->CommentToXML;
delete CTUnit;
}
}
unsigned clang_defaultReparseOptions(CXTranslationUnit TU) {
return CXReparse_None;
}
static CXErrorCode
clang_reparseTranslationUnit_Impl(CXTranslationUnit TU,
ArrayRef<CXUnsavedFile> unsaved_files,
unsigned options) {
// Check arguments.
if (isNotUsableTU(TU)) {
LOG_BAD_TU(TU);
return CXError_InvalidArguments;
}
// Reset the associated diagnostics.
delete static_cast<CXDiagnosticSetImpl*>(TU->Diagnostics);
TU->Diagnostics = nullptr;
CIndexer *CXXIdx = TU->CIdx;
if (CXXIdx->isOptEnabled(CXGlobalOpt_ThreadBackgroundPriorityForEditing))
setThreadBackgroundPriority();
ASTUnit *CXXUnit = cxtu::getASTUnit(TU);
ASTUnit::ConcurrencyCheck Check(*CXXUnit);
std::unique_ptr<std::vector<ASTUnit::RemappedFile>> RemappedFiles(
new std::vector<ASTUnit::RemappedFile>());
// Recover resources if we crash before exiting this function.
llvm::CrashRecoveryContextCleanupRegistrar<
std::vector<ASTUnit::RemappedFile> > RemappedCleanup(RemappedFiles.get());
for (auto &UF : unsaved_files) {
std::unique_ptr<llvm::MemoryBuffer> MB =
llvm::MemoryBuffer::getMemBufferCopy(getContents(UF), UF.Filename);
RemappedFiles->push_back(std::make_pair(UF.Filename, MB.release()));
}
if (!CXXUnit->Reparse(CXXIdx->getPCHContainerOperations(),
*RemappedFiles.get()))
return CXError_Success;
if (isASTReadError(CXXUnit))
return CXError_ASTReadError;
return CXError_Failure;
}
int clang_reparseTranslationUnit(CXTranslationUnit TU,
unsigned num_unsaved_files,
struct CXUnsavedFile *unsaved_files,
unsigned options) {
LOG_FUNC_SECTION {
*Log << TU;
}
if (num_unsaved_files && !unsaved_files)
return CXError_InvalidArguments;
CXErrorCode result;
auto ReparseTranslationUnitImpl = [=, &result]() {
result = clang_reparseTranslationUnit_Impl(
TU, llvm::makeArrayRef(unsaved_files, num_unsaved_files), options);
};
if (getenv("LIBCLANG_NOTHREADS")) {
ReparseTranslationUnitImpl();
return result;
}
llvm::CrashRecoveryContext CRC;
if (!RunSafely(CRC, ReparseTranslationUnitImpl)) {
fprintf(stderr, "libclang: crash detected during reparsing\n");
cxtu::getASTUnit(TU)->setUnsafeToFree(true);
return CXError_Crashed;
} else if (getenv("LIBCLANG_RESOURCE_USAGE"))
PrintLibclangResourceUsage(TU);
return result;
}
CXString clang_getTranslationUnitSpelling(CXTranslationUnit CTUnit) {
if (isNotUsableTU(CTUnit)) {
LOG_BAD_TU(CTUnit);
return cxstring::createEmpty();
}
ASTUnit *CXXUnit = cxtu::getASTUnit(CTUnit);
return cxstring::createDup(CXXUnit->getOriginalSourceFileName());
}
CXCursor clang_getTranslationUnitCursor(CXTranslationUnit TU) {
if (isNotUsableTU(TU)) {
LOG_BAD_TU(TU);
return clang_getNullCursor();
}
ASTUnit *CXXUnit = cxtu::getASTUnit(TU);
return MakeCXCursor(CXXUnit->getASTContext().getTranslationUnitDecl(), TU);
}
} // end: extern "C"
//===----------------------------------------------------------------------===//
// CXFile Operations.
//===----------------------------------------------------------------------===//
extern "C" {
CXString clang_getFileName(CXFile SFile) {
if (!SFile)
return cxstring::createNull();
FileEntry *FEnt = static_cast<FileEntry *>(SFile);
return cxstring::createRef(FEnt->getName());
}
time_t clang_getFileTime(CXFile SFile) {
if (!SFile)
return 0;
FileEntry *FEnt = static_cast<FileEntry *>(SFile);
return FEnt->getModificationTime();
}
CXFile clang_getFile(CXTranslationUnit TU, const char *file_name) {
if (isNotUsableTU(TU)) {
LOG_BAD_TU(TU);
return nullptr;
}
ASTUnit *CXXUnit = cxtu::getASTUnit(TU);
FileManager &FMgr = CXXUnit->getFileManager();
return const_cast<FileEntry *>(FMgr.getFile(file_name));
}
unsigned clang_isFileMultipleIncludeGuarded(CXTranslationUnit TU,
CXFile file) {
if (isNotUsableTU(TU)) {
LOG_BAD_TU(TU);
return 0;
}
if (!file)
return 0;
ASTUnit *CXXUnit = cxtu::getASTUnit(TU);
FileEntry *FEnt = static_cast<FileEntry *>(file);
return CXXUnit->getPreprocessor().getHeaderSearchInfo()
.isFileMultipleIncludeGuarded(FEnt);
}
int clang_getFileUniqueID(CXFile file, CXFileUniqueID *outID) {
if (!file || !outID)
return 1;
FileEntry *FEnt = static_cast<FileEntry *>(file);
const llvm::sys::fs::UniqueID &ID = FEnt->getUniqueID();
outID->data[0] = ID.getDevice();
outID->data[1] = ID.getFile();
outID->data[2] = FEnt->getModificationTime();
return 0;
}
int clang_File_isEqual(CXFile file1, CXFile file2) {
if (file1 == file2)
return true;
if (!file1 || !file2)
return false;
FileEntry *FEnt1 = static_cast<FileEntry *>(file1);
FileEntry *FEnt2 = static_cast<FileEntry *>(file2);
return FEnt1->getUniqueID() == FEnt2->getUniqueID();
}
} // end: extern "C"
//===----------------------------------------------------------------------===//
// CXCursor Operations.
//===----------------------------------------------------------------------===//
static const Decl *getDeclFromExpr(const Stmt *E) {
if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
return getDeclFromExpr(CE->getSubExpr());
if (const DeclRefExpr *RefExpr = dyn_cast<DeclRefExpr>(E))
return RefExpr->getDecl();
if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
return ME->getMemberDecl();
if (const ObjCIvarRefExpr *RE = dyn_cast<ObjCIvarRefExpr>(E))
return RE->getDecl();
if (const ObjCPropertyRefExpr *PRE = dyn_cast<ObjCPropertyRefExpr>(E)) {
if (PRE->isExplicitProperty())
return PRE->getExplicitProperty();
// It could be messaging both getter and setter as in:
// ++myobj.myprop;
// in which case prefer to associate the setter since it is less obvious
// from inspecting the source that the setter is going to get called.
if (PRE->isMessagingSetter())
return PRE->getImplicitPropertySetter();
return PRE->getImplicitPropertyGetter();
}
if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
return getDeclFromExpr(POE->getSyntacticForm());
if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E))
if (Expr *Src = OVE->getSourceExpr())
return getDeclFromExpr(Src);
if (const CallExpr *CE = dyn_cast<CallExpr>(E))
return getDeclFromExpr(CE->getCallee());
if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(E))
if (!CE->isElidable())
return CE->getConstructor();
if (const ObjCMessageExpr *OME = dyn_cast<ObjCMessageExpr>(E))
return OME->getMethodDecl();
if (const ObjCProtocolExpr *PE = dyn_cast<ObjCProtocolExpr>(E))
return PE->getProtocol();
if (const SubstNonTypeTemplateParmPackExpr *NTTP
= dyn_cast<SubstNonTypeTemplateParmPackExpr>(E))
return NTTP->getParameterPack();
if (const SizeOfPackExpr *SizeOfPack = dyn_cast<SizeOfPackExpr>(E))
if (isa<NonTypeTemplateParmDecl>(SizeOfPack->getPack()) ||
isa<ParmVarDecl>(SizeOfPack->getPack()))
return SizeOfPack->getPack();
return nullptr;
}
static SourceLocation getLocationFromExpr(const Expr *E) {
if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
return getLocationFromExpr(CE->getSubExpr());
if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E))
return /*FIXME:*/Msg->getLeftLoc();
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
return DRE->getLocation();
if (const MemberExpr *Member = dyn_cast<MemberExpr>(E))
return Member->getMemberLoc();
if (const ObjCIvarRefExpr *Ivar = dyn_cast<ObjCIvarRefExpr>(E))
return Ivar->getLocation();
if (const SizeOfPackExpr *SizeOfPack = dyn_cast<SizeOfPackExpr>(E))
return SizeOfPack->getPackLoc();
if (const ObjCPropertyRefExpr *PropRef = dyn_cast<ObjCPropertyRefExpr>(E))
return PropRef->getLocation();
return E->getLocStart();
}
extern "C" {
unsigned clang_visitChildren(CXCursor parent,
CXCursorVisitor visitor,
CXClientData client_data) {
CursorVisitor CursorVis(getCursorTU(parent), visitor, client_data,
/*VisitPreprocessorLast=*/false);
return CursorVis.VisitChildren(parent);
}
#ifndef __has_feature
#define __has_feature(x) 0
#endif
#if __has_feature(blocks)
typedef enum CXChildVisitResult
(^CXCursorVisitorBlock)(CXCursor cursor, CXCursor parent);
static enum CXChildVisitResult visitWithBlock(CXCursor cursor, CXCursor parent,
CXClientData client_data) {
CXCursorVisitorBlock block = (CXCursorVisitorBlock)client_data;
return block(cursor, parent);
}
#else
// If we are compiled with a compiler that doesn't have native blocks support,
// define and call the block manually, so the
typedef struct _CXChildVisitResult
{
void *isa;
int flags;
int reserved;
enum CXChildVisitResult(*invoke)(struct _CXChildVisitResult*, CXCursor,
CXCursor);
} *CXCursorVisitorBlock;
static enum CXChildVisitResult visitWithBlock(CXCursor cursor, CXCursor parent,
CXClientData client_data) {
CXCursorVisitorBlock block = (CXCursorVisitorBlock)client_data;
return block->invoke(block, cursor, parent);
}
#endif
unsigned clang_visitChildrenWithBlock(CXCursor parent,
CXCursorVisitorBlock block) {
return clang_visitChildren(parent, visitWithBlock, block);
}
static CXString getDeclSpelling(const Decl *D) {
if (!D)
return cxstring::createEmpty();
const NamedDecl *ND = dyn_cast<NamedDecl>(D);
if (!ND) {
if (const ObjCPropertyImplDecl *PropImpl =
dyn_cast<ObjCPropertyImplDecl>(D))
if (ObjCPropertyDecl *Property = PropImpl->getPropertyDecl())
return cxstring::createDup(Property->getIdentifier()->getName());
if (const ImportDecl *ImportD = dyn_cast<ImportDecl>(D))
if (Module *Mod = ImportD->getImportedModule())
return cxstring::createDup(Mod->getFullModuleName());
return cxstring::createEmpty();
}
if (const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(ND))
return cxstring::createDup(OMD->getSelector().getAsString());
if (const ObjCCategoryImplDecl *CIMP = dyn_cast<ObjCCategoryImplDecl>(ND))
// No, this isn't the same as the code below. getIdentifier() is non-virtual
// and returns different names. NamedDecl returns the class name and
// ObjCCategoryImplDecl returns the category name.
return cxstring::createRef(CIMP->getIdentifier()->getNameStart());
if (isa<UsingDirectiveDecl>(D))
return cxstring::createEmpty();
SmallString<1024> S;
llvm::raw_svector_ostream os(S);
ND->printName(os);
return cxstring::createDup(os.str());
}
CXString clang_getCursorSpelling(CXCursor C) {
if (clang_isTranslationUnit(C.kind))
return clang_getTranslationUnitSpelling(getCursorTU(C));
if (clang_isReference(C.kind)) {
switch (C.kind) {
case CXCursor_ObjCSuperClassRef: {
const ObjCInterfaceDecl *Super = getCursorObjCSuperClassRef(C).first;
return cxstring::createRef(Super->getIdentifier()->getNameStart());
}
case CXCursor_ObjCClassRef: {
const ObjCInterfaceDecl *Class = getCursorObjCClassRef(C).first;
return cxstring::createRef(Class->getIdentifier()->getNameStart());
}
case CXCursor_ObjCProtocolRef: {
const ObjCProtocolDecl *OID = getCursorObjCProtocolRef(C).first;
assert(OID && "getCursorSpelling(): Missing protocol decl");
return cxstring::createRef(OID->getIdentifier()->getNameStart());
}
case CXCursor_CXXBaseSpecifier: {
const CXXBaseSpecifier *B = getCursorCXXBaseSpecifier(C);
return cxstring::createDup(B->getType().getAsString());
}
case CXCursor_TypeRef: {
const TypeDecl *Type = getCursorTypeRef(C).first;
assert(Type && "Missing type decl");
return cxstring::createDup(getCursorContext(C).getTypeDeclType(Type).
getAsString());
}
case CXCursor_TemplateRef: {
const TemplateDecl *Template = getCursorTemplateRef(C).first;
assert(Template && "Missing template decl");
return cxstring::createDup(Template->getNameAsString());
}
case CXCursor_NamespaceRef: {
const NamedDecl *NS = getCursorNamespaceRef(C).first;
assert(NS && "Missing namespace decl");
return cxstring::createDup(NS->getNameAsString());
}
case CXCursor_MemberRef: {
const FieldDecl *Field = getCursorMemberRef(C).first;
assert(Field && "Missing member decl");
return cxstring::createDup(Field->getNameAsString());
}
case CXCursor_LabelRef: {
const LabelStmt *Label = getCursorLabelRef(C).first;
assert(Label && "Missing label");
return cxstring::createRef(Label->getName());
}
case CXCursor_OverloadedDeclRef: {
OverloadedDeclRefStorage Storage = getCursorOverloadedDeclRef(C).first;
if (const Decl *D = Storage.dyn_cast<const Decl *>()) {
if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
return cxstring::createDup(ND->getNameAsString());
return cxstring::createEmpty();
}
if (const OverloadExpr *E = Storage.dyn_cast<const OverloadExpr *>())
return cxstring::createDup(E->getName().getAsString());
OverloadedTemplateStorage *Ovl
= Storage.get<OverloadedTemplateStorage*>();
if (Ovl->size() == 0)
return cxstring::createEmpty();
return cxstring::createDup((*Ovl->begin())->getNameAsString());
}
case CXCursor_VariableRef: {
const VarDecl *Var = getCursorVariableRef(C).first;
assert(Var && "Missing variable decl");
return cxstring::createDup(Var->getNameAsString());
}
default:
return cxstring::createRef("<not implemented>");
}
}
if (clang_isExpression(C.kind)) {
const Expr *E = getCursorExpr(C);
if (C.kind == CXCursor_ObjCStringLiteral ||
C.kind == CXCursor_StringLiteral) {
const StringLiteral *SLit;
if (const ObjCStringLiteral *OSL = dyn_cast<ObjCStringLiteral>(E)) {
SLit = OSL->getString();
} else {
SLit = cast<StringLiteral>(E);
}
SmallString<256> Buf;
llvm::raw_svector_ostream OS(Buf);
SLit->outputString(OS);
return cxstring::createDup(OS.str());
}
const Decl *D = getDeclFromExpr(getCursorExpr(C));
if (D)
return getDeclSpelling(D);
return cxstring::createEmpty();
}
if (clang_isStatement(C.kind)) {
const Stmt *S = getCursorStmt(C);
if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
return cxstring::createRef(Label->getName());
return cxstring::createEmpty();
}
if (C.kind == CXCursor_MacroExpansion)
return cxstring::createRef(getCursorMacroExpansion(C).getName()
->getNameStart());
if (C.kind == CXCursor_MacroDefinition)
return cxstring::createRef(getCursorMacroDefinition(C)->getName()
->getNameStart());
if (C.kind == CXCursor_InclusionDirective)
return cxstring::createDup(getCursorInclusionDirective(C)->getFileName());
if (clang_isDeclaration(C.kind))
return getDeclSpelling(getCursorDecl(C));
if (C.kind == CXCursor_AnnotateAttr) {
const AnnotateAttr *AA = cast<AnnotateAttr>(cxcursor::getCursorAttr(C));
return cxstring::createDup(AA->getAnnotation());
}
if (C.kind == CXCursor_AsmLabelAttr) {
const AsmLabelAttr *AA = cast<AsmLabelAttr>(cxcursor::getCursorAttr(C));
return cxstring::createDup(AA->getLabel());
}
if (C.kind == CXCursor_PackedAttr) {
return cxstring::createRef("packed");
}
return cxstring::createEmpty();
}
CXSourceRange clang_Cursor_getSpellingNameRange(CXCursor C,
unsigned pieceIndex,
unsigned options) {
if (clang_Cursor_isNull(C))
return clang_getNullRange();
ASTContext &Ctx = getCursorContext(C);
if (clang_isStatement(C.kind)) {
const Stmt *S = getCursorStmt(C);
if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S)) {
if (pieceIndex > 0)
return clang_getNullRange();
return cxloc::translateSourceRange(Ctx, Label->getIdentLoc());
}
return clang_getNullRange();
}
if (C.kind == CXCursor_ObjCMessageExpr) {
if (const ObjCMessageExpr *
ME = dyn_cast_or_null<ObjCMessageExpr>(getCursorExpr(C))) {
if (pieceIndex >= ME->getNumSelectorLocs())
return clang_getNullRange();
return cxloc::translateSourceRange(Ctx, ME->getSelectorLoc(pieceIndex));
}
}
if (C.kind == CXCursor_ObjCInstanceMethodDecl ||
C.kind == CXCursor_ObjCClassMethodDecl) {
if (const ObjCMethodDecl *
MD = dyn_cast_or_null<ObjCMethodDecl>(getCursorDecl(C))) {
if (pieceIndex >= MD->getNumSelectorLocs())
return clang_getNullRange();
return cxloc::translateSourceRange(Ctx, MD->getSelectorLoc(pieceIndex));
}
}
if (C.kind == CXCursor_ObjCCategoryDecl ||
C.kind == CXCursor_ObjCCategoryImplDecl) {
if (pieceIndex > 0)
return clang_getNullRange();
if (const ObjCCategoryDecl *
CD = dyn_cast_or_null<ObjCCategoryDecl>(getCursorDecl(C)))
return cxloc::translateSourceRange(Ctx, CD->getCategoryNameLoc());
if (const ObjCCategoryImplDecl *
CID = dyn_cast_or_null<ObjCCategoryImplDecl>(getCursorDecl(C)))
return cxloc::translateSourceRange(Ctx, CID->getCategoryNameLoc());
}
if (C.kind == CXCursor_ModuleImportDecl) {
if (pieceIndex > 0)
return clang_getNullRange();
if (const ImportDecl *ImportD =
dyn_cast_or_null<ImportDecl>(getCursorDecl(C))) {
ArrayRef<SourceLocation> Locs = ImportD->getIdentifierLocs();
if (!Locs.empty())
return cxloc::translateSourceRange(Ctx,
SourceRange(Locs.front(), Locs.back()));
}
return clang_getNullRange();
}
if (C.kind == CXCursor_CXXMethod || C.kind == CXCursor_Destructor ||
C.kind == CXCursor_ConversionFunction) {
if (pieceIndex > 0)
return clang_getNullRange();
if (const FunctionDecl *FD =
dyn_cast_or_null<FunctionDecl>(getCursorDecl(C))) {
DeclarationNameInfo FunctionName = FD->getNameInfo();
return cxloc::translateSourceRange(Ctx, FunctionName.getSourceRange());
}
return clang_getNullRange();
}
// FIXME: A CXCursor_InclusionDirective should give the location of the
// filename, but we don't keep track of this.
