llvm-project/clang/lib/CodeGen/Mangle.cpp

814 lines
28 KiB
C++

//===--- Mangle.cpp - Mangle C++ Names --------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implements C++ name mangling according to the Itanium C++ ABI,
// which is used in GCC 3.2 and newer (and many compilers that are
// ABI-compatible with GCC):
//
// http://www.codesourcery.com/public/cxx-abi/abi.html
//
//===----------------------------------------------------------------------===//
#include "Mangle.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/Basic/SourceManager.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
namespace {
class VISIBILITY_HIDDEN CXXNameMangler {
ASTContext &Context;
llvm::raw_ostream &Out;
const CXXMethodDecl *Structor;
unsigned StructorType;
CXXCtorType CtorType;
public:
CXXNameMangler(ASTContext &C, llvm::raw_ostream &os)
: Context(C), Out(os), Structor(0), StructorType(0) { }
bool mangle(const NamedDecl *D);
void mangleGuardVariable(const VarDecl *D);
void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type);
void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type);
private:
bool mangleFunctionDecl(const FunctionDecl *FD);
void mangleFunctionEncoding(const FunctionDecl *FD);
void mangleName(const NamedDecl *ND);
void mangleUnqualifiedName(const NamedDecl *ND);
void mangleSourceName(const IdentifierInfo *II);
void mangleLocalName(const NamedDecl *ND);
void mangleNestedName(const NamedDecl *ND);
void manglePrefix(const DeclContext *DC);
void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
void mangleCVQualifiers(unsigned Quals);
void mangleType(QualType T);
void mangleType(const BuiltinType *T);
void mangleType(const FunctionType *T);
void mangleBareFunctionType(const FunctionType *T, bool MangleReturnType);
void mangleType(const TagType *T);
void mangleType(const ArrayType *T);
void mangleType(const MemberPointerType *T);
void mangleType(const TemplateTypeParmType *T);
void mangleType(const ObjCInterfaceType *T);
void mangleExpression(Expr *E);
void mangleCXXCtorType(CXXCtorType T);
void mangleCXXDtorType(CXXDtorType T);
void mangleTemplateArgumentList(const TemplateArgumentList &L);
void mangleTemplateArgument(const TemplateArgument &A);
};
}
static bool isInCLinkageSpecification(const Decl *D) {
for (const DeclContext *DC = D->getDeclContext();
!DC->isTranslationUnit(); DC = DC->getParent()) {
if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC))
return Linkage->getLanguage() == LinkageSpecDecl::lang_c;
}
return false;
}
bool CXXNameMangler::mangleFunctionDecl(const FunctionDecl *FD) {
// Clang's "overloadable" attribute extension to C/C++ implies
// name mangling (always).
if (!FD->hasAttr<OverloadableAttr>()) {
// C functions are not mangled, and "main" is never mangled.
if (!Context.getLangOptions().CPlusPlus || FD->isMain())
return false;
// No mangling in an "implicit extern C" header.
if (FD->getLocation().isValid() &&
Context.getSourceManager().isInExternCSystemHeader(FD->getLocation()))
return false;
// No name mangling in a C linkage specification.
if (isInCLinkageSpecification(FD))
return false;
}
// If we get here, mangle the decl name!
Out << "_Z";
mangleFunctionEncoding(FD);
return true;
}
bool CXXNameMangler::mangle(const NamedDecl *D) {
// Any decl can be declared with __asm("foo") on it, and this takes
// precedence over all other naming in the .o file.
if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
// If we have an asm name, then we use it as the mangling.
Out << '\01'; // LLVM IR Marker for __asm("foo")
Out << ALA->getLabel();
return true;
}
// <mangled-name> ::= _Z <encoding>
// ::= <data name>
// ::= <special-name>
// FIXME: Actually use a visitor to decode these?
