forked from OSchip/llvm-project
491 lines
13 KiB
C
491 lines
13 KiB
C
#include <isl_ctx_private.h>
|
|
#include <isl_constraint_private.h>
|
|
#include <isl/set.h>
|
|
#include <isl_polynomial_private.h>
|
|
#include <isl_morph.h>
|
|
#include <isl_range.h>
|
|
|
|
struct range_data {
|
|
struct isl_bound *bound;
|
|
int *signs;
|
|
int sign;
|
|
int test_monotonicity;
|
|
int monotonicity;
|
|
int tight;
|
|
isl_qpolynomial *poly;
|
|
isl_pw_qpolynomial_fold *pwf;
|
|
isl_pw_qpolynomial_fold *pwf_tight;
|
|
};
|
|
|
|
static isl_stat propagate_on_domain(__isl_take isl_basic_set *bset,
|
|
__isl_take isl_qpolynomial *poly, struct range_data *data);
|
|
|
|
/* Check whether the polynomial "poly" has sign "sign" over "bset",
|
|
* i.e., if sign == 1, check that the lower bound on the polynomial
|
|
* is non-negative and if sign == -1, check that the upper bound on
|
|
* the polynomial is non-positive.
|
|
*/
|
|
static int has_sign(__isl_keep isl_basic_set *bset,
|
|
__isl_keep isl_qpolynomial *poly, int sign, int *signs)
|
|
{
|
|
struct range_data data_m;
|
|
unsigned nparam;
|
|
isl_space *dim;
|
|
isl_val *opt;
|
|
int r;
|
|
enum isl_fold type;
|
|
|
|
nparam = isl_basic_set_dim(bset, isl_dim_param);
|
|
|
|
bset = isl_basic_set_copy(bset);
|
|
poly = isl_qpolynomial_copy(poly);
|
|
|
|
bset = isl_basic_set_move_dims(bset, isl_dim_set, 0,
|
|
isl_dim_param, 0, nparam);
|
|
poly = isl_qpolynomial_move_dims(poly, isl_dim_in, 0,
|
|
isl_dim_param, 0, nparam);
|
|
|
|
dim = isl_qpolynomial_get_space(poly);
|
|
dim = isl_space_params(dim);
|
|
dim = isl_space_from_domain(dim);
|
|
dim = isl_space_add_dims(dim, isl_dim_out, 1);
|
|
|
|
data_m.test_monotonicity = 0;
|
|
data_m.signs = signs;
|
|
data_m.sign = -sign;
|
|
type = data_m.sign < 0 ? isl_fold_min : isl_fold_max;
|
|
data_m.pwf = isl_pw_qpolynomial_fold_zero(dim, type);
|
|
data_m.tight = 0;
|
|
data_m.pwf_tight = NULL;
|
|
|
|
if (propagate_on_domain(bset, poly, &data_m) < 0)
|
|
goto error;
|
|
|
|
if (sign > 0)
|
|
opt = isl_pw_qpolynomial_fold_min(data_m.pwf);
|
|
else
|
|
opt = isl_pw_qpolynomial_fold_max(data_m.pwf);
|
|
|
|
if (!opt)
|
|
r = -1;
|
|
else if (isl_val_is_nan(opt) ||
|
|
isl_val_is_infty(opt) ||
|
|
isl_val_is_neginfty(opt))
|
|
r = 0;
|
|
else
|
|
r = sign * isl_val_sgn(opt) >= 0;
|
|
|
|
isl_val_free(opt);
|
|
|
|
return r;
|
|
error:
|
|
isl_pw_qpolynomial_fold_free(data_m.pwf);
|
|
return -1;
|
|
}
|
|
|
|
/* Return 1 if poly is monotonically increasing in the last set variable,
|
|
* -1 if poly is monotonically decreasing in the last set variable,
|
|
* 0 if no conclusion,
|
|
* -2 on error.
