forked from OSchip/llvm-project
533 lines
19 KiB
C++
533 lines
19 KiB
C++
//===- Schedule.cpp - Calculate an optimized schedule ---------------------===//
|
||
//
|
||
// The LLVM Compiler Infrastructure
|
||
//
|
||
// This file is distributed under the University of Illinois Open Source
|
||
// License. See LICENSE.TXT for details.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
//
|
||
// This pass the isl to calculate a schedule that is optimized for parallelism
|
||
// and tileablility. The algorithm used in isl is an optimized version of the
|
||
// algorithm described in following paper:
|
||
//
|
||
// U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan.
|
||
// A Practical Automatic Polyhedral Parallelizer and Locality Optimizer.
|
||
// In Proceedings of the 2008 ACM SIGPLAN Conference On Programming Language
|
||
// Design and Implementation, PLDI ’08, pages 101–113. ACM, 2008.
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
#include "polly/ScheduleOptimizer.h"
|
||
#include "polly/CodeGen/CodeGeneration.h"
|
||
#include "polly/DependenceInfo.h"
|
||
#include "polly/LinkAllPasses.h"
|
||
#include "polly/Options.h"
|
||
#include "polly/ScopInfo.h"
|
||
#include "polly/Support/GICHelper.h"
|
||
#include "llvm/Support/Debug.h"
|
||
#include "isl/aff.h"
|
||
#include "isl/band.h"
|
||
#include "isl/constraint.h"
|
||
#include "isl/map.h"
|
||
#include "isl/options.h"
|
||
#include "isl/printer.h"
|
||
#include "isl/schedule.h"
|
||
#include "isl/schedule_node.h"
|
||
#include "isl/space.h"
|
||
#include "isl/union_map.h"
|
||
#include "isl/union_set.h"
|
||
|
||
using namespace llvm;
|
||
using namespace polly;
|
||
|
||
#define DEBUG_TYPE "polly-opt-isl"
|
||
|
||
namespace polly {
|
||
bool DisablePollyTiling;
|
||
}
|
||
static cl::opt<bool, true>
|
||
DisableTiling("polly-no-tiling",
|
||
cl::desc("Disable tiling in the scheduler"),
|
||
cl::location(polly::DisablePollyTiling), cl::init(false),
|
||
cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<std::string>
|
||
OptimizeDeps("polly-opt-optimize-only",
|
||
cl::desc("Only a certain kind of dependences (all/raw)"),
|
||
cl::Hidden, cl::init("all"), cl::ZeroOrMore,
|
||
cl::cat(PollyCategory));
|
||
|
||
static cl::opt<std::string>
|
||
SimplifyDeps("polly-opt-simplify-deps",
|
||
cl::desc("Dependences should be simplified (yes/no)"),
|
||
cl::Hidden, cl::init("yes"), cl::ZeroOrMore,
|
||
cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> MaxConstantTerm(
|
||
"polly-opt-max-constant-term",
|
||
cl::desc("The maximal constant term allowed (-1 is unlimited)"), cl::Hidden,
|
||
cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> MaxCoefficient(
|
||
"polly-opt-max-coefficient",
|
||
cl::desc("The maximal coefficient allowed (-1 is unlimited)"), cl::Hidden,
|
||
cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<std::string> FusionStrategy(
|
||
"polly-opt-fusion", cl::desc("The fusion strategy to choose (min/max)"),
|
||
cl::Hidden, cl::init("min"), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<std::string>
|
||
MaximizeBandDepth("polly-opt-maximize-bands",
|
||
cl::desc("Maximize the band depth (yes/no)"), cl::Hidden,
|
||
cl::init("yes"), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> DefaultTileSize(
|
||
"polly-default-tile-size",
|
||
cl::desc("The default tile size (if not enough were provided by"
|
||
" --polly-tile-sizes)"),
|
||
cl::Hidden, cl::init(32), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::list<int> TileSizes("polly-tile-sizes",
|
||
cl::desc("A tile size"
|
||
" for each loop dimension, filled with"
|
||
" --polly-default-tile-size"),
|
||
cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
|
||
cl::cat(PollyCategory));
|
||
namespace {
|
||
|
||
class IslScheduleOptimizer : public ScopPass {
|
||
public:
|
||
static char ID;
|
||
explicit IslScheduleOptimizer() : ScopPass(ID) { LastSchedule = nullptr; }
|
||
|
||
~IslScheduleOptimizer() { isl_schedule_free(LastSchedule); }
|
||
|
||
bool runOnScop(Scop &S) override;
|
||
void printScop(raw_ostream &OS, Scop &S) const override;
|
||
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
||
|
||
private:
|
||
isl_schedule *LastSchedule;
|
||
|
||
/// @brief Decide if the @p NewSchedule is profitable for @p S.