// FIXME: A CXCursor_AnnotateAttr should give the location of the annotation
// but we don't keep track of this.
// FIXME: A CXCursor_AsmLabelAttr should give the location of the label
// but we don't keep track of this.
// Default handling, give the location of the cursor.
if (pieceIndex > 0)
return clang_getNullRange();
CXSourceLocation CXLoc = clang_getCursorLocation(C);
SourceLocation Loc = cxloc::translateSourceLocation(CXLoc);
return cxloc::translateSourceRange(Ctx, Loc);
}
CXString clang_Cursor_getMangling(CXCursor C) {
if (clang_isInvalid(C.kind) || !clang_isDeclaration(C.kind))
return cxstring::createEmpty();
// Mangling only works for functions and variables.
const Decl *D = getCursorDecl(C);
if (!D || !(isa<FunctionDecl>(D) || isa<VarDecl>(D)))
return cxstring::createEmpty();
// First apply frontend mangling.
const NamedDecl *ND = cast<NamedDecl>(D);
ASTContext &Ctx = ND->getASTContext();
std::unique_ptr<MangleContext> MC(Ctx.createMangleContext());
std::string FrontendBuf;
llvm::raw_string_ostream FrontendBufOS(FrontendBuf);
MC->mangleName(ND, FrontendBufOS);
// Now apply backend mangling.
std::unique_ptr<llvm::DataLayout> DL(
new llvm::DataLayout(Ctx.getTargetInfo().getDataLayoutString()));
std::string FinalBuf;
llvm::raw_string_ostream FinalBufOS(FinalBuf);
llvm::Mangler::getNameWithPrefix(FinalBufOS, llvm::Twine(FrontendBufOS.str()),
*DL);
return cxstring::createDup(FinalBufOS.str());
}
CXString clang_getCursorDisplayName(CXCursor C) {
if (!clang_isDeclaration(C.kind))
return clang_getCursorSpelling(C);
const Decl *D = getCursorDecl(C);
if (!D)
return cxstring::createEmpty();
PrintingPolicy Policy = getCursorContext(C).getPrintingPolicy();
if (const FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
D = FunTmpl->getTemplatedDecl();
if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
SmallString<64> Str;
llvm::raw_svector_ostream OS(Str);
OS << *Function;
if (Function->getPrimaryTemplate())
OS << "<>";
OS << "(";
for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I) {
if (I)
OS << ", ";
OS << Function->getParamDecl(I)->getType().getAsString(Policy);
}
if (Function->isVariadic()) {
if (Function->getNumParams())
OS << ", ";
OS << "...";
}
OS << ")";
return cxstring::createDup(OS.str());
}
if (const ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(D)) {
SmallString<64> Str;
llvm::raw_svector_ostream OS(Str);
OS << *ClassTemplate;
OS << "<";
TemplateParameterList *Params = ClassTemplate->getTemplateParameters();
for (unsigned I = 0, N = Params->size(); I != N; ++I) {
if (I)
OS << ", ";
NamedDecl *Param = Params->getParam(I);
if (Param->getIdentifier()) {
OS << Param->getIdentifier()->getName();
continue;
}
// There is no parameter name, which makes this tricky. Try to come up
// with something useful that isn't too long.
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
OS << (TTP->wasDeclaredWithTypename()? "typename" : "class");
else if (NonTypeTemplateParmDecl *NTTP
= dyn_cast<NonTypeTemplateParmDecl>(Param))
OS << NTTP->getType().getAsString(Policy);
else
OS << "template<...> class";
}
OS << ">";
return cxstring::createDup(OS.str());
}
if (const ClassTemplateSpecializationDecl *ClassSpec
= dyn_cast<ClassTemplateSpecializationDecl>(D)) {
// If the type was explicitly written, use that.
if (TypeSourceInfo *TSInfo = ClassSpec->getTypeAsWritten())
return cxstring::createDup(TSInfo->getType().getAsString(Policy));
SmallString<128> Str;
llvm::raw_svector_ostream OS(Str);
OS << *ClassSpec;
TemplateSpecializationType::PrintTemplateArgumentList(OS,
ClassSpec->getTemplateArgs().data(),
ClassSpec->getTemplateArgs().size(),
Policy);
return cxstring::createDup(OS.str());
}
return clang_getCursorSpelling(C);
}
CXString clang_getCursorKindSpelling(enum CXCursorKind Kind) {
switch (Kind) {
case CXCursor_FunctionDecl:
return cxstring::createRef("FunctionDecl");
case CXCursor_TypedefDecl:
return cxstring::createRef("TypedefDecl");
case CXCursor_EnumDecl:
return cxstring::createRef("EnumDecl");
case CXCursor_EnumConstantDecl:
return cxstring::createRef("EnumConstantDecl");
case CXCursor_StructDecl:
return cxstring::createRef("StructDecl");
case CXCursor_UnionDecl:
return cxstring::createRef("UnionDecl");
case CXCursor_ClassDecl:
return cxstring::createRef("ClassDecl");
case CXCursor_FieldDecl:
return cxstring::createRef("FieldDecl");
case CXCursor_VarDecl:
return cxstring::createRef("VarDecl");
case CXCursor_ParmDecl:
return cxstring::createRef("ParmDecl");
case CXCursor_ObjCInterfaceDecl:
return cxstring::createRef("ObjCInterfaceDecl");
case CXCursor_ObjCCategoryDecl:
return cxstring::createRef("ObjCCategoryDecl");
case CXCursor_ObjCProtocolDecl:
return cxstring::createRef("ObjCProtocolDecl");
case CXCursor_ObjCPropertyDecl:
return cxstring::createRef("ObjCPropertyDecl");
case CXCursor_ObjCIvarDecl:
return cxstring::createRef("ObjCIvarDecl");
case CXCursor_ObjCInstanceMethodDecl:
return cxstring::createRef("ObjCInstanceMethodDecl");
case CXCursor_ObjCClassMethodDecl:
return cxstring::createRef("ObjCClassMethodDecl");
case CXCursor_ObjCImplementationDecl:
return cxstring::createRef("ObjCImplementationDecl");
case CXCursor_ObjCCategoryImplDecl:
return cxstring::createRef("ObjCCategoryImplDecl");
case CXCursor_CXXMethod:
return cxstring::createRef("CXXMethod");
case CXCursor_UnexposedDecl:
return cxstring::createRef("UnexposedDecl");
case CXCursor_ObjCSuperClassRef:
return cxstring::createRef("ObjCSuperClassRef");
case CXCursor_ObjCProtocolRef:
return cxstring::createRef("ObjCProtocolRef");
case CXCursor_ObjCClassRef:
return cxstring::createRef("ObjCClassRef");
case CXCursor_TypeRef:
return cxstring::createRef("TypeRef");
case CXCursor_TemplateRef:
return cxstring::createRef("TemplateRef");
case CXCursor_NamespaceRef:
return cxstring::createRef("NamespaceRef");
case CXCursor_MemberRef:
return cxstring::createRef("MemberRef");
case CXCursor_LabelRef:
return cxstring::createRef("LabelRef");
case CXCursor_OverloadedDeclRef:
return cxstring::createRef("OverloadedDeclRef");
case CXCursor_VariableRef:
return cxstring::createRef("VariableRef");
case CXCursor_IntegerLiteral:
return cxstring::createRef("IntegerLiteral");
case CXCursor_FloatingLiteral:
return cxstring::createRef("FloatingLiteral");
case CXCursor_ImaginaryLiteral:
return cxstring::createRef("ImaginaryLiteral");
case CXCursor_StringLiteral:
return cxstring::createRef("StringLiteral");
case CXCursor_CharacterLiteral:
return cxstring::createRef("CharacterLiteral");
case CXCursor_ParenExpr:
return cxstring::createRef("ParenExpr");
case CXCursor_UnaryOperator:
return cxstring::createRef("UnaryOperator");
case CXCursor_ArraySubscriptExpr:
return cxstring::createRef("ArraySubscriptExpr");
case CXCursor_OMPArraySectionExpr:
return cxstring::createRef("OMPArraySectionExpr");
case CXCursor_BinaryOperator:
return cxstring::createRef("BinaryOperator");
case CXCursor_CompoundAssignOperator:
return cxstring::createRef("CompoundAssignOperator");
case CXCursor_ConditionalOperator:
return cxstring::createRef("ConditionalOperator");
case CXCursor_CStyleCastExpr:
return cxstring::createRef("CStyleCastExpr");
case CXCursor_CompoundLiteralExpr:
return cxstring::createRef("CompoundLiteralExpr");
case CXCursor_InitListExpr:
return cxstring::createRef("InitListExpr");
case CXCursor_AddrLabelExpr:
return cxstring::createRef("AddrLabelExpr");
case CXCursor_StmtExpr:
return cxstring::createRef("StmtExpr");
case CXCursor_GenericSelectionExpr:
return cxstring::createRef("GenericSelectionExpr");
case CXCursor_GNUNullExpr:
return cxstring::createRef("GNUNullExpr");
case CXCursor_CXXStaticCastExpr:
return cxstring::createRef("CXXStaticCastExpr");
case CXCursor_CXXDynamicCastExpr:
return cxstring::createRef("CXXDynamicCastExpr");
case CXCursor_CXXReinterpretCastExpr:
return cxstring::createRef("CXXReinterpretCastExpr");
case CXCursor_CXXConstCastExpr:
return cxstring::createRef("CXXConstCastExpr");
case CXCursor_CXXFunctionalCastExpr:
return cxstring::createRef("CXXFunctionalCastExpr");
case CXCursor_CXXTypeidExpr:
return cxstring::createRef("CXXTypeidExpr");
case CXCursor_CXXBoolLiteralExpr:
return cxstring::createRef("CXXBoolLiteralExpr");
case CXCursor_CXXNullPtrLiteralExpr:
return cxstring::createRef("CXXNullPtrLiteralExpr");
case CXCursor_CXXThisExpr:
return cxstring::createRef("CXXThisExpr");
case CXCursor_CXXThrowExpr:
return cxstring::createRef("CXXThrowExpr");
case CXCursor_CXXNewExpr:
return cxstring::createRef("CXXNewExpr");
case CXCursor_CXXDeleteExpr:
return cxstring::createRef("CXXDeleteExpr");
case CXCursor_UnaryExpr:
return cxstring::createRef("UnaryExpr");
case CXCursor_ObjCStringLiteral:
return cxstring::createRef("ObjCStringLiteral");
case CXCursor_ObjCBoolLiteralExpr:
return cxstring::createRef("ObjCBoolLiteralExpr");
case CXCursor_ObjCSelfExpr:
return cxstring::createRef("ObjCSelfExpr");
case CXCursor_ObjCEncodeExpr:
return cxstring::createRef("ObjCEncodeExpr");
case CXCursor_ObjCSelectorExpr:
return cxstring::createRef("ObjCSelectorExpr");
case CXCursor_ObjCProtocolExpr:
return cxstring::createRef("ObjCProtocolExpr");
case CXCursor_ObjCBridgedCastExpr:
return cxstring::createRef("ObjCBridgedCastExpr");
case CXCursor_BlockExpr:
return cxstring::createRef("BlockExpr");
case CXCursor_PackExpansionExpr:
return cxstring::createRef("PackExpansionExpr");
case CXCursor_SizeOfPackExpr:
return cxstring::createRef("SizeOfPackExpr");
case CXCursor_LambdaExpr:
return cxstring::createRef("LambdaExpr");
case CXCursor_UnexposedExpr:
return cxstring::createRef("UnexposedExpr");
case CXCursor_DeclRefExpr:
return cxstring::createRef("DeclRefExpr");
case CXCursor_MemberRefExpr:
return cxstring::createRef("MemberRefExpr");
case CXCursor_CallExpr:
return cxstring::createRef("CallExpr");
case CXCursor_ObjCMessageExpr:
return cxstring::createRef("ObjCMessageExpr");
case CXCursor_UnexposedStmt:
return cxstring::createRef("UnexposedStmt");
case CXCursor_DeclStmt:
return cxstring::createRef("DeclStmt");
case CXCursor_LabelStmt:
return cxstring::createRef("LabelStmt");
case CXCursor_CompoundStmt:
return cxstring::createRef("CompoundStmt");
case CXCursor_CaseStmt:
return cxstring::createRef("CaseStmt");
case CXCursor_DefaultStmt:
return cxstring::createRef("DefaultStmt");
case CXCursor_IfStmt:
return cxstring::createRef("IfStmt");
case CXCursor_SwitchStmt:
return cxstring::createRef("SwitchStmt");
case CXCursor_WhileStmt:
return cxstring::createRef("WhileStmt");
case CXCursor_DoStmt:
return cxstring::createRef("DoStmt");
case CXCursor_ForStmt:
return cxstring::createRef("ForStmt");
case CXCursor_GotoStmt:
return cxstring::createRef("GotoStmt");
case CXCursor_IndirectGotoStmt:
return cxstring::createRef("IndirectGotoStmt");
case CXCursor_ContinueStmt:
return cxstring::createRef("ContinueStmt");
case CXCursor_BreakStmt:
return cxstring::createRef("BreakStmt");
case CXCursor_ReturnStmt:
return cxstring::createRef("ReturnStmt");
case CXCursor_GCCAsmStmt:
return cxstring::createRef("GCCAsmStmt");
case CXCursor_MSAsmStmt:
return cxstring::createRef("MSAsmStmt");
case CXCursor_ObjCAtTryStmt:
return cxstring::createRef("ObjCAtTryStmt");
case CXCursor_ObjCAtCatchStmt:
return cxstring::createRef("ObjCAtCatchStmt");
case CXCursor_ObjCAtFinallyStmt:
return cxstring::createRef("ObjCAtFinallyStmt");
case CXCursor_ObjCAtThrowStmt:
return cxstring::createRef("ObjCAtThrowStmt");
case CXCursor_ObjCAtSynchronizedStmt:
return cxstring::createRef("ObjCAtSynchronizedStmt");
case CXCursor_ObjCAutoreleasePoolStmt:
return cxstring::createRef("ObjCAutoreleasePoolStmt");
case CXCursor_ObjCForCollectionStmt:
return cxstring::createRef("ObjCForCollectionStmt");
case CXCursor_CXXCatchStmt:
return cxstring::createRef("CXXCatchStmt");
case CXCursor_CXXTryStmt:
return cxstring::createRef("CXXTryStmt");
case CXCursor_CXXForRangeStmt:
return cxstring::createRef("CXXForRangeStmt");
case CXCursor_SEHTryStmt:
return cxstring::createRef("SEHTryStmt");
case CXCursor_SEHExceptStmt:
return cxstring::createRef("SEHExceptStmt");
case CXCursor_SEHFinallyStmt:
return cxstring::createRef("SEHFinallyStmt");
case CXCursor_SEHLeaveStmt:
return cxstring::createRef("SEHLeaveStmt");
case CXCursor_NullStmt:
return cxstring::createRef("NullStmt");
case CXCursor_InvalidFile:
return cxstring::createRef("InvalidFile");
case CXCursor_InvalidCode:
return cxstring::createRef("InvalidCode");
case CXCursor_NoDeclFound:
return cxstring::createRef("NoDeclFound");
case CXCursor_NotImplemented:
return cxstring::createRef("NotImplemented");
case CXCursor_TranslationUnit:
return cxstring::createRef("TranslationUnit");
case CXCursor_UnexposedAttr:
return cxstring::createRef("UnexposedAttr");
case CXCursor_IBActionAttr:
return cxstring::createRef("attribute(ibaction)");
case CXCursor_IBOutletAttr:
return cxstring::createRef("attribute(iboutlet)");
case CXCursor_IBOutletCollectionAttr:
return cxstring::createRef("attribute(iboutletcollection)");
case CXCursor_CXXFinalAttr:
return cxstring::createRef("attribute(final)");
case CXCursor_CXXOverrideAttr:
return cxstring::createRef("attribute(override)");
case CXCursor_AnnotateAttr:
return cxstring::createRef("attribute(annotate)");
case CXCursor_AsmLabelAttr:
return cxstring::createRef("asm label");
case CXCursor_PackedAttr:
return cxstring::createRef("attribute(packed)");
case CXCursor_PureAttr:
return cxstring::createRef("attribute(pure)");
case CXCursor_ConstAttr:
return cxstring::createRef("attribute(const)");
case CXCursor_NoDuplicateAttr:
return cxstring::createRef("attribute(noduplicate)");
case CXCursor_CUDAConstantAttr:
return cxstring::createRef("attribute(constant)");
case CXCursor_CUDADeviceAttr:
return cxstring::createRef("attribute(device)");
case CXCursor_CUDAGlobalAttr:
return cxstring::createRef("attribute(global)");
case CXCursor_CUDAHostAttr:
return cxstring::createRef("attribute(host)");
case CXCursor_CUDASharedAttr:
return cxstring::createRef("attribute(shared)");
case CXCursor_PreprocessingDirective:
return cxstring::createRef("preprocessing directive");
case CXCursor_MacroDefinition:
return cxstring::createRef("macro definition");
case CXCursor_MacroExpansion:
return cxstring::createRef("macro expansion");
case CXCursor_InclusionDirective:
return cxstring::createRef("inclusion directive");
case CXCursor_Namespace:
return cxstring::createRef("Namespace");
case CXCursor_LinkageSpec:
return cxstring::createRef("LinkageSpec");
case CXCursor_CXXBaseSpecifier:
return cxstring::createRef("C++ base class specifier");
case CXCursor_Constructor:
return cxstring::createRef("CXXConstructor");
case CXCursor_Destructor:
return cxstring::createRef("CXXDestructor");
case CXCursor_ConversionFunction:
return cxstring::createRef("CXXConversion");
case CXCursor_TemplateTypeParameter:
return cxstring::createRef("TemplateTypeParameter");
case CXCursor_NonTypeTemplateParameter:
return cxstring::createRef("NonTypeTemplateParameter");
case CXCursor_TemplateTemplateParameter:
return cxstring::createRef("TemplateTemplateParameter");
case CXCursor_FunctionTemplate:
return cxstring::createRef("FunctionTemplate");
case CXCursor_ClassTemplate:
return cxstring::createRef("ClassTemplate");
case CXCursor_ClassTemplatePartialSpecialization:
return cxstring::createRef("ClassTemplatePartialSpecialization");
case CXCursor_NamespaceAlias:
return cxstring::createRef("NamespaceAlias");
case CXCursor_UsingDirective:
return cxstring::createRef("UsingDirective");
case CXCursor_UsingDeclaration:
return cxstring::createRef("UsingDeclaration");
case CXCursor_TypeAliasDecl:
return cxstring::createRef("TypeAliasDecl");
case CXCursor_ObjCSynthesizeDecl:
return cxstring::createRef("ObjCSynthesizeDecl");
case CXCursor_ObjCDynamicDecl:
return cxstring::createRef("ObjCDynamicDecl");
case CXCursor_CXXAccessSpecifier:
return cxstring::createRef("CXXAccessSpecifier");
case CXCursor_ModuleImportDecl:
return cxstring::createRef("ModuleImport");
case CXCursor_OMPParallelDirective:
return cxstring::createRef("OMPParallelDirective");
case CXCursor_OMPSimdDirective:
return cxstring::createRef("OMPSimdDirective");
case CXCursor_OMPForDirective:
return cxstring::createRef("OMPForDirective");
case CXCursor_OMPForSimdDirective:
return cxstring::createRef("OMPForSimdDirective");
case CXCursor_OMPSectionsDirective:
return cxstring::createRef("OMPSectionsDirective");
case CXCursor_OMPSectionDirective:
return cxstring::createRef("OMPSectionDirective");
case CXCursor_OMPSingleDirective:
return cxstring::createRef("OMPSingleDirective");
case CXCursor_OMPMasterDirective:
return cxstring::createRef("OMPMasterDirective");
case CXCursor_OMPCriticalDirective:
return cxstring::createRef("OMPCriticalDirective");
case CXCursor_OMPParallelForDirective:
return cxstring::createRef("OMPParallelForDirective");
case CXCursor_OMPParallelForSimdDirective:
return cxstring::createRef("OMPParallelForSimdDirective");
case CXCursor_OMPParallelSectionsDirective:
return cxstring::createRef("OMPParallelSectionsDirective");
case CXCursor_OMPTaskDirective:
return cxstring::createRef("OMPTaskDirective");
case CXCursor_OMPTaskyieldDirective:
return cxstring::createRef("OMPTaskyieldDirective");
case CXCursor_OMPBarrierDirective:
return cxstring::createRef("OMPBarrierDirective");
case CXCursor_OMPTaskwaitDirective:
return cxstring::createRef("OMPTaskwaitDirective");
case CXCursor_OMPTaskgroupDirective:
return cxstring::createRef("OMPTaskgroupDirective");
case CXCursor_OMPFlushDirective:
return cxstring::createRef("OMPFlushDirective");
case CXCursor_OMPOrderedDirective:
return cxstring::createRef("OMPOrderedDirective");
case CXCursor_OMPAtomicDirective:
return cxstring::createRef("OMPAtomicDirective");
case CXCursor_OMPTargetDirective:
return cxstring::createRef("OMPTargetDirective");
case CXCursor_OMPTargetDataDirective:
return cxstring::createRef("OMPTargetDataDirective");
case CXCursor_OMPTeamsDirective:
return cxstring::createRef("OMPTeamsDirective");
case CXCursor_OMPCancellationPointDirective:
return cxstring::createRef("OMPCancellationPointDirective");
case CXCursor_OMPCancelDirective:
return cxstring::createRef("OMPCancelDirective");
case CXCursor_OverloadCandidate:
return cxstring::createRef("OverloadCandidate");
}
llvm_unreachable("Unhandled CXCursorKind");
}
struct GetCursorData {
SourceLocation TokenBeginLoc;
bool PointsAtMacroArgExpansion;
bool VisitedObjCPropertyImplDecl;
SourceLocation VisitedDeclaratorDeclStartLoc;
CXCursor &BestCursor;
GetCursorData(SourceManager &SM,
SourceLocation tokenBegin, CXCursor &outputCursor)
: TokenBeginLoc(tokenBegin), BestCursor(outputCursor) {
PointsAtMacroArgExpansion = SM.isMacroArgExpansion(tokenBegin);
VisitedObjCPropertyImplDecl = false;
}
};
static enum CXChildVisitResult GetCursorVisitor(CXCursor cursor,
CXCursor parent,
CXClientData client_data) {
GetCursorData *Data = static_cast<GetCursorData *>(client_data);
CXCursor *BestCursor = &Data->BestCursor;
// If we point inside a macro argument we should provide info of what the
// token is so use the actual cursor, don't replace it with a macro expansion
// cursor.