|
|
*
|
|
* We simply check the sign of p(x+1)-p(x)
|
|
*/
|
|
static int monotonicity(__isl_keep isl_basic_set *bset,
|
|
__isl_keep isl_qpolynomial *poly, struct range_data *data)
|
|
{
|
|
isl_ctx *ctx;
|
|
isl_space *dim;
|
|
isl_qpolynomial *sub = NULL;
|
|
isl_qpolynomial *diff = NULL;
|
|
int result = 0;
|
|
int s;
|
|
unsigned nvar;
|
|
|
|
ctx = isl_qpolynomial_get_ctx(poly);
|
|
dim = isl_qpolynomial_get_domain_space(poly);
|
|
|
|
nvar = isl_basic_set_dim(bset, isl_dim_set);
|
|
|
|
sub = isl_qpolynomial_var_on_domain(isl_space_copy(dim), isl_dim_set, nvar - 1);
|
|
sub = isl_qpolynomial_add(sub,
|
|
isl_qpolynomial_rat_cst_on_domain(dim, ctx->one, ctx->one));
|
|
|
|
diff = isl_qpolynomial_substitute(isl_qpolynomial_copy(poly),
|
|
isl_dim_in, nvar - 1, 1, &sub);
|
|
diff = isl_qpolynomial_sub(diff, isl_qpolynomial_copy(poly));
|
|
|
|
s = has_sign(bset, diff, 1, data->signs);
|
|
if (s < 0)
|
|
goto error;
|
|
if (s)
|
|
result = 1;
|
|
else {
|
|
s = has_sign(bset, diff, -1, data->signs);
|
|
if (s < 0)
|
|
goto error;
|
|
if (s)
|
|
result = -1;
|
|
}
|
|
|
|
isl_qpolynomial_free(diff);
|
|
isl_qpolynomial_free(sub);
|
|
|
|
return result;
|
|
error:
|
|
isl_qpolynomial_free(diff);
|
|
isl_qpolynomial_free(sub);
|
|
return -2;
|
|
}
|
|
|
|
static __isl_give isl_qpolynomial *bound2poly(__isl_take isl_constraint *bound,
|
|
__isl_take isl_space *dim, unsigned pos, int sign)
|
|
{
|
|
if (!bound) {
|
|
if (sign > 0)
|
|
return isl_qpolynomial_infty_on_domain(dim);
|
|
else
|
|
return isl_qpolynomial_neginfty_on_domain(dim);
|
|
}
|
|
isl_space_free(dim);
|
|
return isl_qpolynomial_from_constraint(bound, isl_dim_set, pos);
|
|
}
|
|
|
|
static int bound_is_integer(__isl_take isl_constraint *bound, unsigned pos)
|
|
{
|
|
isl_int c;
|
|
int is_int;
|
|
|
|
if (!bound)
|
|
return 1;
|
|
|
|
isl_int_init(c);
|
|
isl_constraint_get_coefficient(bound, isl_dim_set, pos, &c);
|
|
is_int = isl_int_is_one(c) || isl_int_is_negone(c);
|
|
isl_int_clear(c);
|
|
|
|
return is_int;
|
|
}
|
|
|
|
struct isl_fixed_sign_data {
|
|
int *signs;
|
|
int sign;
|
|
isl_qpolynomial *poly;
|
|
};
|
|
|
|
/* Add term "term" to data->poly if it has sign data->sign.
|
|
* The sign is determined based on the signs of the parameters
|
|
* and variables in data->signs. The integer divisions, if
|
|
* any, are assumed to be non-negative.
