forked from OSchip/llvm-project
1726 lines
66 KiB
C++
1726 lines
66 KiB
C++
//===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This provides C++ name mangling targeting the Microsoft Visual C++ ABI.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/AST/Mangle.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/Attr.h"
|
|
#include "clang/AST/CharUnits.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/Basic/ABI.h"
|
|
#include "clang/Basic/DiagnosticOptions.h"
|
|
#include <map>
|
|
|
|
using namespace clang;
|
|
|
|
namespace {
|
|
|
|
/// MicrosoftCXXNameMangler - Manage the mangling of a single name for the
|
|
/// Microsoft Visual C++ ABI.
|
|
class MicrosoftCXXNameMangler {
|
|
MangleContext &Context;
|
|
raw_ostream &Out;
|
|
|
|
// FIXME: audit the performance of BackRefMap as it might do way too many
|
|
// copying of strings.
|
|
typedef std::map<std::string, unsigned> BackRefMap;
|
|
BackRefMap NameBackReferences;
|
|
bool UseNameBackReferences;
|
|
|
|
typedef llvm::DenseMap<void*, unsigned> ArgBackRefMap;
|
|
ArgBackRefMap TypeBackReferences;
|
|
|
|
ASTContext &getASTContext() const { return Context.getASTContext(); }
|
|
|
|
public:
|
|
MicrosoftCXXNameMangler(MangleContext &C, raw_ostream &Out_)
|
|
: Context(C), Out(Out_), UseNameBackReferences(true) { }
|
|
|
|
raw_ostream &getStream() const { return Out; }
|
|
|
|
void mangle(const NamedDecl *D, StringRef Prefix = "\01?");
|
|
void mangleName(const NamedDecl *ND);
|
|
void mangleFunctionEncoding(const FunctionDecl *FD);
|
|
void mangleVariableEncoding(const VarDecl *VD);
|
|
void mangleNumber(int64_t Number);
|
|
void mangleNumber(const llvm::APSInt &Value);
|
|
void mangleType(QualType T, SourceRange Range, bool MangleQualifiers = true);
|
|
|
|
private:
|
|
void disableBackReferences() { UseNameBackReferences = false; }
|
|
void mangleUnqualifiedName(const NamedDecl *ND) {
|
|
mangleUnqualifiedName(ND, ND->getDeclName());
|
|
}
|
|
void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name);
|
|
void mangleSourceName(const IdentifierInfo *II);
|
|
void manglePostfix(const DeclContext *DC, bool NoFunction=false);
|
|
void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc);
|
|
void mangleQualifiers(Qualifiers Quals, bool IsMember);
|
|
void manglePointerQualifiers(Qualifiers Quals);
|
|
|
|
void mangleUnscopedTemplateName(const TemplateDecl *ND);
|
|
void mangleTemplateInstantiationName(const TemplateDecl *TD,
|
|
const SmallVectorImpl<TemplateArgumentLoc> &TemplateArgs);
|
|
void mangleObjCMethodName(const ObjCMethodDecl *MD);
|
|
void mangleLocalName(const FunctionDecl *FD);
|
|
|
|
void mangleArgumentType(QualType T, SourceRange Range);
|
|
|
|
// Declare manglers for every type class.
|
|
#define ABSTRACT_TYPE(CLASS, PARENT)
|
|
#define NON_CANONICAL_TYPE(CLASS, PARENT)
|
|
#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \
|
|
SourceRange Range);
|
|
#include "clang/AST/TypeNodes.def"
|
|
#undef ABSTRACT_TYPE
|
|
#undef NON_CANONICAL_TYPE
|
|
#undef TYPE
|
|
|
|
void mangleType(const TagType*);
|
|
void mangleType(const FunctionType *T, const FunctionDecl *D,
|
|
bool IsStructor, bool IsInstMethod);
|
|
void mangleType(const ArrayType *T, bool IsGlobal);
|
|
void mangleExtraDimensions(QualType T);
|
|
void mangleFunctionClass(const FunctionDecl *FD);
|
|
void mangleCallingConvention(const FunctionType *T, bool IsInstMethod = false);
|
|
void mangleIntegerLiteral(const llvm::APSInt &Number, bool IsBoolean);
|
|
void mangleExpression(const Expr *E);
|
|
void mangleThrowSpecification(const FunctionProtoType *T);
|
|
|
|
void mangleTemplateArgs(
|
|
const SmallVectorImpl<TemplateArgumentLoc> &TemplateArgs);
|
|
|
|
};
|
|
|
|
/// MicrosoftMangleContext - Overrides the default MangleContext for the
|
|
/// Microsoft Visual C++ ABI.
|
|
class MicrosoftMangleContext : public MangleContext {
|
|
public:
|
|
MicrosoftMangleContext(ASTContext &Context,
|
|
DiagnosticsEngine &Diags) : MangleContext(Context, Diags) { }
|
|
virtual bool shouldMangleDeclName(const NamedDecl *D);
|
|
virtual void mangleName(const NamedDecl *D, raw_ostream &Out);
|
|
virtual void mangleThunk(const CXXMethodDecl *MD,
|
|
const ThunkInfo &Thunk,
|
|
raw_ostream &);
|
|
virtual void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
|
|
const ThisAdjustment &ThisAdjustment,
|
|
raw_ostream &);
|
|
virtual void mangleCXXVTable(const CXXRecordDecl *RD,
|
|
raw_ostream &);
|
|
virtual void mangleCXXVTT(const CXXRecordDecl *RD,
|
|
raw_ostream &);
|
|
virtual void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
|
|
const CXXRecordDecl *Type,
|
|
raw_ostream &);
|
|
virtual void mangleCXXRTTI(QualType T, raw_ostream &);
|
|
virtual void mangleCXXRTTIName(QualType T, raw_ostream &);
|
|
virtual void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
|
|
raw_ostream &);
|
|
virtual void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
|
|
raw_ostream &);
|
|
virtual void mangleReferenceTemporary(const clang::VarDecl *,
|
|
raw_ostream &);
|
|
};
|
|
|
|
}
|
|
|
|
static bool isInCLinkageSpecification(const Decl *D) {
|
|
D = D->getCanonicalDecl();
|
|
for (const DeclContext *DC = D->getDeclContext();
|
|
!DC->isTranslationUnit(); DC = DC->getParent()) {
|
|
if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC))
|
|
return Linkage->getLanguage() == LinkageSpecDecl::lang_c;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool MicrosoftMangleContext::shouldMangleDeclName(const NamedDecl *D) {
|
|
// In C, functions with no attributes never need to be mangled. Fastpath them.
|
|
if (!getASTContext().getLangOpts().CPlusPlus && !D->hasAttrs())
|
|
return false;
|
|
|
|
// Any decl can be declared with __asm("foo") on it, and this takes precedence
|
|
// over all other naming in the .o file.
|
|
if (D->hasAttr<AsmLabelAttr>())
|
|
return true;
|
|
|
|
// Clang's "overloadable" attribute extension to C/C++ implies name mangling
|
|
// (always) as does passing a C++ member function and a function
|
|
// whose name is not a simple identifier.
|
|
const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
|
|
if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) ||
|
|
!FD->getDeclName().isIdentifier()))
|
|
return true;
|
|
|
|
// Otherwise, no mangling is done outside C++ mode.
|
|
if (!getASTContext().getLangOpts().CPlusPlus)
|
|
return false;
|
|
|
|
// Variables at global scope with internal linkage are not mangled.
|
|
if (!FD) {
|
|
const DeclContext *DC = D->getDeclContext();
|
|
if (DC->isTranslationUnit() && D->getLinkage() == InternalLinkage)
|
|
return false;
|
|
}
|
|
|
|
// C functions and "main" are not mangled.
|
|
if ((FD && FD->isMain()) || isInCLinkageSpecification(D))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangle(const NamedDecl *D,
|
|
StringRef Prefix) {
|
|
// MSVC doesn't mangle C++ names the same way it mangles extern "C" names.
|
|
// Therefore it's really important that we don't decorate the
|
|
// name with leading underscores or leading/trailing at signs. So, by
|
|
// default, we emit an asm marker at the start so we get the name right.
|
|
// Callers can override this with a custom prefix.
|
|
|
|
// Any decl can be declared with __asm("foo") on it, and this takes precedence
|
|
// over all other naming in the .o file.
|
|
if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
|
|
// If we have an asm name, then we use it as the mangling.
|
|
Out << '\01' << ALA->getLabel();
|
|
return;
|
|
}
|
|
|
|
// <mangled-name> ::= ? <name> <type-encoding>
|
|
Out << Prefix;
|
|
mangleName(D);
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
|
|
mangleFunctionEncoding(FD);
|
|
else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
|
|
mangleVariableEncoding(VD);
|
|
else {
|
|
// TODO: Fields? Can MSVC even mangle them?
|
|
// Issue a diagnostic for now.