if (cursor.kind == CXCursor_MacroExpansion && Data->PointsAtMacroArgExpansion)
return CXChildVisit_Recurse;
if (clang_isDeclaration(cursor.kind)) {
// Avoid having the implicit methods override the property decls.
if (const ObjCMethodDecl *MD
= dyn_cast_or_null<ObjCMethodDecl>(getCursorDecl(cursor))) {
if (MD->isImplicit())
return CXChildVisit_Break;
} else if (const ObjCInterfaceDecl *ID
= dyn_cast_or_null<ObjCInterfaceDecl>(getCursorDecl(cursor))) {
// Check that when we have multiple @class references in the same line,
// that later ones do not override the previous ones.
// If we have:
// @class Foo, Bar;
// source ranges for both start at '@', so 'Bar' will end up overriding
// 'Foo' even though the cursor location was at 'Foo'.
if (BestCursor->kind == CXCursor_ObjCInterfaceDecl ||
BestCursor->kind == CXCursor_ObjCClassRef)
if (const ObjCInterfaceDecl *PrevID
= dyn_cast_or_null<ObjCInterfaceDecl>(getCursorDecl(*BestCursor))){
if (PrevID != ID &&
!PrevID->isThisDeclarationADefinition() &&
!ID->isThisDeclarationADefinition())
return CXChildVisit_Break;
}
} else if (const DeclaratorDecl *DD
= dyn_cast_or_null<DeclaratorDecl>(getCursorDecl(cursor))) {
SourceLocation StartLoc = DD->getSourceRange().getBegin();
// Check that when we have multiple declarators in the same line,
// that later ones do not override the previous ones.
// If we have:
// int Foo, Bar;
// source ranges for both start at 'int', so 'Bar' will end up overriding
// 'Foo' even though the cursor location was at 'Foo'.
if (Data->VisitedDeclaratorDeclStartLoc == StartLoc)
return CXChildVisit_Break;
Data->VisitedDeclaratorDeclStartLoc = StartLoc;
} else if (const ObjCPropertyImplDecl *PropImp
= dyn_cast_or_null<ObjCPropertyImplDecl>(getCursorDecl(cursor))) {
(void)PropImp;
// Check that when we have multiple @synthesize in the same line,
// that later ones do not override the previous ones.
// If we have:
// @synthesize Foo, Bar;
// source ranges for both start at '@', so 'Bar' will end up overriding
// 'Foo' even though the cursor location was at 'Foo'.
if (Data->VisitedObjCPropertyImplDecl)
return CXChildVisit_Break;
Data->VisitedObjCPropertyImplDecl = true;
}
}
if (clang_isExpression(cursor.kind) &&
clang_isDeclaration(BestCursor->kind)) {
if (const Decl *D = getCursorDecl(*BestCursor)) {
// Avoid having the cursor of an expression replace the declaration cursor
// when the expression source range overlaps the declaration range.
// This can happen for C++ constructor expressions whose range generally
// include the variable declaration, e.g.:
// MyCXXClass foo; // Make sure pointing at 'foo' returns a VarDecl cursor.
if (D->getLocation().isValid() && Data->TokenBeginLoc.isValid() &&
D->getLocation() == Data->TokenBeginLoc)
return CXChildVisit_Break;
}
}
// If our current best cursor is the construction of a temporary object,
// don't replace that cursor with a type reference, because we want
// clang_getCursor() to point at the constructor.
if (clang_isExpression(BestCursor->kind) &&
isa<CXXTemporaryObjectExpr>(getCursorExpr(*BestCursor)) &&
cursor.kind == CXCursor_TypeRef) {
// Keep the cursor pointing at CXXTemporaryObjectExpr but also mark it
// as having the actual point on the type reference.
*BestCursor = getTypeRefedCallExprCursor(*BestCursor);
return CXChildVisit_Recurse;
}
// If we already have an Objective-C superclass reference, don't
// update it further.
if (BestCursor->kind == CXCursor_ObjCSuperClassRef)
return CXChildVisit_Break;
*BestCursor = cursor;
return CXChildVisit_Recurse;
}
CXCursor clang_getCursor(CXTranslationUnit TU, CXSourceLocation Loc) {
if (isNotUsableTU(TU)) {
LOG_BAD_TU(TU);
return clang_getNullCursor();
}
ASTUnit *CXXUnit = cxtu::getASTUnit(TU);
ASTUnit::ConcurrencyCheck Check(*CXXUnit);
SourceLocation SLoc = cxloc::translateSourceLocation(Loc);
CXCursor Result = cxcursor::getCursor(TU, SLoc);
LOG_FUNC_SECTION {
CXFile SearchFile;
unsigned SearchLine, SearchColumn;
CXFile ResultFile;
unsigned ResultLine, ResultColumn;
CXString SearchFileName, ResultFileName, KindSpelling, USR;
const char *IsDef = clang_isCursorDefinition(Result)? " (Definition)" : "";
CXSourceLocation ResultLoc = clang_getCursorLocation(Result);
clang_getFileLocation(Loc, &SearchFile, &SearchLine, &SearchColumn,
nullptr);
clang_getFileLocation(ResultLoc, &ResultFile, &ResultLine,
&ResultColumn, nullptr);
SearchFileName = clang_getFileName(SearchFile);
ResultFileName = clang_getFileName(ResultFile);
KindSpelling = clang_getCursorKindSpelling(Result.kind);
USR = clang_getCursorUSR(Result);
*Log << llvm::format("(%s:%d:%d) = %s",
clang_getCString(SearchFileName), SearchLine, SearchColumn,
clang_getCString(KindSpelling))
<< llvm::format("(%s:%d:%d):%s%s",
clang_getCString(ResultFileName), ResultLine, ResultColumn,
clang_getCString(USR), IsDef);
clang_disposeString(SearchFileName);
clang_disposeString(ResultFileName);
clang_disposeString(KindSpelling);
clang_disposeString(USR);
CXCursor Definition = clang_getCursorDefinition(Result);
if (!clang_equalCursors(Definition, clang_getNullCursor())) {
CXSourceLocation DefinitionLoc = clang_getCursorLocation(Definition);
CXString DefinitionKindSpelling
= clang_getCursorKindSpelling(Definition.kind);
CXFile DefinitionFile;
unsigned DefinitionLine, DefinitionColumn;
clang_getFileLocation(DefinitionLoc, &DefinitionFile,
&DefinitionLine, &DefinitionColumn, nullptr);
CXString DefinitionFileName = clang_getFileName(DefinitionFile);
*Log << llvm::format(" -> %s(%s:%d:%d)",
clang_getCString(DefinitionKindSpelling),
clang_getCString(DefinitionFileName),
DefinitionLine, DefinitionColumn);
clang_disposeString(DefinitionFileName);
clang_disposeString(DefinitionKindSpelling);
}
}
return Result;
}
CXCursor clang_getNullCursor(void) {
return MakeCXCursorInvalid(CXCursor_InvalidFile);
}
unsigned clang_equalCursors(CXCursor X, CXCursor Y) {
// Clear out the "FirstInDeclGroup" part in a declaration cursor, since we
// can't set consistently. For example, when visiting a DeclStmt we will set
// it but we don't set it on the result of clang_getCursorDefinition for
// a reference of the same declaration.
// FIXME: Setting "FirstInDeclGroup" in CXCursors is a hack that only works
// when visiting a DeclStmt currently, the AST should be enhanced to be able
// to provide that kind of info.
if (clang_isDeclaration(X.kind))
X.data[1] = nullptr;
if (clang_isDeclaration(Y.kind))
Y.data[1] = nullptr;
return X == Y;
}
unsigned clang_hashCursor(CXCursor C) {
unsigned Index = 0;
if (clang_isExpression(C.kind) || clang_isStatement(C.kind))
Index = 1;
return llvm::DenseMapInfo<std::pair<unsigned, const void*> >::getHashValue(
std::make_pair(C.kind, C.data[Index]));
}
unsigned clang_isInvalid(enum CXCursorKind K) {
return K >= CXCursor_FirstInvalid && K <= CXCursor_LastInvalid;
}
unsigned clang_isDeclaration(enum CXCursorKind K) {
return (K >= CXCursor_FirstDecl && K <= CXCursor_LastDecl) ||
(K >= CXCursor_FirstExtraDecl && K <= CXCursor_LastExtraDecl);
}
unsigned clang_isReference(enum CXCursorKind K) {
return K >= CXCursor_FirstRef && K <= CXCursor_LastRef;
}
unsigned clang_isExpression(enum CXCursorKind K) {
return K >= CXCursor_FirstExpr && K <= CXCursor_LastExpr;
}
unsigned clang_isStatement(enum CXCursorKind K) {
return K >= CXCursor_FirstStmt && K <= CXCursor_LastStmt;
}
unsigned clang_isAttribute(enum CXCursorKind K) {
return K >= CXCursor_FirstAttr && K <= CXCursor_LastAttr;
}
unsigned clang_isTranslationUnit(enum CXCursorKind K) {
return K == CXCursor_TranslationUnit;
}
unsigned clang_isPreprocessing(enum CXCursorKind K) {
return K >= CXCursor_FirstPreprocessing && K <= CXCursor_LastPreprocessing;
}
unsigned clang_isUnexposed(enum CXCursorKind K) {
switch (K) {
case CXCursor_UnexposedDecl:
case CXCursor_UnexposedExpr:
case CXCursor_UnexposedStmt:
case CXCursor_UnexposedAttr:
return true;
default:
return false;
}
}
CXCursorKind clang_getCursorKind(CXCursor C) {
return C.kind;
}
CXSourceLocation clang_getCursorLocation(CXCursor C) {
if (clang_isReference(C.kind)) {
switch (C.kind) {
case CXCursor_ObjCSuperClassRef: {
std::pair<const ObjCInterfaceDecl *, SourceLocation> P
= getCursorObjCSuperClassRef(C);
return cxloc::translateSourceLocation(P.first->getASTContext(), P.second);
}
case CXCursor_ObjCProtocolRef: {
std::pair<const ObjCProtocolDecl *, SourceLocation> P
= getCursorObjCProtocolRef(C);
return cxloc::translateSourceLocation(P.first->getASTContext(), P.second);
}
case CXCursor_ObjCClassRef: {
std::pair<const ObjCInterfaceDecl *, SourceLocation> P
= getCursorObjCClassRef(C);
return cxloc::translateSourceLocation(P.first->getASTContext(), P.second);
}
case CXCursor_TypeRef: {
std::pair<const TypeDecl *, SourceLocation> P = getCursorTypeRef(C);
return cxloc::translateSourceLocation(P.first->getASTContext(), P.second);
}
case CXCursor_TemplateRef: {
std::pair<const TemplateDecl *, SourceLocation> P =
getCursorTemplateRef(C);
return cxloc::translateSourceLocation(P.first->getASTContext(), P.second);
}
case CXCursor_NamespaceRef: {
std::pair<const NamedDecl *, SourceLocation> P = getCursorNamespaceRef(C);
return cxloc::translateSourceLocation(P.first->getASTContext(), P.second);
}
case CXCursor_MemberRef: {
std::pair<const FieldDecl *, SourceLocation> P = getCursorMemberRef(C);
return cxloc::translateSourceLocation(P.first->getASTContext(), P.second);
}
case CXCursor_VariableRef: {
std::pair<const VarDecl *, SourceLocation> P = getCursorVariableRef(C);
return cxloc::translateSourceLocation(P.first->getASTContext(), P.second);
}
case CXCursor_CXXBaseSpecifier: {
const CXXBaseSpecifier *BaseSpec = getCursorCXXBaseSpecifier(C);
if (!BaseSpec)
return clang_getNullLocation();
if (TypeSourceInfo *TSInfo = BaseSpec->getTypeSourceInfo())
return cxloc::translateSourceLocation(getCursorContext(C),
TSInfo->getTypeLoc().getBeginLoc());
return cxloc::translateSourceLocation(getCursorContext(C),
BaseSpec->getLocStart());
}
case CXCursor_LabelRef: {
std::pair<const LabelStmt *, SourceLocation> P = getCursorLabelRef(C);
return cxloc::translateSourceLocation(getCursorContext(C), P.second);
}
case CXCursor_OverloadedDeclRef:
return cxloc::translateSourceLocation(getCursorContext(C),
getCursorOverloadedDeclRef(C).second);
default:
// FIXME: Need a way to enumerate all non-reference cases.
llvm_unreachable("Missed a reference kind");
}
}
if (clang_isExpression(C.kind))
return cxloc::translateSourceLocation(getCursorContext(C),
getLocationFromExpr(getCursorExpr(C)));
if (clang_isStatement(C.kind))
return cxloc::translateSourceLocation(getCursorContext(C),
getCursorStmt(C)->getLocStart());
if (C.kind == CXCursor_PreprocessingDirective) {
SourceLocation L = cxcursor::getCursorPreprocessingDirective(C).getBegin();
return cxloc::translateSourceLocation(getCursorContext(C), L);
}
if (C.kind == CXCursor_MacroExpansion) {
SourceLocation L
= cxcursor::getCursorMacroExpansion(C).getSourceRange().getBegin();
return cxloc::translateSourceLocation(getCursorContext(C), L);
}
if (C.kind == CXCursor_MacroDefinition) {
SourceLocation L = cxcursor::getCursorMacroDefinition(C)->getLocation();
return cxloc::translateSourceLocation(getCursorContext(C), L);
}
if (C.kind == CXCursor_InclusionDirective) {
SourceLocation L
= cxcursor::getCursorInclusionDirective(C)->getSourceRange().getBegin();
return cxloc::translateSourceLocation(getCursorContext(C), L);
}
if (clang_isAttribute(C.kind)) {
SourceLocation L
= cxcursor::getCursorAttr(C)->getLocation();
return cxloc::translateSourceLocation(getCursorContext(C), L);
}
if (!clang_isDeclaration(C.kind))
return clang_getNullLocation();
const Decl *D = getCursorDecl(C);
if (!D)
return clang_getNullLocation();
SourceLocation Loc = D->getLocation();
// FIXME: Multiple variables declared in a single declaration
// currently lack the information needed to correctly determine their
// ranges when accounting for the type-specifier. We use context
// stored in the CXCursor to determine if the VarDecl is in a DeclGroup,
// and if so, whether it is the first decl.