|
|
*/
|
|
static isl_stat collect_fixed_sign_terms(__isl_take isl_term *term, void *user)
|
|
{
|
|
struct isl_fixed_sign_data *data = (struct isl_fixed_sign_data *)user;
|
|
isl_int n;
|
|
int i;
|
|
int sign;
|
|
unsigned nparam;
|
|
unsigned nvar;
|
|
|
|
if (!term)
|
|
return isl_stat_error;
|
|
|
|
nparam = isl_term_dim(term, isl_dim_param);
|
|
nvar = isl_term_dim(term, isl_dim_set);
|
|
|
|
isl_int_init(n);
|
|
|
|
isl_term_get_num(term, &n);
|
|
|
|
sign = isl_int_sgn(n);
|
|
for (i = 0; i < nparam; ++i) {
|
|
if (data->signs[i] > 0)
|
|
continue;
|
|
if (isl_term_get_exp(term, isl_dim_param, i) % 2)
|
|
sign = -sign;
|
|
}
|
|
for (i = 0; i < nvar; ++i) {
|
|
if (data->signs[nparam + i] > 0)
|
|
continue;
|
|
if (isl_term_get_exp(term, isl_dim_set, i) % 2)
|
|
sign = -sign;
|
|
}
|
|
|
|
if (sign == data->sign) {
|
|
isl_qpolynomial *t = isl_qpolynomial_from_term(term);
|
|
|
|
data->poly = isl_qpolynomial_add(data->poly, t);
|
|
} else
|
|
isl_term_free(term);
|
|
|
|
isl_int_clear(n);
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Construct and return a polynomial that consists of the terms
|
|
* in "poly" that have sign "sign". The integer divisions, if
|
|
* any, are assumed to be non-negative.
|
|
*/
|
|
__isl_give isl_qpolynomial *isl_qpolynomial_terms_of_sign(
|
|
__isl_keep isl_qpolynomial *poly, int *signs, int sign)
|
|
{
|
|
isl_space *space;
|
|
struct isl_fixed_sign_data data = { signs, sign };
|
|
|
|
space = isl_qpolynomial_get_domain_space(poly);
|
|
data.poly = isl_qpolynomial_zero_on_domain(space);
|
|
|
|
if (isl_qpolynomial_foreach_term(poly, collect_fixed_sign_terms, &data) < 0)
|
|
goto error;
|
|
|
|
return data.poly;
|
|
error:
|
|
isl_qpolynomial_free(data.poly);
|
|
return NULL;
|
|
}
|
|
|
|
/* Helper function to add a guarded polynomial to either pwf_tight or pwf,
|
|
* depending on whether the result has been determined to be tight.
|
|
*/
|
|
static isl_stat add_guarded_poly(__isl_take isl_basic_set *bset,
|
|
__isl_take isl_qpolynomial *poly, struct range_data *data)
|
|
{
|
|
enum isl_fold type = data->sign < 0 ? isl_fold_min : isl_fold_max;
|
|
isl_set *set;
|
|
isl_qpolynomial_fold *fold;
|
|
isl_pw_qpolynomial_fold *pwf;
|
|
|
|
bset = isl_basic_set_params(bset);
|
|
poly = isl_qpolynomial_project_domain_on_params(poly);
|
|
|
|
fold = isl_qpolynomial_fold_alloc(type, poly);
|
|
set = isl_set_from_basic_set(bset);
|
|
pwf = isl_pw_qpolynomial_fold_alloc(type, set, fold);
|
|
if (data->tight)
|
|
data->pwf_tight = isl_pw_qpolynomial_fold_fold(
|
|
data->pwf_tight, pwf);
|
|
else
|
|
data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, pwf);
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Given a lower and upper bound on the final variable and constraints
|
|
* on the remaining variables where these bounds are active,
|
|
* eliminate the variable from data->poly based on these bounds.
|
|
* If the polynomial has been determined to be monotonic
|
|
* in the variable, then simply plug in the appropriate bound.
|
|
* If the current polynomial is tight and if this bound is integer,
|
|
* then the result is still tight. In all other cases, the results
|
|
* may not be tight.
|
|
* Otherwise, plug in the largest bound (in absolute value) in
|
|
* the positive terms (if an upper bound is wanted) or the negative terms
|
|
* (if a lower bounded is wanted) and the other bound in the other terms.
|
|
*
|
|
* If all variables have been eliminated, then record the result.
|
|
* Ohterwise, recurse on the next variable.