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this declaration yet");
|
|
Diags.Report(D->getLocation(), DiagID)
|
|
<< D->getSourceRange();
|
|
}
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
|
|
// <type-encoding> ::= <function-class> <function-type>
|
|
|
|
// Don't mangle in the type if this isn't a decl we should typically mangle.
|
|
if (!Context.shouldMangleDeclName(FD))
|
|
return;
|
|
|
|
// We should never ever see a FunctionNoProtoType at this point.
|
|
// We don't even know how to mangle their types anyway :).
|
|
const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>();
|
|
|
|
bool InStructor = false, InInstMethod = false;
|
|
const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
|
|
if (MD) {
|
|
if (MD->isInstance())
|
|
InInstMethod = true;
|
|
if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))
|
|
InStructor = true;
|
|
}
|
|
|
|
// First, the function class.
|
|
mangleFunctionClass(FD);
|
|
|
|
mangleType(FT, FD, InStructor, InInstMethod);
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) {
|
|
// <type-encoding> ::= <storage-class> <variable-type>
|
|
// <storage-class> ::= 0 # private static member
|
|
// ::= 1 # protected static member
|
|
// ::= 2 # public static member
|
|
// ::= 3 # global
|
|
// ::= 4 # static local
|
|
|
|
// The first character in the encoding (after the name) is the storage class.
|
|
if (VD->isStaticDataMember()) {
|
|
// If it's a static member, it also encodes the access level.
|
|
switch (VD->getAccess()) {
|
|
default:
|
|
case AS_private: Out << '0'; break;
|
|
case AS_protected: Out << '1'; break;
|
|
case AS_public: Out << '2'; break;
|
|
}
|
|
}
|
|
else if (!VD->isStaticLocal())
|
|
Out << '3';
|
|
else
|
|
Out << '4';
|
|
// Now mangle the type.
|
|
// <variable-type> ::= <type> <cvr-qualifiers>
|
|
// ::= <type> <pointee-cvr-qualifiers> # pointers, references
|
|
// Pointers and references are odd. The type of 'int * const foo;' gets
|
|
// mangled as 'QAHA' instead of 'PAHB', for example.
|
|
TypeLoc TL = VD->getTypeSourceInfo()->getTypeLoc();
|
|
QualType Ty = TL.getType();
|
|
if (Ty->isPointerType() || Ty->isReferenceType()) {
|
|
mangleType(Ty, TL.getSourceRange());
|
|
mangleQualifiers(Ty->getPointeeType().getQualifiers(), false);
|
|
} else if (const ArrayType *AT = getASTContext().getAsArrayType(Ty)) {
|
|
// Global arrays are funny, too.
|
|
mangleType(AT, true);
|
|
mangleQualifiers(Ty.getQualifiers(), false);
|
|
} else {
|
|
mangleType(Ty.getLocalUnqualifiedType(), TL.getSourceRange());
|
|
mangleQualifiers(Ty.getLocalQualifiers(), false);
|
|
}
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleName(const NamedDecl *ND) {
|
|
// <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
|
|
const DeclContext *DC = ND->getDeclContext();
|
|
|
|
// Always start with the unqualified name.
|
|
mangleUnqualifiedName(ND);
|
|
|
|
// If this is an extern variable declared locally, the relevant DeclContext
|
|
// is that of the containing namespace, or the translation unit.
|
|
if (isa<FunctionDecl>(DC) && ND->hasLinkage())
|
|
while (!DC->isNamespace() && !DC->isTranslationUnit())
|
|
DC = DC->getParent();
|
|
|
|
manglePostfix(DC);
|
|
|
|
// Terminate the whole name with an '@'.
|
|
Out << '@';
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) {
|
|
llvm::APSInt APSNumber(/*BitWidth=*/64, /*isUnsigned=*/false);
|
|
APSNumber = Number;
|
|
mangleNumber(APSNumber);
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
|
|
// <number> ::= [?] <decimal digit> # 1 <= Number <= 10
|
|
// ::= [?] <hex digit>+ @ # 0 or > 9; A = 0, B = 1, etc...
|
|
// ::= [?] @ # 0 (alternate mangling, not emitted by VC)
|
|
if (Value.isSigned() && Value.isNegative()) {
|
|
Out << '?';
|
|
mangleNumber(llvm::APSInt(Value.abs()));
|
|
return;
|
|
}
|
|
llvm::APSInt Temp(Value);
|
|
// There's a special shorter mangling for 0, but Microsoft
|
|
// chose not to use it. Instead, 0 gets mangled as "A@". Oh well...
|
|
if (Value.uge(1) && Value.ule(10)) {
|
|
--Temp;
|
|
Temp.print(Out, false);
|
|
} else {
|
|
// We have to build up the encoding in reverse order, so it will come
|
|
// out right when we write it out.
|
|
char Encoding[64];
|
|
char *EndPtr = Encoding+sizeof(Encoding);
|
|
char *CurPtr = EndPtr;
|
|
llvm::APSInt NibbleMask(Value.getBitWidth(), Value.isUnsigned());
|
|
NibbleMask = 0xf;
|
|
do {
|
|
*--CurPtr = 'A' + Temp.And(NibbleMask).getLimitedValue(0xf);
|
|
Temp = Temp.lshr(4);
|
|
} while (Temp != 0);
|
|
Out.write(CurPtr, EndPtr-CurPtr);
|
|
Out << '@';
|
|
}
|
|
}
|
|
|
|
static const TemplateDecl *
|
|
isTemplate(const NamedDecl *ND,
|
|
SmallVectorImpl<TemplateArgumentLoc> &TemplateArgs) {
|
|
// Check if we have a function template.
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
|
|
if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
|
|
if (FD->getTemplateSpecializationArgsAsWritten()) {
|
|
const ASTTemplateArgumentListInfo *ArgList =
|
|
FD->getTemplateSpecializationArgsAsWritten();
|
|
TemplateArgs.append(ArgList->getTemplateArgs(),
|
|
ArgList->getTemplateArgs() +
|
|
ArgList->NumTemplateArgs);
|
|
} else {
|
|
const TemplateArgumentList *ArgList =
|
|
FD->getTemplateSpecializationArgs();
|
|
TemplateArgumentListInfo LI;
|
|
for (unsigned i = 0, e = ArgList->size(); i != e; ++i)
|
|
TemplateArgs.push_back(TemplateArgumentLoc(ArgList->get(i),
|
|
FD->getTypeSourceInfo()));
|
|
}
|
|
return TD;
|
|
}
|
|
}
|
|
|
|
// Check if we have a class template.
|
|
if (const ClassTemplateSpecializationDecl *Spec =
|
|
dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
|
|
TypeSourceInfo *TSI = Spec->getTypeAsWritten();
|
|
if (TSI) {
|
|
TemplateSpecializationTypeLoc TSTL =
|
|
cast<TemplateSpecializationTypeLoc>(TSI->getTypeLoc());
|
|
TemplateArgumentListInfo LI(TSTL.getLAngleLoc(), TSTL.getRAngleLoc());
|
|
for (unsigned i = 0, e = TSTL.getNumArgs(); i != e; ++i)
|
|
TemplateArgs.push_back(TSTL.getArgLoc(i));
|
|
} else {
|
|
TemplateArgumentListInfo LI;
|
|
const TemplateArgumentList &ArgList =
|
|
Spec->getTemplateArgs();
|
|
for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
|
|
TemplateArgs.push_back(TemplateArgumentLoc(ArgList[i],
|
|
TemplateArgumentLocInfo()));
|
|
}
|
|
return Spec->getSpecializedTemplate();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
MicrosoftCXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
|
|
DeclarationName Name) {
|
|
// <unqualified-name> ::= <operator-name>
|
|
// ::= <ctor-dtor-name>
|
|
// ::= <source-name>
|
|
// ::= <template-name>
|
|
SmallVector<TemplateArgumentLoc, 2> TemplateArgs;
|
|
// Check if we have a template.
|
|
if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
|
|
// We have a template.