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
if (!cxcursor::isFirstInDeclGroup(C))
Loc = VD->getLocation();
}
// For ObjC methods, give the start location of the method name.
if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
Loc = MD->getSelectorStartLoc();
return cxloc::translateSourceLocation(getCursorContext(C), Loc);
}
} // end extern "C"
CXCursor cxcursor::getCursor(CXTranslationUnit TU, SourceLocation SLoc) {
assert(TU);
// Guard against an invalid SourceLocation, or we may assert in one
// of the following calls.
if (SLoc.isInvalid())
return clang_getNullCursor();
ASTUnit *CXXUnit = cxtu::getASTUnit(TU);
// Translate the given source location to make it point at the beginning of
// the token under the cursor.
SLoc = Lexer::GetBeginningOfToken(SLoc, CXXUnit->getSourceManager(),
CXXUnit->getASTContext().getLangOpts());
CXCursor Result = MakeCXCursorInvalid(CXCursor_NoDeclFound);
if (SLoc.isValid()) {
GetCursorData ResultData(CXXUnit->getSourceManager(), SLoc, Result);
CursorVisitor CursorVis(TU, GetCursorVisitor, &ResultData,
/*VisitPreprocessorLast=*/true,
/*VisitIncludedEntities=*/false,
SourceLocation(SLoc));
CursorVis.visitFileRegion();
}
return Result;
}
static SourceRange getRawCursorExtent(CXCursor C) {
if (clang_isReference(C.kind)) {
switch (C.kind) {
case CXCursor_ObjCSuperClassRef:
return getCursorObjCSuperClassRef(C).second;
case CXCursor_ObjCProtocolRef:
return getCursorObjCProtocolRef(C).second;
case CXCursor_ObjCClassRef:
return getCursorObjCClassRef(C).second;
case CXCursor_TypeRef:
return getCursorTypeRef(C).second;
case CXCursor_TemplateRef:
return getCursorTemplateRef(C).second;
case CXCursor_NamespaceRef:
return getCursorNamespaceRef(C).second;
case CXCursor_MemberRef:
return getCursorMemberRef(C).second;
case CXCursor_CXXBaseSpecifier:
return getCursorCXXBaseSpecifier(C)->getSourceRange();
case CXCursor_LabelRef:
return getCursorLabelRef(C).second;
case CXCursor_OverloadedDeclRef:
return getCursorOverloadedDeclRef(C).second;
case CXCursor_VariableRef:
return getCursorVariableRef(C).second;
default:
// FIXME: Need a way to enumerate all non-reference cases.
llvm_unreachable("Missed a reference kind");
}
}
if (clang_isExpression(C.kind))
return getCursorExpr(C)->getSourceRange();
if (clang_isStatement(C.kind))
return getCursorStmt(C)->getSourceRange();
if (clang_isAttribute(C.kind))
return getCursorAttr(C)->getRange();
if (C.kind == CXCursor_PreprocessingDirective)
return cxcursor::getCursorPreprocessingDirective(C);
if (C.kind == CXCursor_MacroExpansion) {
ASTUnit *TU = getCursorASTUnit(C);
SourceRange Range = cxcursor::getCursorMacroExpansion(C).getSourceRange();
return TU->mapRangeFromPreamble(Range);
}
if (C.kind == CXCursor_MacroDefinition) {
ASTUnit *TU = getCursorASTUnit(C);
SourceRange Range = cxcursor::getCursorMacroDefinition(C)->getSourceRange();
return TU->mapRangeFromPreamble(Range);
}
if (C.kind == CXCursor_InclusionDirective) {
ASTUnit *TU = getCursorASTUnit(C);
SourceRange Range = cxcursor::getCursorInclusionDirective(C)->getSourceRange();
return TU->mapRangeFromPreamble(Range);
}
if (C.kind == CXCursor_TranslationUnit) {
ASTUnit *TU = getCursorASTUnit(C);
FileID MainID = TU->getSourceManager().getMainFileID();
SourceLocation Start = TU->getSourceManager().getLocForStartOfFile(MainID);
SourceLocation End = TU->getSourceManager().getLocForEndOfFile(MainID);
return SourceRange(Start, End);
}
if (clang_isDeclaration(C.kind)) {
const Decl *D = cxcursor::getCursorDecl(C);
if (!D)
return SourceRange();
SourceRange R = D->getSourceRange();
// FIXME: Multiple variables declared in a single declaration
// currently lack the information needed to correctly determine their
// ranges when accounting for the type-specifier. We use context
// stored in the CXCursor to determine if the VarDecl is in a DeclGroup,
// and if so, whether it is the first decl.
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
if (!cxcursor::isFirstInDeclGroup(C))
R.setBegin(VD->getLocation());
}
return R;
}
return SourceRange();
}
/// \brief Retrieves the "raw" cursor extent, which is then extended to include
/// the decl-specifier-seq for declarations.
static SourceRange getFullCursorExtent(CXCursor C, SourceManager &SrcMgr) {
if (clang_isDeclaration(C.kind)) {
const Decl *D = cxcursor::getCursorDecl(C);
if (!D)
return SourceRange();
SourceRange R = D->getSourceRange();
// Adjust the start of the location for declarations preceded by
// declaration specifiers.
SourceLocation StartLoc;
if (const DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) {
if (TypeSourceInfo *TI = DD->getTypeSourceInfo())
StartLoc = TI->getTypeLoc().getLocStart();
} else if (const TypedefDecl *Typedef = dyn_cast<TypedefDecl>(D)) {
if (TypeSourceInfo *TI = Typedef->getTypeSourceInfo())
StartLoc = TI->getTypeLoc().getLocStart();
}
if (StartLoc.isValid() && R.getBegin().isValid() &&
SrcMgr.isBeforeInTranslationUnit(StartLoc, R.getBegin()))
R.setBegin(StartLoc);
// FIXME: Multiple variables declared in a single declaration
// currently lack the information needed to correctly determine their
// ranges when accounting for the type-specifier. We use context
// stored in the CXCursor to determine if the VarDecl is in a DeclGroup,
// and if so, whether it is the first decl.
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
if (!cxcursor::isFirstInDeclGroup(C))
R.setBegin(VD->getLocation());
}
return R;
}
return getRawCursorExtent(C);
}
extern "C" {
CXSourceRange clang_getCursorExtent(CXCursor C) {
SourceRange R = getRawCursorExtent(C);
if (R.isInvalid())
return clang_getNullRange();
return cxloc::translateSourceRange(getCursorContext(C), R);
}
CXCursor clang_getCursorReferenced(CXCursor C) {
if (clang_isInvalid(C.kind))
return clang_getNullCursor();
CXTranslationUnit tu = getCursorTU(C);
if (clang_isDeclaration(C.kind)) {
const Decl *D = getCursorDecl(C);
if (!D)
return clang_getNullCursor();
if (const UsingDecl *Using = dyn_cast<UsingDecl>(D))
return MakeCursorOverloadedDeclRef(Using, D->getLocation(), tu);
if (const ObjCPropertyImplDecl *PropImpl =
dyn_cast<ObjCPropertyImplDecl>(D))
if (ObjCPropertyDecl *Property = PropImpl->getPropertyDecl())
return MakeCXCursor(Property, tu);
return C;
}
if (clang_isExpression(C.kind)) {
const Expr *E = getCursorExpr(C);
const Decl *D = getDeclFromExpr(E);
if (D) {
CXCursor declCursor = MakeCXCursor(D, tu);
declCursor = getSelectorIdentifierCursor(getSelectorIdentifierIndex(C),
declCursor);
return declCursor;
}
if (const OverloadExpr *Ovl = dyn_cast_or_null<OverloadExpr>(E))
return MakeCursorOverloadedDeclRef(Ovl, tu);
return clang_getNullCursor();
}
if (clang_isStatement(C.kind)) {
const Stmt *S = getCursorStmt(C);
if (const GotoStmt *Goto = dyn_cast_or_null<GotoStmt>(S))
if (LabelDecl *label = Goto->getLabel())
if (LabelStmt *labelS = label->getStmt())
return MakeCXCursor(labelS, getCursorDecl(C), tu);
return clang_getNullCursor();
}
if (C.kind == CXCursor_MacroExpansion) {
if (const MacroDefinitionRecord *Def =
getCursorMacroExpansion(C).getDefinition())
return MakeMacroDefinitionCursor(Def, tu);
}
if (!clang_isReference(C.kind))
return clang_getNullCursor();
switch (C.kind) {
case CXCursor_ObjCSuperClassRef:
return MakeCXCursor(getCursorObjCSuperClassRef(C).first, tu);
case CXCursor_ObjCProtocolRef: {
const ObjCProtocolDecl *Prot = getCursorObjCProtocolRef(C).first;
if (const ObjCProtocolDecl *Def = Prot->getDefinition())
return MakeCXCursor(Def, tu);
return MakeCXCursor(Prot, tu);
}
case CXCursor_ObjCClassRef: {
const ObjCInterfaceDecl *Class = getCursorObjCClassRef(C).first;
if (const ObjCInterfaceDecl *Def = Class->getDefinition())
return MakeCXCursor(Def, tu);
return MakeCXCursor(Class, tu);
}
case CXCursor_TypeRef:
return MakeCXCursor(getCursorTypeRef(C).first, tu );
case CXCursor_TemplateRef:
return MakeCXCursor(getCursorTemplateRef(C).first, tu );
case CXCursor_NamespaceRef:
return MakeCXCursor(getCursorNamespaceRef(C).first, tu );
case CXCursor_MemberRef:
return MakeCXCursor(getCursorMemberRef(C).first, tu );
case CXCursor_CXXBaseSpecifier: {
const CXXBaseSpecifier *B = cxcursor::getCursorCXXBaseSpecifier(C);
return clang_getTypeDeclaration(cxtype::MakeCXType(B->getType(),
tu ));
}
case CXCursor_LabelRef:
// FIXME: We end up faking the "parent" declaration here because we
// don't want to make CXCursor larger.
return MakeCXCursor(getCursorLabelRef(C).first,
cxtu::getASTUnit(tu)->getASTContext()
.getTranslationUnitDecl(),
tu);
case CXCursor_OverloadedDeclRef:
return C;
case CXCursor_VariableRef:
return MakeCXCursor(getCursorVariableRef(C).first, tu);
default:
// We would prefer to enumerate all non-reference cursor kinds here.
llvm_unreachable("Unhandled reference cursor kind");
}
}
CXCursor clang_getCursorDefinition(CXCursor C) {
if (clang_isInvalid(C.kind))
return clang_getNullCursor();
CXTranslationUnit TU = getCursorTU(C);
bool WasReference = false;
if (clang_isReference(C.kind) || clang_isExpression(C.kind)) {
C = clang_getCursorReferenced(C);
WasReference = true;
}
if (C.kind == CXCursor_MacroExpansion)
return clang_getCursorReferenced(C);
if (!clang_isDeclaration(C.kind))
return clang_getNullCursor();
const Decl *D = getCursorDecl(C);
if (!D)
return clang_getNullCursor();
switch (D->getKind()) {
// Declaration kinds that don't really separate the notions of
// declaration and definition.
case Decl::Namespace:
case Decl::Typedef:
case Decl::TypeAlias:
case Decl::TypeAliasTemplate:
case Decl::TemplateTypeParm:
case Decl::EnumConstant:
case Decl::Field:
case Decl::MSProperty:
case Decl::IndirectField:
case Decl::ObjCIvar:
case Decl::ObjCAtDefsField:
case Decl::ImplicitParam:
case Decl::ParmVar:
case Decl::NonTypeTemplateParm:
case Decl::TemplateTemplateParm:
case Decl::ObjCCategoryImpl:
case Decl::ObjCImplementation:
case Decl::AccessSpec:
case Decl::LinkageSpec:
case Decl::ObjCPropertyImpl:
case Decl::FileScopeAsm:
case Decl::StaticAssert:
case Decl::Block:
case Decl::Captured:
case Decl::Label: // FIXME: Is this right??
case Decl::ClassScopeFunctionSpecialization:
case Decl::Import:
case Decl::OMPThreadPrivate:
case Decl::ObjCTypeParam:
return C;
// Declaration kinds that don't make any sense here, but are
// nonetheless harmless.
case Decl::Empty:
case Decl::TranslationUnit:
case Decl::ExternCContext:
break;
// Declaration kinds for which the definition is not resolvable.
case Decl::UnresolvedUsingTypename:
case Decl::UnresolvedUsingValue:
break;
case Decl::UsingDirective:
return MakeCXCursor(cast<UsingDirectiveDecl>(D)->getNominatedNamespace(),
TU);
case Decl::NamespaceAlias:
return MakeCXCursor(cast<NamespaceAliasDecl>(D)->getNamespace(), TU);
case Decl::Enum:
case Decl::Record:
case Decl::CXXRecord:
case Decl::ClassTemplateSpecialization:
case Decl::ClassTemplatePartialSpecialization:
if (TagDecl *Def = cast<TagDecl>(D)->getDefinition())
return MakeCXCursor(Def, TU);
return clang_getNullCursor();
case Decl::Function:
case Decl::CXXMethod:
case Decl::CXXConstructor:
case Decl::CXXDestructor:
case Decl::CXXConversion: {
const FunctionDecl *Def = nullptr;
if (cast<FunctionDecl>(D)->getBody(Def))
return MakeCXCursor(Def, TU);
return clang_getNullCursor();
}
case Decl::Var:
case Decl::VarTemplateSpecialization:
case Decl::VarTemplatePartialSpecialization: {
// Ask the variable if it has a definition.
if (const VarDecl *Def = cast<VarDecl>(D)->getDefinition())
return MakeCXCursor(Def, TU);
return clang_getNullCursor();
}
case Decl::FunctionTemplate: {
const FunctionDecl *Def = nullptr;
if (cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->getBody(Def))
return MakeCXCursor(Def->getDescribedFunctionTemplate(), TU);
return clang_getNullCursor();
}
case Decl::ClassTemplate: {
if (RecordDecl *Def = cast<ClassTemplateDecl>(D)->getTemplatedDecl()
->getDefinition())
return MakeCXCursor(cast<CXXRecordDecl>(Def)->getDescribedClassTemplate(),
TU);
return clang_getNullCursor();
}
case Decl::VarTemplate: {
if (VarDecl *Def =
cast<VarTemplateDecl>(D)->getTemplatedDecl()->getDefinition())
return MakeCXCursor(cast<VarDecl>(Def)->getDescribedVarTemplate(), TU);
return clang_getNullCursor();
}
case Decl::Using:
return MakeCursorOverloadedDeclRef(cast<UsingDecl>(D),
D->getLocation(), TU);
case Decl::UsingShadow:
return clang_getCursorDefinition(
MakeCXCursor(cast<UsingShadowDecl>(D)->getTargetDecl(),
TU));
case Decl::ObjCMethod: {
const ObjCMethodDecl *Method = cast<ObjCMethodDecl>(D);
if (Method->isThisDeclarationADefinition())
return C;
// Dig out the method definition in the associated
// @implementation, if we have it.
// FIXME: The ASTs should make finding the definition easier.
if (const ObjCInterfaceDecl *Class
= dyn_cast<ObjCInterfaceDecl>(Method->getDeclContext()))
if (ObjCImplementationDecl *ClassImpl = Class->getImplementation())
if (ObjCMethodDecl *Def = ClassImpl->getMethod(Method->getSelector(),
Method->isInstanceMethod()))
if (Def->isThisDeclarationADefinition())
return MakeCXCursor(Def, TU);
return clang_getNullCursor();
}
case Decl::ObjCCategory:
if (ObjCCategoryImplDecl *Impl
= cast<ObjCCategoryDecl>(D)->getImplementation())
return MakeCXCursor(Impl, TU);
return clang_getNullCursor();
case Decl::ObjCProtocol:
if (const ObjCProtocolDecl *Def = cast<ObjCProtocolDecl>(D)->getDefinition())
return MakeCXCursor(Def, TU);
return clang_getNullCursor();
case Decl::ObjCInterface: {
// There are two notions of a "definition" for an Objective-C
// class: the interface and its implementation. When we resolved a
// reference to an Objective-C class, produce the @interface as
// the definition; when we were provided with the interface,
// produce the @implementation as the definition.
const ObjCInterfaceDecl *IFace = cast<ObjCInterfaceDecl>(D);
if (WasReference) {
if (const ObjCInterfaceDecl *Def = IFace->getDefinition())
return MakeCXCursor(Def, TU);
} else if (ObjCImplementationDecl *Impl = IFace->getImplementation())
return MakeCXCursor(Impl, TU);
return clang_getNullCursor();
}
case Decl::ObjCProperty:
// FIXME: We don't really know where to find the
// ObjCPropertyImplDecls that implement this property.
return clang_getNullCursor();
case Decl::ObjCCompatibleAlias:
if (const ObjCInterfaceDecl *Class
= cast<ObjCCompatibleAliasDecl>(D)->getClassInterface())
if (const ObjCInterfaceDecl *Def = Class->getDefinition())
return MakeCXCursor(Def, TU);
return clang_getNullCursor();
case Decl::Friend:
if (NamedDecl *Friend = cast<FriendDecl>(D)->getFriendDecl())
return clang_getCursorDefinition(MakeCXCursor(Friend, TU));
return clang_getNullCursor();
case Decl::FriendTemplate:
if (NamedDecl *Friend = cast<FriendTemplateDecl>(D)->getFriendDecl())
return clang_getCursorDefinition(MakeCXCursor(Friend, TU));
return clang_getNullCursor();
}
return clang_getNullCursor();
}
unsigned clang_isCursorDefinition(CXCursor C) {
if (!clang_isDeclaration(C.kind))
return 0;
return clang_getCursorDefinition(C) == C;
}
CXCursor clang_getCanonicalCursor(CXCursor C) {
if (!clang_isDeclaration(C.kind))
return C;
if (const Decl *D = getCursorDecl(C)) {
if (const ObjCCategoryImplDecl *CatImplD = dyn_cast<ObjCCategoryImplDecl>(D))
if (ObjCCategoryDecl *CatD = CatImplD->getCategoryDecl())
return MakeCXCursor(CatD, getCursorTU(C));
if (const ObjCImplDecl *ImplD = dyn_cast<ObjCImplDecl>(D))
if (const ObjCInterfaceDecl *IFD = ImplD->getClassInterface())
return MakeCXCursor(IFD, getCursorTU(C));
return MakeCXCursor(D->getCanonicalDecl(), getCursorTU(C));
}
return C;
}
int clang_Cursor_getObjCSelectorIndex(CXCursor cursor) {
return cxcursor::getSelectorIdentifierIndexAndLoc(cursor).first;
}
unsigned clang_getNumOverloadedDecls(CXCursor C) {
if (C.kind != CXCursor_OverloadedDeclRef)
return 0;
OverloadedDeclRefStorage Storage = getCursorOverloadedDeclRef(C).first;
if (const OverloadExpr *E = Storage.dyn_cast<const OverloadExpr *>())
return E->getNumDecls();
if (OverloadedTemplateStorage *S
= Storage.dyn_cast<OverloadedTemplateStorage*>())
return S->size();
const Decl *D = Storage.get<const Decl *>();
if (const UsingDecl *Using = dyn_cast<UsingDecl>(D))
return Using->shadow_size();
return 0;
}
CXCursor clang_getOverloadedDecl(CXCursor cursor, unsigned index) {
if (cursor.kind != CXCursor_OverloadedDeclRef)
return clang_getNullCursor();
if (index >= clang_getNumOverloadedDecls(cursor))
return clang_getNullCursor();
CXTranslationUnit TU = getCursorTU(cursor);
OverloadedDeclRefStorage Storage = getCursorOverloadedDeclRef(cursor).first;
if (const OverloadExpr *E = Storage.dyn_cast<const OverloadExpr *>())
return MakeCXCursor(E->decls_begin()[index], TU);
if (OverloadedTemplateStorage *S
= Storage.dyn_cast<OverloadedTemplateStorage*>())
return MakeCXCursor(S->begin()[index], TU);
const Decl *D = Storage.get<const Decl *>();
if (const UsingDecl *Using = dyn_cast<UsingDecl>(D)) {
// FIXME: This is, unfortunately, linear time.
