forked from OSchip/llvm-project
1238 lines
47 KiB
C++
1238 lines
47 KiB
C++
//===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass performs a simple dominator tree walk that eliminates trivially
|
|
// redundant instructions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/EarlyCSE.h"
|
|
#include "llvm/ADT/DenseMapInfo.h"
|
|
#include "llvm/ADT/Hashing.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/ScopedHashTable.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/MemorySSA.h"
|
|
#include "llvm/Analysis/MemorySSAUpdater.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/AtomicOrdering.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/RecyclingAllocator.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include <cassert>
|
|
#include <deque>
|
|
#include <memory>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::PatternMatch;
|
|
|
|
#define DEBUG_TYPE "early-cse"
|
|
|
|
STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
|
|
STATISTIC(NumCSE, "Number of instructions CSE'd");
|
|
STATISTIC(NumCSECVP, "Number of compare instructions CVP'd");
|
|
STATISTIC(NumCSELoad, "Number of load instructions CSE'd");
|
|
STATISTIC(NumCSECall, "Number of call instructions CSE'd");
|
|
STATISTIC(NumDSE, "Number of trivial dead stores removed");
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SimpleValue
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
/// \brief Struct representing the available values in the scoped hash table.
|
|
struct SimpleValue {
|
|
Instruction *Inst;
|
|
|
|
SimpleValue(Instruction *I) : Inst(I) {
|
|
assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
|
|
}
|
|
|
|
bool isSentinel() const {
|
|
return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
|
|
Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
|
|
}
|
|
|
|
static bool canHandle(Instruction *Inst) {
|
|
// This can only handle non-void readnone functions.
|
|
if (CallInst *CI = dyn_cast<CallInst>(Inst))
|
|
return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy();
|
|
return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) ||
|
|
isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) ||
|
|
isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
|
|
isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) ||
|
|
isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst);
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
namespace llvm {
|
|
|
|
template <> struct DenseMapInfo<SimpleValue> {
|
|
static inline SimpleValue getEmptyKey() {
|
|
return DenseMapInfo<Instruction *>::getEmptyKey();
|
|
}
|
|
|
|
static inline SimpleValue getTombstoneKey() {
|
|
return DenseMapInfo<Instruction *>::getTombstoneKey();
|
|
}
|
|
|
|
static unsigned getHashValue(SimpleValue Val);
|
|
static bool isEqual(SimpleValue LHS, SimpleValue RHS);
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
|
|
Instruction *Inst = Val.Inst;
|
|
// Hash in all of the operands as pointers.
|
|
if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) {
|
|
Value *LHS = BinOp->getOperand(0);
|
|
Value *RHS = BinOp->getOperand(1);
|
|
if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1))
|
|
std::swap(LHS, RHS);
|
|
|
|
return hash_combine(BinOp->getOpcode(), LHS, RHS);
|
|
}
|
|
|
|
if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) {
|
|
Value *LHS = CI->getOperand(0);
|
|
Value *RHS = CI->getOperand(1);
|
|
CmpInst::Predicate Pred = CI->getPredicate();
|
|
if (Inst->getOperand(0) > Inst->getOperand(1)) {
|
|
std::swap(LHS, RHS);
|
|
Pred = CI->getSwappedPredicate();
|
|
}
|
|
return hash_combine(Inst->getOpcode(), Pred, LHS, RHS);
|
|
}
|
|
|
|
// Hash min/max/abs (cmp + select) to allow for commuted operands.
|
|
// Min/max may also have non-canonical compare predicate (eg, the compare for
|
|
// smin may use 'sgt' rather than 'slt'), and non-canonical operands in the
|
|
// compare.
|
|
Value *A, *B;
|
|
SelectPatternFlavor SPF = matchSelectPattern(Inst, A, B).Flavor;
|
|
// TODO: We should also detect FP min/max.
|
|
if (SPF == SPF_SMIN || SPF == SPF_SMAX ||
|
|
SPF == SPF_UMIN || SPF == SPF_UMAX ||
|
|
SPF == SPF_ABS || SPF == SPF_NABS) {
|
|
if (A > B)
|
|
std::swap(A, B);
|
|
return hash_combine(Inst->getOpcode(), SPF, A, B);
|
|
}
|
|
|
|
if (CastInst *CI = dyn_cast<CastInst>(Inst))
|
|
return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0));
|
|
|
|
if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst))
|
|
return hash_combine(EVI->getOpcode(), EVI->getOperand(0),
|
|
hash_combine_range(EVI->idx_begin(), EVI->idx_end()));
|
|
|
|
if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst))
|
|
return hash_combine(IVI->getOpcode(), IVI->getOperand(0),
|
|
IVI->getOperand(1),
|
|
hash_combine_range(IVI->idx_begin(), IVI->idx_end()));
|
|
|
|
assert((isa<CallInst>(Inst) || isa<BinaryOperator>(Inst) ||
|
|
isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) ||
|
|
isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
|
|
isa<ShuffleVectorInst>(Inst)) &&
|
|
"Invalid/unknown instruction");
|
|
|
|
// Mix in the opcode.
|
|
return hash_combine(
|
|
Inst->getOpcode(),
|
|
hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
|
|
}
|
|
|
|
bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
|
|
Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
|
|
|
|
if (LHS.isSentinel() || RHS.isSentinel())
|
|
return LHSI == RHSI;
|
|
|
|
if (LHSI->getOpcode() != RHSI->getOpcode())
|
|
return false;
|
|
if (LHSI->isIdenticalToWhenDefined(RHSI))
|
|
return true;
|
|
|
|
// If we're not strictly identical, we still might be a commutable instruction
|
|
if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) {
|
|
if (!LHSBinOp->isCommutative())
|
|
return false;
|
|
|
|
assert(isa<BinaryOperator>(RHSI) &&
|
|
"same opcode, but different instruction type?");
|
|
BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI);
|
|
|
|
// Commuted equality
|
|
return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) &&
|
|
LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0);
|
|
}
|
|
if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) {
|
|
assert(isa<CmpInst>(RHSI) &&
|
|
"same opcode, but different instruction type?");
|
|
CmpInst *RHSCmp = cast<CmpInst>(RHSI);
|
|
// Commuted equality
|
|
return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) &&
|
|
LHSCmp->getOperand(1) == RHSCmp->getOperand(0) &&
|
|
LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate();
|
|
}
|
|
|
|
// Min/max/abs can occur with commuted operands, non-canonical predicates,
|
|
// and/or non-canonical operands.