|
|
// Here comes the tricky thing: if we need to mangle something like
|
|
// void foo(A::X<Y>, B::X<Y>),
|
|
// the X<Y> part is aliased. However, if you need to mangle
|
|
// void foo(A::X<A::Y>, A::X<B::Y>),
|
|
// the A::X<> part is not aliased.
|
|
// That said, from the mangler's perspective we have a structure like this:
|
|
// namespace[s] -> type[ -> template-parameters]
|
|
// but from the Clang perspective we have
|
|
// type [ -> template-parameters]
|
|
// \-> namespace[s]
|
|
// What we do is we create a new mangler, mangle the same type (without
|
|
// a namespace suffix) using the extra mangler with back references
|
|
// disabled (to avoid infinite recursion) and then use the mangled type
|
|
// name as a key to check the mangling of different types for aliasing.
|
|
|
|
std::string BackReferenceKey;
|
|
BackRefMap::iterator Found;
|
|
if (UseNameBackReferences) {
|
|
llvm::raw_string_ostream Stream(BackReferenceKey);
|
|
MicrosoftCXXNameMangler Extra(Context, Stream);
|
|
Extra.disableBackReferences();
|
|
Extra.mangleUnqualifiedName(ND, Name);
|
|
Stream.flush();
|
|
|
|
Found = NameBackReferences.find(BackReferenceKey);
|
|
}
|
|
if (!UseNameBackReferences || Found == NameBackReferences.end()) {
|
|
mangleTemplateInstantiationName(TD, TemplateArgs);
|
|
if (UseNameBackReferences && NameBackReferences.size() < 10) {
|
|
size_t Size = NameBackReferences.size();
|
|
NameBackReferences[BackReferenceKey] = Size;
|
|
}
|
|
} else {
|
|
Out << Found->second;
|
|
}
|
|
return;
|
|
}
|
|
|
|
switch (Name.getNameKind()) {
|
|
case DeclarationName::Identifier: {
|
|
if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
|
|
mangleSourceName(II);
|
|
break;
|
|
}
|
|
|
|
// Otherwise, an anonymous entity. We must have a declaration.
|
|
assert(ND && "mangling empty name without declaration");
|
|
|
|
if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
|
|
if (NS->isAnonymousNamespace()) {
|
|
Out << "?A@";
|
|
break;
|
|
}
|
|
}
|
|
|
|
// We must have an anonymous struct.
|
|
const TagDecl *TD = cast<TagDecl>(ND);
|
|
if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
|
|
assert(TD->getDeclContext() == D->getDeclContext() &&
|
|
"Typedef should not be in another decl context!");
|
|
assert(D->getDeclName().getAsIdentifierInfo() &&
|
|
"Typedef was not named!");
|
|
mangleSourceName(D->getDeclName().getAsIdentifierInfo());
|
|
break;
|
|
}
|
|
|
|
// When VC encounters an anonymous type with no tag and no typedef,
|
|
// it literally emits '<unnamed-tag>'.
|
|
Out << "<unnamed-tag>";
|
|
break;
|
|
}
|
|
|
|
case DeclarationName::ObjCZeroArgSelector:
|
|
case DeclarationName::ObjCOneArgSelector:
|
|
case DeclarationName::ObjCMultiArgSelector:
|
|
llvm_unreachable("Can't mangle Objective-C selector names here!");
|
|
|
|
case DeclarationName::CXXConstructorName:
|
|
Out << "?0";
|
|
break;
|
|
|
|
case DeclarationName::CXXDestructorName:
|
|
Out << "?1";
|
|
break;
|
|
|
|
case DeclarationName::CXXConversionFunctionName:
|
|
// <operator-name> ::= ?B # (cast)
|
|
// The target type is encoded as the return type.
|
|
Out << "?B";
|
|
break;
|
|
|
|
case DeclarationName::CXXOperatorName:
|
|
mangleOperatorName(Name.getCXXOverloadedOperator(), ND->getLocation());
|
|
break;
|
|
|
|
case DeclarationName::CXXLiteralOperatorName: {
|
|
// FIXME: Was this added in VS2010? Does MS even know how to mangle this?
|
|
DiagnosticsEngine Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this literal operator yet");
|
|
Diags.Report(ND->getLocation(), DiagID);
|
|
break;
|
|
}
|
|
|
|
case DeclarationName::CXXUsingDirective:
|
|
llvm_unreachable("Can't mangle a using directive name!");
|
|
}
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::manglePostfix(const DeclContext *DC,
|
|
bool NoFunction) {
|
|
// <postfix> ::= <unqualified-name> [<postfix>]
|
|
// ::= <substitution> [<postfix>]
|
|
|
|
if (!DC) return;
|
|
|
|
while (isa<LinkageSpecDecl>(DC))
|
|
DC = DC->getParent();
|
|
|
|
if (DC->isTranslationUnit())
|
|
return;
|
|
|
|
if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
|
|
Context.mangleBlock(BD, Out);
|
|
Out << '@';
|
|
return manglePostfix(DC->getParent(), NoFunction);
|
|
}
|
|
|
|
if (NoFunction && (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)))
|
|
return;
|
|
else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC))
|
|
mangleObjCMethodName(Method);
|
|
else if (const FunctionDecl *Func = dyn_cast<FunctionDecl>(DC))
|
|
mangleLocalName(Func);
|
|
else {
|
|
mangleUnqualifiedName(cast<NamedDecl>(DC));
|
|
manglePostfix(DC->getParent(), NoFunction);
|
|
}
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO,
|
|
SourceLocation Loc) {
|
|
switch (OO) {
|
|
// ?0 # constructor
|
|
// ?1 # destructor
|
|
// <operator-name> ::= ?2 # new
|
|
case OO_New: Out << "?2"; break;
|
|
// <operator-name> ::= ?3 # delete
|
|
case OO_Delete: Out << "?3"; break;
|
|
// <operator-name> ::= ?4 # =
|
|
case OO_Equal: Out << "?4"; break;
|
|
// <operator-name> ::= ?5 # >>
|
|
case OO_GreaterGreater: Out << "?5"; break;
|
|
// <operator-name> ::= ?6 # <<
|
|
case OO_LessLess: Out << "?6"; break;
|
|
// <operator-name> ::= ?7 # !
