llvm-project/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCTargetDesc.cpp

624 lines
21 KiB
C++

//===-- HexagonMCTargetDesc.cpp - Hexagon Target Descriptions -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file provides Hexagon specific target descriptions.
//
//===----------------------------------------------------------------------===//
#include "HexagonArch.h"
#include "HexagonTargetStreamer.h"
#include "MCTargetDesc/HexagonInstPrinter.h"
#include "MCTargetDesc/HexagonMCAsmInfo.h"
#include "MCTargetDesc/HexagonMCELFStreamer.h"
#include "MCTargetDesc/HexagonMCInstrInfo.h"
#include "MCTargetDesc/HexagonMCTargetDesc.h"
#include "TargetInfo/HexagonTargetInfo.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDwarf.h"
#include "llvm/MC/MCELFStreamer.h"
#include "llvm/MC/MCInstrAnalysis.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <mutex>
#include <new>
#include <string>
#include <unordered_map>
using namespace llvm;
#define GET_INSTRINFO_MC_DESC
#include "HexagonGenInstrInfo.inc"
#define GET_SUBTARGETINFO_MC_DESC
#include "HexagonGenSubtargetInfo.inc"
#define GET_REGINFO_MC_DESC
#include "HexagonGenRegisterInfo.inc"
cl::opt<bool> llvm::HexagonDisableCompound
("mno-compound",
cl::desc("Disable looking for compound instructions for Hexagon"));
cl::opt<bool> llvm::HexagonDisableDuplex
("mno-pairing",
cl::desc("Disable looking for duplex instructions for Hexagon"));
namespace { // These flags are to be deprecated
cl::opt<bool> MV5("mv5", cl::Hidden, cl::desc("Build for Hexagon V5"),
cl::init(false));
cl::opt<bool> MV55("mv55", cl::Hidden, cl::desc("Build for Hexagon V55"),
cl::init(false));
cl::opt<bool> MV60("mv60", cl::Hidden, cl::desc("Build for Hexagon V60"),
cl::init(false));
cl::opt<bool> MV62("mv62", cl::Hidden, cl::desc("Build for Hexagon V62"),
cl::init(false));
cl::opt<bool> MV65("mv65", cl::Hidden, cl::desc("Build for Hexagon V65"),
cl::init(false));
cl::opt<bool> MV66("mv66", cl::Hidden, cl::desc("Build for Hexagon V66"),
cl::init(false));
cl::opt<bool> MV67("mv67", cl::Hidden, cl::desc("Build for Hexagon V67"),
cl::init(false));
cl::opt<bool> MV67T("mv67t", cl::Hidden, cl::desc("Build for Hexagon V67T"),
cl::init(false));
cl::opt<Hexagon::ArchEnum>
EnableHVX("mhvx",
cl::desc("Enable Hexagon Vector eXtensions"),
cl::values(
clEnumValN(Hexagon::ArchEnum::V60, "v60", "Build for HVX v60"),
clEnumValN(Hexagon::ArchEnum::V62, "v62", "Build for HVX v62"),
clEnumValN(Hexagon::ArchEnum::V65, "v65", "Build for HVX v65"),
clEnumValN(Hexagon::ArchEnum::V66, "v66", "Build for HVX v66"),
clEnumValN(Hexagon::ArchEnum::V67, "v67", "Build for HVX v67"),
// Sentinel for no value specified.
clEnumValN(Hexagon::ArchEnum::Generic, "", "")),
// Sentinel for flag not present.