|
||
///
|
||
/// @param S The SCoP we optimize.
|
||
/// @param NewSchedule The new schedule we computed.
|
||
///
|
||
/// @return True, if we believe @p NewSchedule is an improvement for @p S.
|
||
bool isProfitableSchedule(Scop &S, __isl_keep isl_union_map *NewSchedule);
|
||
|
||
/// @brief Create a map that pre-vectorizes one scheduling dimension.
|
||
///
|
||
/// getPrevectorMap creates a map that maps each input dimension to the same
|
||
/// output dimension, except for the dimension DimToVectorize.
|
||
/// DimToVectorize is strip mined by 'VectorWidth' and the newly created
|
||
/// point loop of DimToVectorize is moved to the innermost level.
|
||
///
|
||
/// Example (DimToVectorize=0, ScheduleDimensions=2, VectorWidth=4):
|
||
///
|
||
/// | Before transformation
|
||
/// |
|
||
/// | A[i,j] -> [i,j]
|
||
/// |
|
||
/// | for (i = 0; i < 128; i++)
|
||
/// | for (j = 0; j < 128; j++)
|
||
/// | A(i,j);
|
||
///
|
||
/// Prevector map:
|
||
/// [i,j] -> [it,j,ip] : it % 4 = 0 and it <= ip <= it + 3 and i = ip
|
||
///
|
||
/// | After transformation:
|
||
/// |
|
||
/// | A[i,j] -> [it,j,ip] : it % 4 = 0 and it <= ip <= it + 3 and i = ip
|
||
/// |
|
||
/// | for (it = 0; it < 128; it+=4)
|
||
/// | for (j = 0; j < 128; j++)
|
||
/// | for (ip = max(0,it); ip < min(128, it + 3); ip++)
|
||
/// | A(ip,j);
|
||
///
|
||
/// The goal of this transformation is to create a trivially vectorizable
|
||
/// loop. This means a parallel loop at the innermost level that has a
|
||
/// constant number of iterations corresponding to the target vector width.
|
||
///
|
||
/// This transformation creates a loop at the innermost level. The loop has
|
||
/// a constant number of iterations, if the number of loop iterations at
|
||
/// DimToVectorize can be divided by VectorWidth. The default VectorWidth is
|
||
/// currently constant and not yet target specific. This function does not
|
||
/// reason about parallelism.
|
||
static __isl_give isl_map *getPrevectorMap(isl_ctx *ctx, int DimToVectorize,
|
||
int ScheduleDimensions,
|
||
int VectorWidth = 4);
|
||
|
||
/// @brief Apply additional optimizations on the bands in the schedule tree.
|
||
///
|
||
/// We are looking for an innermost band node and apply the following
|
||
/// transformations:
|
||
///
|
||
/// - Tile the band
|
||
/// - if the band is tileable
|
||
/// - if the band has more than one loop dimension
|
||
///
|
||
/// - Prevectorize the point loop of the tile
|
||
/// - if vectorization is enabled
|
||
///
|
||
/// @param Node The schedule node to (possibly) optimize.
|
||
/// @param User A pointer to forward some use information (currently unused).
