forked from OSchip/llvm-project
558 lines
19 KiB
C++
558 lines
19 KiB
C++
//===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines a pass that optimizes call sequences on x86.
|
|
// Currently, it converts movs of function parameters onto the stack into
|
|
// pushes. This is beneficial for two main reasons:
|
|
// 1) The push instruction encoding is much smaller than an esp-relative mov
|
|
// 2) It is possible to push memory arguments directly. So, if the
|
|
// the transformation is preformed pre-reg-alloc, it can help relieve
|
|
// register pressure.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include <algorithm>
|
|
|
|
#include "X86.h"
|
|
#include "X86InstrInfo.h"
|
|
#include "X86Subtarget.h"
|
|
#include "X86MachineFunctionInfo.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "x86-cf-opt"
|
|
|
|
static cl::opt<bool>
|
|
NoX86CFOpt("no-x86-call-frame-opt",
|
|
cl::desc("Avoid optimizing x86 call frames for size"),
|
|
cl::init(false), cl::Hidden);
|
|
|
|
namespace {
|
|
class X86CallFrameOptimization : public MachineFunctionPass {
|
|
public:
|
|
X86CallFrameOptimization() : MachineFunctionPass(ID) {}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
private:
|
|
// Information we know about a particular call site
|
|
struct CallContext {
|
|
CallContext()
|
|
: FrameSetup(nullptr), Call(nullptr), SPCopy(nullptr), ExpectedDist(0),
|
|
MovVector(4, nullptr), NoStackParams(false), UsePush(false){}
|
|
|
|
// Iterator referring to the frame setup instruction
|
|
MachineBasicBlock::iterator FrameSetup;
|
|
|
|
// Actual call instruction
|
|
MachineInstr *Call;
|
|
|
|
// A copy of the stack pointer
|
|
MachineInstr *SPCopy;
|
|
|
|
// The total displacement of all passed parameters
|
|
int64_t ExpectedDist;
|
|
|
|
// The sequence of movs used to pass the parameters
|
|
SmallVector<MachineInstr *, 4> MovVector;
|
|
|
|
// True if this call site has no stack parameters
|
|
bool NoStackParams;
|
|
|
|
// True of this callsite can use push instructions
|
|
bool UsePush;
|
|
};
|
|
|
|
typedef SmallVector<CallContext, 8> ContextVector;
|
|
|
|
bool isLegal(MachineFunction &MF);
|
|
|
|
bool isProfitable(MachineFunction &MF, ContextVector &CallSeqMap);
|
|
|
|
void collectCallInfo(MachineFunction &MF, MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I, CallContext &Context);
|
|
|
|
bool adjustCallSequence(MachineFunction &MF, const CallContext &Context);
|
|
|
|
MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup,
|
|
unsigned Reg);
|
|
|
|
enum InstClassification { Convert, Skip, Exit };
|
|
|
|
InstClassification classifyInstruction(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI,
|
|
const X86RegisterInfo &RegInfo,
|
|
DenseSet<unsigned int> &UsedRegs);
|
|
|
|
const char *getPassName() const override { return "X86 Optimize Call Frame"; }
|
|
|
|
const TargetInstrInfo *TII;
|
|
const X86FrameLowering *TFL;
|
|
const X86Subtarget *STI;
|
|
const MachineRegisterInfo *MRI;
|
|
static char ID;
|
|
};
|
|
|
|
char X86CallFrameOptimization::ID = 0;
|
|
} // end anonymous namespace
|
|
|
|
FunctionPass *llvm::createX86CallFrameOptimization() {
|
|
return new X86CallFrameOptimization();
|
|
}
|
|
|
|
// This checks whether the transformation is legal.
|
|
// Also returns false in cases where it's potentially legal, but
|
|
// we don't even want to try.
|
|
bool X86CallFrameOptimization::isLegal(MachineFunction &MF) {
|
|
if (NoX86CFOpt.getValue())
|
|
return false;
|
|
|
|
// We currently only support call sequences where *all* parameters.
|
|
// are passed on the stack.
|
|
// No point in running this in 64-bit mode, since some arguments are
|
|
// passed in-register in all common calling conventions, so the pattern
|
|
// we're looking for will never match.
|
|
if (STI->is64Bit())
|
|
return false;
|
|
|
|
// We can't encode multiple DW_CFA_GNU_args_size or DW_CFA_def_cfa_offset
|
|
// in the compact unwind encoding that Darwin uses. So, bail if there
|
|
// is a danger of that being generated.