cl::init(Hexagon::ArchEnum::NoArch), cl::ValueOptional);
} // namespace
static cl::opt<bool>
DisableHVX("mno-hvx", cl::Hidden,
cl::desc("Disable Hexagon Vector eXtensions"));
static StringRef DefaultArch = "hexagonv60";
static StringRef HexagonGetArchVariant() {
if (MV5)
return "hexagonv5";
if (MV55)
return "hexagonv55";
if (MV60)
return "hexagonv60";
if (MV62)
return "hexagonv62";
if (MV65)
return "hexagonv65";
if (MV66)
return "hexagonv66";
if (MV67)
return "hexagonv67";
if (MV67T)
return "hexagonv67t";
return "";
}
StringRef Hexagon_MC::selectHexagonCPU(StringRef CPU) {
StringRef ArchV = HexagonGetArchVariant();
if (!ArchV.empty() && !CPU.empty()) {
// Tiny cores have a "t" suffix that is discarded when creating a secondary
// non-tiny subtarget. See: addArchSubtarget
std::pair<StringRef,StringRef> ArchP = ArchV.split('t');
std::pair<StringRef,StringRef> CPUP = CPU.split('t');
if (!ArchP.first.equals(CPUP.first))
report_fatal_error("conflicting architectures specified.");
return CPU;
}
if (ArchV.empty()) {
if (CPU.empty())
CPU = DefaultArch;
return CPU;
}
return ArchV;
}
unsigned llvm::HexagonGetLastSlot() { return HexagonItinerariesV5FU::SLOT3; }
unsigned llvm::HexagonConvertUnits(unsigned ItinUnits, unsigned *Lanes) {
enum {
CVI_NONE = 0,
CVI_XLANE = 1 << 0,
CVI_SHIFT = 1 << 1,
CVI_MPY0 = 1 << 2,
CVI_MPY1 = 1 << 3,
CVI_ZW = 1 << 4
};
if (ItinUnits == HexagonItinerariesV62FU::CVI_ALL ||
ItinUnits == HexagonItinerariesV62FU::CVI_ALL_NOMEM)
return (*Lanes = 4, CVI_XLANE);
else if (ItinUnits & HexagonItinerariesV62FU::CVI_MPY01 &&
ItinUnits & HexagonItinerariesV62FU::CVI_XLSHF)
return (*Lanes = 2, CVI_XLANE | CVI_MPY0);
else if (ItinUnits & HexagonItinerariesV62FU::CVI_MPY01)
return (*Lanes = 2, CVI_MPY0);
else if (ItinUnits & HexagonItinerariesV62FU::CVI_XLSHF)
return (*Lanes = 2, CVI_XLANE);
else if (ItinUnits & HexagonItinerariesV62FU::CVI_XLANE &&
ItinUnits & HexagonItinerariesV62FU::CVI_SHIFT &&
ItinUnits & HexagonItinerariesV62FU::CVI_MPY0 &&
ItinUnits & HexagonItinerariesV62FU::CVI_MPY1)
return (*Lanes = 1, CVI_XLANE | CVI_SHIFT | CVI_MPY0 | CVI_MPY1);
else if (ItinUnits & HexagonItinerariesV62FU::CVI_XLANE &&
ItinUnits & HexagonItinerariesV62FU::CVI_SHIFT)
return (*Lanes = 1, CVI_XLANE | CVI_SHIFT);
else if (ItinUnits & HexagonItinerariesV62FU::CVI_MPY0 &&
ItinUnits & HexagonItinerariesV62FU::CVI_MPY1)
return (*Lanes = 1, CVI_MPY0 | CVI_MPY1);
else if (ItinUnits == HexagonItinerariesV62FU::CVI_ZW)
return (*Lanes = 1, CVI_ZW);
else if (ItinUnits == HexagonItinerariesV62FU::CVI_XLANE)
return (*Lanes = 1, CVI_XLANE);
else if (ItinUnits == HexagonItinerariesV62FU::CVI_SHIFT)
return (*Lanes = 1, CVI_SHIFT);
return (*Lanes = 0, CVI_NONE);
}
namespace llvm {
namespace HexagonFUnits {
bool isSlot0Only(unsigned units) {
return HexagonItinerariesV62FU::SLOT0 == units;
}