|
||
static isl_schedule_node *optimizeBand(isl_schedule_node *Node, void *User);
|
||
|
||
static __isl_give isl_union_map *
|
||
getScheduleMap(__isl_keep isl_schedule *Schedule);
|
||
|
||
using llvm::Pass::doFinalization;
|
||
|
||
virtual bool doFinalization() override {
|
||
isl_schedule_free(LastSchedule);
|
||
LastSchedule = nullptr;
|
||
return true;
|
||
}
|
||
};
|
||
}
|
||
|
||
char IslScheduleOptimizer::ID = 0;
|
||
|
||
__isl_give isl_map *
|
||
IslScheduleOptimizer::getPrevectorMap(isl_ctx *ctx, int DimToVectorize,
|
||
int ScheduleDimensions, int VectorWidth) {
|
||
isl_space *Space;
|
||
isl_local_space *LocalSpace, *LocalSpaceRange;
|
||
isl_set *Modulo;
|
||
isl_map *TilingMap;
|
||
isl_constraint *c;
|
||
isl_aff *Aff;
|
||
int PointDimension; /* ip */
|
||
int TileDimension; /* it */
|
||
isl_val *VectorWidthMP;
|
||
|
||
assert(0 <= DimToVectorize && DimToVectorize < ScheduleDimensions);
|
||
|
||
Space = isl_space_alloc(ctx, 0, ScheduleDimensions, ScheduleDimensions + 1);
|
||
TilingMap = isl_map_universe(isl_space_copy(Space));
|
||
LocalSpace = isl_local_space_from_space(Space);
|
||
PointDimension = ScheduleDimensions;
|
||
TileDimension = DimToVectorize;
|
||
|
||
// Create an identity map for everything except DimToVectorize and map
|
||
// DimToVectorize to the point loop at the innermost dimension.
|
||
for (int i = 0; i < ScheduleDimensions; i++)
|
||
if (i == DimToVectorize)
|
||
TilingMap =
|
||
isl_map_equate(TilingMap, isl_dim_in, i, isl_dim_out, PointDimension);
|
||
else
|
||
TilingMap = isl_map_equate(TilingMap, isl_dim_in, i, isl_dim_out, i);
|
||
|
||
// it % 'VectorWidth' = 0
|
||
LocalSpaceRange = isl_local_space_range(isl_local_space_copy(LocalSpace));
|
||
Aff = isl_aff_zero_on_domain(LocalSpaceRange);
|
||
Aff = isl_aff_set_constant_si(Aff, VectorWidth);
|
||
Aff = isl_aff_set_coefficient_si(Aff, isl_dim_in, TileDimension, 1);
|
||
VectorWidthMP = isl_val_int_from_si(ctx, VectorWidth);
|
||
Aff = isl_aff_mod_val(Aff, VectorWidthMP);
|
||
Modulo = isl_pw_aff_zero_set(isl_pw_aff_from_aff(Aff));
|
||
TilingMap = isl_map_intersect_range(TilingMap, Modulo);
|
||
|
||
// it <= ip
|
||
TilingMap = isl_map_order_le(TilingMap, isl_dim_out, TileDimension,
|
||
isl_dim_out, PointDimension);
|
||
|
||
// ip <= it + ('VectorWidth' - 1)
|
||
c = isl_inequality_alloc(LocalSpace);
|
||
isl_constraint_set_coefficient_si(c, isl_dim_out, TileDimension, 1);
|
||
isl_constraint_set_coefficient_si(c, isl_dim_out, PointDimension, -1);
|
||
isl_constraint_set_constant_si(c, VectorWidth - 1);
|
||
TilingMap = isl_map_add_constraint(TilingMap, c);
|
||
|
||
return TilingMap;
|
||
}
|
||
|
||
isl_schedule_node *IslScheduleOptimizer::optimizeBand(isl_schedule_node *Node,
|
||
void *User) {
|
||
if (isl_schedule_node_get_type(Node) != isl_schedule_node_band)
|
||
return Node;
|
||
|
||
if (isl_schedule_node_n_children(Node) != 1)
|
||
return Node;
|
||
|
||
if (!isl_schedule_node_band_get_permutable(Node))
|
||
return Node;
|
||
|
||
auto Space = isl_schedule_node_band_get_space(Node);
|
||
auto Dims = isl_space_dim(Space, isl_dim_set);
|
||
|
||
if (Dims <= 1) {
|
||
isl_space_free(Space);
|
||
return Node;
|
||
}
|
||
|
||
auto Child = isl_schedule_node_get_child(Node, 0);
|
||
auto Type = isl_schedule_node_get_type(Child);
|
||
isl_schedule_node_free(Child);