|
|
case OO_Exclaim: Out << "?7"; break;
|
|
// <operator-name> ::= ?8 # ==
|
|
case OO_EqualEqual: Out << "?8"; break;
|
|
// <operator-name> ::= ?9 # !=
|
|
case OO_ExclaimEqual: Out << "?9"; break;
|
|
// <operator-name> ::= ?A # []
|
|
case OO_Subscript: Out << "?A"; break;
|
|
// ?B # conversion
|
|
// <operator-name> ::= ?C # ->
|
|
case OO_Arrow: Out << "?C"; break;
|
|
// <operator-name> ::= ?D # *
|
|
case OO_Star: Out << "?D"; break;
|
|
// <operator-name> ::= ?E # ++
|
|
case OO_PlusPlus: Out << "?E"; break;
|
|
// <operator-name> ::= ?F # --
|
|
case OO_MinusMinus: Out << "?F"; break;
|
|
// <operator-name> ::= ?G # -
|
|
case OO_Minus: Out << "?G"; break;
|
|
// <operator-name> ::= ?H # +
|
|
case OO_Plus: Out << "?H"; break;
|
|
// <operator-name> ::= ?I # &
|
|
case OO_Amp: Out << "?I"; break;
|
|
// <operator-name> ::= ?J # ->*
|
|
case OO_ArrowStar: Out << "?J"; break;
|
|
// <operator-name> ::= ?K # /
|
|
case OO_Slash: Out << "?K"; break;
|
|
// <operator-name> ::= ?L # %
|
|
case OO_Percent: Out << "?L"; break;
|
|
// <operator-name> ::= ?M # <
|
|
case OO_Less: Out << "?M"; break;
|
|
// <operator-name> ::= ?N # <=
|
|
case OO_LessEqual: Out << "?N"; break;
|
|
// <operator-name> ::= ?O # >
|
|
case OO_Greater: Out << "?O"; break;
|
|
// <operator-name> ::= ?P # >=
|
|
case OO_GreaterEqual: Out << "?P"; break;
|
|
// <operator-name> ::= ?Q # ,
|
|
case OO_Comma: Out << "?Q"; break;
|
|
// <operator-name> ::= ?R # ()
|
|
case OO_Call: Out << "?R"; break;
|
|
// <operator-name> ::= ?S # ~
|
|
case OO_Tilde: Out << "?S"; break;
|
|
// <operator-name> ::= ?T # ^
|
|
case OO_Caret: Out << "?T"; break;
|
|
// <operator-name> ::= ?U # |
|
|
case OO_Pipe: Out << "?U"; break;
|
|
// <operator-name> ::= ?V # &&
|
|
case OO_AmpAmp: Out << "?V"; break;
|
|
// <operator-name> ::= ?W # ||
|
|
case OO_PipePipe: Out << "?W"; break;
|
|
// <operator-name> ::= ?X # *=
|
|
case OO_StarEqual: Out << "?X"; break;
|
|
// <operator-name> ::= ?Y # +=
|
|
case OO_PlusEqual: Out << "?Y"; break;
|
|
// <operator-name> ::= ?Z # -=
|
|
case OO_MinusEqual: Out << "?Z"; break;
|
|
// <operator-name> ::= ?_0 # /=
|
|
case OO_SlashEqual: Out << "?_0"; break;
|
|
// <operator-name> ::= ?_1 # %=
|
|
case OO_PercentEqual: Out << "?_1"; break;
|
|
// <operator-name> ::= ?_2 # >>=
|
|
case OO_GreaterGreaterEqual: Out << "?_2"; break;
|
|
// <operator-name> ::= ?_3 # <<=
|
|
case OO_LessLessEqual: Out << "?_3"; break;
|
|
// <operator-name> ::= ?_4 # &=
|
|
case OO_AmpEqual: Out << "?_4"; break;
|
|
// <operator-name> ::= ?_5 # |=
|
|
case OO_PipeEqual: Out << "?_5"; break;
|
|
// <operator-name> ::= ?_6 # ^=
|
|
case OO_CaretEqual: Out << "?_6"; break;
|
|
// ?_7 # vftable
|
|
// ?_8 # vbtable
|
|
// ?_9 # vcall
|
|
// ?_A # typeof
|
|
// ?_B # local static guard
|
|
// ?_C # string
|
|
// ?_D # vbase destructor
|
|
// ?_E # vector deleting destructor
|
|
// ?_F # default constructor closure
|
|
// ?_G # scalar deleting destructor
|
|
// ?_H # vector constructor iterator
|
|
// ?_I # vector destructor iterator
|
|
// ?_J # vector vbase constructor iterator
|
|
// ?_K # virtual displacement map
|
|
// ?_L # eh vector constructor iterator
|
|
// ?_M # eh vector destructor iterator
|
|
// ?_N # eh vector vbase constructor iterator
|
|
// ?_O # copy constructor closure
|
|
// ?_P<name> # udt returning <name>
|
|
// ?_Q # <unknown>
|
|
// ?_R0 # RTTI Type Descriptor
|
|
// ?_R1 # RTTI Base Class Descriptor at (a,b,c,d)
|
|
// ?_R2 # RTTI Base Class Array
|
|
// ?_R3 # RTTI Class Hierarchy Descriptor
|
|
// ?_R4 # RTTI Complete Object Locator
|
|
// ?_S # local vftable
|
|
// ?_T # local vftable constructor closure
|
|
// <operator-name> ::= ?_U # new[]
|
|
case OO_Array_New: Out << "?_U"; break;
|
|
// <operator-name> ::= ?_V # delete[]
|
|
case OO_Array_Delete: Out << "?_V"; break;
|
|
|
|
case OO_Conditional: {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this conditional operator yet");
|
|
Diags.Report(Loc, DiagID);
|
|
break;
|
|
}
|
|
|
|
case OO_None:
|
|
case NUM_OVERLOADED_OPERATORS:
|
|
llvm_unreachable("Not an overloaded operator");
|
|
}
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
|
|
// <source name> ::= <identifier> @
|
|
std::string key = II->getNameStart();
|
|
BackRefMap::iterator Found;
|
|
if (UseNameBackReferences)
|
|
Found = NameBackReferences.find(key);
|
|
if (!UseNameBackReferences || Found == NameBackReferences.end()) {
|
|
Out << II->getName() << '@';
|
|
if (UseNameBackReferences && NameBackReferences.size() < 10) {
|
|
size_t Size = NameBackReferences.size();
|
|
NameBackReferences[key] = Size;
|
|
}
|
|
} else {
|
|
Out << Found->second;
|
|
}
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
|
|
Context.mangleObjCMethodName(MD, Out);
|
|
}
|
|
|
|
// Find out how many function decls live above this one and return an integer
|
|
// suitable for use as the number in a numbered anonymous scope.
|
|
// TODO: Memoize.
|
|
static unsigned getLocalNestingLevel(const FunctionDecl *FD) {
|
|
const DeclContext *DC = FD->getParent();
|
|
int level = 1;
|
|
|
|
while (DC && !DC->isTranslationUnit()) {
|
|
if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) level++;
|
|
DC = DC->getParent();
|
|
}
|
|
|
|
return 2*level;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleLocalName(const FunctionDecl *FD) {
|
|
// <nested-name> ::= <numbered-anonymous-scope> ? <mangled-name>
|
|
// <numbered-anonymous-scope> ::= ? <number>
|
|
// Even though the name is rendered in reverse order (e.g.
|
|
// A::B::C is rendered as C@B@A), VC numbers the scopes from outermost to
|
|
// innermost. So a method bar in class C local to function foo gets mangled
|
|
// as something like:
|
|
// ?bar@C@?1??foo@@YAXXZ@QAEXXZ
|
|
// This is more apparent when you have a type nested inside a method of a
|
|
// type nested inside a function. A method baz in class D local to method
|
|
// bar of class C local to function foo gets mangled as:
|
|
// ?baz@D@?3??bar@C@?1??foo@@YAXXZ@QAEXXZ@QAEXXZ
|
|
// This scheme is general enough to support GCC-style nested
|
|
// functions. You could have a method baz of class C inside a function bar
|
|
// inside a function foo, like so:
|
|
// ?baz@C@?3??bar@?1??foo@@YAXXZ@YAXXZ@QAEXXZ
|
|
int NestLevel = getLocalNestingLevel(FD);
|
|
Out << '?';
|
|
mangleNumber(NestLevel);
|
|
Out << '?';
|
|
mangle(FD, "?");
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleTemplateInstantiationName(
|
|
const TemplateDecl *TD,
|
|
const SmallVectorImpl<TemplateArgumentLoc> &TemplateArgs) {
|
|
// <template-name> ::= <unscoped-template-name> <template-args>
|
|
// ::= <substitution>
|
|
// Always start with the unqualified name.
|
|
|
|
// Templates have their own context for back references.
|
|
ArgBackRefMap OuterArgsContext;
|
|
BackRefMap OuterTemplateContext;
|
|
NameBackReferences.swap(OuterTemplateContext);
|
|
TypeBackReferences.swap(OuterArgsContext);
|
|
|
|
mangleUnscopedTemplateName(TD);
|
|
mangleTemplateArgs(TemplateArgs);
|
|
|
|
// Restore the previous back reference contexts.
|
|
NameBackReferences.swap(OuterTemplateContext);
|
|
TypeBackReferences.swap(OuterArgsContext);
|
|
}
|
|
|
|
void
|
|
MicrosoftCXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *TD) {
|
|
// <unscoped-template-name> ::= ?$ <unqualified-name>
|
|
Out << "?$";
|
|
mangleUnqualifiedName(TD);
|
|
}
|
|
|
|
void
|
|
MicrosoftCXXNameMangler::mangleIntegerLiteral(const llvm::APSInt &Value,
|
|
bool IsBoolean) {
|
|
// <integer-literal> ::= $0 <number>
|
|
Out << "$0";
|
|
// Make sure booleans are encoded as 0/1.
|
|
if (IsBoolean && Value.getBoolValue())
|
|
mangleNumber(1);
|
|
else
|
|
mangleNumber(Value);
|
|
}
|
|
|
|
void
|
|
MicrosoftCXXNameMangler::mangleExpression(const Expr *E) {
|
|
// See if this is a constant expression.
|
|
llvm::APSInt Value;
|
|
if (E->isIntegerConstantExpr(Value, Context.getASTContext())) {
|
|
mangleIntegerLiteral(Value, E->getType()->isBooleanType());
|
|
return;
|
|
}
|
|
|
|
// As bad as this diagnostic is, it's better than crashing.