} // namespace HexagonFUnits
} // namespace llvm
namespace {
class HexagonTargetAsmStreamer : public HexagonTargetStreamer {
public:
HexagonTargetAsmStreamer(MCStreamer &S,
formatted_raw_ostream &OS,
bool isVerboseAsm,
MCInstPrinter &IP)
: HexagonTargetStreamer(S) {}
void prettyPrintAsm(MCInstPrinter &InstPrinter, uint64_t Address,
const MCInst &Inst, const MCSubtargetInfo &STI,
raw_ostream &OS) override {
assert(HexagonMCInstrInfo::isBundle(Inst));
assert(HexagonMCInstrInfo::bundleSize(Inst) <= HEXAGON_PACKET_SIZE);
std::string Buffer;
{
raw_string_ostream TempStream(Buffer);
InstPrinter.printInst(&Inst, Address, "", STI, TempStream);
}
StringRef Contents(Buffer);
auto PacketBundle = Contents.rsplit('\n');
auto HeadTail = PacketBundle.first.split('\n');
StringRef Separator = "\n";
StringRef Indent = "\t";
OS << "\t{\n";
while (!HeadTail.first.empty()) {
StringRef InstTxt;
auto Duplex = HeadTail.first.split('\v');
if (!Duplex.second.empty()) {
OS << Indent << Duplex.first << Separator;
InstTxt = Duplex.second;
} else if (!HeadTail.first.trim().startswith("immext")) {
InstTxt = Duplex.first;
}
if (!InstTxt.empty())
OS << Indent << InstTxt << Separator;
HeadTail = HeadTail.second.split('\n');
}
if (HexagonMCInstrInfo::isMemReorderDisabled(Inst))
OS << "\n\t} :mem_noshuf" << PacketBundle.second;
else
OS << "\t}" << PacketBundle.second;
}
};
class HexagonTargetELFStreamer : public HexagonTargetStreamer {
public:
MCELFStreamer &getStreamer() {
return static_cast<MCELFStreamer &>(Streamer);
}
HexagonTargetELFStreamer(MCStreamer &S, MCSubtargetInfo const &STI)
: HexagonTargetStreamer(S) {
MCAssembler &MCA = getStreamer().getAssembler();
MCA.setELFHeaderEFlags(Hexagon_MC::GetELFFlags(STI));
}
void emitCommonSymbolSorted(MCSymbol *Symbol, uint64_t Size,
unsigned ByteAlignment,
unsigned AccessSize) override {
HexagonMCELFStreamer &HexagonELFStreamer =
static_cast<HexagonMCELFStreamer &>(getStreamer());
HexagonELFStreamer.HexagonMCEmitCommonSymbol(Symbol, Size, ByteAlignment,
AccessSize);
}
void emitLocalCommonSymbolSorted(MCSymbol *Symbol, uint64_t Size,
unsigned ByteAlignment,
unsigned AccessSize) override {
HexagonMCELFStreamer &HexagonELFStreamer =
static_cast<HexagonMCELFStreamer &>(getStreamer());
HexagonELFStreamer.HexagonMCEmitLocalCommonSymbol(
Symbol, Size, ByteAlignment, AccessSize);
}
};
} // end anonymous namespace
llvm::MCInstrInfo *llvm::createHexagonMCInstrInfo() {
MCInstrInfo *X = new MCInstrInfo();
InitHexagonMCInstrInfo(X);
return X;
}
static MCRegisterInfo *createHexagonMCRegisterInfo(const Triple &TT) {
MCRegisterInfo *X = new MCRegisterInfo();
InitHexagonMCRegisterInfo(X, Hexagon::R31);
return X;
}
static MCAsmInfo *createHexagonMCAsmInfo(const MCRegisterInfo &MRI,
const Triple &TT,
const MCTargetOptions &Options) {
MCAsmInfo *MAI = new HexagonMCAsmInfo(TT);
// VirtualFP = (R30 + #0).