|
||
|
||
if (Type != isl_schedule_node_leaf) {
|
||
isl_space_free(Space);
|
||
return Node;
|
||
}
|
||
|
||
auto Sizes = isl_multi_val_zero(Space);
|
||
auto Ctx = isl_schedule_node_get_ctx(Node);
|
||
|
||
for (unsigned i = 0; i < Dims; i++) {
|
||
auto tileSize = TileSizes.size() > i ? TileSizes[i] : DefaultTileSize;
|
||
Sizes = isl_multi_val_set_val(Sizes, i, isl_val_int_from_si(Ctx, tileSize));
|
||
}
|
||
|
||
isl_schedule_node *Res;
|
||
|
||
if (DisableTiling) {
|
||
isl_multi_val_free(Sizes);
|
||
Res = Node;
|
||
} else {
|
||
Res = isl_schedule_node_band_tile(Node, Sizes);
|
||
}
|
||
|
||
if (PollyVectorizerChoice == VECTORIZER_NONE)
|
||
return Res;
|
||
|
||
Child = isl_schedule_node_get_child(Res, 0);
|
||
auto ChildSchedule = isl_schedule_node_band_get_partial_schedule(Child);
|
||
|
||
for (int i = Dims - 1; i >= 0; i--) {
|
||
if (isl_schedule_node_band_member_get_coincident(Child, i)) {
|
||
auto TileMap = IslScheduleOptimizer::getPrevectorMap(Ctx, i, Dims);
|
||
auto TileUMap = isl_union_map_from_map(TileMap);
|
||
auto ChildSchedule2 = isl_union_map_apply_range(
|
||
isl_union_map_from_multi_union_pw_aff(ChildSchedule), TileUMap);
|
||
ChildSchedule = isl_multi_union_pw_aff_from_union_map(ChildSchedule2);
|
||
break;
|
||
}
|
||
}
|
||
|
||
isl_schedule_node_free(Res);
|
||
Res = isl_schedule_node_delete(Child);
|
||
Res = isl_schedule_node_insert_partial_schedule(Res, ChildSchedule);
|
||
return Res;
|
||
}
|
||
|
||
__isl_give isl_union_map *
|
||
IslScheduleOptimizer::getScheduleMap(__isl_keep isl_schedule *Schedule) {
|
||
isl_schedule_node *Root = isl_schedule_get_root(Schedule);
|
||
Root = isl_schedule_node_map_descendant_bottom_up(
|
||
Root, IslScheduleOptimizer::optimizeBand, NULL);
|
||
auto ScheduleMap = isl_schedule_node_get_subtree_schedule_union_map(Root);
|
||
ScheduleMap = isl_union_map_detect_equalities(ScheduleMap);
|
||
isl_schedule_node_free(Root);
|
||
return ScheduleMap;
|
||
}
|
||
|
||
bool IslScheduleOptimizer::isProfitableSchedule(
|
||
Scop &S, __isl_keep isl_union_map *NewSchedule) {
|
||
// To understand if the schedule has been optimized we check if the schedule
|
||
// has changed at all.
|
||
// TODO: We can improve this by tracking if any necessarily beneficial
|
||
// transformations have been performed. This can e.g. be tiling, loop
|
||
// interchange, or ...) We can track this either at the place where the
|
||
// transformation has been performed or, in case of automatic ILP based
|
||
// optimizations, by comparing (yet to be defined) performance metrics
|
||
// before/after the scheduling optimizer
|
||
// (e.g., #stride-one accesses)
|
||
isl_union_map *OldSchedule = S.getSchedule();
|
||
bool changed = !isl_union_map_is_equal(OldSchedule, NewSchedule);
|
||
isl_union_map_free(OldSchedule);
|
||
return changed;
|
||
}
|
||
|
||
bool IslScheduleOptimizer::runOnScop(Scop &S) {
|
||
|
||
// Skip empty SCoPs but still allow code generation as it will delete the
|
||
// loops present but not needed.
|
||
if (S.getSize() == 0) {
|
||
S.markAsOptimized();
|
||
return false;
|
||
}
|
||
|
||
const Dependences &D = getAnalysis<DependenceInfo>().getDependences();
|
||
|
||
if (!D.hasValidDependences())
|
||
return false;
|
||
|
||
isl_schedule_free(LastSchedule);
|
||
LastSchedule = nullptr;
|
||
|
||
// Build input data.