|
|
*/
|
|
static isl_stat propagate_on_bound_pair(__isl_take isl_constraint *lower,
|
|
__isl_take isl_constraint *upper, __isl_take isl_basic_set *bset,
|
|
void *user)
|
|
{
|
|
struct range_data *data = (struct range_data *)user;
|
|
int save_tight = data->tight;
|
|
isl_qpolynomial *poly;
|
|
isl_stat r;
|
|
unsigned nvar;
|
|
|
|
nvar = isl_basic_set_dim(bset, isl_dim_set);
|
|
|
|
if (data->monotonicity) {
|
|
isl_qpolynomial *sub;
|
|
isl_space *dim = isl_qpolynomial_get_domain_space(data->poly);
|
|
if (data->monotonicity * data->sign > 0) {
|
|
if (data->tight)
|
|
data->tight = bound_is_integer(upper, nvar);
|
|
sub = bound2poly(upper, dim, nvar, 1);
|
|
isl_constraint_free(lower);
|
|
} else {
|
|
if (data->tight)
|
|
data->tight = bound_is_integer(lower, nvar);
|
|
sub = bound2poly(lower, dim, nvar, -1);
|
|
isl_constraint_free(upper);
|
|
}
|
|
poly = isl_qpolynomial_copy(data->poly);
|
|
poly = isl_qpolynomial_substitute(poly, isl_dim_in, nvar, 1, &sub);
|
|
poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, nvar, 1);
|
|
|
|
isl_qpolynomial_free(sub);
|
|
} else {
|
|
isl_qpolynomial *l, *u;
|
|
isl_qpolynomial *pos, *neg;
|
|
isl_space *dim = isl_qpolynomial_get_domain_space(data->poly);
|
|
unsigned nparam = isl_basic_set_dim(bset, isl_dim_param);
|
|
int sign = data->sign * data->signs[nparam + nvar];
|
|
|
|
data->tight = 0;
|
|
|
|
u = bound2poly(upper, isl_space_copy(dim), nvar, 1);
|
|
l = bound2poly(lower, dim, nvar, -1);
|
|
|
|
pos = isl_qpolynomial_terms_of_sign(data->poly, data->signs, sign);
|
|
neg = isl_qpolynomial_terms_of_sign(data->poly, data->signs, -sign);
|
|
|
|
pos = isl_qpolynomial_substitute(pos, isl_dim_in, nvar, 1, &u);
|
|
neg = isl_qpolynomial_substitute(neg, isl_dim_in, nvar, 1, &l);
|
|
|
|
poly = isl_qpolynomial_add(pos, neg);
|
|
poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, nvar, 1);
|
|
|
|
isl_qpolynomial_free(u);
|
|
isl_qpolynomial_free(l);
|
|
}
|
|
|
|
if (isl_basic_set_dim(bset, isl_dim_set) == 0)
|
|
r = add_guarded_poly(bset, poly, data);
|
|
else
|
|
r = propagate_on_domain(bset, poly, data);
|
|
|
|
data->tight = save_tight;
|
|
|
|
return r;
|
|
}
|
|
|
|
/* Recursively perform range propagation on the polynomial "poly"
|
|
* defined over the basic set "bset" and collect the results in "data".
|
|
*/
|
|
static isl_stat propagate_on_domain(__isl_take isl_basic_set *bset,
|
|
__isl_take isl_qpolynomial *poly, struct range_data *data)
|
|
{
|
|
isl_ctx *ctx;
|
|
isl_qpolynomial *save_poly = data->poly;
|
|
int save_monotonicity = data->monotonicity;
|
|
unsigned d;
|
|
|
|
if (!bset || !poly)
|
|
goto error;
|
|
|
|
ctx = isl_basic_set_get_ctx(bset);
|
|
d = isl_basic_set_dim(bset, isl_dim_set);
|
|
isl_assert(ctx, d >= 1, goto error);
|
|
|
|
if (isl_qpolynomial_is_cst(poly, NULL, NULL)) {
|
|
bset = isl_basic_set_project_out(bset, isl_dim_set, 0, d);
|
|
poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, 0, d);
|
|
return add_guarded_poly(bset, poly, data);
|
|
}
|
|
|
|