UsingDecl::shadow_iterator Pos = Using->shadow_begin();
std::advance(Pos, index);
return MakeCXCursor(cast<UsingShadowDecl>(*Pos)->getTargetDecl(), TU);
}
return clang_getNullCursor();
}
void clang_getDefinitionSpellingAndExtent(CXCursor C,
const char **startBuf,
const char **endBuf,
unsigned *startLine,
unsigned *startColumn,
unsigned *endLine,
unsigned *endColumn) {
assert(getCursorDecl(C) && "CXCursor has null decl");
const FunctionDecl *FD = dyn_cast<FunctionDecl>(getCursorDecl(C));
CompoundStmt *Body = dyn_cast<CompoundStmt>(FD->getBody());
SourceManager &SM = FD->getASTContext().getSourceManager();
*startBuf = SM.getCharacterData(Body->getLBracLoc());
*endBuf = SM.getCharacterData(Body->getRBracLoc());
*startLine = SM.getSpellingLineNumber(Body->getLBracLoc());
*startColumn = SM.getSpellingColumnNumber(Body->getLBracLoc());
*endLine = SM.getSpellingLineNumber(Body->getRBracLoc());
*endColumn = SM.getSpellingColumnNumber(Body->getRBracLoc());
}
CXSourceRange clang_getCursorReferenceNameRange(CXCursor C, unsigned NameFlags,
unsigned PieceIndex) {
RefNamePieces Pieces;
switch (C.kind) {
case CXCursor_MemberRefExpr:
if (const MemberExpr *E = dyn_cast<MemberExpr>(getCursorExpr(C)))
Pieces = buildPieces(NameFlags, true, E->getMemberNameInfo(),
E->getQualifierLoc().getSourceRange());
break;
case CXCursor_DeclRefExpr:
if (const DeclRefExpr *E = dyn_cast<DeclRefExpr>(getCursorExpr(C)))
Pieces = buildPieces(NameFlags, false, E->getNameInfo(),
E->getQualifierLoc().getSourceRange(),
E->getOptionalExplicitTemplateArgs());
break;
case CXCursor_CallExpr:
if (const CXXOperatorCallExpr *OCE =
dyn_cast<CXXOperatorCallExpr>(getCursorExpr(C))) {
const Expr *Callee = OCE->getCallee();
if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Callee))
Callee = ICE->getSubExpr();
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Callee))
Pieces = buildPieces(NameFlags, false, DRE->getNameInfo(),
DRE->getQualifierLoc().getSourceRange());
}
break;
default:
break;
}
if (Pieces.empty()) {
if (PieceIndex == 0)
return clang_getCursorExtent(C);
} else if (PieceIndex < Pieces.size()) {
SourceRange R = Pieces[PieceIndex];
if (R.isValid())
return cxloc::translateSourceRange(getCursorContext(C), R);
}
return clang_getNullRange();
}
void clang_enableStackTraces(void) {
llvm::sys::PrintStackTraceOnErrorSignal();
}
void clang_executeOnThread(void (*fn)(void*), void *user_data,
unsigned stack_size) {
llvm::llvm_execute_on_thread(fn, user_data, stack_size);
}
} // end: extern "C"
//===----------------------------------------------------------------------===//
// Token-based Operations.
//===----------------------------------------------------------------------===//
/* CXToken layout:
* int_data[0]: a CXTokenKind
* int_data[1]: starting token location
* int_data[2]: token length
* int_data[3]: reserved
* ptr_data: for identifiers and keywords, an IdentifierInfo*.
* otherwise unused.
*/
extern "C" {
CXTokenKind clang_getTokenKind(CXToken CXTok) {
return static_cast<CXTokenKind>(CXTok.int_data[0]);
}
CXString clang_getTokenSpelling(CXTranslationUnit TU, CXToken CXTok) {
switch (clang_getTokenKind(CXTok)) {
case CXToken_Identifier:
case CXToken_Keyword:
// We know we have an IdentifierInfo*, so use that.
return cxstring::createRef(static_cast<IdentifierInfo *>(CXTok.ptr_data)
->getNameStart());
case CXToken_Literal: {
// We have stashed the starting pointer in the ptr_data field. Use it.
const char *Text = static_cast<const char *>(CXTok.ptr_data);
return cxstring::createDup(StringRef(Text, CXTok.int_data[2]));
}
case CXToken_Punctuation:
case CXToken_Comment:
break;
}
if (isNotUsableTU(TU)) {
LOG_BAD_TU(TU);
return cxstring::createEmpty();
}
// We have to find the starting buffer pointer the hard way, by
// deconstructing the source location.
ASTUnit *CXXUnit = cxtu::getASTUnit(TU);
if (!CXXUnit)
return cxstring::createEmpty();
SourceLocation Loc = SourceLocation::getFromRawEncoding(CXTok.int_data[1]);
std::pair<FileID, unsigned> LocInfo
= CXXUnit->getSourceManager().getDecomposedSpellingLoc(Loc);
bool Invalid = false;
StringRef Buffer
= CXXUnit->getSourceManager().getBufferData(LocInfo.first, &Invalid);
if (Invalid)
return cxstring::createEmpty();
return cxstring::createDup(Buffer.substr(LocInfo.second, CXTok.int_data[2]));
}
CXSourceLocation clang_getTokenLocation(CXTranslationUnit TU, CXToken CXTok) {
if (isNotUsableTU(TU)) {
LOG_BAD_TU(TU);
return clang_getNullLocation();
}
ASTUnit *CXXUnit = cxtu::getASTUnit(TU);
if (!CXXUnit)
return clang_getNullLocation();
return cxloc::translateSourceLocation(CXXUnit->getASTContext(),
SourceLocation::getFromRawEncoding(CXTok.int_data[1]));
}
CXSourceRange clang_getTokenExtent(CXTranslationUnit TU, CXToken CXTok) {
if (isNotUsableTU(TU)) {
LOG_BAD_TU(TU);
return clang_getNullRange();
}
ASTUnit *CXXUnit = cxtu::getASTUnit(TU);
if (!CXXUnit)
return clang_getNullRange();
return cxloc::translateSourceRange(CXXUnit->getASTContext(),
SourceLocation::getFromRawEncoding(CXTok.int_data[1]));
}
static void getTokens(ASTUnit *CXXUnit, SourceRange Range,
SmallVectorImpl<CXToken> &CXTokens) {
SourceManager &SourceMgr = CXXUnit->getSourceManager();
std::pair<FileID, unsigned> BeginLocInfo
= SourceMgr.getDecomposedSpellingLoc(Range.getBegin());
std::pair<FileID, unsigned> EndLocInfo
= SourceMgr.getDecomposedSpellingLoc(Range.getEnd());
// Cannot tokenize across files.
if (BeginLocInfo.first != EndLocInfo.first)
return;
// Create a lexer
bool Invalid = false;
StringRef Buffer
= SourceMgr.getBufferData(BeginLocInfo.first, &Invalid);
if (Invalid)
return;
Lexer Lex(SourceMgr.getLocForStartOfFile(BeginLocInfo.first),
CXXUnit->getASTContext().getLangOpts(),
Buffer.begin(), Buffer.data() + BeginLocInfo.second, Buffer.end());
Lex.SetCommentRetentionState(true);
// Lex tokens until we hit the end of the range.
const char *EffectiveBufferEnd = Buffer.data() + EndLocInfo.second;
Token Tok;
bool previousWasAt = false;
do {
// Lex the next token
Lex.LexFromRawLexer(Tok);
if (Tok.is(tok::eof))
break;
// Initialize the CXToken.
CXToken CXTok;
// - Common fields
CXTok.int_data[1] = Tok.getLocation().getRawEncoding();
CXTok.int_data[2] = Tok.getLength();
CXTok.int_data[3] = 0;
// - Kind-specific fields
if (Tok.isLiteral()) {
CXTok.int_data[0] = CXToken_Literal;
CXTok.ptr_data = const_cast<char *>(Tok.getLiteralData());
} else if (Tok.is(tok::raw_identifier)) {
// Lookup the identifier to determine whether we have a keyword.
IdentifierInfo *II
= CXXUnit->getPreprocessor().LookUpIdentifierInfo(Tok);
if ((II->getObjCKeywordID() != tok::objc_not_keyword) && previousWasAt) {
CXTok.int_data[0] = CXToken_Keyword;
}
else {
CXTok.int_data[0] = Tok.is(tok::identifier)
? CXToken_Identifier
: CXToken_Keyword;
}
CXTok.ptr_data = II;
} else if (Tok.is(tok::comment)) {
CXTok.int_data[0] = CXToken_Comment;
CXTok.ptr_data = nullptr;
} else {
CXTok.int_data[0] = CXToken_Punctuation;
CXTok.ptr_data = nullptr;
}
CXTokens.push_back(CXTok);
previousWasAt = Tok.is(tok::at);
} while (Lex.getBufferLocation() <= EffectiveBufferEnd);
}
void clang_tokenize(CXTranslationUnit TU, CXSourceRange Range,
CXToken **Tokens, unsigned *NumTokens) {
LOG_FUNC_SECTION {
*Log << TU << ' ' << Range;
}
if (Tokens)
*Tokens = nullptr;
if (NumTokens)
*NumTokens = 0;
if (isNotUsableTU(TU)) {
LOG_BAD_TU(TU);
return;
}
ASTUnit *CXXUnit = cxtu::getASTUnit(TU);
if (!CXXUnit || !Tokens || !NumTokens)
return;
ASTUnit::ConcurrencyCheck Check(*CXXUnit);
SourceRange R = cxloc::translateCXSourceRange(Range);
if (R.isInvalid())
return;
SmallVector<CXToken, 32> CXTokens;
getTokens(CXXUnit, R, CXTokens);
if (CXTokens.empty())
return;
*Tokens = (CXToken *)malloc(sizeof(CXToken) * CXTokens.size());
memmove(*Tokens, CXTokens.data(), sizeof(CXToken) * CXTokens.size());
*NumTokens = CXTokens.size();
}
void clang_disposeTokens(CXTranslationUnit TU,
CXToken *Tokens, unsigned NumTokens) {
free(Tokens);
}
} // end: extern "C"
//===----------------------------------------------------------------------===//
// Token annotation APIs.
//===----------------------------------------------------------------------===//
static enum CXChildVisitResult AnnotateTokensVisitor(CXCursor cursor,
CXCursor parent,
CXClientData client_data);
static bool AnnotateTokensPostChildrenVisitor(CXCursor cursor,
CXClientData client_data);
namespace {
class AnnotateTokensWorker {
CXToken *Tokens;
CXCursor *Cursors;
unsigned NumTokens;
unsigned TokIdx;
unsigned PreprocessingTokIdx;
CursorVisitor AnnotateVis;
SourceManager &SrcMgr;
bool HasContextSensitiveKeywords;
struct PostChildrenInfo {
CXCursor Cursor;
SourceRange CursorRange;
unsigned BeforeReachingCursorIdx;
unsigned BeforeChildrenTokenIdx;
};
SmallVector<PostChildrenInfo, 8> PostChildrenInfos;
CXToken &getTok(unsigned Idx) {
assert(Idx < NumTokens);
return Tokens[Idx];
}
const CXToken &getTok(unsigned Idx) const {
assert(Idx < NumTokens);
return Tokens[Idx];
}
bool MoreTokens() const { return TokIdx < NumTokens; }
unsigned NextToken() const { return TokIdx; }
void AdvanceToken() { ++TokIdx; }
SourceLocation GetTokenLoc(unsigned tokI) {
return SourceLocation::getFromRawEncoding(getTok(tokI).int_data[1]);
}
bool isFunctionMacroToken(unsigned tokI) const {
return getTok(tokI).int_data[3] != 0;
}
SourceLocation getFunctionMacroTokenLoc(unsigned tokI) const {
return SourceLocation::getFromRawEncoding(getTok(tokI).int_data[3]);
}
void annotateAndAdvanceTokens(CXCursor, RangeComparisonResult, SourceRange);
bool annotateAndAdvanceFunctionMacroTokens(CXCursor, RangeComparisonResult,
SourceRange);
public:
AnnotateTokensWorker(CXToken *tokens, CXCursor *cursors, unsigned numTokens,
CXTranslationUnit TU, SourceRange RegionOfInterest)
: Tokens(tokens), Cursors(cursors),
NumTokens(numTokens), TokIdx(0), PreprocessingTokIdx(0),
AnnotateVis(TU,
AnnotateTokensVisitor, this,
/*VisitPreprocessorLast=*/true,
/*VisitIncludedEntities=*/false,
RegionOfInterest,
/*VisitDeclsOnly=*/false,
AnnotateTokensPostChildrenVisitor),
SrcMgr(cxtu::getASTUnit(TU)->getSourceManager()),
HasContextSensitiveKeywords(false) { }
void VisitChildren(CXCursor C) { AnnotateVis.VisitChildren(C); }
enum CXChildVisitResult Visit(CXCursor cursor, CXCursor parent);
bool postVisitChildren(CXCursor cursor);
void AnnotateTokens();
/// \brief Determine whether the annotator saw any cursors that have
/// context-sensitive keywords.
bool hasContextSensitiveKeywords() const {
return HasContextSensitiveKeywords;
}
~AnnotateTokensWorker() {
assert(PostChildrenInfos.empty());
}
};
}
void AnnotateTokensWorker::AnnotateTokens() {
// Walk the AST within the region of interest, annotating tokens
// along the way.
AnnotateVis.visitFileRegion();
}
static inline void updateCursorAnnotation(CXCursor &Cursor,
const CXCursor &updateC) {
if (clang_isInvalid(updateC.kind) || !clang_isInvalid(Cursor.kind))
return;
Cursor = updateC;
}
/// \brief It annotates and advances tokens with a cursor until the comparison
//// between the cursor location and the source range is the same as
/// \arg compResult.
///
/// Pass RangeBefore to annotate tokens with a cursor until a range is reached.
/// Pass RangeOverlap to annotate tokens inside a range.
void AnnotateTokensWorker::annotateAndAdvanceTokens(CXCursor updateC,
RangeComparisonResult compResult,
SourceRange range) {
while (MoreTokens()) {
const unsigned I = NextToken();
if (isFunctionMacroToken(I))
if (!annotateAndAdvanceFunctionMacroTokens(updateC, compResult, range))
return;
SourceLocation TokLoc = GetTokenLoc(I);
if (LocationCompare(SrcMgr, TokLoc, range) == compResult) {
updateCursorAnnotation(Cursors[I], updateC);
AdvanceToken();
continue;
}
break;
}
}
/// \brief Special annotation handling for macro argument tokens.
/// \returns true if it advanced beyond all macro tokens, false otherwise.
bool AnnotateTokensWorker::annotateAndAdvanceFunctionMacroTokens(
CXCursor updateC,
RangeComparisonResult compResult,
SourceRange range) {
assert(MoreTokens());
assert(isFunctionMacroToken(NextToken()) &&
"Should be called only for macro arg tokens");
// This works differently than annotateAndAdvanceTokens; because expanded
// macro arguments can have arbitrary translation-unit source order, we do not
// advance the token index one by one until a token fails the range test.