|
||
int ValidityKinds =
|
||
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
|
||
int ProximityKinds;
|
||
|
||
if (OptimizeDeps == "all")
|
||
ProximityKinds =
|
||
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
|
||
else if (OptimizeDeps == "raw")
|
||
ProximityKinds = Dependences::TYPE_RAW;
|
||
else {
|
||
errs() << "Do not know how to optimize for '" << OptimizeDeps << "'"
|
||
<< " Falling back to optimizing all dependences.\n";
|
||
ProximityKinds =
|
||
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
|
||
}
|
||
|
||
isl_union_set *Domain = S.getDomains();
|
||
|
||
if (!Domain)
|
||
return false;
|
||
|
||
isl_union_map *Validity = D.getDependences(ValidityKinds);
|
||
isl_union_map *Proximity = D.getDependences(ProximityKinds);
|
||
|
||
// Simplify the dependences by removing the constraints introduced by the
|
||
// domains. This can speed up the scheduling time significantly, as large
|
||
// constant coefficients will be removed from the dependences. The
|
||
// introduction of some additional dependences reduces the possible
|
||
// transformations, but in most cases, such transformation do not seem to be
|
||
// interesting anyway. In some cases this option may stop the scheduler to
|
||
// find any schedule.
|
||
if (SimplifyDeps == "yes") {
|
||
Validity = isl_union_map_gist_domain(Validity, isl_union_set_copy(Domain));
|
||
Validity = isl_union_map_gist_range(Validity, isl_union_set_copy(Domain));
|
||
Proximity =
|
||
isl_union_map_gist_domain(Proximity, isl_union_set_copy(Domain));
|
||
Proximity = isl_union_map_gist_range(Proximity, isl_union_set_copy(Domain));
|
||
} else if (SimplifyDeps != "no") {
|
||
errs() << "warning: Option -polly-opt-simplify-deps should either be 'yes' "
|
||
"or 'no'. Falling back to default: 'yes'\n";
|
||
}
|
||
|
||
DEBUG(dbgs() << "\n\nCompute schedule from: ");
|
||
DEBUG(dbgs() << "Domain := " << stringFromIslObj(Domain) << ";\n");
|
||
DEBUG(dbgs() << "Proximity := " << stringFromIslObj(Proximity) << ";\n");
|
||
DEBUG(dbgs() << "Validity := " << stringFromIslObj(Validity) << ";\n");
|
||
|
||
int IslFusionStrategy;
|
||
|
||
if (FusionStrategy == "max") {
|
||
IslFusionStrategy = ISL_SCHEDULE_FUSE_MAX;
|
||
} else if (FusionStrategy == "min") {
|
||
IslFusionStrategy = ISL_SCHEDULE_FUSE_MIN;
|
||
} else {
|
||
errs() << "warning: Unknown fusion strategy. Falling back to maximal "
|
||
"fusion.\n";
|
||
IslFusionStrategy = ISL_SCHEDULE_FUSE_MAX;
|
||
}
|
||
|
||
int IslMaximizeBands;
|
||
|
||
if (MaximizeBandDepth == "yes") {
|
||
IslMaximizeBands = 1;
|
||
} else if (MaximizeBandDepth == "no") {
|
||
IslMaximizeBands = 0;
|
||
} else {
|
||
errs() << "warning: Option -polly-opt-maximize-bands should either be 'yes'"
|
||
" or 'no'. Falling back to default: 'yes'\n";
|
||
IslMaximizeBands = 1;
|
||
}
|
||
|
||
isl_options_set_schedule_fuse(S.getIslCtx(), IslFusionStrategy);
|
||
isl_options_set_schedule_maximize_band_depth(S.getIslCtx(), IslMaximizeBands);
|
||
isl_options_set_schedule_max_constant_term(S.getIslCtx(), MaxConstantTerm);
|
||
isl_options_set_schedule_max_coefficient(S.getIslCtx(), MaxCoefficient);
|
||
isl_options_set_tile_scale_tile_loops(S.getIslCtx(), 0);
|
||
|
||
isl_options_set_on_error(S.getIslCtx(), ISL_ON_ERROR_CONTINUE);
|
||
|
||
isl_schedule_constraints *ScheduleConstraints;
|
||
ScheduleConstraints = isl_schedule_constraints_on_domain(Domain);
|
||
ScheduleConstraints =
|
||
isl_schedule_constraints_set_proximity(ScheduleConstraints, Proximity);
|
||
ScheduleConstraints = isl_schedule_constraints_set_validity(
|
||
ScheduleConstraints, isl_union_map_copy(Validity));
|
||
ScheduleConstraints =
|
||
isl_schedule_constraints_set_coincidence(ScheduleConstraints, Validity);
|
||
isl_schedule *Schedule;
|
||
Schedule = isl_schedule_constraints_compute_schedule(ScheduleConstraints);
|
||
isl_options_set_on_error(S.getIslCtx(), ISL_ON_ERROR_ABORT);
|
||
|
||
// In cases the scheduler is not able to optimize the code, we just do not
|
||
// touch the schedule.