|
|
Value *LHSA, *LHSB;
|
|
SelectPatternFlavor LSPF = matchSelectPattern(LHSI, LHSA, LHSB).Flavor;
|
|
// TODO: We should also detect FP min/max.
|
|
if (LSPF == SPF_SMIN || LSPF == SPF_SMAX ||
|
|
LSPF == SPF_UMIN || LSPF == SPF_UMAX ||
|
|
LSPF == SPF_ABS || LSPF == SPF_NABS) {
|
|
Value *RHSA, *RHSB;
|
|
SelectPatternFlavor RSPF = matchSelectPattern(RHSI, RHSA, RHSB).Flavor;
|
|
return (LSPF == RSPF && ((LHSA == RHSA && LHSB == RHSB) ||
|
|
(LHSA == RHSB && LHSB == RHSA)));
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CallValue
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
/// \brief Struct representing the available call values in the scoped hash
|
|
/// table.
|
|
struct CallValue {
|
|
Instruction *Inst;
|
|
|
|
CallValue(Instruction *I) : Inst(I) {
|
|
assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
|
|
}
|
|
|
|
bool isSentinel() const {
|
|
return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
|
|
Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
|
|
}
|
|
|
|
static bool canHandle(Instruction *Inst) {
|
|
// Don't value number anything that returns void.
|
|
if (Inst->getType()->isVoidTy())
|
|
return false;
|
|
|
|
CallInst *CI = dyn_cast<CallInst>(Inst);
|
|
if (!CI || !CI->onlyReadsMemory())
|
|
return false;
|
|
return true;
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
namespace llvm {
|
|
|
|
template <> struct DenseMapInfo<CallValue> {
|
|
static inline CallValue getEmptyKey() {
|
|
return DenseMapInfo<Instruction *>::getEmptyKey();
|
|
}
|
|
|
|
static inline CallValue getTombstoneKey() {
|
|
return DenseMapInfo<Instruction *>::getTombstoneKey();
|
|
}
|
|
|
|
static unsigned getHashValue(CallValue Val);
|
|
static bool isEqual(CallValue LHS, CallValue RHS);
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
|
|
Instruction *Inst = Val.Inst;
|
|
// Hash all of the operands as pointers and mix in the opcode.
|
|
return hash_combine(
|
|
Inst->getOpcode(),
|
|
hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
|
|
}
|
|
|
|
bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
|
|
Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
|
|
if (LHS.isSentinel() || RHS.isSentinel())
|
|
return LHSI == RHSI;
|
|
return LHSI->isIdenticalTo(RHSI);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// EarlyCSE implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
/// \brief A simple and fast domtree-based CSE pass.
|
|
///
|
|
/// This pass does a simple depth-first walk over the dominator tree,
|
|
/// eliminating trivially redundant instructions and using instsimplify to
|
|
/// canonicalize things as it goes. It is intended to be fast and catch obvious
|
|
/// cases so that instcombine and other passes are more effective. It is
|
|
/// expected that a later pass of GVN will catch the interesting/hard cases.
|
|
class EarlyCSE {
|
|
public:
|
|
const TargetLibraryInfo &TLI;
|
|
const TargetTransformInfo &TTI;
|
|
DominatorTree &DT;
|
|
AssumptionCache &AC;
|
|
const SimplifyQuery SQ;
|
|
MemorySSA *MSSA;
|
|
std::unique_ptr<MemorySSAUpdater> MSSAUpdater;
|
|
|
|
using AllocatorTy =
|
|
RecyclingAllocator<BumpPtrAllocator,
|
|
ScopedHashTableVal<SimpleValue, Value *>>;
|
|
using ScopedHTType =
|
|
ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>,
|
|
AllocatorTy>;
|
|
|
|
/// \brief A scoped hash table of the current values of all of our simple
|
|
/// scalar expressions.
|
|
///
|
|
/// As we walk down the domtree, we look to see if instructions are in this:
|
|
/// if so, we replace them with what we find, otherwise we insert them so
|
|
/// that dominated values can succeed in their lookup.
|
|
ScopedHTType AvailableValues;
|
|
|
|
/// A scoped hash table of the current values of previously encounted memory
|
|
/// locations.
|
|
///
|
|
/// This allows us to get efficient access to dominating loads or stores when
|
|
/// we have a fully redundant load. In addition to the most recent load, we
|
|
/// keep track of a generation count of the read, which is compared against
|
|
/// the current generation count. The current generation count is incremented
|
|
/// after every possibly writing memory operation, which ensures that we only
|
|
/// CSE loads with other loads that have no intervening store. Ordering
|
|
/// events (such as fences or atomic instructions) increment the generation
|
|
/// count as well; essentially, we model these as writes to all possible
|
|
/// locations. Note that atomic and/or volatile loads and stores can be
|
|
/// present the table; it is the responsibility of the consumer to inspect
|
|
/// the atomicity/volatility if needed.
|
|
struct LoadValue {
|
|
Instruction *DefInst = nullptr;
|
|
unsigned Generation = 0;
|
|
int MatchingId = -1;
|
|
bool IsAtomic = false;
|
|
|
|
// TODO: Remove this flag. It would be strictly stronger to add a record
|
|
// to the AvailableInvariant table when passing the invariant load instead.