// We only advance once past all of the macro arg tokens if all of them
// pass the range test. If one of them fails we keep the token index pointing
// at the start of the macro arg tokens so that the failing token will be
// annotated by a subsequent annotation try.
bool atLeastOneCompFail = false;
unsigned I = NextToken();
for (; I < NumTokens && isFunctionMacroToken(I); ++I) {
SourceLocation TokLoc = getFunctionMacroTokenLoc(I);
if (TokLoc.isFileID())
continue; // not macro arg token, it's parens or comma.
if (LocationCompare(SrcMgr, TokLoc, range) == compResult) {
if (clang_isInvalid(clang_getCursorKind(Cursors[I])))
Cursors[I] = updateC;
} else
atLeastOneCompFail = true;
}
if (atLeastOneCompFail)
return false;
TokIdx = I; // All of the tokens were handled, advance beyond all of them.
return true;
}
enum CXChildVisitResult
AnnotateTokensWorker::Visit(CXCursor cursor, CXCursor parent) {
SourceRange cursorRange = getRawCursorExtent(cursor);
if (cursorRange.isInvalid())
return CXChildVisit_Recurse;
if (!HasContextSensitiveKeywords) {
// Objective-C properties can have context-sensitive keywords.
if (cursor.kind == CXCursor_ObjCPropertyDecl) {
if (const ObjCPropertyDecl *Property
= dyn_cast_or_null<ObjCPropertyDecl>(getCursorDecl(cursor)))
HasContextSensitiveKeywords = Property->getPropertyAttributesAsWritten() != 0;
}
// Objective-C methods can have context-sensitive keywords.
else if (cursor.kind == CXCursor_ObjCInstanceMethodDecl ||
cursor.kind == CXCursor_ObjCClassMethodDecl) {
if (const ObjCMethodDecl *Method
= dyn_cast_or_null<ObjCMethodDecl>(getCursorDecl(cursor))) {
if (Method->getObjCDeclQualifier())
HasContextSensitiveKeywords = true;
else {
for (const auto *P : Method->params()) {
if (P->getObjCDeclQualifier()) {
HasContextSensitiveKeywords = true;
break;
}
}
}
}
}
// C++ methods can have context-sensitive keywords.
else if (cursor.kind == CXCursor_CXXMethod) {
if (const CXXMethodDecl *Method
= dyn_cast_or_null<CXXMethodDecl>(getCursorDecl(cursor))) {
if (Method->hasAttr<FinalAttr>() || Method->hasAttr<OverrideAttr>())
HasContextSensitiveKeywords = true;
}
}
// C++ classes can have context-sensitive keywords.
else if (cursor.kind == CXCursor_StructDecl ||
cursor.kind == CXCursor_ClassDecl ||
cursor.kind == CXCursor_ClassTemplate ||
cursor.kind == CXCursor_ClassTemplatePartialSpecialization) {
if (const Decl *D = getCursorDecl(cursor))
if (D->hasAttr<FinalAttr>())
HasContextSensitiveKeywords = true;
}
}
// Don't override a property annotation with its getter/setter method.
if (cursor.kind == CXCursor_ObjCInstanceMethodDecl &&
parent.kind == CXCursor_ObjCPropertyDecl)
return CXChildVisit_Continue;
if (clang_isPreprocessing(cursor.kind)) {
// Items in the preprocessing record are kept separate from items in
// declarations, so we keep a separate token index.
unsigned SavedTokIdx = TokIdx;
TokIdx = PreprocessingTokIdx;
// Skip tokens up until we catch up to the beginning of the preprocessing
// entry.
while (MoreTokens()) {
const unsigned I = NextToken();
SourceLocation TokLoc = GetTokenLoc(I);
switch (LocationCompare(SrcMgr, TokLoc, cursorRange)) {
case RangeBefore:
AdvanceToken();
continue;
case RangeAfter:
case RangeOverlap:
break;
}
break;
}
// Look at all of the tokens within this range.
while (MoreTokens()) {
const unsigned I = NextToken();
SourceLocation TokLoc = GetTokenLoc(I);
switch (LocationCompare(SrcMgr, TokLoc, cursorRange)) {
case RangeBefore:
llvm_unreachable("Infeasible");
case RangeAfter:
break;
case RangeOverlap:
// For macro expansions, just note where the beginning of the macro
// expansion occurs.
if (cursor.kind == CXCursor_MacroExpansion) {
if (TokLoc == cursorRange.getBegin())
Cursors[I] = cursor;
AdvanceToken();
break;
}
// We may have already annotated macro names inside macro definitions.
if (Cursors[I].kind != CXCursor_MacroExpansion)
Cursors[I] = cursor;
AdvanceToken();
continue;
}
break;
}
// Save the preprocessing token index; restore the non-preprocessing
// token index.
PreprocessingTokIdx = TokIdx;
TokIdx = SavedTokIdx;
return CXChildVisit_Recurse;
}
if (cursorRange.isInvalid())
return CXChildVisit_Continue;
unsigned BeforeReachingCursorIdx = NextToken();
const enum CXCursorKind cursorK = clang_getCursorKind(cursor);
const enum CXCursorKind K = clang_getCursorKind(parent);
const CXCursor updateC =
(clang_isInvalid(K) || K == CXCursor_TranslationUnit ||
// Attributes are annotated out-of-order, skip tokens until we reach it.
clang_isAttribute(cursor.kind))
? clang_getNullCursor() : parent;
annotateAndAdvanceTokens(updateC, RangeBefore, cursorRange);
// Avoid having the cursor of an expression "overwrite" the annotation of the
// variable declaration that it belongs to.
// This can happen for C++ constructor expressions whose range generally
// include the variable declaration, e.g.:
// MyCXXClass foo; // Make sure we don't annotate 'foo' as a CallExpr cursor.
if (clang_isExpression(cursorK) && MoreTokens()) {
const Expr *E = getCursorExpr(cursor);
if (const Decl *D = getCursorParentDecl(cursor)) {
const unsigned I = NextToken();
if (E->getLocStart().isValid() && D->getLocation().isValid() &&
E->getLocStart() == D->getLocation() &&
E->getLocStart() == GetTokenLoc(I)) {
updateCursorAnnotation(Cursors[I], updateC);
AdvanceToken();
}
}
}
// Before recursing into the children keep some state that we are going
// to use in the AnnotateTokensWorker::postVisitChildren callback to do some
// extra work after the child nodes are visited.
// Note that we don't call VisitChildren here to avoid traversing statements
// code-recursively which can blow the stack.
PostChildrenInfo Info;
Info.Cursor = cursor;
Info.CursorRange = cursorRange;
Info.BeforeReachingCursorIdx = BeforeReachingCursorIdx;
Info.BeforeChildrenTokenIdx = NextToken();
PostChildrenInfos.push_back(Info);
return CXChildVisit_Recurse;
}
bool AnnotateTokensWorker::postVisitChildren(CXCursor cursor) {
if (PostChildrenInfos.empty())
return false;
const PostChildrenInfo &Info = PostChildrenInfos.back();
if (!clang_equalCursors(Info.Cursor, cursor))
return false;
const unsigned BeforeChildren = Info.BeforeChildrenTokenIdx;
const unsigned AfterChildren = NextToken();
SourceRange cursorRange = Info.CursorRange;
// Scan the tokens that are at the end of the cursor, but are not captured
// but the child cursors.
annotateAndAdvanceTokens(cursor, RangeOverlap, cursorRange);
// Scan the tokens that are at the beginning of the cursor, but are not
// capture by the child cursors.
for (unsigned I = BeforeChildren; I != AfterChildren; ++I) {
if (!clang_isInvalid(clang_getCursorKind(Cursors[I])))
break;
Cursors[I] = cursor;
}
// Attributes are annotated out-of-order, rewind TokIdx to when we first
// encountered the attribute cursor.
if (clang_isAttribute(cursor.kind))
TokIdx = Info.BeforeReachingCursorIdx;
PostChildrenInfos.pop_back();
return false;
}
static enum CXChildVisitResult AnnotateTokensVisitor(CXCursor cursor,
CXCursor parent,
CXClientData client_data) {
return static_cast<AnnotateTokensWorker*>(client_data)->Visit(cursor, parent);
}
static bool AnnotateTokensPostChildrenVisitor(CXCursor cursor,
CXClientData client_data) {
return static_cast<AnnotateTokensWorker*>(client_data)->
postVisitChildren(cursor);
}
namespace {
/// \brief Uses the macro expansions in the preprocessing record to find
/// and mark tokens that are macro arguments. This info is used by the
/// AnnotateTokensWorker.
class MarkMacroArgTokensVisitor {
SourceManager &SM;
CXToken *Tokens;
unsigned NumTokens;
unsigned CurIdx;
public:
MarkMacroArgTokensVisitor(SourceManager &SM,
CXToken *tokens, unsigned numTokens)
: SM(SM), Tokens(tokens), NumTokens(numTokens), CurIdx(0) { }
CXChildVisitResult visit(CXCursor cursor, CXCursor parent) {
if (cursor.kind != CXCursor_MacroExpansion)
return CXChildVisit_Continue;
SourceRange macroRange = getCursorMacroExpansion(cursor).getSourceRange();
if (macroRange.getBegin() == macroRange.getEnd())
return CXChildVisit_Continue; // it's not a function macro.
for (; CurIdx < NumTokens; ++CurIdx) {
if (!SM.isBeforeInTranslationUnit(getTokenLoc(CurIdx),
macroRange.getBegin()))
break;
}
if (CurIdx == NumTokens)
return CXChildVisit_Break;
for (; CurIdx < NumTokens; ++CurIdx) {
SourceLocation tokLoc = getTokenLoc(CurIdx);
if (!SM.isBeforeInTranslationUnit(tokLoc, macroRange.getEnd()))
break;
setFunctionMacroTokenLoc(CurIdx, SM.getMacroArgExpandedLocation(tokLoc));
}
if (CurIdx == NumTokens)
return CXChildVisit_Break;
return CXChildVisit_Continue;
}
private:
CXToken &getTok(unsigned Idx) {
assert(Idx < NumTokens);
return Tokens[Idx];
}
const CXToken &getTok(unsigned Idx) const {
assert(Idx < NumTokens);
return Tokens[Idx];
}
SourceLocation getTokenLoc(unsigned tokI) {
return SourceLocation::getFromRawEncoding(getTok(tokI).int_data[1]);
}
void setFunctionMacroTokenLoc(unsigned tokI, SourceLocation loc) {
// The third field is reserved and currently not used. Use it here
// to mark macro arg expanded tokens with their expanded locations.
getTok(tokI).int_data[3] = loc.getRawEncoding();
}
};
} // end anonymous namespace
static CXChildVisitResult
MarkMacroArgTokensVisitorDelegate(CXCursor cursor, CXCursor parent,
CXClientData client_data) {
return static_cast<MarkMacroArgTokensVisitor*>(client_data)->visit(cursor,
parent);
}
/// \brief Used by \c annotatePreprocessorTokens.
/// \returns true if lexing was finished, false otherwise.
static bool lexNext(Lexer &Lex, Token &Tok,
unsigned &NextIdx, unsigned NumTokens) {
if (NextIdx >= NumTokens)
return true;
++NextIdx;
Lex.LexFromRawLexer(Tok);
if (Tok.is(tok::eof))
return true;
return false;
}
static void annotatePreprocessorTokens(CXTranslationUnit TU,
SourceRange RegionOfInterest,
CXCursor *Cursors,
CXToken *Tokens,
unsigned NumTokens) {
ASTUnit *CXXUnit = cxtu::getASTUnit(TU);
Preprocessor &PP = CXXUnit->getPreprocessor();
SourceManager &SourceMgr = CXXUnit->getSourceManager();
std::pair<FileID, unsigned> BeginLocInfo
= SourceMgr.getDecomposedSpellingLoc(RegionOfInterest.getBegin());
std::pair<FileID, unsigned> EndLocInfo
= SourceMgr.getDecomposedSpellingLoc(RegionOfInterest.getEnd());
if (BeginLocInfo.first != EndLocInfo.first)
return;
StringRef Buffer;
bool Invalid = false;
Buffer = SourceMgr.getBufferData(BeginLocInfo.first, &Invalid);
if (Buffer.empty() || Invalid)
return;
Lexer Lex(SourceMgr.getLocForStartOfFile(BeginLocInfo.first),
CXXUnit->getASTContext().getLangOpts(),
Buffer.begin(), Buffer.data() + BeginLocInfo.second,
Buffer.end());
Lex.SetCommentRetentionState(true);
unsigned NextIdx = 0;
// Lex tokens in raw mode until we hit the end of the range, to avoid
// entering #includes or expanding macros.
while (true) {
Token Tok;
if (lexNext(Lex, Tok, NextIdx, NumTokens))
break;
unsigned TokIdx = NextIdx-1;
assert(Tok.getLocation() ==
SourceLocation::getFromRawEncoding(Tokens[TokIdx].int_data[1]));
reprocess:
if (Tok.is(tok::hash) && Tok.isAtStartOfLine()) {
// We have found a preprocessing directive. Annotate the tokens
// appropriately.
//
// FIXME: Some simple tests here could identify macro definitions and
// #undefs, to provide specific cursor kinds for those.
SourceLocation BeginLoc = Tok.getLocation();
if (lexNext(Lex, Tok, NextIdx, NumTokens))
break;
MacroInfo *MI = nullptr;
if (Tok.is(tok::raw_identifier) && Tok.getRawIdentifier() == "define") {
if (lexNext(Lex, Tok, NextIdx, NumTokens))
break;
if (Tok.is(tok::raw_identifier)) {
IdentifierInfo &II =
PP.getIdentifierTable().get(Tok.getRawIdentifier());
SourceLocation MappedTokLoc =
CXXUnit->mapLocationToPreamble(Tok.getLocation());
MI = getMacroInfo(II, MappedTokLoc, TU);
}
}
bool finished = false;
do {
if (lexNext(Lex, Tok, NextIdx, NumTokens)) {
finished = true;
break;
}
// If we are in a macro definition, check if the token was ever a
// macro name and annotate it if that's the case.
if (MI) {
SourceLocation SaveLoc = Tok.getLocation();
Tok.setLocation(CXXUnit->mapLocationToPreamble(SaveLoc));
MacroDefinitionRecord *MacroDef =
checkForMacroInMacroDefinition(MI, Tok, TU);
Tok.setLocation(SaveLoc);
if (MacroDef)
Cursors[NextIdx - 1] =
MakeMacroExpansionCursor(MacroDef, Tok.getLocation(), TU);
}
} while (!Tok.isAtStartOfLine());
unsigned LastIdx = finished ? NextIdx-1 : NextIdx-2;
assert(TokIdx <= LastIdx);
SourceLocation EndLoc =
SourceLocation::getFromRawEncoding(Tokens[LastIdx].int_data[1]);
CXCursor Cursor =
MakePreprocessingDirectiveCursor(SourceRange(BeginLoc, EndLoc), TU);
for (; TokIdx <= LastIdx; ++TokIdx)
updateCursorAnnotation(Cursors[TokIdx], Cursor);
if (finished)
break;
goto reprocess;
}
}
}
// This gets run a separate thread to avoid stack blowout.
static void clang_annotateTokensImpl(CXTranslationUnit TU, ASTUnit *CXXUnit,
CXToken *Tokens, unsigned NumTokens,
CXCursor *Cursors) {
CIndexer *CXXIdx = TU->CIdx;
if (CXXIdx->isOptEnabled(CXGlobalOpt_ThreadBackgroundPriorityForEditing))
setThreadBackgroundPriority();
// Determine the region of interest, which contains all of the tokens.
SourceRange RegionOfInterest;
RegionOfInterest.setBegin(
cxloc::translateSourceLocation(clang_getTokenLocation(TU, Tokens[0])));
RegionOfInterest.setEnd(
cxloc::translateSourceLocation(clang_getTokenLocation(TU,
Tokens[NumTokens-1])));
// Relex the tokens within the source range to look for preprocessing
// directives.
annotatePreprocessorTokens(TU, RegionOfInterest, Cursors, Tokens, NumTokens);
// If begin location points inside a macro argument, set it to the expansion
// location so we can have the full context when annotating semantically.
{
SourceManager &SM = CXXUnit->getSourceManager();
SourceLocation Loc =
SM.getMacroArgExpandedLocation(RegionOfInterest.getBegin());
if (Loc.isMacroID())
RegionOfInterest.setBegin(SM.getExpansionLoc(Loc));
}
if (CXXUnit->getPreprocessor().getPreprocessingRecord()) {
// Search and mark tokens that are macro argument expansions.
MarkMacroArgTokensVisitor Visitor(CXXUnit->getSourceManager(),
Tokens, NumTokens);
CursorVisitor MacroArgMarker(TU,
MarkMacroArgTokensVisitorDelegate, &Visitor,
/*VisitPreprocessorLast=*/true,
/*VisitIncludedEntities=*/false,
RegionOfInterest);
MacroArgMarker.visitPreprocessedEntitiesInRegion();
}
// Annotate all of the source locations in the region of interest that map to
// a specific cursor.
AnnotateTokensWorker W(Tokens, Cursors, NumTokens, TU, RegionOfInterest);
// FIXME: We use a ridiculous stack size here because the data-recursion
// algorithm uses a large stack frame than the non-data recursive version,
// and AnnotationTokensWorker currently transforms the data-recursion
// algorithm back into a traditional recursion by explicitly calling
// VisitChildren(). We will need to remove this explicit recursive call.
W.AnnotateTokens();
// If we ran into any entities that involve context-sensitive keywords,
// take another pass through the tokens to mark them as such.
if (W.hasContextSensitiveKeywords()) {
for (unsigned I = 0; I != NumTokens; ++I) {
if (clang_getTokenKind(Tokens[I]) != CXToken_Identifier)
continue;
if (Cursors[I].kind == CXCursor_ObjCPropertyDecl) {
IdentifierInfo *II = static_cast<IdentifierInfo *>(Tokens[I].ptr_data);
if (const ObjCPropertyDecl *Property
= dyn_cast_or_null<ObjCPropertyDecl>(getCursorDecl(Cursors[I]))) {
if (Property->getPropertyAttributesAsWritten() != 0 &&
llvm::StringSwitch<bool>(II->getName())
.Case("readonly", true)
.Case("assign", true)
.Case("unsafe_unretained", true)
.Case("readwrite", true)
.Case("retain", true)
.Case("copy", true)
.Case("nonatomic", true)
.Case("atomic", true)
.Case("getter", true)
.Case("setter", true)
.Case("strong", true)
.Case("weak", true)
.Default(false))
Tokens[I].int_data[0] = CXToken_Keyword;
}
continue;
}
if (Cursors[I].kind == CXCursor_ObjCInstanceMethodDecl ||
Cursors[I].kind == CXCursor_ObjCClassMethodDecl) {
IdentifierInfo *II = static_cast<IdentifierInfo *>(Tokens[I].ptr_data);
if (llvm::StringSwitch<bool>(II->getName())
.Case("in", true)
.Case("out", true)
.Case("inout", true)
.Case("oneway", true)
.Case("bycopy", true)
.Case("byref", true)
.Default(false))
Tokens[I].int_data[0] = CXToken_Keyword;
continue;
}
if (Cursors[I].kind == CXCursor_CXXFinalAttr ||
Cursors[I].kind == CXCursor_CXXOverrideAttr) {
Tokens[I].int_data[0] = CXToken_Keyword;
continue;
}
}
}
}
extern "C" {
void clang_annotateTokens(CXTranslationUnit TU,
CXToken *Tokens, unsigned NumTokens,
CXCursor *Cursors) {
if (isNotUsableTU(TU)) {
LOG_BAD_TU(TU);
return;
}
if (NumTokens == 0 || !Tokens || !Cursors) {
LOG_FUNC_SECTION { *Log << "<null input>"; }
return;
}
LOG_FUNC_SECTION {
*Log << TU << ' ';
CXSourceLocation bloc = clang_getTokenLocation(TU, Tokens[0]);
CXSourceLocation eloc = clang_getTokenLocation(TU, Tokens[NumTokens-1]);
*Log << clang_getRange(bloc, eloc);
}
// Any token we don't specifically annotate will have a NULL cursor.