if (data->test_monotonicity)
|
|
data->monotonicity = monotonicity(bset, poly, data);
|
|
else
|
|
data->monotonicity = 0;
|
|
if (data->monotonicity < -1)
|
|
goto error;
|
|
|
|
data->poly = poly;
|
|
if (isl_basic_set_foreach_bound_pair(bset, isl_dim_set, d - 1,
|
|
&propagate_on_bound_pair, data) < 0)
|
|
goto error;
|
|
|
|
isl_basic_set_free(bset);
|
|
isl_qpolynomial_free(poly);
|
|
data->monotonicity = save_monotonicity;
|
|
data->poly = save_poly;
|
|
|
|
return isl_stat_ok;
|
|
error:
|
|
isl_basic_set_free(bset);
|
|
isl_qpolynomial_free(poly);
|
|
data->monotonicity = save_monotonicity;
|
|
data->poly = save_poly;
|
|
return isl_stat_error;
|
|
}
|
|
|
|
static isl_stat basic_guarded_poly_bound(__isl_take isl_basic_set *bset,
|
|
void *user)
|
|
{
|
|
struct range_data *data = (struct range_data *)user;
|
|
isl_ctx *ctx;
|
|
unsigned nparam = isl_basic_set_dim(bset, isl_dim_param);
|
|
unsigned dim = isl_basic_set_dim(bset, isl_dim_set);
|
|
isl_stat r;
|
|
|
|
data->signs = NULL;
|
|
|
|
ctx = isl_basic_set_get_ctx(bset);
|
|
data->signs = isl_alloc_array(ctx, int,
|
|
isl_basic_set_dim(bset, isl_dim_all));
|
|
|
|
if (isl_basic_set_dims_get_sign(bset, isl_dim_set, 0, dim,
|
|
data->signs + nparam) < 0)
|
|
goto error;
|
|
if (isl_basic_set_dims_get_sign(bset, isl_dim_param, 0, nparam,
|
|
data->signs) < 0)
|
|
goto error;
|
|
|
|
r = propagate_on_domain(bset, isl_qpolynomial_copy(data->poly), data);
|
|
|
|
free(data->signs);
|
|
|
|
return r;
|
|
error:
|
|
free(data->signs);
|
|
isl_basic_set_free(bset);
|
|
return isl_stat_error;
|
|
}
|
|
|
|
static int qpolynomial_bound_on_domain_range(__isl_take isl_basic_set *bset,
|
|
__isl_take isl_qpolynomial *poly, struct range_data *data)
|
|
{
|
|
unsigned nparam = isl_basic_set_dim(bset, isl_dim_param);
|
|
unsigned nvar = isl_basic_set_dim(bset, isl_dim_set);
|
|
isl_set *set = NULL;
|
|
|
|
if (!bset)
|
|
goto error;
|
|
|
|
if (nvar == 0)
|
|
return add_guarded_poly(bset, poly, data);
|
|
|
|
set = isl_set_from_basic_set(bset);
|
|
set = isl_set_split_dims(set, isl_dim_param, 0, nparam);
|
|
set = isl_set_split_dims(set, isl_dim_set, 0, nvar);
|
|
|
|
data->poly = poly;
|
|
|
|
data->test_monotonicity = 1;
|
|
if (isl_set_foreach_basic_set(set, &basic_guarded_poly_bound, data) < 0)
|
|
goto error;
|
|
|
|
isl_set_free(set);
|
|
isl_qpolynomial_free(poly);
|
|
|
|
return 0;
|
|
error:
|
|
isl_set_free(set);
|
|
isl_qpolynomial_free(poly);
|
|
return -1;
|
|
}
|
|
|
|
int isl_qpolynomial_bound_on_domain_range(__isl_take isl_basic_set *bset,
|
|
__isl_take isl_qpolynomial *poly, struct isl_bound *bound)
|
|
{
|
|
struct range_data data;
|
|
int r;
|
|
|
|
data.pwf = bound->pwf;
|
|
data.pwf_tight = bound->pwf_tight;
|
|
data.tight = bound->check_tight;
|
|
if (bound->type == isl_fold_min)
|
|
data.sign = -1;
|
|
else
|
|
data.sign = 1;
|
|
|
|
r = qpolynomial_bound_on_domain_range(bset, poly, &data);
|
|
|
|
bound->pwf = data.pwf;
|
|
bound->pwf_tight = data.pwf_tight;
|
|
|
|
return r;
|
|
}
|