MCCFIInstruction Inst = MCCFIInstruction::cfiDefCfa(
nullptr, MRI.getDwarfRegNum(Hexagon::R30, true), 0);
MAI->addInitialFrameState(Inst);
return MAI;
}
static MCInstPrinter *createHexagonMCInstPrinter(const Triple &T,
unsigned SyntaxVariant,
const MCAsmInfo &MAI,
const MCInstrInfo &MII,
const MCRegisterInfo &MRI)
{
if (SyntaxVariant == 0)
return new HexagonInstPrinter(MAI, MII, MRI);
else
return nullptr;
}
static MCTargetStreamer *
createMCAsmTargetStreamer(MCStreamer &S, formatted_raw_ostream &OS,
MCInstPrinter *IP, bool IsVerboseAsm) {
return new HexagonTargetAsmStreamer(S, OS, IsVerboseAsm, *IP);
}
static MCStreamer *createMCStreamer(Triple const &T, MCContext &Context,
std::unique_ptr<MCAsmBackend> &&MAB,
std::unique_ptr<MCObjectWriter> &&OW,
std::unique_ptr<MCCodeEmitter> &&Emitter,
bool RelaxAll) {
return createHexagonELFStreamer(T, Context, std::move(MAB), std::move(OW),
std::move(Emitter));
}
static MCTargetStreamer *
createHexagonObjectTargetStreamer(MCStreamer &S, const MCSubtargetInfo &STI) {
return new HexagonTargetELFStreamer(S, STI);
}
static void LLVM_ATTRIBUTE_UNUSED clearFeature(MCSubtargetInfo* STI, uint64_t F) {
if (STI->getFeatureBits()[F])
STI->ToggleFeature(F);
}
static bool LLVM_ATTRIBUTE_UNUSED checkFeature(MCSubtargetInfo* STI, uint64_t F) {
return STI->getFeatureBits()[F];
}
namespace {
std::string selectHexagonFS(StringRef CPU, StringRef FS) {
SmallVector<StringRef, 3> Result;
if (!FS.empty())
Result.push_back(FS);
switch (EnableHVX) {
case Hexagon::ArchEnum::V5:
case Hexagon::ArchEnum::V55:
break;
case Hexagon::ArchEnum::V60:
Result.push_back("+hvxv60");
break;
case Hexagon::ArchEnum::V62:
Result.push_back("+hvxv62");
break;
case Hexagon::ArchEnum::V65:
Result.push_back("+hvxv65");
break;
case Hexagon::ArchEnum::V66:
Result.push_back("+hvxv66");
break;
case Hexagon::ArchEnum::V67:
Result.push_back("+hvxv67");
break;
case Hexagon::ArchEnum::Generic:{
Result.push_back(StringSwitch<StringRef>(CPU)
.Case("hexagonv60", "+hvxv60")
.Case("hexagonv62", "+hvxv62")
.Case("hexagonv65", "+hvxv65")
.Case("hexagonv66", "+hvxv66")
.Case("hexagonv67", "+hvxv67")
.Case("hexagonv67t", "+hvxv67"));
break;
}
case Hexagon::ArchEnum::NoArch:
// Sentinel if -mhvx isn't specified
break;
}
return join(Result.begin(), Result.end(), ",");
}
}
static bool isCPUValid(const std::string &CPU) {
return Hexagon::CpuTable.find(CPU) != Hexagon::CpuTable.cend();
}
namespace {
std::pair<std::string, std::string> selectCPUAndFS(StringRef CPU,
StringRef FS) {
std::pair<std::string, std::string> Result;
Result.first = std::string(Hexagon_MC::selectHexagonCPU(CPU));
Result.second = selectHexagonFS(Result.first, FS);
return Result;
}
std::mutex ArchSubtargetMutex;
std::unordered_map<std::string, std::unique_ptr<MCSubtargetInfo const>>
ArchSubtarget;
} // namespace
MCSubtargetInfo const *
Hexagon_MC::getArchSubtarget(MCSubtargetInfo const *STI) {
std::lock_guard<std::mutex> Lock(ArchSubtargetMutex);
auto Existing = ArchSubtarget.find(std::string(STI->getCPU()));
if (Existing == ArchSubtarget.end())
return nullptr;
return Existing->second.get();
}
FeatureBitset Hexagon_MC::completeHVXFeatures(const FeatureBitset &S) {
using namespace Hexagon;
// Make sure that +hvx-length turns hvx on, and that "hvx" alone
// turns on hvxvNN, corresponding to the existing ArchVNN.
