forked from OSchip/llvm-project
3581 lines
120 KiB
C++
3581 lines
120 KiB
C++
//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Implements C++ name mangling according to the Itanium C++ ABI,
|
|
// which is used in GCC 3.2 and newer (and many compilers that are
|
|
// ABI-compatible with GCC):
|
|
//
|
|
// http://www.codesourcery.com/public/cxx-abi/abi.html
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "clang/AST/Mangle.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/Attr.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/ExprObjC.h"
|
|
#include "clang/AST/TypeLoc.h"
|
|
#include "clang/Basic/ABI.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
#define MANGLE_CHECKER 0
|
|
|
|
#if MANGLE_CHECKER
|
|
#include <cxxabi.h>
|
|
#endif
|
|
|
|
using namespace clang;
|
|
|
|
namespace {
|
|
|
|
/// \brief Retrieve the declaration context that should be used when mangling
|
|
/// the given declaration.
|
|
static const DeclContext *getEffectiveDeclContext(const Decl *D) {
|
|
// The ABI assumes that lambda closure types that occur within
|
|
// default arguments live in the context of the function. However, due to
|
|
// the way in which Clang parses and creates function declarations, this is
|
|
// not the case: the lambda closure type ends up living in the context
|
|
// where the function itself resides, because the function declaration itself
|
|
// had not yet been created. Fix the context here.
|
|
if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
|
|
if (RD->isLambda())
|
|
if (ParmVarDecl *ContextParam
|
|
= dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
|
|
return ContextParam->getDeclContext();
|
|
}
|
|
|
|
return D->getDeclContext();
|
|
}
|
|
|
|
static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
|
|
return getEffectiveDeclContext(cast<Decl>(DC));
|
|
}
|
|
|
|
static const CXXRecordDecl *GetLocalClassDecl(const NamedDecl *ND) {
|
|
const DeclContext *DC = dyn_cast<DeclContext>(ND);
|
|
if (!DC)
|
|
DC = getEffectiveDeclContext(ND);
|
|
while (!DC->isNamespace() && !DC->isTranslationUnit()) {
|
|
const DeclContext *Parent = getEffectiveDeclContext(cast<Decl>(DC));
|
|
if (isa<FunctionDecl>(Parent))
|
|
return dyn_cast<CXXRecordDecl>(DC);
|
|
DC = Parent;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static const FunctionDecl *getStructor(const FunctionDecl *fn) {
|
|
if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
|
|
return ftd->getTemplatedDecl();
|
|
|
|
return fn;
|
|
}
|
|
|
|
static const NamedDecl *getStructor(const NamedDecl *decl) {
|
|
const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
|
|
return (fn ? getStructor(fn) : decl);
|
|
}
|
|
|
|
static const unsigned UnknownArity = ~0U;
|
|
|
|
class ItaniumMangleContext : public MangleContext {
|
|
llvm::DenseMap<const TagDecl *, uint64_t> AnonStructIds;
|
|
unsigned Discriminator;
|
|
llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
|
|
|
|
public:
|
|
explicit ItaniumMangleContext(ASTContext &Context,
|
|
DiagnosticsEngine &Diags)
|
|
: MangleContext(Context, Diags) { }
|
|
|
|
uint64_t getAnonymousStructId(const TagDecl *TD) {
|
|
std::pair<llvm::DenseMap<const TagDecl *,
|
|
uint64_t>::iterator, bool> Result =
|
|
AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size()));
|
|
return Result.first->second;
|
|
}
|
|
|
|
void startNewFunction() {
|
|
MangleContext::startNewFunction();
|
|
mangleInitDiscriminator();
|
|
}
|
|
|
|
/// @name Mangler Entry Points
|
|
/// @{
|
|
|
|
bool shouldMangleDeclName(const NamedDecl *D);
|
|
void mangleName(const NamedDecl *D, raw_ostream &);
|
|
void mangleThunk(const CXXMethodDecl *MD,
|
|
const ThunkInfo &Thunk,
|
|
raw_ostream &);
|
|
void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
|
|
const ThisAdjustment &ThisAdjustment,
|
|
raw_ostream &);
|
|
void mangleReferenceTemporary(const VarDecl *D,
|
|
raw_ostream &);
|
|
void mangleCXXVTable(const CXXRecordDecl *RD,
|
|
raw_ostream &);
|
|
void mangleCXXVTT(const CXXRecordDecl *RD,
|
|
raw_ostream &);
|
|
void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
|
|
const CXXRecordDecl *Type,
|
|
raw_ostream &);
|
|
void mangleCXXRTTI(QualType T, raw_ostream &);
|
|
void mangleCXXRTTIName(QualType T, raw_ostream &);
|
|
void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
|
|
raw_ostream &);
|
|
void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
|
|
raw_ostream &);
|
|
|
|
void mangleItaniumGuardVariable(const VarDecl *D, raw_ostream &);
|
|
|
|
void mangleInitDiscriminator() {
|
|
Discriminator = 0;
|
|
}
|
|
|
|
bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
|
|
// Lambda closure types with external linkage (indicated by a
|
|
// non-zero lambda mangling number) have their own numbering scheme, so
|
|
// they do not need a discriminator.
|
|
if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(ND))
|
|
if (RD->isLambda() && RD->getLambdaManglingNumber() > 0)
|
|
return false;
|
|
|
|
unsigned &discriminator = Uniquifier[ND];
|
|
if (!discriminator)
|
|
discriminator = ++Discriminator;
|
|
if (discriminator == 1)
|
|
return false;
|
|
disc = discriminator-2;
|
|
return true;
|
|
}
|
|
/// @}
|
|
};
|
|
|
|
/// CXXNameMangler - Manage the mangling of a single name.