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot yet mangle expression type %0");
|
|
Diags.Report(E->getExprLoc(), DiagID)
|
|
<< E->getStmtClassName() << E->getSourceRange();
|
|
}
|
|
|
|
void
|
|
MicrosoftCXXNameMangler::mangleTemplateArgs(
|
|
const SmallVectorImpl<TemplateArgumentLoc> &TemplateArgs) {
|
|
// <template-args> ::= {<type> | <integer-literal>}+ @
|
|
unsigned NumTemplateArgs = TemplateArgs.size();
|
|
for (unsigned i = 0; i < NumTemplateArgs; ++i) {
|
|
const TemplateArgumentLoc &TAL = TemplateArgs[i];
|
|
const TemplateArgument &TA = TAL.getArgument();
|
|
switch (TA.getKind()) {
|
|
case TemplateArgument::Null:
|
|
llvm_unreachable("Can't mangle null template arguments!");
|
|
case TemplateArgument::Type:
|
|
mangleType(TA.getAsType(), TAL.getSourceRange());
|
|
break;
|
|
case TemplateArgument::Integral:
|
|
mangleIntegerLiteral(TA.getAsIntegral(),
|
|
TA.getIntegralType()->isBooleanType());
|
|
break;
|
|
case TemplateArgument::Expression:
|
|
mangleExpression(TA.getAsExpr());
|
|
break;
|
|
case TemplateArgument::Template:
|
|
case TemplateArgument::TemplateExpansion:
|
|
case TemplateArgument::Declaration:
|
|
case TemplateArgument::NullPtr:
|
|
case TemplateArgument::Pack: {
|
|
// Issue a diagnostic.
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this %select{ERROR|ERROR|pointer/reference|nullptr|"
|
|
"integral|template|template pack expansion|ERROR|parameter pack}0 "
|
|
"template argument yet");
|
|
Diags.Report(TAL.getLocation(), DiagID)
|
|
<< TA.getKind()
|
|
<< TAL.getSourceRange();
|
|
}
|
|
}
|
|
}
|
|
Out << '@';
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals,
|
|
bool IsMember) {
|
|
// <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers>
|
|
// 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only);
|
|
// 'I' means __restrict (32/64-bit).
|
|
// Note that the MSVC __restrict keyword isn't the same as the C99 restrict
|
|
// keyword!
|
|
// <base-cvr-qualifiers> ::= A # near
|
|
// ::= B # near const
|
|
// ::= C # near volatile
|
|
// ::= D # near const volatile
|
|
// ::= E # far (16-bit)
|
|
// ::= F # far const (16-bit)
|
|
// ::= G # far volatile (16-bit)
|
|
// ::= H # far const volatile (16-bit)
|
|
// ::= I # huge (16-bit)
|
|
// ::= J # huge const (16-bit)
|
|
// ::= K # huge volatile (16-bit)
|
|
// ::= L # huge const volatile (16-bit)
|
|
// ::= M <basis> # based
|
|
// ::= N <basis> # based const
|
|
// ::= O <basis> # based volatile
|
|
// ::= P <basis> # based const volatile
|
|
// ::= Q # near member
|
|
// ::= R # near const member
|
|
// ::= S # near volatile member
|
|
// ::= T # near const volatile member
|
|
// ::= U # far member (16-bit)
|
|
// ::= V # far const member (16-bit)
|
|
// ::= W # far volatile member (16-bit)
|
|
// ::= X # far const volatile member (16-bit)
|
|
// ::= Y # huge member (16-bit)
|
|
// ::= Z # huge const member (16-bit)
|
|
// ::= 0 # huge volatile member (16-bit)
|
|
// ::= 1 # huge const volatile member (16-bit)
|
|
// ::= 2 <basis> # based member
|
|
// ::= 3 <basis> # based const member
|
|
// ::= 4 <basis> # based volatile member
|
|
// ::= 5 <basis> # based const volatile member
|
|
// ::= 6 # near function (pointers only)
|
|
// ::= 7 # far function (pointers only)
|
|
// ::= 8 # near method (pointers only)
|
|
// ::= 9 # far method (pointers only)
|
|
// ::= _A <basis> # based function (pointers only)
|
|
// ::= _B <basis> # based function (far?) (pointers only)
|
|
// ::= _C <basis> # based method (pointers only)
|
|
// ::= _D <basis> # based method (far?) (pointers only)
|
|
// ::= _E # block (Clang)
|
|
// <basis> ::= 0 # __based(void)
|
|
// ::= 1 # __based(segment)?
|
|
// ::= 2 <name> # __based(name)
|
|
// ::= 3 # ?
|
|
// ::= 4 # ?
|
|
// ::= 5 # not really based
|
|
bool HasConst = Quals.hasConst(),
|
|
HasVolatile = Quals.hasVolatile();
|
|
if (!IsMember) {
|
|
if (HasConst && HasVolatile) {
|
|
Out << 'D';
|
|
} else if (HasVolatile) {
|
|
Out << 'C';
|
|
} else if (HasConst) {
|
|
Out << 'B';
|
|
} else {
|
|
Out << 'A';
|
|
}
|
|
} else {
|
|
if (HasConst && HasVolatile) {
|
|
Out << 'T';
|
|
} else if (HasVolatile) {
|
|
Out << 'S';
|
|
} else if (HasConst) {
|
|
Out << 'R';
|
|
} else {
|
|
Out << 'Q';
|
|
}
|
|
}
|
|
|
|
// FIXME: For now, just drop all extension qualifiers on the floor.
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::manglePointerQualifiers(Qualifiers Quals) {
|
|
// <pointer-cvr-qualifiers> ::= P # no qualifiers
|
|
// ::= Q # const
|
|
// ::= R # volatile
|
|
// ::= S # const volatile
|
|
bool HasConst = Quals.hasConst(),
|
|
HasVolatile = Quals.hasVolatile();
|
|
if (HasConst && HasVolatile) {
|
|
Out << 'S';
|
|
} else if (HasVolatile) {
|
|
Out << 'R';
|
|
} else if (HasConst) {
|
|
Out << 'Q';
|
|
} else {
|
|
Out << 'P';
|
|
}
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleArgumentType(QualType T,
|
|
SourceRange Range) {
|
|
void *TypePtr = getASTContext().getCanonicalType(T).getAsOpaquePtr();
|
|
ArgBackRefMap::iterator Found = TypeBackReferences.find(TypePtr);
|
|
|
|
if (Found == TypeBackReferences.end()) {
|
|
size_t OutSizeBefore = Out.GetNumBytesInBuffer();
|
|
|
|
mangleType(T, Range, false);
|
|
|
|
// See if it's worth creating a back reference.
|
|
// Only types longer than 1 character are considered
|
|
// and only 10 back references slots are available:
|
|
bool LongerThanOneChar = (Out.GetNumBytesInBuffer() - OutSizeBefore > 1);
|
|
if (LongerThanOneChar && TypeBackReferences.size() < 10) {
|
|
size_t Size = TypeBackReferences.size();
|
|
TypeBackReferences[TypePtr] = Size;
|
|
}
|
|
} else {
|
|
Out << Found->second;
|
|
}
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range,
|
|
bool MangleQualifiers) {
|
|
// Only operate on the canonical type!
|
|
T = getASTContext().getCanonicalType(T);
|
|
|
|
Qualifiers Quals = T.getLocalQualifiers();
|
|
// We have to mangle these now, while we still have enough information.
|
|
if (T->isAnyPointerType() || T->isMemberPointerType() ||
|
|
T->isBlockPointerType()) {
|
|
manglePointerQualifiers(Quals);
|
|
} else if (Quals && MangleQualifiers) {
|
|
mangleQualifiers(Quals, false);
|
|
}
|
|
|
|
SplitQualType split = T.split();
|
|
const Type *ty = split.Ty;
|
|
|
|
// If we're mangling a qualified array type, push the qualifiers to
|
|
// the element type.