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
return mangleFunctionDecl(FD);
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
if (!Context.getLangOptions().CPlusPlus ||
isInCLinkageSpecification(D) ||
D->getDeclContext()->isTranslationUnit())
return false;
Out << "_Z";
mangleName(VD);
return true;
}
return false;
}
void CXXNameMangler::mangleCXXCtor(const CXXConstructorDecl *D,
CXXCtorType Type) {
assert(!Structor && "Structor already set!");
Structor = D;
StructorType = Type;
mangle(D);
}
void CXXNameMangler::mangleCXXDtor(const CXXDestructorDecl *D,
CXXDtorType Type) {
assert(!Structor && "Structor already set!");
Structor = D;
StructorType = Type;
mangle(D);
}
void CXXNameMangler::mangleGuardVariable(const VarDecl *D)
{
// <special-name> ::= GV <object name> # Guard variable for one-time
// # initialization
Out << "_ZGV";
mangleName(D);
}
void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
// <encoding> ::= <function name> <bare-function-type>
mangleName(FD);
// Whether the mangling of a function type includes the return type depends
// on the context and the nature of the function. The rules for deciding
// whether the return type is included are:
//
// 1. Template functions (names or types) have return types encoded, with
// the exceptions listed below.
// 2. Function types not appearing as part of a function name mangling,
// e.g. parameters, pointer types, etc., have return type encoded, with the
// exceptions listed below.
// 3. Non-template function names do not have return types encoded.
//
// The exceptions mentioned in (1) and (2) above, for which the return
// type is never included, are
// 1. Constructors.
// 2. Destructors.
// 3. Conversion operator functions, e.g. operator int.
bool MangleReturnType = false;
if (FD->getPrimaryTemplate() &&
!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
isa<CXXConversionDecl>(FD)))
MangleReturnType = true;
mangleBareFunctionType(FD->getType()->getAsFunctionType(), MangleReturnType);
}
static bool isStdNamespace(const DeclContext *DC) {
if (!DC->isNamespace() || !DC->getParent()->isTranslationUnit())
return false;
const NamespaceDecl *NS = cast<NamespaceDecl>(DC);
return NS->getOriginalNamespace()->getIdentifier()->isStr("std");
}
void CXXNameMangler::mangleName(const NamedDecl *ND) {
// <name> ::= <nested-name>
// ::= <unscoped-name>
// ::= <unscoped-template-name> <template-args>
// ::= <local-name> # See Scope Encoding below
//
// <unscoped-name> ::= <unqualified-name>
// ::= St <unqualified-name> # ::std::
if (ND->getDeclContext()->isTranslationUnit())
mangleUnqualifiedName(ND);
else if (isStdNamespace(ND->getDeclContext())) {
Out << "St";
mangleUnqualifiedName(ND);
} else if (isa<FunctionDecl>(ND->getDeclContext()))
mangleLocalName(ND);
else
mangleNestedName(ND);
}
void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND) {
// <unqualified-name> ::= <operator-name>
// ::= <ctor-dtor-name>
// ::= <source-name>
DeclarationName Name = ND->getDeclName();
switch (Name.getNameKind()) {
case DeclarationName::Identifier:
mangleSourceName(Name.getAsIdentifierInfo());
break;
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
assert(false && "Can't mangle Objective-C selector names here!");
break;
case DeclarationName::CXXConstructorName:
if (ND == Structor)
// If the named decl is the C++ constructor we're mangling, use the
// type we were given.
mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
else
// Otherwise, use the complete constructor name. This is relevant if a
// class with a constructor is declared within a constructor.
mangleCXXCtorType(Ctor_Complete);
break;
case DeclarationName::CXXDestructorName:
if (ND == Structor)
// If the named decl is the C++ destructor we're mangling, use the
// type we were given.
mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
else
// Otherwise, use the complete destructor name. This is relevant if a
// class with a destructor is declared within a destructor.