|
|
class CXXNameMangler {
|
|
ItaniumMangleContext &Context;
|
|
raw_ostream &Out;
|
|
|
|
/// The "structor" is the top-level declaration being mangled, if
|
|
/// that's not a template specialization; otherwise it's the pattern
|
|
/// for that specialization.
|
|
const NamedDecl *Structor;
|
|
unsigned StructorType;
|
|
|
|
/// SeqID - The next subsitution sequence number.
|
|
unsigned SeqID;
|
|
|
|
class FunctionTypeDepthState {
|
|
unsigned Bits;
|
|
|
|
enum { InResultTypeMask = 1 };
|
|
|
|
public:
|
|
FunctionTypeDepthState() : Bits(0) {}
|
|
|
|
/// The number of function types we're inside.
|
|
unsigned getDepth() const {
|
|
return Bits >> 1;
|
|
}
|
|
|
|
/// True if we're in the return type of the innermost function type.
|
|
bool isInResultType() const {
|
|
return Bits & InResultTypeMask;
|
|
}
|
|
|
|
FunctionTypeDepthState push() {
|
|
FunctionTypeDepthState tmp = *this;
|
|
Bits = (Bits & ~InResultTypeMask) + 2;
|
|
return tmp;
|
|
}
|
|
|
|
void enterResultType() {
|
|
Bits |= InResultTypeMask;
|
|
}
|
|
|
|
void leaveResultType() {
|
|
Bits &= ~InResultTypeMask;
|
|
}
|
|
|
|
void pop(FunctionTypeDepthState saved) {
|
|
assert(getDepth() == saved.getDepth() + 1);
|
|
Bits = saved.Bits;
|
|
}
|
|
|
|
} FunctionTypeDepth;
|
|
|
|
llvm::DenseMap<uintptr_t, unsigned> Substitutions;
|
|
|
|
ASTContext &getASTContext() const { return Context.getASTContext(); }
|
|
|
|
public:
|
|
CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
|
|
const NamedDecl *D = 0)
|
|
: Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
|
|
SeqID(0) {
|
|
// These can't be mangled without a ctor type or dtor type.
|
|
assert(!D || (!isa<CXXDestructorDecl>(D) &&
|
|
!isa<CXXConstructorDecl>(D)));
|
|
}
|
|
CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
|
|
const CXXConstructorDecl *D, CXXCtorType Type)
|
|
: Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
|
|
SeqID(0) { }
|
|
CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
|
|
const CXXDestructorDecl *D, CXXDtorType Type)
|
|
: Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
|
|
SeqID(0) { }
|
|
|
|
#if MANGLE_CHECKER
|
|
~CXXNameMangler() {
|
|
if (Out.str()[0] == '\01')
|
|
return;
|
|
|
|
int status = 0;
|
|
char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
|
|
assert(status == 0 && "Could not demangle mangled name!");
|
|
free(result);
|
|
}
|
|
#endif
|
|
raw_ostream &getStream() { return Out; }
|
|
|
|
void mangle(const NamedDecl *D, StringRef Prefix = "_Z");
|
|
void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
|
|
void mangleNumber(const llvm::APSInt &I);
|
|
void mangleNumber(int64_t Number);
|
|
void mangleFloat(const llvm::APFloat &F);
|
|
void mangleFunctionEncoding(const FunctionDecl *FD);
|
|
void mangleName(const NamedDecl *ND);
|
|
void mangleType(QualType T);
|
|
void mangleNameOrStandardSubstitution(const NamedDecl *ND);
|
|
|
|
private:
|
|
bool mangleSubstitution(const NamedDecl *ND);
|
|
bool mangleSubstitution(QualType T);
|
|
bool mangleSubstitution(TemplateName Template);
|
|
bool mangleSubstitution(uintptr_t Ptr);
|
|
|
|
void mangleExistingSubstitution(QualType type);
|
|
void mangleExistingSubstitution(TemplateName name);
|
|
|
|
bool mangleStandardSubstitution(const NamedDecl *ND);
|
|
|
|
void addSubstitution(const NamedDecl *ND) {
|
|
ND = cast<NamedDecl>(ND->getCanonicalDecl());
|
|
|
|
addSubstitution(reinterpret_cast<uintptr_t>(ND));
|
|
}
|
|
void addSubstitution(QualType T);
|
|
void addSubstitution(TemplateName Template);
|
|
void addSubstitution(uintptr_t Ptr);
|
|
|
|
void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
|
|
NamedDecl *firstQualifierLookup,
|
|
bool recursive = false);
|
|
void mangleUnresolvedName(NestedNameSpecifier *qualifier,
|
|
NamedDecl *firstQualifierLookup,
|
|
DeclarationName name,
|
|
unsigned KnownArity = UnknownArity);
|
|
|
|
void mangleName(const TemplateDecl *TD,
|
|
const TemplateArgument *TemplateArgs,
|
|
unsigned NumTemplateArgs);
|
|
void mangleUnqualifiedName(const NamedDecl *ND) {
|
|
mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
|
|
}
|
|
void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
|
|
unsigned KnownArity);
|
|
void mangleUnscopedName(const NamedDecl *ND);
|
|
void mangleUnscopedTemplateName(const TemplateDecl *ND);
|
|
void mangleUnscopedTemplateName(TemplateName);
|
|
void mangleSourceName(const IdentifierInfo *II);
|
|
void mangleLocalName(const NamedDecl *ND);
|
|
void mangleLambda(const CXXRecordDecl *Lambda);
|
|
void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
|
|
bool NoFunction=false);
|
|
void mangleNestedName(const TemplateDecl *TD,
|
|
const TemplateArgument *TemplateArgs,
|
|
unsigned NumTemplateArgs);
|
|
void manglePrefix(NestedNameSpecifier *qualifier);
|
|
void manglePrefix(const DeclContext *DC, bool NoFunction=false);
|
|
void manglePrefix(QualType type);
|
|
void mangleTemplatePrefix(const TemplateDecl *ND);
|
|
void mangleTemplatePrefix(TemplateName Template);
|
|
void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
|
|
void mangleQualifiers(Qualifiers Quals);
|
|
void mangleRefQualifier(RefQualifierKind RefQualifier);
|
|
|
|
void mangleObjCMethodName(const ObjCMethodDecl *MD);
|
|
|
|
// Declare manglers for every type class.