|
|
if (STI->isTargetDarwin() &&
|
|
(!MF.getMMI().getLandingPads().empty() ||
|
|
(MF.getFunction()->needsUnwindTableEntry() && !TFL->hasFP(MF))))
|
|
return false;
|
|
|
|
// You would expect straight-line code between call-frame setup and
|
|
// call-frame destroy. You would be wrong. There are circumstances (e.g.
|
|
// CMOV_GR8 expansion of a select that feeds a function call!) where we can
|
|
// end up with the setup and the destroy in different basic blocks.
|
|
// This is bad, and breaks SP adjustment.
|
|
// So, check that all of the frames in the function are closed inside
|
|
// the same block, and, for good measure, that there are no nested frames.
|
|
unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
|
|
unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
|
|
for (MachineBasicBlock &BB : MF) {
|
|
bool InsideFrameSequence = false;
|
|
for (MachineInstr &MI : BB) {
|
|
if (MI.getOpcode() == FrameSetupOpcode) {
|
|
if (InsideFrameSequence)
|
|
return false;
|
|
InsideFrameSequence = true;
|
|
} else if (MI.getOpcode() == FrameDestroyOpcode) {
|
|
if (!InsideFrameSequence)
|
|
return false;
|
|
InsideFrameSequence = false;
|
|
}
|
|
}
|
|
|
|
if (InsideFrameSequence)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Check whether this trasnformation is profitable for a particular
|
|
// function - in terms of code size.
|
|
bool X86CallFrameOptimization::isProfitable(MachineFunction &MF,
|
|
ContextVector &CallSeqVector) {
|
|
// This transformation is always a win when we do not expect to have
|
|
// a reserved call frame. Under other circumstances, it may be either
|
|
// a win or a loss, and requires a heuristic.
|
|
bool CannotReserveFrame = MF.getFrameInfo()->hasVarSizedObjects();
|
|
if (CannotReserveFrame)
|
|
return true;
|
|
|
|
// Don't do this when not optimizing for size.
|
|
if (!MF.getFunction()->optForSize())
|
|
return false;
|
|
|
|
unsigned StackAlign = TFL->getStackAlignment();
|
|
|
|
int64_t Advantage = 0;
|
|
for (auto CC : CallSeqVector) {
|
|
// Call sites where no parameters are passed on the stack
|
|
// do not affect the cost, since there needs to be no
|
|
// stack adjustment.
|
|
if (CC.NoStackParams)
|
|
continue;
|
|
|
|
if (!CC.UsePush) {
|
|
// If we don't use pushes for a particular call site,
|
|
// we pay for not having a reserved call frame with an
|
|
// additional sub/add esp pair. The cost is ~3 bytes per instruction,
|
|
// depending on the size of the constant.
|
|
// TODO: Callee-pop functions should have a smaller penalty, because
|
|
// an add is needed even with a reserved call frame.
|
|
Advantage -= 6;
|
|
} else {
|
|
// We can use pushes. First, account for the fixed costs.
|
|
// We'll need a add after the call.
|
|
Advantage -= 3;
|
|
// If we have to realign the stack, we'll also need and sub before
|
|
if (CC.ExpectedDist % StackAlign)
|
|
Advantage -= 3;
|
|
// Now, for each push, we save ~3 bytes. For small constants, we actually,
|
|
// save more (up to 5 bytes), but 3 should be a good approximation.
|
|
Advantage += (CC.ExpectedDist / 4) * 3;
|
|
}
|
|
}
|
|
|
|
return (Advantage >= 0);
|
|
}
|
|
|
|
bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) {
|
|
STI = &MF.getSubtarget<X86Subtarget>();
|
|
TII = STI->getInstrInfo();
|
|
TFL = STI->getFrameLowering();
|
|
MRI = &MF.getRegInfo();
|
|
|
|
if (!isLegal(MF))
|
|
return false;
|
|
|
|
unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
|
|
|
|
bool Changed = false;
|
|
|
|
ContextVector CallSeqVector;
|
|
|
|
for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
|
|
for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ++I)
|
|
if (I->getOpcode() == FrameSetupOpcode) {
|
|
CallContext Context;
|
|
collectCallInfo(MF, *BB, I, Context);
|
|
CallSeqVector.push_back(Context);
|
|
}
|
|
|
|
if (!isProfitable(MF, CallSeqVector))
|
|
return false;
|
|
|
|
for (auto CC : CallSeqVector)
|
|
if (CC.UsePush)
|
|
Changed |= adjustCallSequence(MF, CC);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
X86CallFrameOptimization::InstClassification
|
|
X86CallFrameOptimization::classifyInstruction(
|
|
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
|
|
const X86RegisterInfo &RegInfo, DenseSet<unsigned int> &UsedRegs) {
|
|
if (MI == MBB.end())
|
|
return Exit;
|
|
|
|
// The instructions we actually care about are movs onto the stack
|
|
int Opcode = MI->getOpcode();
|
|
if (Opcode == X86::MOV32mi || Opcode == X86::MOV32mr)
|
|
return Convert;
|
|
|
|
// Not all calling conventions have only stack MOVs between the stack
|
|
// adjust and the call.