FeatureBitset FB = S;
unsigned CpuArch = ArchV5;
for (unsigned F : {ArchV67, ArchV66, ArchV65, ArchV62, ArchV60, ArchV55,
ArchV5}) {
if (!FB.test(F))
continue;
CpuArch = F;
break;
}
bool UseHvx = false;
for (unsigned F : {ExtensionHVX, ExtensionHVX64B, ExtensionHVX128B}) {
if (!FB.test(F))
continue;
UseHvx = true;
break;
}
bool HasHvxVer = false;
for (unsigned F : {ExtensionHVXV60, ExtensionHVXV62, ExtensionHVXV65,
ExtensionHVXV66, ExtensionHVXV67}) {
if (!FB.test(F))
continue;
HasHvxVer = true;
UseHvx = true;
break;
}
if (!UseHvx || HasHvxVer)
return FB;
// HasHvxVer is false, and UseHvx is true.
switch (CpuArch) {
case ArchV67:
FB.set(ExtensionHVXV67);
LLVM_FALLTHROUGH;
case ArchV66:
FB.set(ExtensionHVXV66);
LLVM_FALLTHROUGH;
case ArchV65:
FB.set(ExtensionHVXV65);
LLVM_FALLTHROUGH;
case ArchV62:
FB.set(ExtensionHVXV62);
LLVM_FALLTHROUGH;
case ArchV60:
FB.set(ExtensionHVXV60);
break;
}
return FB;
}
MCSubtargetInfo *Hexagon_MC::createHexagonMCSubtargetInfo(const Triple &TT,
StringRef CPU,
StringRef FS) {
std::pair<std::string, std::string> Features = selectCPUAndFS(CPU, FS);
StringRef CPUName = Features.first;
StringRef ArchFS = Features.second;
MCSubtargetInfo *X = createHexagonMCSubtargetInfoImpl(
TT, CPUName, /*TuneCPU*/ CPUName, ArchFS);
if (X != nullptr && (CPUName == "hexagonv67t"))
addArchSubtarget(X, ArchFS);
if (CPU.equals("help"))
exit(0);
if (!isCPUValid(CPUName.str())) {
errs() << "error: invalid CPU \"" << CPUName.str().c_str()
<< "\" specified\n";
return nullptr;
}
if (HexagonDisableDuplex) {
llvm::FeatureBitset Features = X->getFeatureBits();
X->setFeatureBits(Features.reset(Hexagon::FeatureDuplex));
}
X->setFeatureBits(completeHVXFeatures(X->getFeatureBits()));
// The Z-buffer instructions are grandfathered in for current
// architectures but omitted for new ones. Future instruction
// sets may introduce new/conflicting z-buffer instructions.