|
|
#define ABSTRACT_TYPE(CLASS, PARENT)
|
|
#define NON_CANONICAL_TYPE(CLASS, PARENT)
|
|
#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
|
|
#include "clang/AST/TypeNodes.def"
|
|
|
|
void mangleType(const TagType*);
|
|
void mangleType(TemplateName);
|
|
void mangleBareFunctionType(const FunctionType *T,
|
|
bool MangleReturnType);
|
|
void mangleNeonVectorType(const VectorType *T);
|
|
|
|
void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
|
|
void mangleMemberExpr(const Expr *base, bool isArrow,
|
|
NestedNameSpecifier *qualifier,
|
|
NamedDecl *firstQualifierLookup,
|
|
DeclarationName name,
|
|
unsigned knownArity);
|
|
void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
|
|
void mangleCXXCtorType(CXXCtorType T);
|
|
void mangleCXXDtorType(CXXDtorType T);
|
|
|
|
void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs);
|
|
void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
|
|
unsigned NumTemplateArgs);
|
|
void mangleTemplateArgs(const TemplateArgumentList &AL);
|
|
void mangleTemplateArg(TemplateArgument A);
|
|
|
|
void mangleTemplateParameter(unsigned Index);
|
|
|
|
void mangleFunctionParam(const ParmVarDecl *parm);
|
|
};
|
|
|
|
}
|
|
|
|
static bool isInCLinkageSpecification(const Decl *D) {
|
|
D = D->getCanonicalDecl();
|
|
for (const DeclContext *DC = getEffectiveDeclContext(D);
|
|
!DC->isTranslationUnit(); DC = getEffectiveParentContext(DC)) {
|
|
if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC))
|
|
return Linkage->getLanguage() == LinkageSpecDecl::lang_c;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ItaniumMangleContext::shouldMangleDeclName(const NamedDecl *D) {
|
|
// In C, functions with no attributes never need to be mangled. Fastpath them.
|
|
if (!getASTContext().getLangOpts().CPlusPlus && !D->hasAttrs())
|
|
return false;
|
|
|
|
// Any decl can be declared with __asm("foo") on it, and this takes precedence
|
|
// over all other naming in the .o file.
|
|
if (D->hasAttr<AsmLabelAttr>())
|
|
return true;
|
|
|
|
// Clang's "overloadable" attribute extension to C/C++ implies name mangling
|
|
// (always) as does passing a C++ member function and a function
|
|
// whose name is not a simple identifier.
|
|
const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
|
|
if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) ||
|
|
!FD->getDeclName().isIdentifier()))
|
|
return true;
|
|
|
|
// Otherwise, no mangling is done outside C++ mode.
|
|
if (!getASTContext().getLangOpts().CPlusPlus)
|
|
return false;
|
|
|
|
// Variables at global scope with non-internal linkage are not mangled
|
|
if (!FD) {
|
|
const DeclContext *DC = getEffectiveDeclContext(D);
|
|
// Check for extern variable declared locally.
|
|
if (DC->isFunctionOrMethod() && D->hasLinkage())
|
|
while (!DC->isNamespace() && !DC->isTranslationUnit())
|
|
DC = getEffectiveParentContext(DC);
|
|
if (DC->isTranslationUnit() && D->getLinkage() != InternalLinkage)
|
|
return false;
|
|
}
|
|
|
|
// Class members are always mangled.
|
|
if (getEffectiveDeclContext(D)->isRecord())
|
|
return true;
|
|
|
|
// C functions and "main" are not mangled.
|
|
if ((FD && FD->isMain()) || isInCLinkageSpecification(D))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void CXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
|
|
// Any decl can be declared with __asm("foo") on it, and this takes precedence
|
|
// over all other naming in the .o file.
|
|
if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
|
|
// If we have an asm name, then we use it as the mangling.
|
|
|
|
// Adding the prefix can cause problems when one file has a "foo" and
|
|
// another has a "\01foo". That is known to happen on ELF with the
|
|
// tricks normally used for producing aliases (PR9177). Fortunately the
|
|
// llvm mangler on ELF is a nop, so we can just avoid adding the \01
|
|
// marker. We also avoid adding the marker if this is an alias for an
|
|
// LLVM intrinsic.
|
|
StringRef UserLabelPrefix =
|
|
getASTContext().getTargetInfo().getUserLabelPrefix();
|
|
if (!UserLabelPrefix.empty() && !ALA->getLabel().startswith("llvm."))