|
|
bool IsInvariant = false;
|
|
|
|
LoadValue() = default;
|
|
LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId,
|
|
bool IsAtomic, bool IsInvariant)
|
|
: DefInst(Inst), Generation(Generation), MatchingId(MatchingId),
|
|
IsAtomic(IsAtomic), IsInvariant(IsInvariant) {}
|
|
};
|
|
|
|
using LoadMapAllocator =
|
|
RecyclingAllocator<BumpPtrAllocator,
|
|
ScopedHashTableVal<Value *, LoadValue>>;
|
|
using LoadHTType =
|
|
ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>,
|
|
LoadMapAllocator>;
|
|
|
|
LoadHTType AvailableLoads;
|
|
|
|
// A scoped hash table mapping memory locations (represented as typed
|
|
// addresses) to generation numbers at which that memory location became
|
|
// (henceforth indefinitely) invariant.
|
|
using InvariantMapAllocator =
|
|
RecyclingAllocator<BumpPtrAllocator,
|
|
ScopedHashTableVal<MemoryLocation, unsigned>>;
|
|
using InvariantHTType =
|
|
ScopedHashTable<MemoryLocation, unsigned, DenseMapInfo<MemoryLocation>,
|
|
InvariantMapAllocator>;
|
|
InvariantHTType AvailableInvariants;
|
|
|
|
/// \brief A scoped hash table of the current values of read-only call
|
|
/// values.
|
|
///
|
|
/// It uses the same generation count as loads.
|
|
using CallHTType =
|
|
ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>>;
|
|
CallHTType AvailableCalls;
|
|
|
|
/// \brief This is the current generation of the memory value.
|
|
unsigned CurrentGeneration = 0;
|
|
|
|
/// \brief Set up the EarlyCSE runner for a particular function.
|
|
EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI,
|
|
const TargetTransformInfo &TTI, DominatorTree &DT,
|
|
AssumptionCache &AC, MemorySSA *MSSA)
|
|
: TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA),
|
|
MSSAUpdater(llvm::make_unique<MemorySSAUpdater>(MSSA)) {}
|
|
|
|
bool run();
|
|
|
|
private:
|
|
// Almost a POD, but needs to call the constructors for the scoped hash
|
|
// tables so that a new scope gets pushed on. These are RAII so that the
|
|
// scope gets popped when the NodeScope is destroyed.
|
|
class NodeScope {
|
|
public:
|
|
NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
|
|
InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls)
|
|
: Scope(AvailableValues), LoadScope(AvailableLoads),
|
|
InvariantScope(AvailableInvariants), CallScope(AvailableCalls) {}
|
|
NodeScope(const NodeScope &) = delete;
|
|
NodeScope &operator=(const NodeScope &) = delete;
|
|
|
|
private:
|
|
ScopedHTType::ScopeTy Scope;
|
|
LoadHTType::ScopeTy LoadScope;
|
|
InvariantHTType::ScopeTy InvariantScope;
|
|
CallHTType::ScopeTy CallScope;
|
|
};
|
|
|
|
// Contains all the needed information to create a stack for doing a depth
|
|
// first traversal of the tree. This includes scopes for values, loads, and
|
|
// calls as well as the generation. There is a child iterator so that the
|
|
// children do not need to be store separately.
|
|
class StackNode {
|
|
public:
|
|
StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
|
|
InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls,
|
|
unsigned cg, DomTreeNode *n, DomTreeNode::iterator child,
|
|
DomTreeNode::iterator end)
|
|
: CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child),
|
|
EndIter(end),
|
|
Scopes(AvailableValues, AvailableLoads, AvailableInvariants,
|
|
AvailableCalls)
|
|
{}
|
|
StackNode(const StackNode &) = delete;
|
|
StackNode &operator=(const StackNode &) = delete;
|
|
|
|
// Accessors.
|
|
unsigned currentGeneration() { return CurrentGeneration; }
|
|
unsigned childGeneration() { return ChildGeneration; }
|
|
void childGeneration(unsigned generation) { ChildGeneration = generation; }
|
|
DomTreeNode *node() { return Node; }
|
|
DomTreeNode::iterator childIter() { return ChildIter; }
|
|
|
|
DomTreeNode *nextChild() {
|
|
DomTreeNode *child = *ChildIter;
|
|
++ChildIter;
|
|
return child;
|
|
}
|
|
|
|
DomTreeNode::iterator end() { return EndIter; }
|
|
bool isProcessed() { return Processed; }
|
|
void process() { Processed = true; }
|
|
|
|
private:
|
|
unsigned CurrentGeneration;
|
|
unsigned ChildGeneration;
|
|
DomTreeNode *Node;
|
|
DomTreeNode::iterator ChildIter;
|
|
DomTreeNode::iterator EndIter;
|
|
NodeScope Scopes;
|
|
bool Processed = false;
|
|
};
|
|
|
|
/// \brief Wrapper class to handle memory instructions, including loads,
|
|
/// stores and intrinsic loads and stores defined by the target.