const bool ZRegOnDefault =
(CPUName == "hexagonv67") || (CPUName == "hexagonv66");
if (ZRegOnDefault) {
llvm::FeatureBitset Features = X->getFeatureBits();
X->setFeatureBits(Features.set(Hexagon::ExtensionZReg));
}
return X;
}
void Hexagon_MC::addArchSubtarget(MCSubtargetInfo const *STI,
StringRef FS) {
assert(STI != nullptr);
if (STI->getCPU().contains("t")) {
auto ArchSTI = createHexagonMCSubtargetInfo(
STI->getTargetTriple(),
STI->getCPU().substr(0, STI->getCPU().size() - 1), FS);
std::lock_guard<std::mutex> Lock(ArchSubtargetMutex);
ArchSubtarget[std::string(STI->getCPU())] =
std::unique_ptr<MCSubtargetInfo const>(ArchSTI);
}
}
unsigned Hexagon_MC::GetELFFlags(const MCSubtargetInfo &STI) {
static std::map<StringRef,unsigned> ElfFlags = {
{"hexagonv5", ELF::EF_HEXAGON_MACH_V5},
{"hexagonv55", ELF::EF_HEXAGON_MACH_V55},
{"hexagonv60", ELF::EF_HEXAGON_MACH_V60},
{"hexagonv62", ELF::EF_HEXAGON_MACH_V62},
{"hexagonv65", ELF::EF_HEXAGON_MACH_V65},
{"hexagonv66", ELF::EF_HEXAGON_MACH_V66},
{"hexagonv67", ELF::EF_HEXAGON_MACH_V67},
{"hexagonv67t", ELF::EF_HEXAGON_MACH_V67T},
};
auto F = ElfFlags.find(STI.getCPU());
assert(F != ElfFlags.end() && "Unrecognized Architecture");
return F->second;
}
llvm::ArrayRef<MCPhysReg> Hexagon_MC::GetVectRegRev() {
return makeArrayRef(VectRegRev);
}
namespace {
class HexagonMCInstrAnalysis : public MCInstrAnalysis {
public:
HexagonMCInstrAnalysis(MCInstrInfo const *Info) : MCInstrAnalysis(Info) {}
bool isUnconditionalBranch(MCInst const &Inst) const override {
//assert(!HexagonMCInstrInfo::isBundle(Inst));
return MCInstrAnalysis::isUnconditionalBranch(Inst);
}
bool isConditionalBranch(MCInst const &Inst) const override {
//assert(!HexagonMCInstrInfo::isBundle(Inst));
return MCInstrAnalysis::isConditionalBranch(Inst);
}
bool evaluateBranch(MCInst const &Inst, uint64_t Addr,
uint64_t Size, uint64_t &Target) const override {
if (!(isCall(Inst) || isUnconditionalBranch(Inst) ||
isConditionalBranch(Inst)))
return false;
//assert(!HexagonMCInstrInfo::isBundle(Inst));
if(!HexagonMCInstrInfo::isExtendable(*Info, Inst))
return false;
auto const &Extended(HexagonMCInstrInfo::getExtendableOperand(*Info, Inst));
assert(Extended.isExpr());
int64_t Value;
if(!Extended.getExpr()->evaluateAsAbsolute(Value))
return false;
Target = Value;
return true;
}
};
}
static MCInstrAnalysis *createHexagonMCInstrAnalysis(const MCInstrInfo *Info) {
return new HexagonMCInstrAnalysis(Info);
}
// Force static initialization.
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeHexagonTargetMC() {
// Register the MC asm info.
RegisterMCAsmInfoFn X(getTheHexagonTarget(), createHexagonMCAsmInfo);
// Register the MC instruction info.
TargetRegistry::RegisterMCInstrInfo(getTheHexagonTarget(),
createHexagonMCInstrInfo);
// Register the MC register info.
TargetRegistry::RegisterMCRegInfo(getTheHexagonTarget(),
createHexagonMCRegisterInfo);
// Register the MC subtarget info.
TargetRegistry::RegisterMCSubtargetInfo(getTheHexagonTarget(),
Hexagon_MC::createHexagonMCSubtargetInfo);
// Register the MC Code Emitter
TargetRegistry::RegisterMCCodeEmitter(getTheHexagonTarget(),
createHexagonMCCodeEmitter);
// Register the asm backend
TargetRegistry::RegisterMCAsmBackend(getTheHexagonTarget(),
createHexagonAsmBackend);
// Register the MC instruction analyzer.
TargetRegistry::RegisterMCInstrAnalysis(getTheHexagonTarget(),
createHexagonMCInstrAnalysis);
// Register the obj streamer
TargetRegistry::RegisterELFStreamer(getTheHexagonTarget(),
createMCStreamer);
// Register the obj target streamer
TargetRegistry::RegisterObjectTargetStreamer(getTheHexagonTarget(),
createHexagonObjectTargetStreamer);
// Register the asm streamer
TargetRegistry::RegisterAsmTargetStreamer(getTheHexagonTarget(),
createMCAsmTargetStreamer);
// Register the MC Inst Printer
TargetRegistry::RegisterMCInstPrinter(getTheHexagonTarget(),
createHexagonMCInstPrinter);
}