|
|
Out << '\01'; // LLVM IR Marker for __asm("foo")
|
|
|
|
Out << ALA->getLabel();
|
|
return;
|
|
}
|
|
|
|
// <mangled-name> ::= _Z <encoding>
|
|
// ::= <data name>
|
|
// ::= <special-name>
|
|
Out << Prefix;
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
|
|
mangleFunctionEncoding(FD);
|
|
else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
|
|
mangleName(VD);
|
|
else
|
|
mangleName(cast<FieldDecl>(D));
|
|
}
|
|
|
|
void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
|
|
// <encoding> ::= <function name> <bare-function-type>
|
|
mangleName(FD);
|
|
|
|
// Don't mangle in the type if this isn't a decl we should typically mangle.
|
|
if (!Context.shouldMangleDeclName(FD))
|
|
return;
|
|
|
|
// Whether the mangling of a function type includes the return type depends on
|
|
// the context and the nature of the function. The rules for deciding whether
|
|
// the return type is included are:
|
|
//
|
|
// 1. Template functions (names or types) have return types encoded, with
|
|
// the exceptions listed below.
|
|
// 2. Function types not appearing as part of a function name mangling,
|
|
// e.g. parameters, pointer types, etc., have return type encoded, with the
|
|
// exceptions listed below.
|
|
// 3. Non-template function names do not have return types encoded.
|
|
//
|
|
// The exceptions mentioned in (1) and (2) above, for which the return type is
|
|
// never included, are
|
|
// 1. Constructors.
|
|
// 2. Destructors.
|
|
// 3. Conversion operator functions, e.g. operator int.
|
|
bool MangleReturnType = false;
|
|
if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
|
|
if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
|
|
isa<CXXConversionDecl>(FD)))
|
|
MangleReturnType = true;
|
|
|
|
// Mangle the type of the primary template.
|
|
FD = PrimaryTemplate->getTemplatedDecl();
|
|
}
|
|
|
|
mangleBareFunctionType(FD->getType()->getAs<FunctionType>(),
|
|
MangleReturnType);
|
|
}
|
|
|
|
static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
|
|
while (isa<LinkageSpecDecl>(DC)) {
|
|
DC = getEffectiveParentContext(DC);
|
|
}
|
|
|
|
return DC;
|
|
}
|
|
|
|
/// isStd - Return whether a given namespace is the 'std' namespace.
|
|
static bool isStd(const NamespaceDecl *NS) {
|
|
if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
|
|
->isTranslationUnit())
|
|
return false;
|
|
|
|
const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
|
|
return II && II->isStr("std");
|
|
}
|
|
|
|
// isStdNamespace - Return whether a given decl context is a toplevel 'std'
|
|
// namespace.
|
|
static bool isStdNamespace(const DeclContext *DC) {
|
|
if (!DC->isNamespace())
|
|
return false;
|
|
|
|
return isStd(cast<NamespaceDecl>(DC));
|
|
}
|
|
|
|
static const TemplateDecl *
|
|
isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
|
|
// Check if we have a function template.
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
|
|
if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
|
|
TemplateArgs = FD->getTemplateSpecializationArgs();
|
|
return TD;
|
|
}
|
|
}
|
|
|
|
// Check if we have a class template.
|
|
if (const ClassTemplateSpecializationDecl *Spec =
|
|
dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
|
|
TemplateArgs = &Spec->getTemplateArgs();
|
|
return Spec->getSpecializedTemplate();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool isLambda(const NamedDecl *ND) {
|
|
const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
|
|
if (!Record)
|
|
return false;
|
|
|
|
return Record->isLambda();
|
|
}
|
|
|
|
void CXXNameMangler::mangleName(const NamedDecl *ND) {
|
|
// <name> ::= <nested-name>
|
|
// ::= <unscoped-name>
|
|
// ::= <unscoped-template-name> <template-args>
|
|
// ::= <local-name>
|
|
//
|
|
const DeclContext *DC = getEffectiveDeclContext(ND);
|
|
|
|
// If this is an extern variable declared locally, the relevant DeclContext
|
|
// is that of the containing namespace, or the translation unit.
|
|
// FIXME: This is a hack; extern variables declared locally should have
|
|
// a proper semantic declaration context!
|
|
if (isa<FunctionDecl>(DC) && ND->hasLinkage() && !isLambda(ND))
|
|
while (!DC->isNamespace() && !DC->isTranslationUnit())
|
|
DC = getEffectiveParentContext(DC);
|
|
else if (GetLocalClassDecl(ND)) {
|
|
mangleLocalName(ND);
|
|
return;
|
|
}
|
|
|
|
DC = IgnoreLinkageSpecDecls(DC);
|
|
|
|
if (DC->isTranslationUnit() || isStdNamespace(DC)) {
|
|
// Check if we have a template.