|
|
class ParseMemoryInst {
|
|
public:
|
|
ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI)
|
|
: Inst(Inst) {
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
|
|
if (TTI.getTgtMemIntrinsic(II, Info))
|
|
IsTargetMemInst = true;
|
|
}
|
|
|
|
bool isLoad() const {
|
|
if (IsTargetMemInst) return Info.ReadMem;
|
|
return isa<LoadInst>(Inst);
|
|
}
|
|
|
|
bool isStore() const {
|
|
if (IsTargetMemInst) return Info.WriteMem;
|
|
return isa<StoreInst>(Inst);
|
|
}
|
|
|
|
bool isAtomic() const {
|
|
if (IsTargetMemInst)
|
|
return Info.Ordering != AtomicOrdering::NotAtomic;
|
|
return Inst->isAtomic();
|
|
}
|
|
|
|
bool isUnordered() const {
|
|
if (IsTargetMemInst)
|
|
return Info.isUnordered();
|
|
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
|
|
return LI->isUnordered();
|
|
} else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
|
|
return SI->isUnordered();
|
|
}
|
|
// Conservative answer
|
|
return !Inst->isAtomic();
|
|
}
|
|
|
|
bool isVolatile() const {
|
|
if (IsTargetMemInst)
|
|
return Info.IsVolatile;
|
|
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
|
|
return LI->isVolatile();
|
|
} else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
|
|
return SI->isVolatile();
|
|
}
|
|
// Conservative answer
|
|
return true;
|
|
}
|
|
|
|
bool isInvariantLoad() const {
|
|
if (auto *LI = dyn_cast<LoadInst>(Inst))
|
|
return LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr;
|
|
return false;
|
|
}
|
|
|
|
bool isMatchingMemLoc(const ParseMemoryInst &Inst) const {
|
|
return (getPointerOperand() == Inst.getPointerOperand() &&
|
|
getMatchingId() == Inst.getMatchingId());
|
|
}
|
|
|
|
bool isValid() const { return getPointerOperand() != nullptr; }
|
|
|
|
// For regular (non-intrinsic) loads/stores, this is set to -1. For
|
|
// intrinsic loads/stores, the id is retrieved from the corresponding
|
|
// field in the MemIntrinsicInfo structure. That field contains
|
|
// non-negative values only.
|
|
int getMatchingId() const {
|
|
if (IsTargetMemInst) return Info.MatchingId;
|
|
return -1;
|
|
}
|
|
|
|
Value *getPointerOperand() const {
|
|
if (IsTargetMemInst) return Info.PtrVal;
|
|
return getLoadStorePointerOperand(Inst);
|
|
}
|
|
|
|
bool mayReadFromMemory() const {
|
|
if (IsTargetMemInst) return Info.ReadMem;
|
|
return Inst->mayReadFromMemory();
|
|
}
|
|
|
|
bool mayWriteToMemory() const {
|
|
if (IsTargetMemInst) return Info.WriteMem;
|
|
return Inst->mayWriteToMemory();
|
|
}
|
|
|
|
private:
|
|
bool IsTargetMemInst = false;
|
|
MemIntrinsicInfo Info;
|
|
Instruction *Inst;
|
|
};
|
|
|
|
bool processNode(DomTreeNode *Node);
|
|
|
|
Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const {
|
|
if (auto *LI = dyn_cast<LoadInst>(Inst))
|
|
return LI;
|
|
if (auto *SI = dyn_cast<StoreInst>(Inst))
|
|
return SI->getValueOperand();
|
|
assert(isa<IntrinsicInst>(Inst) && "Instruction not supported");
|
|
return TTI.getOrCreateResultFromMemIntrinsic(cast<IntrinsicInst>(Inst),
|
|
ExpectedType);
|
|
}
|
|
|
|
/// Return true if the instruction is known to only operate on memory
|
|
/// provably invariant in the given "generation".
|
|
bool isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt);
|
|
|
|
bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration,
|
|
Instruction *EarlierInst, Instruction *LaterInst);
|
|
|
|
void removeMSSA(Instruction *Inst) {
|
|
if (!MSSA)
|
|
return;
|
|
// Removing a store here can leave MemorySSA in an unoptimized state by
|
|
// creating MemoryPhis that have identical arguments and by creating
|
|
// MemoryUses whose defining access is not an actual clobber. We handle the
|
|
// phi case eagerly here. The non-optimized MemoryUse case is lazily
|
|
// updated by MemorySSA getClobberingMemoryAccess.
|
|
if (MemoryAccess *MA = MSSA->getMemoryAccess(Inst)) {
|
|
// Optimize MemoryPhi nodes that may become redundant by having all the
|
|
// same input values once MA is removed.
|
|
SmallSetVector<MemoryPhi *, 4> PhisToCheck;
|
|
SmallVector<MemoryAccess *, 8> WorkQueue;
|
|
WorkQueue.push_back(MA);
|
|
// Process MemoryPhi nodes in FIFO order using a ever-growing vector since
|
|
// we shouldn't be processing that many phis and this will avoid an
|
|
// allocation in almost all cases.
|
|
for (unsigned I = 0; I < WorkQueue.size(); ++I) {
|
|
MemoryAccess *WI = WorkQueue[I];
|
|
|
|
for (auto *U : WI->users())
|
|
if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U))
|
|
PhisToCheck.insert(MP);
|
|
|
|
MSSAUpdater->removeMemoryAccess(WI);
|
|
|
|
for (MemoryPhi *MP : PhisToCheck) {
|
|
MemoryAccess *FirstIn = MP->getIncomingValue(0);
|
|
if (llvm::all_of(MP->incoming_values(),
|
|
[=](Use &In) { return In == FirstIn; }))
|
|
WorkQueue.push_back(MP);
|
|
}
|
|
PhisToCheck.clear();
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// Determine if the memory referenced by LaterInst is from the same heap
|
|
/// version as EarlierInst.
|
|
/// This is currently called in two scenarios:
|
|
///
|
|
/// load p
|
|
/// ...
|
|
/// load p
|
|
///
|
|
/// and
|
|
///
|
|
/// x = load p
|
|
/// ...
|
|
/// store x, p
|
|
///
|
|
/// in both cases we want to verify that there are no possible writes to the
|
|
/// memory referenced by p between the earlier and later instruction.
|
|
bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration,
|
|
unsigned LaterGeneration,
|
|
Instruction *EarlierInst,
|
|
Instruction *LaterInst) {
|
|
// Check the simple memory generation tracking first.
|
|
if (EarlierGeneration == LaterGeneration)
|
|
return true;
|
|
|
|
if (!MSSA)
|
|
return false;
|
|
|
|
// If MemorySSA has determined that one of EarlierInst or LaterInst does not
|
|
// read/write memory, then we can safely return true here.
|
|
// FIXME: We could be more aggressive when checking doesNotAccessMemory(),
|
|
// onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass
|
|
// by also checking the MemorySSA MemoryAccess on the instruction. Initial
|
|
// experiments suggest this isn't worthwhile, at least for C/C++ code compiled
|
|
// with the default optimization pipeline.