|
|
|
|
// We want to tolerate other instructions, to cover more cases.
|
|
// In particular:
|
|
// a) PCrel calls, where we expect an additional COPY of the basereg.
|
|
// b) Passing frame-index addresses.
|
|
// c) Calling conventions that have inreg parameters. These generate
|
|
// both copies and movs into registers.
|
|
// To avoid creating lots of special cases, allow any instruction
|
|
// that does not write into memory, does not def or use the stack
|
|
// pointer, and does not def any register that was used by a preceding
|
|
// push.
|
|
// (Reading from memory is allowed, even if referenced through a
|
|
// frame index, since these will get adjusted properly in PEI)
|
|
|
|
// The reason for the last condition is that the pushes can't replace
|
|
// the movs in place, because the order must be reversed.
|
|
// So if we have a MOV32mr that uses EDX, then an instruction that defs
|
|
// EDX, and then the call, after the transformation the push will use
|
|
// the modified version of EDX, and not the original one.
|
|
// Since we are still in SSA form at this point, we only need to
|
|
// make sure we don't clobber any *physical* registers that were
|
|
// used by an earlier mov that will become a push.
|
|
|
|
if (MI->isCall() || MI->mayStore())
|
|
return Exit;
|
|
|
|
for (const MachineOperand &MO : MI->operands()) {
|
|
if (!MO.isReg())
|
|
continue;
|
|
unsigned int Reg = MO.getReg();
|
|
if (!RegInfo.isPhysicalRegister(Reg))
|
|
continue;
|
|
if (RegInfo.regsOverlap(Reg, RegInfo.getStackRegister()))
|
|
return Exit;
|
|
if (MO.isDef()) {
|
|
for (unsigned int U : UsedRegs)
|
|
if (RegInfo.regsOverlap(Reg, U))
|
|
return Exit;
|
|
}
|
|
}
|
|
|
|
return Skip;
|
|
}
|
|
|
|
void X86CallFrameOptimization::collectCallInfo(MachineFunction &MF,
|
|
MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I,
|
|
CallContext &Context) {
|
|
// Check that this particular call sequence is amenable to the
|
|
// transformation.
|
|
const X86RegisterInfo &RegInfo = *static_cast<const X86RegisterInfo *>(
|
|
STI->getRegisterInfo());
|
|
unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
|
|
|
|
// We expect to enter this at the beginning of a call sequence
|
|
assert(I->getOpcode() == TII->getCallFrameSetupOpcode());
|
|
MachineBasicBlock::iterator FrameSetup = I++;
|
|
Context.FrameSetup = FrameSetup;
|
|
|
|
// How much do we adjust the stack? This puts an upper bound on
|
|
// the number of parameters actually passed on it.
|
|
unsigned int MaxAdjust = FrameSetup->getOperand(0).getImm() / 4;
|
|
|
|
// A zero adjustment means no stack parameters
|
|
if (!MaxAdjust) {
|
|
Context.NoStackParams = true;
|
|
return;
|
|
}
|
|
|
|
// For globals in PIC mode, we can have some LEAs here.
|
|
// Ignore them, they don't bother us.
|
|
// TODO: Extend this to something that covers more cases.
|
|
while (I->getOpcode() == X86::LEA32r)
|
|
++I;
|
|
|
|
// We expect a copy instruction here.
|
|
// TODO: The copy instruction is a lowering artifact.
|
|
// We should also support a copy-less version, where the stack
|
|
// pointer is used directly.
|
|
if (!I->isCopy() || !I->getOperand(0).isReg())
|
|
return;
|
|
Context.SPCopy = I++;
|
|
|
|
unsigned StackPtr = Context.SPCopy->getOperand(0).getReg();
|
|
|
|
// Scan the call setup sequence for the pattern we're looking for.