CXCursor C = clang_getNullCursor();
for (unsigned I = 0; I != NumTokens; ++I)
Cursors[I] = C;
ASTUnit *CXXUnit = cxtu::getASTUnit(TU);
if (!CXXUnit)
return;
ASTUnit::ConcurrencyCheck Check(*CXXUnit);
auto AnnotateTokensImpl = [=]() {
clang_annotateTokensImpl(TU, CXXUnit, Tokens, NumTokens, Cursors);
};
llvm::CrashRecoveryContext CRC;
if (!RunSafely(CRC, AnnotateTokensImpl, GetSafetyThreadStackSize() * 2)) {
fprintf(stderr, "libclang: crash detected while annotating tokens\n");
}
}
} // end: extern "C"
//===----------------------------------------------------------------------===//
// Operations for querying linkage of a cursor.
//===----------------------------------------------------------------------===//
extern "C" {
CXLinkageKind clang_getCursorLinkage(CXCursor cursor) {
if (!clang_isDeclaration(cursor.kind))
return CXLinkage_Invalid;
const Decl *D = cxcursor::getCursorDecl(cursor);
if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(D))
switch (ND->getLinkageInternal()) {
case NoLinkage:
case VisibleNoLinkage: return CXLinkage_NoLinkage;
case InternalLinkage: return CXLinkage_Internal;
case UniqueExternalLinkage: return CXLinkage_UniqueExternal;
case ExternalLinkage: return CXLinkage_External;
};
return CXLinkage_Invalid;
}
} // end: extern "C"
//===----------------------------------------------------------------------===//
// Operations for querying language of a cursor.
//===----------------------------------------------------------------------===//
static CXLanguageKind getDeclLanguage(const Decl *D) {
if (!D)
return CXLanguage_C;
switch (D->getKind()) {
default:
break;
case Decl::ImplicitParam:
case Decl::ObjCAtDefsField:
case Decl::ObjCCategory:
case Decl::ObjCCategoryImpl:
case Decl::ObjCCompatibleAlias:
case Decl::ObjCImplementation:
case Decl::ObjCInterface:
case Decl::ObjCIvar:
case Decl::ObjCMethod:
case Decl::ObjCProperty:
case Decl::ObjCPropertyImpl:
case Decl::ObjCProtocol:
case Decl::ObjCTypeParam:
return CXLanguage_ObjC;
case Decl::CXXConstructor:
case Decl::CXXConversion:
case Decl::CXXDestructor:
case Decl::CXXMethod:
case Decl::CXXRecord:
case Decl::ClassTemplate:
case Decl::ClassTemplatePartialSpecialization:
case Decl::ClassTemplateSpecialization:
case Decl::Friend:
case Decl::FriendTemplate:
case Decl::FunctionTemplate:
case Decl::LinkageSpec:
case Decl::Namespace:
case Decl::NamespaceAlias:
case Decl::NonTypeTemplateParm:
case Decl::StaticAssert:
case Decl::TemplateTemplateParm:
case Decl::TemplateTypeParm:
case Decl::UnresolvedUsingTypename:
case Decl::UnresolvedUsingValue:
case Decl::Using:
case Decl::UsingDirective:
case Decl::UsingShadow:
return CXLanguage_CPlusPlus;
}
return CXLanguage_C;
}
extern "C" {
static CXAvailabilityKind getCursorAvailabilityForDecl(const Decl *D) {
if (isa<FunctionDecl>(D) && cast<FunctionDecl>(D)->isDeleted())
return CXAvailability_Available;
switch (D->getAvailability()) {
case AR_Available:
case AR_NotYetIntroduced:
if (const EnumConstantDecl *EnumConst = dyn_cast<EnumConstantDecl>(D))
return getCursorAvailabilityForDecl(
cast<Decl>(EnumConst->getDeclContext()));
return CXAvailability_Available;
case AR_Deprecated:
return CXAvailability_Deprecated;
case AR_Unavailable:
return CXAvailability_NotAvailable;
}
llvm_unreachable("Unknown availability kind!");
}
enum CXAvailabilityKind clang_getCursorAvailability(CXCursor cursor) {
if (clang_isDeclaration(cursor.kind))
if (const Decl *D = cxcursor::getCursorDecl(cursor))
return getCursorAvailabilityForDecl(D);
return CXAvailability_Available;
}
static CXVersion convertVersion(VersionTuple In) {
CXVersion Out = { -1, -1, -1 };
if (In.empty())
return Out;
Out.Major = In.getMajor();
Optional<unsigned> Minor = In.getMinor();
if (Minor.hasValue())
Out.Minor = *Minor;
else
return Out;
Optional<unsigned> Subminor = In.getSubminor();
if (Subminor.hasValue())
Out.Subminor = *Subminor;
return Out;
}
static int getCursorPlatformAvailabilityForDecl(const Decl *D,
int *always_deprecated,
CXString *deprecated_message,
int *always_unavailable,
CXString *unavailable_message,
CXPlatformAvailability *availability,
int availability_size) {
bool HadAvailAttr = false;
int N = 0;
for (auto A : D->attrs()) {
if (DeprecatedAttr *Deprecated = dyn_cast<DeprecatedAttr>(A)) {
HadAvailAttr = true;
if (always_deprecated)
*always_deprecated = 1;
if (deprecated_message) {
clang_disposeString(*deprecated_message);
*deprecated_message = cxstring::createDup(Deprecated->getMessage());
}
continue;
}
if (UnavailableAttr *Unavailable = dyn_cast<UnavailableAttr>(A)) {
HadAvailAttr = true;
if (always_unavailable)
*always_unavailable = 1;
if (unavailable_message) {
clang_disposeString(*unavailable_message);
*unavailable_message = cxstring::createDup(Unavailable->getMessage());
}
continue;
}
if (AvailabilityAttr *Avail = dyn_cast<AvailabilityAttr>(A)) {
HadAvailAttr = true;
if (N < availability_size) {
availability[N].Platform
= cxstring::createDup(Avail->getPlatform()->getName());
availability[N].Introduced = convertVersion(Avail->getIntroduced());
availability[N].Deprecated = convertVersion(Avail->getDeprecated());
availability[N].Obsoleted = convertVersion(Avail->getObsoleted());
availability[N].Unavailable = Avail->getUnavailable();
availability[N].Message = cxstring::createDup(Avail->getMessage());
}
++N;
}
}
if (!HadAvailAttr)
if (const EnumConstantDecl *EnumConst = dyn_cast<EnumConstantDecl>(D))
return getCursorPlatformAvailabilityForDecl(
cast<Decl>(EnumConst->getDeclContext()),
always_deprecated,
deprecated_message,
always_unavailable,
unavailable_message,
availability,
availability_size);
return N;
}
int clang_getCursorPlatformAvailability(CXCursor cursor,
int *always_deprecated,
CXString *deprecated_message,
int *always_unavailable,
CXString *unavailable_message,
CXPlatformAvailability *availability,
int availability_size) {
if (always_deprecated)
*always_deprecated = 0;
if (deprecated_message)
*deprecated_message = cxstring::createEmpty();
if (always_unavailable)
*always_unavailable = 0;
if (unavailable_message)
*unavailable_message = cxstring::createEmpty();
if (!clang_isDeclaration(cursor.kind))
return 0;
const Decl *D = cxcursor::getCursorDecl(cursor);
if (!D)
return 0;
return getCursorPlatformAvailabilityForDecl(D, always_deprecated,
deprecated_message,
always_unavailable,
unavailable_message,
availability,
availability_size);
}
void clang_disposeCXPlatformAvailability(CXPlatformAvailability *availability) {
clang_disposeString(availability->Platform);
clang_disposeString(availability->Message);
}
CXLanguageKind clang_getCursorLanguage(CXCursor cursor) {
if (clang_isDeclaration(cursor.kind))
return getDeclLanguage(cxcursor::getCursorDecl(cursor));
return CXLanguage_Invalid;
}
/// \brief If the given cursor is the "templated" declaration
/// descibing a class or function template, return the class or
/// function template.
static const Decl *maybeGetTemplateCursor(const Decl *D) {
if (!D)
return nullptr;
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
if (FunctionTemplateDecl *FunTmpl = FD->getDescribedFunctionTemplate())
return FunTmpl;
if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D))
if (ClassTemplateDecl *ClassTmpl = RD->getDescribedClassTemplate())
return ClassTmpl;
return D;
}
enum CX_StorageClass clang_Cursor_getStorageClass(CXCursor C) {
StorageClass sc = SC_None;
const Decl *D = getCursorDecl(C);
if (D) {
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
sc = FD->getStorageClass();
} else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
sc = VD->getStorageClass();
} else {
return CX_SC_Invalid;
}
} else {
return CX_SC_Invalid;
}
switch (sc) {
case SC_None:
return CX_SC_None;
case SC_Extern:
return CX_SC_Extern;
case SC_Static:
return CX_SC_Static;
case SC_PrivateExtern:
return CX_SC_PrivateExtern;
case SC_OpenCLWorkGroupLocal:
return CX_SC_OpenCLWorkGroupLocal;
case SC_Auto:
return CX_SC_Auto;
case SC_Register:
return CX_SC_Register;
}
llvm_unreachable("Unhandled storage class!");
}
CXCursor clang_getCursorSemanticParent(CXCursor cursor) {
if (clang_isDeclaration(cursor.kind)) {
if (const Decl *D = getCursorDecl(cursor)) {
const DeclContext *DC = D->getDeclContext();
if (!DC)
return clang_getNullCursor();
return MakeCXCursor(maybeGetTemplateCursor(cast<Decl>(DC)),
getCursorTU(cursor));
}
}
if (clang_isStatement(cursor.kind) || clang_isExpression(cursor.kind)) {
if (const Decl *D = getCursorDecl(cursor))
return MakeCXCursor(D, getCursorTU(cursor));
}
return clang_getNullCursor();
}
CXCursor clang_getCursorLexicalParent(CXCursor cursor) {
if (clang_isDeclaration(cursor.kind)) {
if (const Decl *D = getCursorDecl(cursor)) {
const DeclContext *DC = D->getLexicalDeclContext();
if (!DC)
return clang_getNullCursor();
return MakeCXCursor(maybeGetTemplateCursor(cast<Decl>(DC)),
getCursorTU(cursor));
}
}
// FIXME: Note that we can't easily compute the lexical context of a
// statement or expression, so we return nothing.
return clang_getNullCursor();
}
CXFile clang_getIncludedFile(CXCursor cursor) {
if (cursor.kind != CXCursor_InclusionDirective)
return nullptr;
const InclusionDirective *ID = getCursorInclusionDirective(cursor);
return const_cast<FileEntry *>(ID->getFile());
}
unsigned clang_Cursor_getObjCPropertyAttributes(CXCursor C, unsigned reserved) {
if (C.kind != CXCursor_ObjCPropertyDecl)
return CXObjCPropertyAttr_noattr;
unsigned Result = CXObjCPropertyAttr_noattr;
const ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(getCursorDecl(C));
ObjCPropertyDecl::PropertyAttributeKind Attr =
PD->getPropertyAttributesAsWritten();
#define SET_CXOBJCPROP_ATTR(A) \
if (Attr & ObjCPropertyDecl::OBJC_PR_##A) \
Result |= CXObjCPropertyAttr_##A
SET_CXOBJCPROP_ATTR(readonly);
SET_CXOBJCPROP_ATTR(getter);
SET_CXOBJCPROP_ATTR(assign);
SET_CXOBJCPROP_ATTR(readwrite);
SET_CXOBJCPROP_ATTR(retain);
SET_CXOBJCPROP_ATTR(copy);
SET_CXOBJCPROP_ATTR(nonatomic);
SET_CXOBJCPROP_ATTR(setter);
SET_CXOBJCPROP_ATTR(atomic);
SET_CXOBJCPROP_ATTR(weak);
SET_CXOBJCPROP_ATTR(strong);
SET_CXOBJCPROP_ATTR(unsafe_unretained);
#undef SET_CXOBJCPROP_ATTR
return Result;
}
unsigned clang_Cursor_getObjCDeclQualifiers(CXCursor C) {
if (!clang_isDeclaration(C.kind))
return CXObjCDeclQualifier_None;
Decl::ObjCDeclQualifier QT = Decl::OBJC_TQ_None;
const Decl *D = getCursorDecl(C);
if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
QT = MD->getObjCDeclQualifier();
else if (const ParmVarDecl *PD = dyn_cast<ParmVarDecl>(D))
QT = PD->getObjCDeclQualifier();
if (QT == Decl::OBJC_TQ_None)
return CXObjCDeclQualifier_None;
unsigned Result = CXObjCDeclQualifier_None;
if (QT & Decl::OBJC_TQ_In) Result |= CXObjCDeclQualifier_In;
if (QT & Decl::OBJC_TQ_Inout) Result |= CXObjCDeclQualifier_Inout;
if (QT & Decl::OBJC_TQ_Out) Result |= CXObjCDeclQualifier_Out;
if (QT & Decl::OBJC_TQ_Bycopy) Result |= CXObjCDeclQualifier_Bycopy;
if (QT & Decl::OBJC_TQ_Byref) Result |= CXObjCDeclQualifier_Byref;
if (QT & Decl::OBJC_TQ_Oneway) Result |= CXObjCDeclQualifier_Oneway;
return Result;
}
unsigned clang_Cursor_isObjCOptional(CXCursor C) {
if (!clang_isDeclaration(C.kind))
return 0;
const Decl *D = getCursorDecl(C);
if (const ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D))
return PD->getPropertyImplementation() == ObjCPropertyDecl::Optional;
if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
return MD->getImplementationControl() == ObjCMethodDecl::Optional;
return 0;
}
unsigned clang_Cursor_isVariadic(CXCursor C) {
if (!clang_isDeclaration(C.kind))
return 0;
const Decl *D = getCursorDecl(C);
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
return FD->isVariadic();
if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
return MD->isVariadic();
return 0;
}
CXSourceRange clang_Cursor_getCommentRange(CXCursor C) {
if (!clang_isDeclaration(C.kind))
return clang_getNullRange();
const Decl *D = getCursorDecl(C);
ASTContext &Context = getCursorContext(C);
const RawComment *RC = Context.getRawCommentForAnyRedecl(D);
if (!RC)
return clang_getNullRange();
return cxloc::translateSourceRange(Context, RC->getSourceRange());
}
CXString clang_Cursor_getRawCommentText(CXCursor C) {
if (!clang_isDeclaration(C.kind))
return cxstring::createNull();
const Decl *D = getCursorDecl(C);
ASTContext &Context = getCursorContext(C);
const RawComment *RC = Context.getRawCommentForAnyRedecl(D);
StringRef RawText = RC ? RC->getRawText(Context.getSourceManager()) :
StringRef();
// Don't duplicate the string because RawText points directly into source
// code.
return cxstring::createRef(RawText);
}
CXString clang_Cursor_getBriefCommentText(CXCursor C) {
if (!clang_isDeclaration(C.kind))
return cxstring::createNull();
const Decl *D = getCursorDecl(C);
const ASTContext &Context = getCursorContext(C);
const RawComment *RC = Context.getRawCommentForAnyRedecl(D);
if (RC) {
StringRef BriefText = RC->getBriefText(Context);
// Don't duplicate the string because RawComment ensures that this memory
// will not go away.
return cxstring::createRef(BriefText);
}
return cxstring::createNull();
}
CXModule clang_Cursor_getModule(CXCursor C) {
if (C.kind == CXCursor_ModuleImportDecl) {
if (const ImportDecl *ImportD =
dyn_cast_or_null<ImportDecl>(getCursorDecl(C)))
return ImportD->getImportedModule();
}
return nullptr;
}
CXModule clang_getModuleForFile(CXTranslationUnit TU, CXFile File) {
if (isNotUsableTU(TU)) {
LOG_BAD_TU(TU);
return nullptr;
}
if (!File)
return nullptr;
FileEntry *FE = static_cast<FileEntry *>(File);
ASTUnit &Unit = *cxtu::getASTUnit(TU);
HeaderSearch &HS = Unit.getPreprocessor().getHeaderSearchInfo();
ModuleMap::KnownHeader Header = HS.findModuleForHeader(FE);
return Header.getModule();
}
CXFile clang_Module_getASTFile(CXModule CXMod) {
if (!CXMod)
return nullptr;
Module *Mod = static_cast<Module*>(CXMod);
return const_cast<FileEntry *>(Mod->getASTFile());
}
CXModule clang_Module_getParent(CXModule CXMod) {
if (!CXMod)
return nullptr;
Module *Mod = static_cast<Module*>(CXMod);
return Mod->Parent;
}
CXString clang_Module_getName(CXModule CXMod) {
if (!CXMod)
return cxstring::createEmpty();
Module *Mod = static_cast<Module*>(CXMod);
return cxstring::createDup(Mod->Name);
}
CXString clang_Module_getFullName(CXModule CXMod) {
if (!CXMod)
return cxstring::createEmpty();
Module *Mod = static_cast<Module*>(CXMod);
return cxstring::createDup(Mod->getFullModuleName());
}
int clang_Module_isSystem(CXModule CXMod) {
if (!CXMod)
return 0;
Module *Mod = static_cast<Module*>(CXMod);
return Mod->IsSystem;
}
unsigned clang_Module_getNumTopLevelHeaders(CXTranslationUnit TU,
CXModule CXMod) {
if (isNotUsableTU(TU)) {
LOG_BAD_TU(TU);
return 0;
}
if (!CXMod)
return 0;
Module *Mod = static_cast<Module*>(CXMod);
FileManager &FileMgr = cxtu::getASTUnit(TU)->getFileManager();
ArrayRef<const FileEntry *> TopHeaders = Mod->getTopHeaders(FileMgr);
return TopHeaders.size();
}
CXFile clang_Module_getTopLevelHeader(CXTranslationUnit TU,
CXModule CXMod, unsigned Index) {
if (isNotUsableTU(TU)) {
LOG_BAD_TU(TU);
return nullptr;
}
if (!CXMod)
return nullptr;
Module *Mod = static_cast<Module*>(CXMod);
FileManager &FileMgr = cxtu::getASTUnit(TU)->getFileManager();
ArrayRef<const FileEntry *> TopHeaders = Mod->getTopHeaders(FileMgr);
if (Index < TopHeaders.size())
return const_cast<FileEntry *>(TopHeaders[Index]);
return nullptr;
}
} // end: extern "C"
//===----------------------------------------------------------------------===//
// C++ AST instrospection.