|
|
auto *EarlierMA = MSSA->getMemoryAccess(EarlierInst);
|
|
if (!EarlierMA)
|
|
return true;
|
|
auto *LaterMA = MSSA->getMemoryAccess(LaterInst);
|
|
if (!LaterMA)
|
|
return true;
|
|
|
|
// Since we know LaterDef dominates LaterInst and EarlierInst dominates
|
|
// LaterInst, if LaterDef dominates EarlierInst then it can't occur between
|
|
// EarlierInst and LaterInst and neither can any other write that potentially
|
|
// clobbers LaterInst.
|
|
MemoryAccess *LaterDef =
|
|
MSSA->getWalker()->getClobberingMemoryAccess(LaterInst);
|
|
return MSSA->dominates(LaterDef, EarlierMA);
|
|
}
|
|
|
|
bool EarlyCSE::isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt) {
|
|
// A location loaded from with an invariant_load is assumed to *never* change
|
|
// within the visible scope of the compilation.
|
|
if (auto *LI = dyn_cast<LoadInst>(I))
|
|
if (LI->getMetadata(LLVMContext::MD_invariant_load))
|
|
return true;
|
|
|
|
auto MemLocOpt = MemoryLocation::getOrNone(I);
|
|
if (!MemLocOpt)
|
|
// "target" intrinsic forms of loads aren't currently known to
|
|
// MemoryLocation::get. TODO
|
|
return false;
|
|
MemoryLocation MemLoc = *MemLocOpt;
|
|
if (!AvailableInvariants.count(MemLoc))
|
|
return false;
|
|
|
|
// Is the generation at which this became invariant older than the
|
|
// current one?
|
|
return AvailableInvariants.lookup(MemLoc) <= GenAt;
|
|
}
|
|
|
|
bool EarlyCSE::processNode(DomTreeNode *Node) {
|
|
bool Changed = false;
|
|
BasicBlock *BB = Node->getBlock();
|
|
|
|
// If this block has a single predecessor, then the predecessor is the parent
|
|
// of the domtree node and all of the live out memory values are still current
|
|
// in this block. If this block has multiple predecessors, then they could
|
|
// have invalidated the live-out memory values of our parent value. For now,
|
|
// just be conservative and invalidate memory if this block has multiple
|
|
// predecessors.
|
|
if (!BB->getSinglePredecessor())
|
|
++CurrentGeneration;
|
|
|
|
// If this node has a single predecessor which ends in a conditional branch,
|
|
// we can infer the value of the branch condition given that we took this
|
|
// path. We need the single predecessor to ensure there's not another path
|
|
// which reaches this block where the condition might hold a different
|
|
// value. Since we're adding this to the scoped hash table (like any other
|
|
// def), it will have been popped if we encounter a future merge block.
|
|
if (BasicBlock *Pred = BB->getSinglePredecessor()) {
|
|
auto *BI = dyn_cast<BranchInst>(Pred->getTerminator());
|
|
if (BI && BI->isConditional()) {
|
|
auto *CondInst = dyn_cast<Instruction>(BI->getCondition());
|
|
if (CondInst && SimpleValue::canHandle(CondInst)) {
|
|
assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB);
|
|
auto *TorF = (BI->getSuccessor(0) == BB)
|
|
? ConstantInt::getTrue(BB->getContext())
|
|
: ConstantInt::getFalse(BB->getContext());
|
|
AvailableValues.insert(CondInst, TorF);
|
|
DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '"
|
|
<< CondInst->getName() << "' as " << *TorF << " in "
|
|
<< BB->getName() << "\n");
|
|
// Replace all dominated uses with the known value.
|
|
if (unsigned Count = replaceDominatedUsesWith(
|
|
CondInst, TorF, DT, BasicBlockEdge(Pred, BB))) {
|
|
Changed = true;
|
|
NumCSECVP += Count;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// LastStore - Keep track of the last non-volatile store that we saw... for
|
|
/// as long as there in no instruction that reads memory. If we see a store
|
|
/// to the same location, we delete the dead store. This zaps trivial dead
|
|
/// stores which can occur in bitfield code among other things.
|
|
Instruction *LastStore = nullptr;
|
|
|
|
// See if any instructions in the block can be eliminated. If so, do it. If
|
|
// not, add them to AvailableValues.
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
|
|
Instruction *Inst = &*I++;
|
|
|
|
// Dead instructions should just be removed.
|
|
if (isInstructionTriviallyDead(Inst, &TLI)) {
|
|
DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n');
|
|
salvageDebugInfo(*Inst);
|
|
removeMSSA(Inst);
|
|
Inst->eraseFromParent();
|
|
Changed = true;
|
|
++NumSimplify;
|
|
continue;
|
|
}
|
|
|
|
// Skip assume intrinsics, they don't really have side effects (although
|
|
// they're marked as such to ensure preservation of control dependencies),
|
|
// and this pass will not bother with its removal. However, we should mark
|
|
// its condition as true for all dominated blocks.
|
|
if (match(Inst, m_Intrinsic<Intrinsic::assume>())) {
|
|
auto *CondI =
|
|
dyn_cast<Instruction>(cast<CallInst>(Inst)->getArgOperand(0));
|
|
if (CondI && SimpleValue::canHandle(CondI)) {
|
|
DEBUG(dbgs() << "EarlyCSE considering assumption: " << *Inst << '\n');
|
|
AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext()));
|
|
} else
|
|
DEBUG(dbgs() << "EarlyCSE skipping assumption: " << *Inst << '\n');
|
|
continue;
|
|
}
|
|
|
|
// Skip sideeffect intrinsics, for the same reason as assume intrinsics.