mangleCXXDtorType(Dtor_Complete);
break;
case DeclarationName::CXXConversionFunctionName:
// <operator-name> ::= cv <type> # (cast)
Out << "cv";
mangleType(Context.getCanonicalType(Name.getCXXNameType()));
break;
case DeclarationName::CXXOperatorName:
mangleOperatorName(Name.getCXXOverloadedOperator(),
cast<FunctionDecl>(ND)->getNumParams());
break;
case DeclarationName::CXXUsingDirective:
assert(false && "Can't mangle a using directive name!");
break;
}
if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(ND)) {
if (const TemplateArgumentList *TemplateArgs
= Function->getTemplateSpecializationArgs())
mangleTemplateArgumentList(*TemplateArgs);
}
}
void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
// <source-name> ::= <positive length number> <identifier>
// <number> ::= [n] <non-negative decimal integer>
// <identifier> ::= <unqualified source code identifier>
Out << II->getLength() << II->getName();
}
void CXXNameMangler::mangleNestedName(const NamedDecl *ND) {
// <nested-name> ::= N [<CV-qualifiers>] <prefix> <unqualified-name> E
// ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
// FIXME: no template support
Out << 'N';
if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND))
mangleCVQualifiers(Method->getTypeQualifiers());
manglePrefix(ND->getDeclContext());
mangleUnqualifiedName(ND);
Out << 'E';
}
void CXXNameMangler::mangleLocalName(const NamedDecl *ND) {
// <local-name> := Z <function encoding> E <entity name> [<discriminator>]
// := Z <function encoding> E s [<discriminator>]
// <discriminator> := _ <non-negative number>
Out << 'Z';
mangleFunctionEncoding(cast<FunctionDecl>(ND->getDeclContext()));
Out << 'E';
mangleSourceName(ND->getIdentifier());
}
void CXXNameMangler::manglePrefix(const DeclContext *DC) {
// <prefix> ::= <prefix> <unqualified-name>
// ::= <template-prefix> <template-args>
// ::= <template-param>
// ::= # empty
// ::= <substitution>
// FIXME: We only handle mangling of namespaces and classes at the moment.
if (!DC->getParent()->isTranslationUnit())
manglePrefix(DC->getParent());
if (const NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC))
mangleSourceName(Namespace->getIdentifier());
else if (const RecordDecl *Record = dyn_cast<RecordDecl>(DC)) {
if (const ClassTemplateSpecializationDecl *D =
dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
mangleType(QualType(D->getTypeForDecl(), 0));
} else
mangleSourceName(Record->getIdentifier());
}
}
void
CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
switch (OO) {
// <operator-name> ::= nw # new
case OO_New: Out << "nw"; break;
// ::= na # new[]
case OO_Array_New: Out << "na"; break;
// ::= dl # delete
case OO_Delete: Out << "dl"; break;
// ::= da # delete[]
case OO_Array_Delete: Out << "da"; break;
// ::= ps # + (unary)
// ::= pl # +
case OO_Plus: Out << (Arity == 1? "ps" : "pl"); break;
// ::= ng # - (unary)
// ::= mi # -
case OO_Minus: Out << (Arity == 1? "ng" : "mi"); break;
// ::= ad # & (unary)
// ::= an # &
case OO_Amp: Out << (Arity == 1? "ad" : "an"); break;
// ::= de # * (unary)
// ::= ml # *
case OO_Star: Out << (Arity == 1? "de" : "ml"); break;
// ::= co # ~
case OO_Tilde: Out << "co"; break;
// ::= dv # /
case OO_Slash: Out << "dv"; break;
// ::= rm # %
case OO_Percent: Out << "rm"; break;
// ::= or # |
case OO_Pipe: Out << "or"; break;
// ::= eo # ^
case OO_Caret: Out << "eo"; break;
// ::= aS # =
case OO_Equal: Out << "aS"; break;
// ::= pL # +=
case OO_PlusEqual: Out << "pL"; break;
// ::= mI # -=
case OO_MinusEqual: Out << "mI"; break;
// ::= mL # *=
case OO_StarEqual: Out << "mL"; break;
// ::= dV # /=
case OO_SlashEqual: Out << "dV"; break;
// ::= rM # %=
case OO_PercentEqual: Out << "rM"; break;
// ::= aN # &=
case OO_AmpEqual: Out << "aN"; break;
// ::= oR # |=
case OO_PipeEqual: Out << "oR"; break;
// ::= eO # ^=
case OO_CaretEqual: Out << "eO"; break;
// ::= ls # <<
case OO_LessLess: Out << "ls"; break;
// ::= rs # >>
case OO_GreaterGreater: Out << "rs"; break;
// ::= lS # <<=
case OO_LessLessEqual: Out << "lS"; break;
// ::= rS # >>=
case OO_GreaterGreaterEqual: Out << "rS"; break;
// ::= eq # ==
case OO_EqualEqual: Out << "eq"; break;
// ::= ne # !=
case OO_ExclaimEqual: Out << "ne"; break;
// ::= lt # <
case OO_Less: Out << "lt"; break;
// ::= gt # >
case OO_Greater: Out << "gt"; break;
// ::= le # <=
case OO_LessEqual: Out << "le"; break;
// ::= ge # >=
case OO_GreaterEqual: Out << "ge"; break;
// ::= nt # !