|
|
// We only handle a simple case - a sequence of MOV32mi or MOV32mr
|
|
// instructions, that push a sequence of 32-bit values onto the stack, with
|
|
// no gaps between them.
|
|
if (MaxAdjust > 4)
|
|
Context.MovVector.resize(MaxAdjust, nullptr);
|
|
|
|
InstClassification Classification;
|
|
DenseSet<unsigned int> UsedRegs;
|
|
|
|
while ((Classification = classifyInstruction(MBB, I, RegInfo, UsedRegs)) !=
|
|
Exit) {
|
|
if (Classification == Skip) {
|
|
++I;
|
|
continue;
|
|
}
|
|
|
|
// We know the instruction is a MOV32mi/MOV32mr.
|
|
// We only want movs of the form:
|
|
// movl imm/r32, k(%esp)
|
|
// If we run into something else, bail.
|
|
// Note that AddrBaseReg may, counter to its name, not be a register,
|
|
// but rather a frame index.
|
|
// TODO: Support the fi case. This should probably work now that we
|
|
// have the infrastructure to track the stack pointer within a call
|
|
// sequence.
|
|
if (!I->getOperand(X86::AddrBaseReg).isReg() ||
|
|
(I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) ||
|
|
!I->getOperand(X86::AddrScaleAmt).isImm() ||
|
|
(I->getOperand(X86::AddrScaleAmt).getImm() != 1) ||
|
|
(I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) ||
|
|
(I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) ||
|
|
!I->getOperand(X86::AddrDisp).isImm())
|
|
return;
|
|
|
|
int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm();
|
|
assert(StackDisp >= 0 &&
|
|
"Negative stack displacement when passing parameters");
|
|
|
|
// We really don't want to consider the unaligned case.
|
|
if (StackDisp % 4)
|
|
return;
|
|
StackDisp /= 4;
|
|
|
|
assert((size_t)StackDisp < Context.MovVector.size() &&
|
|
"Function call has more parameters than the stack is adjusted for.");
|
|
|
|
// If the same stack slot is being filled twice, something's fishy.
|
|
if (Context.MovVector[StackDisp] != nullptr)
|
|
return;
|
|
Context.MovVector[StackDisp] = I;
|
|
|
|
for (const MachineOperand &MO : I->uses()) {
|
|
if (!MO.isReg())
|
|
continue;
|
|
unsigned int Reg = MO.getReg();
|
|
if (RegInfo.isPhysicalRegister(Reg))
|
|
UsedRegs.insert(Reg);
|
|
}
|
|
|
|
++I;
|
|
}
|
|
|
|
// We now expect the end of the sequence. If we stopped early,
|
|
// or reached the end of the block without finding a call, bail.
|
|
if (I == MBB.end() || !I->isCall())
|
|
return;
|
|
|
|
Context.Call = I;
|
|
if ((++I)->getOpcode() != FrameDestroyOpcode)
|
|
return;
|
|
|
|
// Now, go through the vector, and see that we don't have any gaps,
|
|
// but only a series of 32-bit MOVs.
|
|
auto MMI = Context.MovVector.begin(), MME = Context.MovVector.end();
|
|
for (; MMI != MME; ++MMI, Context.ExpectedDist += 4)
|
|
if (*MMI == nullptr)
|
|
break;
|
|
|
|
// If the call had no parameters, do nothing
|
|
if (MMI == Context.MovVector.begin())
|
|
return;
|
|
|
|
// We are either at the last parameter, or a gap.
|
|
// Make sure it's not a gap
|
|
for (; MMI != MME; ++MMI)
|
|
if (*MMI != nullptr)
|
|
return;
|
|
|
|
Context.UsePush = true;
|
|
}
|
|
|
|
bool X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF,
|
|
const CallContext &Context) {
|
|
// Ok, we can in fact do the transformation for this call.
|
|
// Do not remove the FrameSetup instruction, but adjust the parameters.
|
|
// PEI will end up finalizing the handling of this.
|
|
MachineBasicBlock::iterator FrameSetup = Context.FrameSetup;
|
|
MachineBasicBlock &MBB = *(FrameSetup->getParent());
|
|
FrameSetup->getOperand(1).setImm(Context.ExpectedDist);
|
|
|
|
DebugLoc DL = FrameSetup->getDebugLoc();
|
|
// Now, iterate through the vector in reverse order, and replace the movs
|
|
// with pushes. MOVmi/MOVmr doesn't have any defs, so no need to
|
|
// replace uses.