|
|
if (match(Inst, m_Intrinsic<Intrinsic::sideeffect>())) {
|
|
DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << *Inst << '\n');
|
|
continue;
|
|
}
|
|
|
|
// We can skip all invariant.start intrinsics since they only read memory,
|
|
// and we can forward values across it. For invariant starts without
|
|
// invariant ends, we can use the fact that the invariantness never ends to
|
|
// start a scope in the current generaton which is true for all future
|
|
// generations. Also, we dont need to consume the last store since the
|
|
// semantics of invariant.start allow us to perform DSE of the last
|
|
// store, if there was a store following invariant.start. Consider:
|
|
//
|
|
// store 30, i8* p
|
|
// invariant.start(p)
|
|
// store 40, i8* p
|
|
// We can DSE the store to 30, since the store 40 to invariant location p
|
|
// causes undefined behaviour.
|
|
if (match(Inst, m_Intrinsic<Intrinsic::invariant_start>())) {
|
|
// If there are any uses, the scope might end.
|
|
if (!Inst->use_empty())
|
|
continue;
|
|
auto *CI = cast<CallInst>(Inst);
|
|
MemoryLocation MemLoc = MemoryLocation::getForArgument(CI, 1, TLI);
|
|
AvailableInvariants.insert(MemLoc, CurrentGeneration);
|
|
continue;
|
|
}
|
|
|
|
if (match(Inst, m_Intrinsic<Intrinsic::experimental_guard>())) {
|
|
if (auto *CondI =
|
|
dyn_cast<Instruction>(cast<CallInst>(Inst)->getArgOperand(0))) {
|
|
if (SimpleValue::canHandle(CondI)) {
|
|
// Do we already know the actual value of this condition?
|
|
if (auto *KnownCond = AvailableValues.lookup(CondI)) {
|
|
// Is the condition known to be true?
|
|
if (isa<ConstantInt>(KnownCond) &&
|
|
cast<ConstantInt>(KnownCond)->isOne()) {
|
|
DEBUG(dbgs() << "EarlyCSE removing guard: " << *Inst << '\n');
|
|
removeMSSA(Inst);
|
|
Inst->eraseFromParent();
|
|
Changed = true;
|
|
continue;
|
|
} else
|
|
// Use the known value if it wasn't true.
|
|
cast<CallInst>(Inst)->setArgOperand(0, KnownCond);
|
|
}
|
|
// The condition we're on guarding here is true for all dominated
|
|
// locations.
|
|
AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext()));
|
|
}
|
|
}
|
|
|
|
// Guard intrinsics read all memory, but don't write any memory.
|
|
// Accordingly, don't update the generation but consume the last store (to
|
|
// avoid an incorrect DSE).
|
|
LastStore = nullptr;
|
|
continue;
|
|
}
|
|
|
|
// If the instruction can be simplified (e.g. X+0 = X) then replace it with
|
|
// its simpler value.
|
|
if (Value *V = SimplifyInstruction(Inst, SQ)) {
|
|
DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V << '\n');
|
|
bool Killed = false;
|
|
if (!Inst->use_empty()) {
|
|
Inst->replaceAllUsesWith(V);
|
|
Changed = true;
|
|
}
|
|
if (isInstructionTriviallyDead(Inst, &TLI)) {
|
|
removeMSSA(Inst);
|
|
Inst->eraseFromParent();
|
|
Changed = true;
|
|
Killed = true;
|
|
}
|
|
if (Changed)
|
|
++NumSimplify;
|
|
if (Killed)
|
|
continue;
|
|
}
|
|
|
|
// If this is a simple instruction that we can value number, process it.
|
|
if (SimpleValue::canHandle(Inst)) {
|
|
// See if the instruction has an available value. If so, use it.
|
|
if (Value *V = AvailableValues.lookup(Inst)) {
|
|
DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << " to: " << *V << '\n');
|
|
if (auto *I = dyn_cast<Instruction>(V))
|
|
I->andIRFlags(Inst);
|
|
Inst->replaceAllUsesWith(V);
|
|
removeMSSA(Inst);
|
|
Inst->eraseFromParent();
|
|
Changed = true;
|
|
++NumCSE;
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, just remember that this value is available.
|
|
AvailableValues.insert(Inst, Inst);
|
|
continue;
|
|
}
|
|
|
|
ParseMemoryInst MemInst(Inst, TTI);
|
|
// If this is a non-volatile load, process it.
|
|
if (MemInst.isValid() && MemInst.isLoad()) {
|
|
// (conservatively) we can't peak past the ordering implied by this
|
|
// operation, but we can add this load to our set of available values
|
|
if (MemInst.isVolatile() || !MemInst.isUnordered()) {
|
|
LastStore = nullptr;
|
|
++CurrentGeneration;
|
|
}
|
|
|
|
// If we have an available version of this load, and if it is the right
|
|
// generation or the load is known to be from an invariant location,
|
|
// replace this instruction.
|
|
//
|
|
// If either the dominating load or the current load are invariant, then
|
|
// we can assume the current load loads the same value as the dominating
|
|
// load.
|
|
LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
|
|
if (InVal.DefInst != nullptr &&
|
|
InVal.MatchingId == MemInst.getMatchingId() &&
|
|
// We don't yet handle removing loads with ordering of any kind.
|
|
!MemInst.isVolatile() && MemInst.isUnordered() &&
|
|
// We can't replace an atomic load with one which isn't also atomic.
|
|
InVal.IsAtomic >= MemInst.isAtomic() &&
|
|
(InVal.IsInvariant ||
|
|
isOperatingOnInvariantMemAt(Inst, InVal.Generation) ||
|
|
isSameMemGeneration(InVal.Generation, CurrentGeneration,
|
|
InVal.DefInst, Inst))) {
|
|
Value *Op = getOrCreateResult(InVal.DefInst, Inst->getType());
|
|
if (Op != nullptr) {
|
|
DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst
|
|
<< " to: " << *InVal.DefInst << '\n');
|
|
if (!Inst->use_empty())
|
|
Inst->replaceAllUsesWith(Op);
|
|
removeMSSA(Inst);
|
|
Inst->eraseFromParent();
|
|
Changed = true;
|
|
++NumCSELoad;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Otherwise, remember that we have this instruction.