//===----------------------------------------------------------------------===//
extern "C" {
unsigned clang_CXXMethod_isPureVirtual(CXCursor C) {
if (!clang_isDeclaration(C.kind))
return 0;
const Decl *D = cxcursor::getCursorDecl(C);
const CXXMethodDecl *Method =
D ? dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()) : nullptr;
return (Method && Method->isVirtual() && Method->isPure()) ? 1 : 0;
}
unsigned clang_CXXMethod_isConst(CXCursor C) {
if (!clang_isDeclaration(C.kind))
return 0;
const Decl *D = cxcursor::getCursorDecl(C);
const CXXMethodDecl *Method =
D ? dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()) : nullptr;
return (Method && (Method->getTypeQualifiers() & Qualifiers::Const)) ? 1 : 0;
}
unsigned clang_CXXMethod_isStatic(CXCursor C) {
if (!clang_isDeclaration(C.kind))
return 0;
const Decl *D = cxcursor::getCursorDecl(C);
const CXXMethodDecl *Method =
D ? dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()) : nullptr;
return (Method && Method->isStatic()) ? 1 : 0;
}
unsigned clang_CXXMethod_isVirtual(CXCursor C) {
if (!clang_isDeclaration(C.kind))
return 0;
const Decl *D = cxcursor::getCursorDecl(C);
const CXXMethodDecl *Method =
D ? dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()) : nullptr;
return (Method && Method->isVirtual()) ? 1 : 0;
}
} // end: extern "C"
//===----------------------------------------------------------------------===//
// Attribute introspection.
//===----------------------------------------------------------------------===//
extern "C" {
CXType clang_getIBOutletCollectionType(CXCursor C) {
if (C.kind != CXCursor_IBOutletCollectionAttr)
return cxtype::MakeCXType(QualType(), cxcursor::getCursorTU(C));
const IBOutletCollectionAttr *A =
cast<IBOutletCollectionAttr>(cxcursor::getCursorAttr(C));
return cxtype::MakeCXType(A->getInterface(), cxcursor::getCursorTU(C));
}
} // end: extern "C"
//===----------------------------------------------------------------------===//
// Inspecting memory usage.
//===----------------------------------------------------------------------===//
typedef std::vector<CXTUResourceUsageEntry> MemUsageEntries;
static inline void createCXTUResourceUsageEntry(MemUsageEntries &entries,
enum CXTUResourceUsageKind k,
unsigned long amount) {
CXTUResourceUsageEntry entry = { k, amount };
entries.push_back(entry);
}
extern "C" {
const char *clang_getTUResourceUsageName(CXTUResourceUsageKind kind) {
const char *str = "";
switch (kind) {
case CXTUResourceUsage_AST:
str = "ASTContext: expressions, declarations, and types";
break;
case CXTUResourceUsage_Identifiers:
str = "ASTContext: identifiers";
break;
case CXTUResourceUsage_Selectors:
str = "ASTContext: selectors";
break;
case CXTUResourceUsage_GlobalCompletionResults:
str = "Code completion: cached global results";
break;
case CXTUResourceUsage_SourceManagerContentCache:
str = "SourceManager: content cache allocator";
break;
case CXTUResourceUsage_AST_SideTables:
str = "ASTContext: side tables";
break;
case CXTUResourceUsage_SourceManager_Membuffer_Malloc:
str = "SourceManager: malloc'ed memory buffers";
break;
case CXTUResourceUsage_SourceManager_Membuffer_MMap:
str = "SourceManager: mmap'ed memory buffers";
break;
case CXTUResourceUsage_ExternalASTSource_Membuffer_Malloc:
str = "ExternalASTSource: malloc'ed memory buffers";
break;
case CXTUResourceUsage_ExternalASTSource_Membuffer_MMap:
str = "ExternalASTSource: mmap'ed memory buffers";
break;
case CXTUResourceUsage_Preprocessor:
str = "Preprocessor: malloc'ed memory";
break;
case CXTUResourceUsage_PreprocessingRecord:
str = "Preprocessor: PreprocessingRecord";
break;
case CXTUResourceUsage_SourceManager_DataStructures:
str = "SourceManager: data structures and tables";
break;
case CXTUResourceUsage_Preprocessor_HeaderSearch:
str = "Preprocessor: header search tables";
break;
}
return str;
}
CXTUResourceUsage clang_getCXTUResourceUsage(CXTranslationUnit TU) {
if (isNotUsableTU(TU)) {
LOG_BAD_TU(TU);
CXTUResourceUsage usage = { (void*) nullptr, 0, nullptr };
return usage;
}
ASTUnit *astUnit = cxtu::getASTUnit(TU);
std::unique_ptr<MemUsageEntries> entries(new MemUsageEntries());
ASTContext &astContext = astUnit->getASTContext();
// How much memory is used by AST nodes and types?
createCXTUResourceUsageEntry(*entries, CXTUResourceUsage_AST,
(unsigned long) astContext.getASTAllocatedMemory());
// How much memory is used by identifiers?
createCXTUResourceUsageEntry(*entries, CXTUResourceUsage_Identifiers,
(unsigned long) astContext.Idents.getAllocator().getTotalMemory());
// How much memory is used for selectors?
createCXTUResourceUsageEntry(*entries, CXTUResourceUsage_Selectors,
(unsigned long) astContext.Selectors.getTotalMemory());
// How much memory is used by ASTContext's side tables?
createCXTUResourceUsageEntry(*entries, CXTUResourceUsage_AST_SideTables,
(unsigned long) astContext.getSideTableAllocatedMemory());
// How much memory is used for caching global code completion results?
unsigned long completionBytes = 0;
if (GlobalCodeCompletionAllocator *completionAllocator =
astUnit->getCachedCompletionAllocator().get()) {
completionBytes = completionAllocator->getTotalMemory();
}
createCXTUResourceUsageEntry(*entries,
CXTUResourceUsage_GlobalCompletionResults,
completionBytes);
// How much memory is being used by SourceManager's content cache?
createCXTUResourceUsageEntry(*entries,
CXTUResourceUsage_SourceManagerContentCache,
(unsigned long) astContext.getSourceManager().getContentCacheSize());
// How much memory is being used by the MemoryBuffer's in SourceManager?
const SourceManager::MemoryBufferSizes &srcBufs =
astUnit->getSourceManager().getMemoryBufferSizes();
createCXTUResourceUsageEntry(*entries,
CXTUResourceUsage_SourceManager_Membuffer_Malloc,
(unsigned long) srcBufs.malloc_bytes);
createCXTUResourceUsageEntry(*entries,
CXTUResourceUsage_SourceManager_Membuffer_MMap,
(unsigned long) srcBufs.mmap_bytes);
createCXTUResourceUsageEntry(*entries,
CXTUResourceUsage_SourceManager_DataStructures,
(unsigned long) astContext.getSourceManager()
.getDataStructureSizes());
// How much memory is being used by the ExternalASTSource?
if (ExternalASTSource *esrc = astContext.getExternalSource()) {
const ExternalASTSource::MemoryBufferSizes &sizes =
esrc->getMemoryBufferSizes();
createCXTUResourceUsageEntry(*entries,
CXTUResourceUsage_ExternalASTSource_Membuffer_Malloc,
(unsigned long) sizes.malloc_bytes);
createCXTUResourceUsageEntry(*entries,
CXTUResourceUsage_ExternalASTSource_Membuffer_MMap,
(unsigned long) sizes.mmap_bytes);
}
// How much memory is being used by the Preprocessor?
Preprocessor &pp = astUnit->getPreprocessor();
createCXTUResourceUsageEntry(*entries,
CXTUResourceUsage_Preprocessor,
pp.getTotalMemory());
if (PreprocessingRecord *pRec = pp.getPreprocessingRecord()) {
createCXTUResourceUsageEntry(*entries,
CXTUResourceUsage_PreprocessingRecord,
pRec->getTotalMemory());
}
createCXTUResourceUsageEntry(*entries,
CXTUResourceUsage_Preprocessor_HeaderSearch,
pp.getHeaderSearchInfo().getTotalMemory());
CXTUResourceUsage usage = { (void*) entries.get(),
(unsigned) entries->size(),
!entries->empty() ? &(*entries)[0] : nullptr };
entries.release();
return usage;
}
void clang_disposeCXTUResourceUsage(CXTUResourceUsage usage) {
if (usage.data)
delete (MemUsageEntries*) usage.data;
}
CXSourceRangeList *clang_getSkippedRanges(CXTranslationUnit TU, CXFile file) {
CXSourceRangeList *skipped = new CXSourceRangeList;
skipped->count = 0;
skipped->ranges = nullptr;
if (isNotUsableTU(TU)) {
LOG_BAD_TU(TU);
return skipped;
}
if (!file)
return skipped;
ASTUnit *astUnit = cxtu::getASTUnit(TU);
PreprocessingRecord *ppRec = astUnit->getPreprocessor().getPreprocessingRecord();
if (!ppRec)
return skipped;
ASTContext &Ctx = astUnit->getASTContext();
SourceManager &sm = Ctx.getSourceManager();
FileEntry *fileEntry = static_cast<FileEntry *>(file);
FileID wantedFileID = sm.translateFile(fileEntry);
const std::vector<SourceRange> &SkippedRanges = ppRec->getSkippedRanges();
std::vector<SourceRange> wantedRanges;
for (std::vector<SourceRange>::const_iterator i = SkippedRanges.begin(), ei = SkippedRanges.end();
i != ei; ++i) {
if (sm.getFileID(i->getBegin()) == wantedFileID || sm.getFileID(i->getEnd()) == wantedFileID)
wantedRanges.push_back(*i);
}
skipped->count = wantedRanges.size();
skipped->ranges = new CXSourceRange[skipped->count];
for (unsigned i = 0, ei = skipped->count; i != ei; ++i)
skipped->ranges[i] = cxloc::translateSourceRange(Ctx, wantedRanges[i]);
return skipped;
}
void clang_disposeSourceRangeList(CXSourceRangeList *ranges) {
if (ranges) {
delete[] ranges->ranges;
delete ranges;
}
}
} // end extern "C"
void clang::PrintLibclangResourceUsage(CXTranslationUnit TU) {
CXTUResourceUsage Usage = clang_getCXTUResourceUsage(TU);
for (unsigned I = 0; I != Usage.numEntries; ++I)
fprintf(stderr, " %s: %lu\n",
clang_getTUResourceUsageName(Usage.entries[I].kind),
Usage.entries[I].amount);
clang_disposeCXTUResourceUsage(Usage);
}
//===----------------------------------------------------------------------===//
// Misc. utility functions.
//===----------------------------------------------------------------------===//
/// Default to using an 8 MB stack size on "safety" threads.
static unsigned SafetyStackThreadSize = 8 << 20;
namespace clang {
bool RunSafely(llvm::CrashRecoveryContext &CRC, llvm::function_ref<void()> Fn,
unsigned Size) {
if (!Size)
Size = GetSafetyThreadStackSize();
if (Size)
return CRC.RunSafelyOnThread(Fn, Size);
return CRC.RunSafely(Fn);
}
unsigned GetSafetyThreadStackSize() {
return SafetyStackThreadSize;
}
void SetSafetyThreadStackSize(unsigned Value) {
SafetyStackThreadSize = Value;
}
}
void clang::setThreadBackgroundPriority() {
if (getenv("LIBCLANG_BGPRIO_DISABLE"))
return;
#ifdef USE_DARWIN_THREADS
setpriority(PRIO_DARWIN_THREAD, 0, PRIO_DARWIN_BG);
#endif
}
void cxindex::printDiagsToStderr(ASTUnit *Unit) {
if (!Unit)
return;
for (ASTUnit::stored_diag_iterator D = Unit->stored_diag_begin(),
DEnd = Unit->stored_diag_end();
D != DEnd; ++D) {
CXStoredDiagnostic Diag(*D, Unit->getLangOpts());
CXString Msg = clang_formatDiagnostic(&Diag,
clang_defaultDiagnosticDisplayOptions());
fprintf(stderr, "%s\n", clang_getCString(Msg));
clang_disposeString(Msg);
}
#ifdef LLVM_ON_WIN32
// On Windows, force a flush, since there may be multiple copies of
// stderr and stdout in the file system, all with different buffers
// but writing to the same device.
fflush(stderr);
#endif
}
MacroInfo *cxindex::getMacroInfo(const IdentifierInfo &II,
SourceLocation MacroDefLoc,
CXTranslationUnit TU){
if (MacroDefLoc.isInvalid() || !TU)
return nullptr;
if (!II.hadMacroDefinition())
return nullptr;
ASTUnit *Unit = cxtu::getASTUnit(TU);
Preprocessor &PP = Unit->getPreprocessor();
MacroDirective *MD = PP.getLocalMacroDirectiveHistory(&II);
if (MD) {
for (MacroDirective::DefInfo
Def = MD->getDefinition(); Def; Def = Def.getPreviousDefinition()) {
if (MacroDefLoc == Def.getMacroInfo()->getDefinitionLoc())
return Def.getMacroInfo();
}
}
return nullptr;
}
const MacroInfo *cxindex::getMacroInfo(const MacroDefinitionRecord *MacroDef,
CXTranslationUnit TU) {
if (!MacroDef || !TU)
return nullptr;
const IdentifierInfo *II = MacroDef->getName();
if (!II)
return nullptr;
return getMacroInfo(*II, MacroDef->getLocation(), TU);
}
MacroDefinitionRecord *
cxindex::checkForMacroInMacroDefinition(const MacroInfo *MI, const Token &Tok,
CXTranslationUnit TU) {
if (!MI || !TU)
return nullptr;
if (Tok.isNot(tok::raw_identifier))
return nullptr;
if (MI->getNumTokens() == 0)
return nullptr;
SourceRange DefRange(MI->getReplacementToken(0).getLocation(),
MI->getDefinitionEndLoc());
ASTUnit *Unit = cxtu::getASTUnit(TU);
// Check that the token is inside the definition and not its argument list.
SourceManager &SM = Unit->getSourceManager();
if (SM.isBeforeInTranslationUnit(Tok.getLocation(), DefRange.getBegin()))
return nullptr;
if (SM.isBeforeInTranslationUnit(DefRange.getEnd(), Tok.getLocation()))
return nullptr;
Preprocessor &PP = Unit->getPreprocessor();
PreprocessingRecord *PPRec = PP.getPreprocessingRecord();
if (!PPRec)
return nullptr;
IdentifierInfo &II = PP.getIdentifierTable().get(Tok.getRawIdentifier());
if (!II.hadMacroDefinition())
return nullptr;
// Check that the identifier is not one of the macro arguments.
if (std::find(MI->arg_begin(), MI->arg_end(), &II) != MI->arg_end())
return nullptr;
MacroDirective *InnerMD = PP.getLocalMacroDirectiveHistory(&II);
if (!InnerMD)
return nullptr;
return PPRec->findMacroDefinition(InnerMD->getMacroInfo());
}
MacroDefinitionRecord *
cxindex::checkForMacroInMacroDefinition(const MacroInfo *MI, SourceLocation Loc,
CXTranslationUnit TU) {
if (Loc.isInvalid() || !MI || !TU)
return nullptr;
if (MI->getNumTokens() == 0)
return nullptr;
ASTUnit *Unit = cxtu::getASTUnit(TU);
Preprocessor &PP = Unit->getPreprocessor();
if (!PP.getPreprocessingRecord())
return nullptr;
Loc = Unit->getSourceManager().getSpellingLoc(Loc);
Token Tok;
if (PP.getRawToken(Loc, Tok))
return nullptr;
return checkForMacroInMacroDefinition(MI, Tok, TU);
}
extern "C" {
CXString clang_getClangVersion() {
return cxstring::createDup(getClangFullVersion());
}
} // end: extern "C"
Logger &cxindex::Logger::operator<<(CXTranslationUnit TU) {
if (TU) {
if (ASTUnit *Unit = cxtu::getASTUnit(TU)) {
LogOS << '<' << Unit->getMainFileName() << '>';
if (Unit->isMainFileAST())
LogOS << " (" << Unit->getASTFileName() << ')';
return *this;
}
} else {
LogOS << "<NULL TU>";
}
return *this;
}
Logger &cxindex::Logger::operator<<(const FileEntry *FE) {
*this << FE->getName();
return *this;
}
Logger &cxindex::Logger::operator<<(CXCursor cursor) {
CXString cursorName = clang_getCursorDisplayName(cursor);
*this << cursorName << "@" << clang_getCursorLocation(cursor);
clang_disposeString(cursorName);
return *this;
}
Logger &cxindex::Logger::operator<<(CXSourceLocation Loc) {
CXFile File;
unsigned Line, Column;
clang_getFileLocation(Loc, &File, &Line, &Column, nullptr);
CXString FileName = clang_getFileName(File);
*this << llvm::format("(%s:%d:%d)", clang_getCString(FileName), Line, Column);
clang_disposeString(FileName);
return *this;
}
Logger &cxindex::Logger::operator<<(CXSourceRange range) {
CXSourceLocation BLoc = clang_getRangeStart(range);
CXSourceLocation ELoc = clang_getRangeEnd(range);
CXFile BFile;
unsigned BLine, BColumn;
clang_getFileLocation(BLoc, &BFile, &BLine, &BColumn, nullptr);
CXFile EFile;
unsigned ELine, EColumn;
clang_getFileLocation(ELoc, &EFile, &ELine, &EColumn, nullptr);
CXString BFileName = clang_getFileName(BFile);
if (BFile == EFile) {
*this << llvm::format("[%s %d:%d-%d:%d]", clang_getCString(BFileName),
BLine, BColumn, ELine, EColumn);
} else {
CXString EFileName = clang_getFileName(EFile);
*this << llvm::format("[%s:%d:%d - ", clang_getCString(BFileName),
BLine, BColumn)
<< llvm::format("%s:%d:%d]", clang_getCString(EFileName),
ELine, EColumn);
clang_disposeString(EFileName);
}
clang_disposeString(BFileName);
return *this;
}
Logger &cxindex::Logger::operator<<(CXString Str) {
*this << clang_getCString(Str);
return *this;
}
Logger &cxindex::Logger::operator<<(const llvm::format_object_base &Fmt) {
LogOS << Fmt;
return *this;
}
static llvm::ManagedStatic<llvm::sys::Mutex> LoggingMutex;
cxindex::Logger::~Logger() {
llvm::sys::ScopedLock L(*LoggingMutex);
static llvm::TimeRecord sBeginTR = llvm::TimeRecord::getCurrentTime();
raw_ostream &OS = llvm::errs();
OS << "[libclang:" << Name << ':';
#ifdef USE_DARWIN_THREADS
// TODO: Portability.
mach_port_t tid = pthread_mach_thread_np(pthread_self());
OS << tid << ':';
#endif
llvm::TimeRecord TR = llvm::TimeRecord::getCurrentTime();
OS << llvm::format("%7.4f] ", TR.getWallTime() - sBeginTR.getWallTime());
OS << Msg << '\n';
if (Trace) {
llvm::sys::PrintStackTrace(OS);
OS << "--------------------------------------------------\n";
}
}