|
||
if (!Schedule)
|
||
return false;
|
||
|
||
DEBUG({
|
||
auto *P = isl_printer_to_str(S.getIslCtx());
|
||
P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK);
|
||
P = isl_printer_print_schedule(P, Schedule);
|
||
dbgs() << "NewScheduleTree: \n" << isl_printer_get_str(P) << "\n";
|
||
isl_printer_free(P);
|
||
});
|
||
|
||
isl_union_map *NewSchedule = getScheduleMap(Schedule);
|
||
|
||
// Check if the optimizations performed were profitable, otherwise exit early.
|
||
if (!isProfitableSchedule(S, NewSchedule)) {
|
||
isl_schedule_free(Schedule);
|
||
isl_union_map_free(NewSchedule);
|
||
return false;
|
||
}
|
||
|
||
S.markAsOptimized();
|
||
|
||
for (ScopStmt &Stmt : S) {
|
||
isl_map *StmtSchedule;
|
||
isl_set *Domain = Stmt.getDomain();
|
||
isl_union_map *StmtBand;
|
||
StmtBand = isl_union_map_intersect_domain(isl_union_map_copy(NewSchedule),
|
||
isl_union_set_from_set(Domain));
|
||
if (isl_union_map_is_empty(StmtBand)) {
|
||
StmtSchedule = isl_map_from_domain(isl_set_empty(Stmt.getDomainSpace()));
|
||
isl_union_map_free(StmtBand);
|
||
} else {
|
||
assert(isl_union_map_n_map(StmtBand) == 1);
|
||
StmtSchedule = isl_map_from_union_map(StmtBand);
|
||
}
|
||
|
||
Stmt.setSchedule(StmtSchedule);
|
||
}
|
||
|
||
isl_schedule_free(Schedule);
|
||
isl_union_map_free(NewSchedule);
|
||
return false;
|
||
}
|
||
|
||
void IslScheduleOptimizer::printScop(raw_ostream &OS, Scop &) const {
|
||
isl_printer *p;
|
||
char *ScheduleStr;
|
||
|
||
OS << "Calculated schedule:\n";
|
||
|
||
if (!LastSchedule) {
|
||
OS << "n/a\n";
|
||
return;
|
||
}
|
||
|
||
p = isl_printer_to_str(isl_schedule_get_ctx(LastSchedule));
|
||
p = isl_printer_print_schedule(p, LastSchedule);
|
||
ScheduleStr = isl_printer_get_str(p);
|
||
isl_printer_free(p);
|
||
|
||
OS << ScheduleStr << "\n";
|
||
}
|
||
|
||
void IslScheduleOptimizer::getAnalysisUsage(AnalysisUsage &AU) const {
|
||
ScopPass::getAnalysisUsage(AU);
|
||
AU.addRequired<DependenceInfo>();
|
||
}
|
||
|
||
Pass *polly::createIslScheduleOptimizerPass() {
|
||
return new IslScheduleOptimizer();
|
||
}
|
||
|
||
INITIALIZE_PASS_BEGIN(IslScheduleOptimizer, "polly-opt-isl",
|
||
"Polly - Optimize schedule of SCoP", false, false);
|
||
INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
|
||
INITIALIZE_PASS_DEPENDENCY(ScopInfo);
|
||
INITIALIZE_PASS_END(IslScheduleOptimizer, "polly-opt-isl",
|
||
"Polly - Optimize schedule of SCoP", false, false)
|