|
|
if (split.Quals && isa<ArrayType>(T)) {
|
|
ty = Context.getASTContext().getAsArrayType(T);
|
|
}
|
|
|
|
switch (ty->getTypeClass()) {
|
|
#define ABSTRACT_TYPE(CLASS, PARENT)
|
|
#define NON_CANONICAL_TYPE(CLASS, PARENT) \
|
|
case Type::CLASS: \
|
|
llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
|
|
return;
|
|
#define TYPE(CLASS, PARENT) \
|
|
case Type::CLASS: \
|
|
mangleType(cast<CLASS##Type>(ty), Range); \
|
|
break;
|
|
#include "clang/AST/TypeNodes.def"
|
|
#undef ABSTRACT_TYPE
|
|
#undef NON_CANONICAL_TYPE
|
|
#undef TYPE
|
|
}
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T,
|
|
SourceRange Range) {
|
|
// <type> ::= <builtin-type>
|
|
// <builtin-type> ::= X # void
|
|
// ::= C # signed char
|
|
// ::= D # char
|
|
// ::= E # unsigned char
|
|
// ::= F # short
|
|
// ::= G # unsigned short (or wchar_t if it's not a builtin)
|
|
// ::= H # int
|
|
// ::= I # unsigned int
|
|
// ::= J # long
|
|
// ::= K # unsigned long
|
|
// L # <none>
|
|
// ::= M # float
|
|
// ::= N # double
|
|
// ::= O # long double (__float80 is mangled differently)
|
|
// ::= _J # long long, __int64
|
|
// ::= _K # unsigned long long, __int64
|
|
// ::= _L # __int128
|
|
// ::= _M # unsigned __int128
|
|
// ::= _N # bool
|
|
// _O # <array in parameter>
|
|
// ::= _T # __float80 (Intel)
|
|
// ::= _W # wchar_t
|
|
// ::= _Z # __float80 (Digital Mars)
|
|
switch (T->getKind()) {
|
|
case BuiltinType::Void: Out << 'X'; break;
|
|
case BuiltinType::SChar: Out << 'C'; break;
|
|
case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'D'; break;
|
|
case BuiltinType::UChar: Out << 'E'; break;
|
|
case BuiltinType::Short: Out << 'F'; break;
|
|
case BuiltinType::UShort: Out << 'G'; break;
|
|
case BuiltinType::Int: Out << 'H'; break;
|
|
case BuiltinType::UInt: Out << 'I'; break;
|
|
case BuiltinType::Long: Out << 'J'; break;
|
|
case BuiltinType::ULong: Out << 'K'; break;
|
|
case BuiltinType::Float: Out << 'M'; break;
|
|
case BuiltinType::Double: Out << 'N'; break;
|
|
// TODO: Determine size and mangle accordingly
|
|
case BuiltinType::LongDouble: Out << 'O'; break;
|
|
case BuiltinType::LongLong: Out << "_J"; break;
|
|
case BuiltinType::ULongLong: Out << "_K"; break;
|
|
case BuiltinType::Int128: Out << "_L"; break;
|
|
case BuiltinType::UInt128: Out << "_M"; break;
|
|
case BuiltinType::Bool: Out << "_N"; break;
|
|
case BuiltinType::WChar_S:
|
|
case BuiltinType::WChar_U: Out << "_W"; break;
|
|
|
|
#define BUILTIN_TYPE(Id, SingletonId)
|
|
#define PLACEHOLDER_TYPE(Id, SingletonId) \
|
|
case BuiltinType::Id:
|
|
#include "clang/AST/BuiltinTypes.def"
|
|
case BuiltinType::Dependent:
|
|
llvm_unreachable("placeholder types shouldn't get to name mangling");
|
|
|
|
case BuiltinType::ObjCId: Out << "PAUobjc_object@@"; break;
|
|
case BuiltinType::ObjCClass: Out << "PAUobjc_class@@"; break;
|
|
case BuiltinType::ObjCSel: Out << "PAUobjc_selector@@"; break;
|
|
|
|
case BuiltinType::OCLImage1d: Out << "PAUocl_image1d@@"; break;
|
|
case BuiltinType::OCLImage1dArray: Out << "PAUocl_image1darray@@"; break;
|
|
case BuiltinType::OCLImage1dBuffer: Out << "PAUocl_image1dbuffer@@"; break;
|
|
case BuiltinType::OCLImage2d: Out << "PAUocl_image2d@@"; break;
|
|
case BuiltinType::OCLImage2dArray: Out << "PAUocl_image2darray@@"; break;
|
|
case BuiltinType::OCLImage3d: Out << "PAUocl_image3d@@"; break;
|
|
|
|
case BuiltinType::NullPtr: Out << "$$T"; break;
|
|
|
|
case BuiltinType::Char16:
|
|
case BuiltinType::Char32:
|
|
case BuiltinType::Half: {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this built-in %0 type yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< T->getName(Context.getASTContext().getPrintingPolicy())
|
|
<< Range;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// <type> ::= <function-type>
|
|
void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T,
|
|
SourceRange) {
|
|
// Structors only appear in decls, so at this point we know it's not a
|
|
// structor type.
|
|
// FIXME: This may not be lambda-friendly.
|
|
Out << "$$A6";
|
|
mangleType(T, NULL, false, false);
|
|
}
|
|
void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T,
|
|
SourceRange) {
|
|
llvm_unreachable("Can't mangle K&R function prototypes");
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const FunctionType *T,
|
|
const FunctionDecl *D,
|
|
bool IsStructor,
|
|
bool IsInstMethod) {
|
|
// <function-type> ::= <this-cvr-qualifiers> <calling-convention>
|
|
// <return-type> <argument-list> <throw-spec>
|
|
const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
|
|
|
|
// If this is a C++ instance method, mangle the CVR qualifiers for the
|
|
// this pointer.
|
|
if (IsInstMethod)
|
|
mangleQualifiers(Qualifiers::fromCVRMask(Proto->getTypeQuals()), false);
|
|
|
|
mangleCallingConvention(T, IsInstMethod);
|
|
|
|
// <return-type> ::= <type>
|
|
// ::= @ # structors (they have no declared return type)
|
|
if (IsStructor)
|
|
Out << '@';
|
|
else {
|
|
QualType Result = Proto->getResultType();
|
|
const Type* RT = Result.getTypePtr();
|
|
if (!RT->isAnyPointerType() && !RT->isReferenceType()) {
|
|
if (Result.hasQualifiers() || !RT->isBuiltinType())
|
|
Out << '?';
|
|
if (!RT->isBuiltinType() && !Result.hasQualifiers()) {
|
|
// Lack of qualifiers for user types is mangled as 'A'.
|
|
Out << 'A';
|
|
}
|
|
}
|
|
|
|
// FIXME: Get the source range for the result type. Or, better yet,
|
|
// implement the unimplemented stuff so we don't need accurate source
|
|
// location info anymore :).
|
|
mangleType(Result, SourceRange());
|
|
}
|
|
|
|
// <argument-list> ::= X # void
|
|
// ::= <type>+ @
|
|
// ::= <type>* Z # varargs
|
|
if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
|
|
Out << 'X';
|
|
} else {
|
|
if (D) {
|
|
// If we got a decl, use the type-as-written to make sure arrays
|
|
// get mangled right. Note that we can't rely on the TSI
|
|
// existing if (for example) the parameter was synthesized.
|
|
for (FunctionDecl::param_const_iterator Parm = D->param_begin(),
|
|
ParmEnd = D->param_end(); Parm != ParmEnd; ++Parm) {
|
|
TypeSourceInfo *TSI = (*Parm)->getTypeSourceInfo();
|
|
QualType Type = TSI ? TSI->getType() : (*Parm)->getType();
|
|
mangleArgumentType(Type, (*Parm)->getSourceRange());
|
|
}
|
|
} else {
|
|
// Happens for function pointer type arguments for example.