|
|
const TemplateArgumentList *TemplateArgs = 0;
|
|
if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
|
|
mangleUnscopedTemplateName(TD);
|
|
mangleTemplateArgs(*TemplateArgs);
|
|
return;
|
|
}
|
|
|
|
mangleUnscopedName(ND);
|
|
return;
|
|
}
|
|
|
|
if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) {
|
|
mangleLocalName(ND);
|
|
return;
|
|
}
|
|
|
|
mangleNestedName(ND, DC);
|
|
}
|
|
void CXXNameMangler::mangleName(const TemplateDecl *TD,
|
|
const TemplateArgument *TemplateArgs,
|
|
unsigned NumTemplateArgs) {
|
|
const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
|
|
|
|
if (DC->isTranslationUnit() || isStdNamespace(DC)) {
|
|
mangleUnscopedTemplateName(TD);
|
|
mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
|
|
} else {
|
|
mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
|
|
}
|
|
}
|
|
|
|
void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
|
|
// <unscoped-name> ::= <unqualified-name>
|
|
// ::= St <unqualified-name> # ::std::
|
|
|
|
if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
|
|
Out << "St";
|
|
|
|
mangleUnqualifiedName(ND);
|
|
}
|
|
|
|
void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
|
|
// <unscoped-template-name> ::= <unscoped-name>
|
|
// ::= <substitution>
|
|
if (mangleSubstitution(ND))
|
|
return;
|
|
|
|
// <template-template-param> ::= <template-param>
|
|
if (const TemplateTemplateParmDecl *TTP
|
|
= dyn_cast<TemplateTemplateParmDecl>(ND)) {
|
|
mangleTemplateParameter(TTP->getIndex());
|
|
return;
|
|
}
|
|
|
|
mangleUnscopedName(ND->getTemplatedDecl());
|
|
addSubstitution(ND);
|
|
}
|
|
|
|
void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
|
|
// <unscoped-template-name> ::= <unscoped-name>
|
|
// ::= <substitution>
|
|
if (TemplateDecl *TD = Template.getAsTemplateDecl())
|
|
return mangleUnscopedTemplateName(TD);
|
|
|
|
if (mangleSubstitution(Template))
|
|
return;
|
|
|
|
DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
|
|
assert(Dependent && "Not a dependent template name?");
|
|
if (const IdentifierInfo *Id = Dependent->getIdentifier())
|
|
mangleSourceName(Id);
|
|
else
|
|
mangleOperatorName(Dependent->getOperator(), UnknownArity);
|
|
|
|
addSubstitution(Template);
|
|
}
|
|
|
|
void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
|
|
// ABI:
|
|
// Floating-point literals are encoded using a fixed-length
|
|
// lowercase hexadecimal string corresponding to the internal
|
|
// representation (IEEE on Itanium), high-order bytes first,
|
|
// without leading zeroes. For example: "Lf bf800000 E" is -1.0f
|
|
// on Itanium.
|
|
// The 'without leading zeroes' thing seems to be an editorial
|
|
// mistake; see the discussion on cxx-abi-dev beginning on
|
|
// 2012-01-16.
|
|
|
|
// Our requirements here are just barely weird enough to justify
|
|
// using a custom algorithm instead of post-processing APInt::toString().
|
|
|
|
llvm::APInt valueBits = f.bitcastToAPInt();
|
|
unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
|
|
assert(numCharacters != 0);
|
|
|
|
// Allocate a buffer of the right number of characters.
|
|
llvm::SmallVector<char, 20> buffer;
|
|
buffer.set_size(numCharacters);
|
|
|
|
// Fill the buffer left-to-right.
|
|
for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
|
|
// The bit-index of the next hex digit.
|
|
unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
|
|
|
|
// Project out 4 bits starting at 'digitIndex'.
|
|
llvm::integerPart hexDigit
|
|
= valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth];
|
|
hexDigit >>= (digitBitIndex % llvm::integerPartWidth);
|
|
hexDigit &= 0xF;
|
|
|
|
// Map that over to a lowercase hex digit.
|
|
static const char charForHex[16] = {
|
|
'0', '1', '2', '3', '4', '5', '6', '7',
|
|
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
|
|
};
|
|
buffer[stringIndex] = charForHex[hexDigit];
|
|
}
|
|
|
|
Out.write(buffer.data(), numCharacters);
|
|
}
|
|
|
|
void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
|
|
if (Value.isSigned() && Value.isNegative()) {
|
|
Out << 'n';
|
|
Value.abs().print(Out, /*signed*/ false);
|
|
} else {
|
|
Value.print(Out, /*signed*/ false);
|
|
}
|
|
}
|
|
|
|
void CXXNameMangler::mangleNumber(int64_t Number) {
|
|
// <number> ::= [n] <non-negative decimal integer>
|
|
if (Number < 0) {
|
|
Out << 'n';
|
|
Number = -Number;
|
|
}
|
|
|
|
Out << Number;
|
|
}
|
|
|
|
void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
|
|
// <call-offset> ::= h <nv-offset> _
|
|
// ::= v <v-offset> _
|
|
// <nv-offset> ::= <offset number> # non-virtual base override
|
|
// <v-offset> ::= <offset number> _ <virtual offset number>
|
|
// # virtual base override, with vcall offset
|
|
if (!Virtual) {
|
|
Out << 'h';
|
|
mangleNumber(NonVirtual);
|
|
Out << '_';
|
|
return;
|
|
}
|
|
|
|
Out << 'v';
|
|
mangleNumber(NonVirtual);
|
|
Out << '_';
|
|
mangleNumber(Virtual);
|
|
Out << '_';
|
|
}
|
|
|
|
void CXXNameMangler::manglePrefix(QualType type) {
|
|
if (const TemplateSpecializationType *TST =
|
|
type->getAs<TemplateSpecializationType>()) {
|
|
if (!mangleSubstitution(QualType(TST, 0))) {
|
|
mangleTemplatePrefix(TST->getTemplateName());
|
|
|
|
// FIXME: GCC does not appear to mangle the template arguments when
|
|
// the template in question is a dependent template name. Should we
|
|
// emulate that badness?