case OO_Exclaim: Out << "nt"; break;
// ::= aa # &&
case OO_AmpAmp: Out << "aa"; break;
// ::= oo # ||
case OO_PipePipe: Out << "oo"; break;
// ::= pp # ++
case OO_PlusPlus: Out << "pp"; break;
// ::= mm # --
case OO_MinusMinus: Out << "mm"; break;
// ::= cm # ,
case OO_Comma: Out << "cm"; break;
// ::= pm # ->*
case OO_ArrowStar: Out << "pm"; break;
// ::= pt # ->
case OO_Arrow: Out << "pt"; break;
// ::= cl # ()
case OO_Call: Out << "cl"; break;
// ::= ix # []
case OO_Subscript: Out << "ix"; break;
// UNSUPPORTED: ::= qu # ?
case OO_None:
case OO_Conditional:
case NUM_OVERLOADED_OPERATORS:
assert(false && "Not an overloaded operator");
break;
}
}
void CXXNameMangler::mangleCVQualifiers(unsigned Quals) {
// <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const
if (Quals & QualType::Restrict)
Out << 'r';
if (Quals & QualType::Volatile)
Out << 'V';
if (Quals & QualType::Const)
Out << 'K';
}
void CXXNameMangler::mangleType(QualType T) {
// Only operate on the canonical type!
T = Context.getCanonicalType(T);
// FIXME: Should we have a TypeNodes.def to make this easier? (YES!)
// <type> ::= <CV-qualifiers> <type>
mangleCVQualifiers(T.getCVRQualifiers());
// ::= <builtin-type>
if (const BuiltinType *BT = dyn_cast<BuiltinType>(T.getTypePtr()))
mangleType(BT);
// ::= <function-type>
else if (const FunctionType *FT = dyn_cast<FunctionType>(T.getTypePtr()))
mangleType(FT);
// ::= <class-enum-type>
else if (const TagType *TT = dyn_cast<TagType>(T.getTypePtr()))
mangleType(TT);
// ::= <array-type>
else if (const ArrayType *AT = dyn_cast<ArrayType>(T.getTypePtr()))
mangleType(AT);
// ::= <pointer-to-member-type>
else if (const MemberPointerType *MPT
= dyn_cast<MemberPointerType>(T.getTypePtr()))
mangleType(MPT);
// ::= <template-param>
else if (const TemplateTypeParmType *TypeParm
= dyn_cast<TemplateTypeParmType>(T.getTypePtr()))
mangleType(TypeParm);
// FIXME: ::= <template-template-param> <template-args>
// FIXME: ::= <substitution> # See Compression below
// ::= P <type> # pointer-to
else if (const PointerType *PT = dyn_cast<PointerType>(T.getTypePtr())) {
Out << 'P';
mangleType(PT->getPointeeType());
}
else if (const ObjCObjectPointerType *PT =
dyn_cast<ObjCObjectPointerType>(T.getTypePtr())) {
Out << 'P';
mangleType(PT->getPointeeType());
}
// ::= R <type> # reference-to
else if (const LValueReferenceType *RT =
dyn_cast<LValueReferenceType>(T.getTypePtr())) {
Out << 'R';
mangleType(RT->getPointeeType());
}
// ::= O <type> # rvalue reference-to (C++0x)
else if (const RValueReferenceType *RT =
dyn_cast<RValueReferenceType>(T.getTypePtr())) {
Out << 'O';
mangleType(RT->getPointeeType());
}
// ::= C <type> # complex pair (C 2000)
else if (const ComplexType *CT = dyn_cast<ComplexType>(T.getTypePtr())) {
Out << 'C';
mangleType(CT->getElementType());
} else if (const VectorType *VT = dyn_cast<VectorType>(T.getTypePtr())) {
// GNU extension: vector types
Out << "U8__vector";
mangleType(VT->getElementType());
} else if (const ObjCInterfaceType *IT =
dyn_cast<ObjCInterfaceType>(T.getTypePtr())) {
mangleType(IT);
}
// FIXME: ::= G <type> # imaginary (C 2000)
// FIXME: ::= U <source-name> <type> # vendor extended type qualifier
else
assert(false && "Cannot mangle unknown type");
}
void CXXNameMangler::mangleType(const BuiltinType *T) {
// <builtin-type> ::= v # void
// ::= w # wchar_t
// ::= b # bool
// ::= c # char
// ::= a # signed char
// ::= h # unsigned char
// ::= s # short
// ::= t # unsigned short
// ::= i # int
// ::= j # unsigned int
// ::= l # long
// ::= m # unsigned long
// ::= x # long long, __int64
// ::= y # unsigned long long, __int64
// ::= n # __int128
// UNSUPPORTED: ::= o # unsigned __int128
// ::= f # float
// ::= d # double
// ::= e # long double, __float80
// UNSUPPORTED: ::= g # __float128
// UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits)
// UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits)
// UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits)
// UNSUPPORTED: ::= Dh # IEEE 754r half-precision floating point (16 bits)
// ::= Di # char32_t
// ::= Ds # char16_t
// ::= u <source-name> # vendor extended type
// From our point of view, std::nullptr_t is a builtin, but as far as mangling
// is concerned, it's a type called std::nullptr_t.