|
|
for (int Idx = (Context.ExpectedDist / 4) - 1; Idx >= 0; --Idx) {
|
|
MachineBasicBlock::iterator MOV = *Context.MovVector[Idx];
|
|
MachineOperand PushOp = MOV->getOperand(X86::AddrNumOperands);
|
|
MachineBasicBlock::iterator Push = nullptr;
|
|
if (MOV->getOpcode() == X86::MOV32mi) {
|
|
unsigned PushOpcode = X86::PUSHi32;
|
|
// If the operand is a small (8-bit) immediate, we can use a
|
|
// PUSH instruction with a shorter encoding.
|
|
// Note that isImm() may fail even though this is a MOVmi, because
|
|
// the operand can also be a symbol.
|
|
if (PushOp.isImm()) {
|
|
int64_t Val = PushOp.getImm();
|
|
if (isInt<8>(Val))
|
|
PushOpcode = X86::PUSH32i8;
|
|
}
|
|
Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode))
|
|
.addOperand(PushOp);
|
|
} else {
|
|
unsigned int Reg = PushOp.getReg();
|
|
|
|
// If PUSHrmm is not slow on this target, try to fold the source of the
|
|
// push into the instruction.
|
|
bool SlowPUSHrmm = STI->isAtom() || STI->isSLM();
|
|
|
|
// Check that this is legal to fold. Right now, we're extremely
|
|
// conservative about that.
|
|
MachineInstr *DefMov = nullptr;
|
|
if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) {
|
|
Push = BuildMI(MBB, Context.Call, DL, TII->get(X86::PUSH32rmm));
|
|
|
|
unsigned NumOps = DefMov->getDesc().getNumOperands();
|
|
for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
|
|
Push->addOperand(DefMov->getOperand(i));
|
|
|
|
DefMov->eraseFromParent();
|
|
} else {
|
|
Push = BuildMI(MBB, Context.Call, DL, TII->get(X86::PUSH32r))
|
|
.addReg(Reg)
|
|
.getInstr();
|
|
}
|
|
}
|
|
|
|
// For debugging, when using SP-based CFA, we need to adjust the CFA
|
|
// offset after each push.
|
|
// TODO: This is needed only if we require precise CFA.
|
|
if (!TFL->hasFP(MF))
|
|
TFL->BuildCFI(MBB, std::next(Push), DL,
|
|
MCCFIInstruction::createAdjustCfaOffset(nullptr, 4));
|
|
|
|
MBB.erase(MOV);
|
|
}
|
|
|
|
// The stack-pointer copy is no longer used in the call sequences.
|
|
// There should not be any other users, but we can't commit to that, so:
|
|
if (MRI->use_empty(Context.SPCopy->getOperand(0).getReg()))
|
|
Context.SPCopy->eraseFromParent();
|
|
|
|
// Once we've done this, we need to make sure PEI doesn't assume a reserved
|
|
// frame.
|
|
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
|
|
FuncInfo->setHasPushSequences(true);
|
|
|
|
return true;
|
|
}
|
|
|
|
MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush(
|
|
MachineBasicBlock::iterator FrameSetup, unsigned Reg) {
|
|
// Do an extremely restricted form of load folding.
|
|
// ISel will often create patterns like:
|
|
// movl 4(%edi), %eax
|
|
// movl 8(%edi), %ecx
|
|
// movl 12(%edi), %edx
|
|
// movl %edx, 8(%esp)
|
|
// movl %ecx, 4(%esp)
|
|
// movl %eax, (%esp)
|
|
// call
|
|
// Get rid of those with prejudice.
|
|
if (!TargetRegisterInfo::isVirtualRegister(Reg))
|
|
return nullptr;
|
|
|
|
// Make sure this is the only use of Reg.
|
|
if (!MRI->hasOneNonDBGUse(Reg))
|
|
return nullptr;
|
|
|
|
MachineBasicBlock::iterator DefMI = MRI->getVRegDef(Reg);
|
|
|
|
// Make sure the def is a MOV from memory.
|
|
// If the def is an another block, give up.
|
|
if (DefMI->getOpcode() != X86::MOV32rm ||
|
|
DefMI->getParent() != FrameSetup->getParent())
|
|
return nullptr;
|
|
|
|
// Make sure we don't have any instructions between DefMI and the
|
|
// push that make folding the load illegal.
|
|
for (auto I = DefMI; I != FrameSetup; ++I)
|
|
if (I->isLoadFoldBarrier())
|
|
return nullptr;
|
|
|
|
return DefMI;
|
|
}
|