|
|
for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
|
|
ArgEnd = Proto->arg_type_end();
|
|
Arg != ArgEnd; ++Arg)
|
|
mangleArgumentType(*Arg, SourceRange());
|
|
}
|
|
// <builtin-type> ::= Z # ellipsis
|
|
if (Proto->isVariadic())
|
|
Out << 'Z';
|
|
else
|
|
Out << '@';
|
|
}
|
|
|
|
mangleThrowSpecification(Proto);
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) {
|
|
// <function-class> ::= A # private: near
|
|
// ::= B # private: far
|
|
// ::= C # private: static near
|
|
// ::= D # private: static far
|
|
// ::= E # private: virtual near
|
|
// ::= F # private: virtual far
|
|
// ::= G # private: thunk near
|
|
// ::= H # private: thunk far
|
|
// ::= I # protected: near
|
|
// ::= J # protected: far
|
|
// ::= K # protected: static near
|
|
// ::= L # protected: static far
|
|
// ::= M # protected: virtual near
|
|
// ::= N # protected: virtual far
|
|
// ::= O # protected: thunk near
|
|
// ::= P # protected: thunk far
|
|
// ::= Q # public: near
|
|
// ::= R # public: far
|
|
// ::= S # public: static near
|
|
// ::= T # public: static far
|
|
// ::= U # public: virtual near
|
|
// ::= V # public: virtual far
|
|
// ::= W # public: thunk near
|
|
// ::= X # public: thunk far
|
|
// ::= Y # global near
|
|
// ::= Z # global far
|
|
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
|
|
switch (MD->getAccess()) {
|
|
default:
|
|
case AS_private:
|
|
if (MD->isStatic())
|
|
Out << 'C';
|
|
else if (MD->isVirtual())
|
|
Out << 'E';
|
|
else
|
|
Out << 'A';
|
|
break;
|
|
case AS_protected:
|
|
if (MD->isStatic())
|
|
Out << 'K';
|
|
else if (MD->isVirtual())
|
|
Out << 'M';
|
|
else
|
|
Out << 'I';
|
|
break;
|
|
case AS_public:
|
|
if (MD->isStatic())
|
|
Out << 'S';
|
|
else if (MD->isVirtual())
|
|
Out << 'U';
|
|
else
|
|
Out << 'Q';
|
|
}
|
|
} else
|
|
Out << 'Y';
|
|
}
|
|
void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T,
|
|
bool IsInstMethod) {
|
|
// <calling-convention> ::= A # __cdecl
|
|
// ::= B # __export __cdecl
|
|
// ::= C # __pascal
|
|
// ::= D # __export __pascal
|
|
// ::= E # __thiscall
|
|
// ::= F # __export __thiscall
|
|
// ::= G # __stdcall
|
|
// ::= H # __export __stdcall
|
|
// ::= I # __fastcall
|
|
// ::= J # __export __fastcall
|
|
// The 'export' calling conventions are from a bygone era
|
|
// (*cough*Win16*cough*) when functions were declared for export with
|
|
// that keyword. (It didn't actually export them, it just made them so
|
|
// that they could be in a DLL and somebody from another module could call
|
|
// them.)
|
|
CallingConv CC = T->getCallConv();
|
|
if (CC == CC_Default) {
|
|
if (IsInstMethod) {
|
|
const FunctionProtoType *FPT =
|
|
T->getCanonicalTypeUnqualified().castAs<FunctionProtoType>();
|
|
bool isVariadic = FPT->isVariadic();
|
|
CC = getASTContext().getDefaultCXXMethodCallConv(isVariadic);
|
|
} else {
|
|
CC = CC_C;
|
|
}
|
|
}
|
|
switch (CC) {
|
|
default:
|
|
llvm_unreachable("Unsupported CC for mangling");
|
|
case CC_Default:
|
|
case CC_C: Out << 'A'; break;
|
|
case CC_X86Pascal: Out << 'C'; break;
|
|
case CC_X86ThisCall: Out << 'E'; break;
|
|
case CC_X86StdCall: Out << 'G'; break;
|
|
case CC_X86FastCall: Out << 'I'; break;
|
|
}
|
|
}
|
|
void MicrosoftCXXNameMangler::mangleThrowSpecification(
|
|
const FunctionProtoType *FT) {
|
|
// <throw-spec> ::= Z # throw(...) (default)
|
|
// ::= @ # throw() or __declspec/__attribute__((nothrow))
|
|
// ::= <type>+
|
|
// NOTE: Since the Microsoft compiler ignores throw specifications, they are
|
|
// all actually mangled as 'Z'. (They're ignored because their associated
|
|
// functionality isn't implemented, and probably never will be.)
|
|
Out << 'Z';
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T,
|
|
SourceRange Range) {
|
|
// Probably should be mangled as a template instantiation; need to see what
|
|
// VC does first.
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this unresolved dependent type yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
// <type> ::= <union-type> | <struct-type> | <class-type> | <enum-type>
|
|
// <union-type> ::= T <name>
|
|
// <struct-type> ::= U <name>
|
|
// <class-type> ::= V <name>
|
|
// <enum-type> ::= W <size> <name>
|
|
void MicrosoftCXXNameMangler::mangleType(const EnumType *T, SourceRange) {
|
|
mangleType(cast<TagType>(T));
|
|
}
|
|
void MicrosoftCXXNameMangler::mangleType(const RecordType *T, SourceRange) {
|
|
mangleType(cast<TagType>(T));
|
|
}
|
|
void MicrosoftCXXNameMangler::mangleType(const TagType *T) {
|
|
switch (T->getDecl()->getTagKind()) {
|
|
case TTK_Union:
|
|
Out << 'T';
|
|
break;
|
|
case TTK_Struct:
|
|
case TTK_Interface:
|
|
Out << 'U';
|
|
break;
|
|
case TTK_Class:
|
|
Out << 'V';
|
|
break;
|
|
case TTK_Enum:
|
|
Out << 'W';
|
|
Out << getASTContext().getTypeSizeInChars(
|
|
cast<EnumDecl>(T->getDecl())->getIntegerType()).getQuantity();
|
|
break;
|
|
}
|
|
mangleName(T->getDecl());
|
|
}
|
|
|
|
// <type> ::= <array-type>
|
|
// <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
|
|
// [Y <dimension-count> <dimension>+]
|
|
// <element-type> # as global
|
|
// ::= Q <cvr-qualifiers> [Y <dimension-count> <dimension>+]
|
|
// <element-type> # as param
|
|
// It's supposed to be the other way around, but for some strange reason, it
|
|
// isn't. Today this behavior is retained for the sole purpose of backwards
|
|
// compatibility.
|
|
void MicrosoftCXXNameMangler::mangleType(const ArrayType *T, bool IsGlobal) {
|
|
// This isn't a recursive mangling, so now we have to do it all in this
|
|
// one call.
|
|
if (IsGlobal) {
|
|
manglePointerQualifiers(T->getElementType().getQualifiers());
|
|
} else {
|
|
Out << 'Q';
|
|
}
|
|
mangleExtraDimensions(T->getElementType());
|
|
}
|
|
void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T,
|
|
SourceRange) {
|
|
mangleType(cast<ArrayType>(T), false);
|
|
}
|
|
void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T,
|
|
SourceRange) {
|
|
mangleType(cast<ArrayType>(T), false);
|
|
}
|
|
void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T,
|
|
SourceRange) {
|
|
mangleType(cast<ArrayType>(T), false);
|
|
}
|
|
void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T,
|
|
SourceRange) {
|
|
mangleType(cast<ArrayType>(T), false);
|
|
}
|
|
void MicrosoftCXXNameMangler::mangleExtraDimensions(QualType ElementTy) {
|
|
SmallVector<llvm::APInt, 3> Dimensions;
|
|
for (;;) {
|
|
if (const ConstantArrayType *CAT =
|
|
getASTContext().getAsConstantArrayType(ElementTy)) {
|
|
Dimensions.push_back(CAT->getSize());
|
|
ElementTy = CAT->getElementType();
|
|
} else if (ElementTy->isVariableArrayType()) {
|
|
const VariableArrayType *VAT =
|
|
getASTContext().getAsVariableArrayType(ElementTy);
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this variable-length array yet");
|
|
Diags.Report(VAT->getSizeExpr()->getExprLoc(), DiagID)
|
|
<< VAT->getBracketsRange();
|
|
return;
|
|
} else if (ElementTy->isDependentSizedArrayType()) {
|
|
// The dependent expression has to be folded into a constant (TODO).
|
|
const DependentSizedArrayType *DSAT =
|
|
getASTContext().getAsDependentSizedArrayType(ElementTy);
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this dependent-length array yet");
|
|
Diags.Report(DSAT->getSizeExpr()->getExprLoc(), DiagID)
|
|
<< DSAT->getBracketsRange();
|
|
return;
|
|
} else if (ElementTy->isIncompleteArrayType()) continue;
|
|
else break;
|
|
}
|
|
mangleQualifiers(ElementTy.getQualifiers(), false);
|
|
// If there are any additional dimensions, mangle them now.