switch (T->getKind()) {
case BuiltinType::Void: Out << 'v'; break;
case BuiltinType::Bool: Out << 'b'; break;
case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
case BuiltinType::UChar: Out << 'h'; break;
case BuiltinType::UShort: Out << 't'; break;
case BuiltinType::UInt: Out << 'j'; break;
case BuiltinType::ULong: Out << 'm'; break;
case BuiltinType::ULongLong: Out << 'y'; break;
case BuiltinType::UInt128: Out << 'o'; break;
case BuiltinType::SChar: Out << 'a'; break;
case BuiltinType::WChar: Out << 'w'; break;
case BuiltinType::Char16: Out << "Ds"; break;
case BuiltinType::Char32: Out << "Di"; break;
case BuiltinType::Short: Out << 's'; break;
case BuiltinType::Int: Out << 'i'; break;
case BuiltinType::Long: Out << 'l'; break;
case BuiltinType::LongLong: Out << 'x'; break;
case BuiltinType::Int128: Out << 'n'; break;
case BuiltinType::Float: Out << 'f'; break;
case BuiltinType::Double: Out << 'd'; break;
case BuiltinType::LongDouble: Out << 'e'; break;
case BuiltinType::NullPtr: Out << "St9nullptr_t"; break;
case BuiltinType::Overload:
case BuiltinType::Dependent:
assert(false &&
"Overloaded and dependent types shouldn't get to name mangling");
break;
case BuiltinType::UndeducedAuto:
assert(0 && "Should not see undeduced auto here");
break;
case BuiltinType::ObjCId: Out << "11objc_object"; break;
case BuiltinType::ObjCClass: Out << "10objc_class"; break;
}
}
void CXXNameMangler::mangleType(const FunctionType *T) {
// <function-type> ::= F [Y] <bare-function-type> E
Out << 'F';
// FIXME: We don't have enough information in the AST to produce the 'Y'
// encoding for extern "C" function types.
mangleBareFunctionType(T, /*MangleReturnType=*/true);
Out << 'E';
}
void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
bool MangleReturnType) {
// <bare-function-type> ::= <signature type>+
if (MangleReturnType)
mangleType(T->getResultType());
const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(T);
assert(Proto && "Can't mangle K&R function prototypes");
if (Proto->getNumArgs() == 0) {
Out << 'v';
return;
}
for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
ArgEnd = Proto->arg_type_end();
Arg != ArgEnd; ++Arg)
mangleType(*Arg);
// <builtin-type> ::= z # ellipsis
if (Proto->isVariadic())
Out << 'z';
}
void CXXNameMangler::mangleType(const TagType *T) {
// <class-enum-type> ::= <name>
if (!T->getDecl()->getIdentifier())
mangleName(T->getDecl()->getTypedefForAnonDecl());
else
mangleName(T->getDecl());
// If this is a class template specialization, mangle the template
// arguments.