|
|
AvailableLoads.insert(
|
|
MemInst.getPointerOperand(),
|
|
LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(),
|
|
MemInst.isAtomic(), MemInst.isInvariantLoad()));
|
|
LastStore = nullptr;
|
|
continue;
|
|
}
|
|
|
|
// If this instruction may read from memory or throw (and potentially read
|
|
// from memory in the exception handler), forget LastStore. Load/store
|
|
// intrinsics will indicate both a read and a write to memory. The target
|
|
// may override this (e.g. so that a store intrinsic does not read from
|
|
// memory, and thus will be treated the same as a regular store for
|
|
// commoning purposes).
|
|
if ((Inst->mayReadFromMemory() || Inst->mayThrow()) &&
|
|
!(MemInst.isValid() && !MemInst.mayReadFromMemory()))
|
|
LastStore = nullptr;
|
|
|
|
// If this is a read-only call, process it.
|
|
if (CallValue::canHandle(Inst)) {
|
|
// If we have an available version of this call, and if it is the right
|
|
// generation, replace this instruction.
|
|
std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(Inst);
|
|
if (InVal.first != nullptr &&
|
|
isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first,
|
|
Inst)) {
|
|
DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst
|
|
<< " to: " << *InVal.first << '\n');
|
|
if (!Inst->use_empty())
|
|
Inst->replaceAllUsesWith(InVal.first);
|
|
removeMSSA(Inst);
|
|
Inst->eraseFromParent();
|
|
Changed = true;
|
|
++NumCSECall;
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, remember that we have this instruction.
|
|
AvailableCalls.insert(
|
|
Inst, std::pair<Instruction *, unsigned>(Inst, CurrentGeneration));
|
|
continue;
|
|
}
|
|
|
|
// A release fence requires that all stores complete before it, but does
|
|
// not prevent the reordering of following loads 'before' the fence. As a
|
|
// result, we don't need to consider it as writing to memory and don't need
|
|
// to advance the generation. We do need to prevent DSE across the fence,
|
|
// but that's handled above.
|
|
if (FenceInst *FI = dyn_cast<FenceInst>(Inst))
|
|
if (FI->getOrdering() == AtomicOrdering::Release) {
|
|
assert(Inst->mayReadFromMemory() && "relied on to prevent DSE above");
|
|
continue;
|
|
}
|
|
|
|
// write back DSE - If we write back the same value we just loaded from
|
|
// the same location and haven't passed any intervening writes or ordering
|
|
// operations, we can remove the write. The primary benefit is in allowing
|
|
// the available load table to remain valid and value forward past where
|
|
// the store originally was.
|
|
if (MemInst.isValid() && MemInst.isStore()) {
|
|
LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
|
|
if (InVal.DefInst &&
|
|
InVal.DefInst == getOrCreateResult(Inst, InVal.DefInst->getType()) &&
|
|
InVal.MatchingId == MemInst.getMatchingId() &&
|
|
// We don't yet handle removing stores with ordering of any kind.
|
|
!MemInst.isVolatile() && MemInst.isUnordered() &&
|
|
(isOperatingOnInvariantMemAt(Inst, InVal.Generation) ||
|
|
isSameMemGeneration(InVal.Generation, CurrentGeneration,
|
|
InVal.DefInst, Inst))) {
|
|
// It is okay to have a LastStore to a different pointer here if MemorySSA
|
|
// tells us that the load and store are from the same memory generation.
|
|
// In that case, LastStore should keep its present value since we're
|
|
// removing the current store.
|
|
assert((!LastStore ||
|
|
ParseMemoryInst(LastStore, TTI).getPointerOperand() ==
|
|
MemInst.getPointerOperand() ||
|
|
MSSA) &&
|
|
"can't have an intervening store if not using MemorySSA!");
|
|
DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << *Inst << '\n');
|
|
removeMSSA(Inst);
|
|
Inst->eraseFromParent();
|
|
Changed = true;
|
|
++NumDSE;
|
|
// We can avoid incrementing the generation count since we were able
|
|
// to eliminate this store.
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Okay, this isn't something we can CSE at all. Check to see if it is
|
|
// something that could modify memory. If so, our available memory values
|
|
// cannot be used so bump the generation count.
|
|
if (Inst->mayWriteToMemory()) {
|
|
++CurrentGeneration;
|
|
|
|
if (MemInst.isValid() && MemInst.isStore()) {
|
|
// We do a trivial form of DSE if there are two stores to the same
|
|
// location with no intervening loads. Delete the earlier store.
|
|
// At the moment, we don't remove ordered stores, but do remove
|
|
// unordered atomic stores. There's no special requirement (for
|
|
// unordered atomics) about removing atomic stores only in favor of
|
|
// other atomic stores since we we're going to execute the non-atomic
|
|
// one anyway and the atomic one might never have become visible.
|
|
if (LastStore) {
|
|
ParseMemoryInst LastStoreMemInst(LastStore, TTI);
|
|
assert(LastStoreMemInst.isUnordered() &&
|
|
!LastStoreMemInst.isVolatile() &&
|
|
"Violated invariant");
|
|
if (LastStoreMemInst.isMatchingMemLoc(MemInst)) {
|
|
DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore
|
|
<< " due to: " << *Inst << '\n');
|
|
removeMSSA(LastStore);
|
|
LastStore->eraseFromParent();
|
|
Changed = true;
|
|
++NumDSE;
|
|
LastStore = nullptr;
|
|
}
|
|
// fallthrough - we can exploit information about this store
|
|
}
|
|
|
|
// Okay, we just invalidated anything we knew about loaded values. Try
|
|
// to salvage *something* by remembering that the stored value is a live
|
|
// version of the pointer. It is safe to forward from volatile stores
|
|
// to non-volatile loads, so we don't have to check for volatility of
|
|
// the store.