|
|
mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
|
|
addSubstitution(QualType(TST, 0));
|
|
}
|
|
} else if (const DependentTemplateSpecializationType *DTST
|
|
= type->getAs<DependentTemplateSpecializationType>()) {
|
|
TemplateName Template
|
|
= getASTContext().getDependentTemplateName(DTST->getQualifier(),
|
|
DTST->getIdentifier());
|
|
mangleTemplatePrefix(Template);
|
|
|
|
// FIXME: GCC does not appear to mangle the template arguments when
|
|
// the template in question is a dependent template name. Should we
|
|
// emulate that badness?
|
|
mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
|
|
} else {
|
|
// We use the QualType mangle type variant here because it handles
|
|
// substitutions.
|
|
mangleType(type);
|
|
}
|
|
}
|
|
|
|
/// Mangle everything prior to the base-unresolved-name in an unresolved-name.
|
|
///
|
|
/// \param firstQualifierLookup - the entity found by unqualified lookup
|
|
/// for the first name in the qualifier, if this is for a member expression
|
|
/// \param recursive - true if this is being called recursively,
|
|
/// i.e. if there is more prefix "to the right".
|
|
void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
|
|
NamedDecl *firstQualifierLookup,
|
|
bool recursive) {
|
|
|
|
// x, ::x
|
|
// <unresolved-name> ::= [gs] <base-unresolved-name>
|
|
|
|
// T::x / decltype(p)::x
|
|
// <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
|
|
|
|
// T::N::x /decltype(p)::N::x
|
|
// <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
|
|
// <base-unresolved-name>
|
|
|
|
// A::x, N::y, A<T>::z; "gs" means leading "::"
|
|
// <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
|
|
// <base-unresolved-name>
|
|
|
|
switch (qualifier->getKind()) {
|
|
case NestedNameSpecifier::Global:
|
|
Out << "gs";
|
|
|
|
// We want an 'sr' unless this is the entire NNS.
|
|
if (recursive)
|
|
Out << "sr";
|
|
|
|
// We never want an 'E' here.
|
|
return;
|
|
|
|
case NestedNameSpecifier::Namespace:
|
|
if (qualifier->getPrefix())
|
|
mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
|
|
/*recursive*/ true);
|
|
else
|
|
Out << "sr";
|
|
mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
|
|
break;
|
|
case NestedNameSpecifier::NamespaceAlias:
|
|
if (qualifier->getPrefix())
|
|
mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
|
|
/*recursive*/ true);
|
|
else
|
|
Out << "sr";
|
|
mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
|
|
break;
|
|
|
|
case NestedNameSpecifier::TypeSpec:
|
|
case NestedNameSpecifier::TypeSpecWithTemplate: {
|
|
const Type *type = qualifier->getAsType();
|
|
|
|
// We only want to use an unresolved-type encoding if this is one of:
|
|
// - a decltype
|
|
// - a template type parameter
|
|
// - a template template parameter with arguments
|
|
// In all of these cases, we should have no prefix.
|
|
if (qualifier->getPrefix()) {
|
|
mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
|
|
/*recursive*/ true);
|
|
} else {
|
|
// Otherwise, all the cases want this.
|
|
Out << "sr";
|
|
}
|
|
|
|
// Only certain other types are valid as prefixes; enumerate them.
|
|
switch (type->getTypeClass()) {
|
|
case Type::Builtin:
|
|
case Type::Complex:
|
|
case Type::Pointer:
|
|
case Type::BlockPointer:
|
|
case Type::LValueReference:
|
|
case Type::RValueReference:
|
|
case Type::MemberPointer:
|
|
case Type::ConstantArray:
|
|
case Type::IncompleteArray:
|
|
case Type::VariableArray:
|
|
case Type::DependentSizedArray:
|
|
case Type::DependentSizedExtVector:
|
|
case Type::Vector:
|
|
case Type::ExtVector:
|
|
case Type::FunctionProto:
|
|
case Type::FunctionNoProto:
|
|
case Type::Enum:
|
|
case Type::Paren:
|
|
case Type::Elaborated:
|
|
case Type::Attributed:
|
|
case Type::Auto:
|
|
case Type::PackExpansion:
|
|
case Type::ObjCObject:
|
|
case Type::ObjCInterface:
|
|
case Type::ObjCObjectPointer:
|
|
case Type::Atomic:
|
|
llvm_unreachable("type is illegal as a nested name specifier");
|
|
|
|
case Type::SubstTemplateTypeParmPack:
|
|
// FIXME: not clear how to mangle this!
|
|
// template <class T...> class A {
|
|
// template <class U...> void foo(decltype(T::foo(U())) x...);
|
|
// };
|
|
Out << "_SUBSTPACK_";
|
|
break;
|
|
|
|
// <unresolved-type> ::= <template-param>
|
|
// ::= <decltype>
|
|
// ::= <template-template-param> <template-args>
|
|
// (this last is not official yet)
|
|
case Type::TypeOfExpr:
|
|
case Type::TypeOf:
|
|
case Type::Decltype:
|
|
case Type::TemplateTypeParm:
|
|
case Type::UnaryTransform:
|
|
case Type::SubstTemplateTypeParm:
|
|
unresolvedType:
|
|
assert(!qualifier->getPrefix());
|
|
|
|
// We only get here recursively if we're followed by identifiers.