if (ClassTemplateSpecializationDecl *Spec
= dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl()))
mangleTemplateArgumentList(Spec->getTemplateArgs());
}
void CXXNameMangler::mangleType(const ArrayType *T) {
// <array-type> ::= A <positive dimension number> _ <element type>
// ::= A [<dimension expression>] _ <element type>
Out << 'A';
if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T))
Out << CAT->getSize();
else if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(T))
mangleExpression(VAT->getSizeExpr());
else if (const DependentSizedArrayType *DSAT
= dyn_cast<DependentSizedArrayType>(T))
mangleExpression(DSAT->getSizeExpr());
Out << '_';
mangleType(T->getElementType());
}
void CXXNameMangler::mangleType(const MemberPointerType *T) {
// <pointer-to-member-type> ::= M <class type> <member type>
Out << 'M';
mangleType(QualType(T->getClass(), 0));
QualType PointeeType = T->getPointeeType();
if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
mangleCVQualifiers(FPT->getTypeQuals());
mangleType(FPT);
} else
mangleType(PointeeType);
}
void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
// <template-param> ::= T_ # first template parameter
// ::= T <parameter-2 non-negative number> _
if (T->getIndex() == 0)
Out << "T_";
else
Out << 'T' << (T->getIndex() - 1) << '_';
}
void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
mangleSourceName(T->getDecl()->getIdentifier());
}
void CXXNameMangler::mangleExpression(Expr *E) {
assert(false && "Cannot mangle expressions yet");
}
void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
// <ctor-dtor-name> ::= C1 # complete object constructor
// ::= C2 # base object constructor
// ::= C3 # complete object allocating constructor
//
switch (T) {
case Ctor_Complete:
Out << "C1";
break;
case Ctor_Base:
Out << "C2";
break;
case Ctor_CompleteAllocating:
Out << "C3";
break;
}
}
void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
// <ctor-dtor-name> ::= D0 # deleting destructor
// ::= D1 # complete object destructor
// ::= D2 # base object destructor
//
switch (T) {
case Dtor_Deleting:
Out << "D0";
break;
case Dtor_Complete:
Out << "D1";
break;
case Dtor_Base:
Out << "D2";
break;
}
}
void CXXNameMangler::mangleTemplateArgumentList(const TemplateArgumentList &L) {
// <template-args> ::= I <template-arg>+ E
Out << "I";
for (unsigned i = 0, e = L.size(); i != e; ++i) {
const TemplateArgument &A = L[i];
mangleTemplateArgument(A);
}
Out << "E";
}
void CXXNameMangler::mangleTemplateArgument(const TemplateArgument &A) {
// <template-arg> ::= <type> # type or template
// ::= X <expression> E # expression
// ::= <expr-primary> # simple expressions
// ::= I <template-arg>* E # argument pack
// ::= sp <expression> # pack expansion of (C++0x)
switch (A.getKind()) {
default:
assert(0 && "Unknown template argument kind!");
case TemplateArgument::Type:
mangleType(A.getAsType());
break;
case TemplateArgument::Integral:
// <expr-primary> ::= L <type> <value number> E # integer literal
Out << 'L';
mangleType(A.getIntegralType());
const llvm::APSInt *Integral = A.getAsIntegral();
if (A.getIntegralType()->isBooleanType()) {
// Boolean values are encoded as 0/1.
Out << (Integral->getBoolValue() ? '1' : '0');
} else {
if (Integral->isNegative())
Out << 'n';
Integral->abs().print(Out, false);
}
Out << 'E';
break;
}
}
namespace clang {
/// \brief Mangles the name of the declaration D and emits that name
/// to the given output stream.
///
/// If the declaration D requires a mangled name, this routine will
/// emit that mangled name to \p os and return true. Otherwise, \p
/// os will be unchanged and this routine will return false. In this
/// case, the caller should just emit the identifier of the declaration
/// (\c D->getIdentifier()) as its name.
bool mangleName(const NamedDecl *D, ASTContext &Context,
llvm::raw_ostream &os) {
assert(!isa<CXXConstructorDecl>(D) &&
"Use mangleCXXCtor for constructor decls!");
assert(!isa<CXXDestructorDecl>(D) &&
"Use mangleCXXDtor for destructor decls!");
CXXNameMangler Mangler(Context, os);
if (!Mangler.mangle(D))
return false;
os.flush();
return true;
}
/// mangleGuardVariable - Returns the mangled name for a guard variable
/// for the passed in VarDecl.
void mangleGuardVariable(const VarDecl *D, ASTContext &Context,
llvm::raw_ostream &os) {
CXXNameMangler Mangler(Context, os);
Mangler.mangleGuardVariable(D);
os.flush();
}
void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
ASTContext &Context, llvm::raw_ostream &os) {
CXXNameMangler Mangler(Context, os);
Mangler.mangleCXXCtor(D, Type);
os.flush();
}
void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
ASTContext &Context, llvm::raw_ostream &os) {
CXXNameMangler Mangler(Context, os);
Mangler.mangleCXXDtor(D, Type);
os.flush();
}
}