|
|
AvailableLoads.insert(
|
|
MemInst.getPointerOperand(),
|
|
LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(),
|
|
MemInst.isAtomic(), /*IsInvariant=*/false));
|
|
|
|
// Remember that this was the last unordered store we saw for DSE. We
|
|
// don't yet handle DSE on ordered or volatile stores since we don't
|
|
// have a good way to model the ordering requirement for following
|
|
// passes once the store is removed. We could insert a fence, but
|
|
// since fences are slightly stronger than stores in their ordering,
|
|
// it's not clear this is a profitable transform. Another option would
|
|
// be to merge the ordering with that of the post dominating store.
|
|
if (MemInst.isUnordered() && !MemInst.isVolatile())
|
|
LastStore = Inst;
|
|
else
|
|
LastStore = nullptr;
|
|
}
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool EarlyCSE::run() {
|
|
// Note, deque is being used here because there is significant performance
|
|
// gains over vector when the container becomes very large due to the
|
|
// specific access patterns. For more information see the mailing list
|
|
// discussion on this:
|
|
// http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html
|
|
std::deque<StackNode *> nodesToProcess;
|
|
|
|
bool Changed = false;
|
|
|
|
// Process the root node.
|
|
nodesToProcess.push_back(new StackNode(
|
|
AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls,
|
|
CurrentGeneration, DT.getRootNode(),
|
|
DT.getRootNode()->begin(), DT.getRootNode()->end()));
|
|
|
|
// Save the current generation.
|
|
unsigned LiveOutGeneration = CurrentGeneration;
|
|
|
|
// Process the stack.
|
|
while (!nodesToProcess.empty()) {
|
|
// Grab the first item off the stack. Set the current generation, remove
|
|
// the node from the stack, and process it.
|
|
StackNode *NodeToProcess = nodesToProcess.back();
|
|
|
|
// Initialize class members.
|
|
CurrentGeneration = NodeToProcess->currentGeneration();
|
|
|
|
// Check if the node needs to be processed.
|
|
if (!NodeToProcess->isProcessed()) {
|
|
// Process the node.
|
|
Changed |= processNode(NodeToProcess->node());
|
|
NodeToProcess->childGeneration(CurrentGeneration);
|
|
NodeToProcess->process();
|
|
} else if (NodeToProcess->childIter() != NodeToProcess->end()) {
|
|
// Push the next child onto the stack.
|
|
DomTreeNode *child = NodeToProcess->nextChild();
|
|
nodesToProcess.push_back(
|
|
new StackNode(AvailableValues, AvailableLoads, AvailableInvariants,
|
|
AvailableCalls, NodeToProcess->childGeneration(),
|
|
child, child->begin(), child->end()));
|
|
} else {
|
|
// It has been processed, and there are no more children to process,
|
|
// so delete it and pop it off the stack.
|
|
delete NodeToProcess;
|
|
nodesToProcess.pop_back();
|
|
}
|
|
} // while (!nodes...)
|
|
|
|
// Reset the current generation.
|
|
CurrentGeneration = LiveOutGeneration;
|
|
|
|
return Changed;
|
|
}
|
|
|
|
PreservedAnalyses EarlyCSEPass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
|
|
auto &TTI = AM.getResult<TargetIRAnalysis>(F);
|
|
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
|
|
auto &AC = AM.getResult<AssumptionAnalysis>(F);
|
|
auto *MSSA =
|
|
UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : nullptr;
|
|
|
|
EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA);
|
|
|
|
if (!CSE.run())
|
|
return PreservedAnalyses::all();
|
|
|
|
PreservedAnalyses PA;
|
|
PA.preserveSet<CFGAnalyses>();
|
|
PA.preserve<GlobalsAA>();
|
|
if (UseMemorySSA)
|
|
PA.preserve<MemorySSAAnalysis>();
|
|
return PA;
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// \brief A simple and fast domtree-based CSE pass.
|
|
///
|
|
/// This pass does a simple depth-first walk over the dominator tree,
|
|
/// eliminating trivially redundant instructions and using instsimplify to
|
|
/// canonicalize things as it goes. It is intended to be fast and catch obvious
|
|
/// cases so that instcombine and other passes are more effective. It is
|
|
/// expected that a later pass of GVN will catch the interesting/hard cases.
|
|
template<bool UseMemorySSA>
|
|
class EarlyCSELegacyCommonPass : public FunctionPass {
|
|
public:
|
|
static char ID;
|
|
|
|
EarlyCSELegacyCommonPass() : FunctionPass(ID) {
|
|
if (UseMemorySSA)
|
|
initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry());
|
|
else
|
|
initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override {
|
|
if (skipFunction(F))
|
|
return false;
|
|
|
|
auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
|
|
auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
|
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
|
|
auto *MSSA =
|
|
UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr;
|
|
|
|
EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA);
|
|
|
|
return CSE.run();
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<AssumptionCacheTracker>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
if (UseMemorySSA) {
|
|
AU.addRequired<MemorySSAWrapperPass>();
|
|
AU.addPreserved<MemorySSAWrapperPass>();
|
|
}
|
|
AU.addPreserved<GlobalsAAWrapperPass>();
|
|
AU.setPreservesCFG();
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>;
|
|
|
|
template<>
|
|
char EarlyCSELegacyPass::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false,
|
|
false)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false)
|
|
|
|
using EarlyCSEMemSSALegacyPass =
|
|
EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>;
|
|
|
|
template<>
|
|
char EarlyCSEMemSSALegacyPass::ID = 0;
|
|
|
|
FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) {
|
|
if (UseMemorySSA)
|
|
return new EarlyCSEMemSSALegacyPass();
|
|
else
|
|
return new EarlyCSELegacyPass();
|
|
}
|
|
|
|
INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa",
|
|
"Early CSE w/ MemorySSA", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
|
|
INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa",
|
|
"Early CSE w/ MemorySSA", false, false)
|