|
|
if (recursive) Out << 'N';
|
|
|
|
// This seems to do everything we want. It's not really
|
|
// sanctioned for a substituted template parameter, though.
|
|
mangleType(QualType(type, 0));
|
|
|
|
// We never want to print 'E' directly after an unresolved-type,
|
|
// so we return directly.
|
|
return;
|
|
|
|
case Type::Typedef:
|
|
mangleSourceName(cast<TypedefType>(type)->getDecl()->getIdentifier());
|
|
break;
|
|
|
|
case Type::UnresolvedUsing:
|
|
mangleSourceName(cast<UnresolvedUsingType>(type)->getDecl()
|
|
->getIdentifier());
|
|
break;
|
|
|
|
case Type::Record:
|
|
mangleSourceName(cast<RecordType>(type)->getDecl()->getIdentifier());
|
|
break;
|
|
|
|
case Type::TemplateSpecialization: {
|
|
const TemplateSpecializationType *tst
|
|
= cast<TemplateSpecializationType>(type);
|
|
TemplateName name = tst->getTemplateName();
|
|
switch (name.getKind()) {
|
|
case TemplateName::Template:
|
|
case TemplateName::QualifiedTemplate: {
|
|
TemplateDecl *temp = name.getAsTemplateDecl();
|
|
|
|
// If the base is a template template parameter, this is an
|
|
// unresolved type.
|
|
assert(temp && "no template for template specialization type");
|
|
if (isa<TemplateTemplateParmDecl>(temp)) goto unresolvedType;
|
|
|
|
mangleSourceName(temp->getIdentifier());
|
|
break;
|
|
}
|
|
|
|
case TemplateName::OverloadedTemplate:
|
|
case TemplateName::DependentTemplate:
|
|
llvm_unreachable("invalid base for a template specialization type");
|
|
|
|
case TemplateName::SubstTemplateTemplateParm: {
|
|
SubstTemplateTemplateParmStorage *subst
|
|
= name.getAsSubstTemplateTemplateParm();
|
|
mangleExistingSubstitution(subst->getReplacement());
|
|
break;
|
|
}
|
|
|
|
case TemplateName::SubstTemplateTemplateParmPack: {
|
|
// FIXME: not clear how to mangle this!
|
|
// template <template <class U> class T...> class A {
|
|
// template <class U...> void foo(decltype(T<U>::foo) x...);
|
|
// };
|
|
Out << "_SUBSTPACK_";
|
|
break;
|
|
}
|
|
}
|
|
|
|
mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
|
|
break;
|
|
}
|
|
|
|
case Type::InjectedClassName:
|
|
mangleSourceName(cast<InjectedClassNameType>(type)->getDecl()
|
|
->getIdentifier());
|
|
break;
|
|
|
|
case Type::DependentName:
|
|
mangleSourceName(cast<DependentNameType>(type)->getIdentifier());
|
|
break;
|
|
|
|
case Type::DependentTemplateSpecialization: {
|
|
const DependentTemplateSpecializationType *tst
|
|
= cast<DependentTemplateSpecializationType>(type);
|
|
mangleSourceName(tst->getIdentifier());
|
|
mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case NestedNameSpecifier::Identifier:
|
|
// Member expressions can have these without prefixes.
|
|
if (qualifier->getPrefix()) {
|
|
mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
|
|
/*recursive*/ true);
|
|
} else if (firstQualifierLookup) {
|
|
|
|
// Try to make a proper qualifier out of the lookup result, and
|
|
// then just recurse on that.
|
|
NestedNameSpecifier *newQualifier;
|
|
if (TypeDecl *typeDecl = dyn_cast<TypeDecl>(firstQualifierLookup)) {
|
|
QualType type = getASTContext().getTypeDeclType(typeDecl);
|
|
|
|
// Pretend we had a different nested name specifier.
|
|
newQualifier = NestedNameSpecifier::Create(getASTContext(),
|
|
/*prefix*/ 0,
|
|
/*template*/ false,
|
|
type.getTypePtr());
|
|
} else if (NamespaceDecl *nspace =
|
|
dyn_cast<NamespaceDecl>(firstQualifierLookup)) {
|
|
newQualifier = NestedNameSpecifier::Create(getASTContext(),
|
|
/*prefix*/ 0,
|
|
nspace);
|
|
} else if (NamespaceAliasDecl *alias =
|
|
dyn_cast<NamespaceAliasDecl>(firstQualifierLookup)) {
|
|
newQualifier = NestedNameSpecifier::Create(getASTContext(),
|
|
/*prefix*/ 0,
|
|
alias);
|
|
} else {
|
|
// No sensible mangling to do here.
|
|
newQualifier = 0;
|
|
}
|
|
|
|
if (newQualifier)
|
|
return mangleUnresolvedPrefix(newQualifier, /*lookup*/ 0, recursive);
|
|
|
|
} else {
|
|
Out << "sr";
|
|
}
|
|
|
|
mangleSourceName(qualifier->getAsIdentifier());
|
|
break;
|
|
}
|
|
|
|
// If this was the innermost part of the NNS, and we fell out to
|
|
// here, append an 'E'.
|
|
if (!recursive)
|
|
Out << 'E';
|
|
}
|
|
|
|
/// Mangle an unresolved-name, which is generally used for names which
|
|
/// weren't resolved to specific entities.