|
|
if (Dimensions.size() > 0) {
|
|
Out << 'Y';
|
|
// <dimension-count> ::= <number> # number of extra dimensions
|
|
mangleNumber(Dimensions.size());
|
|
for (unsigned Dim = 0; Dim < Dimensions.size(); ++Dim) {
|
|
mangleNumber(Dimensions[Dim].getLimitedValue());
|
|
}
|
|
}
|
|
mangleType(ElementTy.getLocalUnqualifiedType(), SourceRange());
|
|
}
|
|
|
|
// <type> ::= <pointer-to-member-type>
|
|
// <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
|
|
// <class name> <type>
|
|
void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T,
|
|
SourceRange Range) {
|
|
QualType PointeeType = T->getPointeeType();
|
|
if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) {
|
|
Out << '8';
|
|
mangleName(T->getClass()->castAs<RecordType>()->getDecl());
|
|
mangleType(FPT, NULL, false, true);
|
|
} else {
|
|
mangleQualifiers(PointeeType.getQualifiers(), true);
|
|
mangleName(T->getClass()->castAs<RecordType>()->getDecl());
|
|
mangleType(PointeeType.getLocalUnqualifiedType(), Range);
|
|
}
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T,
|
|
SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this template type parameter type yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(
|
|
const SubstTemplateTypeParmPackType *T,
|
|
SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this substituted parameter pack yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
// <type> ::= <pointer-type>
|
|
// <pointer-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers> <type>
|
|
void MicrosoftCXXNameMangler::mangleType(const PointerType *T,
|
|
SourceRange Range) {
|
|
QualType PointeeTy = T->getPointeeType();
|
|
if (PointeeTy->isArrayType()) {
|
|
// Pointers to arrays are mangled like arrays.
|
|
mangleExtraDimensions(PointeeTy);
|
|
} else if (const FunctionType *FT = PointeeTy->getAs<FunctionType>()) {
|
|
// Function pointers are special.
|
|
Out << '6';
|
|
mangleType(FT, NULL, false, false);
|
|
} else {
|
|
mangleQualifiers(PointeeTy.getQualifiers(), false);
|
|
mangleType(PointeeTy, Range, false);
|
|
}
|
|
}
|
|
void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T,
|
|
SourceRange Range) {
|
|
// Object pointers never have qualifiers.
|
|
Out << 'A';
|
|
mangleType(T->getPointeeType(), Range);
|
|
}
|
|
|
|
// <type> ::= <reference-type>
|
|
// <reference-type> ::= A <cvr-qualifiers> <type>
|
|
void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T,
|
|
SourceRange Range) {
|
|
Out << 'A';
|
|
QualType PointeeTy = T->getPointeeType();
|
|
if (!PointeeTy.hasQualifiers())
|
|
// Lack of qualifiers is mangled as 'A'.
|
|
Out << 'A';
|
|
mangleType(PointeeTy, Range);
|
|
}
|
|
|
|
// <type> ::= <r-value-reference-type>
|
|
// <r-value-reference-type> ::= $$Q <cvr-qualifiers> <type>
|
|
void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T,
|
|
SourceRange Range) {
|
|
Out << "$$Q";
|
|
QualType PointeeTy = T->getPointeeType();
|
|
if (!PointeeTy.hasQualifiers())
|
|
// Lack of qualifiers is mangled as 'A'.
|
|
Out << 'A';
|
|
mangleType(PointeeTy, Range);
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const ComplexType *T,
|
|
SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this complex number type yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const VectorType *T,
|
|
SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this vector type yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T,
|
|
SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this extended vector type yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T,
|
|
SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this dependent-sized extended vector type yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T,
|
|
SourceRange) {
|
|
// ObjC interfaces have structs underlying them.
|
|
Out << 'U';
|
|
mangleName(T->getDecl());
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T,
|
|
SourceRange Range) {
|
|
// We don't allow overloading by different protocol qualification,
|
|
// so mangling them isn't necessary.
|
|
mangleType(T->getBaseType(), Range);
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T,
|
|
SourceRange Range) {
|
|
Out << "_E";
|
|
|
|
QualType pointee = T->getPointeeType();
|
|
mangleType(pointee->castAs<FunctionProtoType>(), NULL, false, false);
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *T,
|
|
SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this injected class name type yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T,
|
|
SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this template specialization type yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T,
|
|
SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this dependent name type yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(
|
|
const DependentTemplateSpecializationType *T,
|
|
SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this dependent template specialization type yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T,
|
|
SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this pack expansion yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T,
|
|
SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this typeof(type) yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T,
|
|
SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this typeof(expression) yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T,
|
|
SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this decltype() yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T,
|
|
SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this unary transform type yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const AutoType *T, SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this 'auto' type yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const AtomicType *T,
|
|
SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this C11 atomic type yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
void MicrosoftMangleContext::mangleName(const NamedDecl *D,
|
|
raw_ostream &Out) {
|
|
assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
|
|
"Invalid mangleName() call, argument is not a variable or function!");
|
|
assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
|
|
"Invalid mangleName() call on 'structor decl!");
|
|
|
|
PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
|
|
getASTContext().getSourceManager(),
|
|
"Mangling declaration");
|
|
|
|
MicrosoftCXXNameMangler Mangler(*this, Out);
|
|
return Mangler.mangle(D);
|
|
}
|
|
void MicrosoftMangleContext::mangleThunk(const CXXMethodDecl *MD,
|
|
const ThunkInfo &Thunk,
|
|
raw_ostream &) {
|
|
unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle thunk for this method yet");
|
|
getDiags().Report(MD->getLocation(), DiagID);
|
|
}
|
|
void MicrosoftMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
|
|
CXXDtorType Type,
|
|
const ThisAdjustment &,
|
|
raw_ostream &) {
|
|
unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle thunk for this destructor yet");
|
|
getDiags().Report(DD->getLocation(), DiagID);
|
|
}
|
|
void MicrosoftMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
|
|
raw_ostream &Out) {
|
|
// <mangled-name> ::= ? <operator-name> <class-name> <storage-class>
|
|
// <cvr-qualifiers> [<name>] @
|
|
// <operator-name> ::= _7 # vftable
|
|
// ::= _8 # vbtable
|
|
// NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
|
|
// is always '6' for vftables and '7' for vbtables. (The difference is
|
|
// beyond me.)
|
|
// TODO: vbtables.
|
|
MicrosoftCXXNameMangler Mangler(*this, Out);
|
|
Mangler.getStream() << "\01??_7";
|
|
Mangler.mangleName(RD);
|
|
Mangler.getStream() << "6B";
|
|
// TODO: If the class has more than one vtable, mangle in the class it came
|
|
// from.
|
|
Mangler.getStream() << '@';
|
|
}
|
|
void MicrosoftMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
|
|
raw_ostream &) {
|
|
llvm_unreachable("The MS C++ ABI does not have virtual table tables!");
|
|
}
|
|
void MicrosoftMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
|
|
int64_t Offset,
|
|
const CXXRecordDecl *Type,
|
|
raw_ostream &) {
|
|
llvm_unreachable("The MS C++ ABI does not have constructor vtables!");
|
|
}
|
|
void MicrosoftMangleContext::mangleCXXRTTI(QualType T,
|
|
raw_ostream &) {
|
|
// FIXME: Give a location...
|
|
unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle RTTI descriptors for type %0 yet");
|
|
getDiags().Report(DiagID)
|
|
<< T.getBaseTypeIdentifier();
|
|
}
|
|
void MicrosoftMangleContext::mangleCXXRTTIName(QualType T,
|
|
raw_ostream &) {
|
|
// FIXME: Give a location...
|
|
unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle the name of type %0 into RTTI descriptors yet");
|
|
getDiags().Report(DiagID)
|
|
<< T.getBaseTypeIdentifier();
|
|
}
|
|
void MicrosoftMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
|
|
CXXCtorType Type,
|
|
raw_ostream & Out) {
|
|
MicrosoftCXXNameMangler mangler(*this, Out);
|
|
mangler.mangle(D);
|
|
}
|
|
void MicrosoftMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
|
|
CXXDtorType Type,
|
|
raw_ostream & Out) {
|
|
MicrosoftCXXNameMangler mangler(*this, Out);
|
|
mangler.mangle(D);
|
|
}
|
|
void MicrosoftMangleContext::mangleReferenceTemporary(const clang::VarDecl *VD,
|
|
raw_ostream &) {
|
|
unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this reference temporary yet");
|
|
getDiags().Report(VD->getLocation(), DiagID);
|
|
}
|
|
|
|
MangleContext *clang::createMicrosoftMangleContext(ASTContext &Context,
|
|
DiagnosticsEngine &Diags) {
|
|
return new MicrosoftMangleContext(Context, Diags);
|
|
}
|