|
|
void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
|
|
NamedDecl *firstQualifierLookup,
|
|
DeclarationName name,
|
|
unsigned knownArity) {
|
|
if (qualifier) mangleUnresolvedPrefix(qualifier, firstQualifierLookup);
|
|
mangleUnqualifiedName(0, name, knownArity);
|
|
}
|
|
|
|
static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {
|
|
assert(RD->isAnonymousStructOrUnion() &&
|
|
"Expected anonymous struct or union!");
|
|
|
|
for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
|
|
I != E; ++I) {
|
|
if (I->getIdentifier())
|
|
return *I;
|
|
|
|
if (const RecordType *RT = I->getType()->getAs<RecordType>())
|
|
if (const FieldDecl *NamedDataMember =
|
|
FindFirstNamedDataMember(RT->getDecl()))
|
|
return NamedDataMember;
|
|
}
|
|
|
|
// We didn't find a named data member.
|
|
return 0;
|
|
}
|
|
|
|
void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
|
|
DeclarationName Name,
|
|
unsigned KnownArity) {
|
|
// <unqualified-name> ::= <operator-name>
|
|
// ::= <ctor-dtor-name>
|
|
// ::= <source-name>
|
|
switch (Name.getNameKind()) {
|
|
case DeclarationName::Identifier: {
|
|
if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
|
|
// We must avoid conflicts between internally- and externally-
|
|
// linked variable and function declaration names in the same TU:
|
|
// void test() { extern void foo(); }
|
|
// static void foo();
|
|
// This naming convention is the same as that followed by GCC,
|
|
// though it shouldn't actually matter.
|
|
if (ND && ND->getLinkage() == InternalLinkage &&
|
|
getEffectiveDeclContext(ND)->isFileContext())
|
|
Out << 'L';
|
|
|
|
mangleSourceName(II);
|
|
break;
|
|
}
|
|
|
|
// Otherwise, an anonymous entity. We must have a declaration.
|
|
assert(ND && "mangling empty name without declaration");
|
|
|
|
if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
|
|
if (NS->isAnonymousNamespace()) {
|
|
// This is how gcc mangles these names.
|
|
Out << "12_GLOBAL__N_1";
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
|
|
// We must have an anonymous union or struct declaration.
|
|
const RecordDecl *RD =
|
|
cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
|
|
|
|
// Itanium C++ ABI 5.1.2:
|
|
//
|
|
// For the purposes of mangling, the name of an anonymous union is
|
|
// considered to be the name of the first named data member found by a
|
|
// pre-order, depth-first, declaration-order walk of the data members of
|
|
// the anonymous union. If there is no such data member (i.e., if all of
|
|
// the data members in the union are unnamed), then there is no way for
|
|
// a program to refer to the anonymous union, and there is therefore no
|
|
// need to mangle its name.
|
|
const FieldDecl *FD = FindFirstNamedDataMember(RD);
|
|
|
|
// It's actually possible for various reasons for us to get here
|
|
// with an empty anonymous struct / union. Fortunately, it
|
|
// doesn't really matter what name we generate.
|
|
if (!FD) break;
|
|
assert(FD->getIdentifier() && "Data member name isn't an identifier!");
|
|
|
|
mangleSourceName(FD->getIdentifier());
|
|
break;
|
|
}
|
|
|
|
// We must have an anonymous struct.
|
|
const TagDecl *TD = cast<TagDecl>(ND);
|
|
if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
|
|
assert(TD->getDeclContext() == D->getDeclContext() &&
|
|
"Typedef should not be in another decl context!");
|
|
assert(D->getDeclName().getAsIdentifierInfo() &&
|
|
"Typedef was not named!");
|
|
mangleSourceName(D->getDeclName().getAsIdentifierInfo());
|
|
break;
|
|
}
|
|
|
|
// <unnamed-type-name> ::= <closure-type-name>
|
|
//
|
|
// <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
|
|
// <lambda-sig> ::= <parameter-type>+ # Parameter types or 'v' for 'void'.
|
|
if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
|
|
if (Record->isLambda() && Record->getLambdaManglingNumber()) {
|
|
mangleLambda(Record);
|
|
break;
|
|
}
|
|
}
|
|
|
|
int UnnamedMangle = Context.getASTContext().getUnnamedTagManglingNumber(TD);
|
|
if (UnnamedMangle != -1) {
|
|
Out << "Ut";
|
|
if (UnnamedMangle != 0)
|
|
Out << llvm::utostr(UnnamedMangle - 1);
|
|
Out << '_';
|
|
break;
|
|
}
|
|
|
|
// Get a unique id for the anonymous struct.
|
|
uint64_t AnonStructId = Context.getAnonymousStructId(TD);
|
|
|
|
// Mangle it as a source name in the form
|
|
// [n] $_<id>
|
|
// where n is the length of the string.
|
|
SmallString<8> Str;
|
|
Str += "$_";
|
|
Str += llvm::utostr(AnonStructId);
|
|
|
|
Out << Str.size();
|
|
Out << Str.str();
|
|
break;
|
|
}
|
|
|
|
case DeclarationName::ObjCZeroArgSelector:
|
|
case DeclarationName::ObjCOneArgSelector:
|
|
case DeclarationName::ObjCMultiArgSelector:
|
|
llvm_unreachable("Can't mangle Objective-C selector names here!");
|
|
|
|
case DeclarationName::CXXConstructorName:
|
|
if (ND == Structor)
|
|
// If the named decl is the C++ constructor we're mangling, use the type
|
|
// we were given.
|
|
mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
|
|
else
|
|
// Otherwise, use the complete constructor name. This is relevant if a
|
|
// class with a constructor is declared within a constructor.
|
|
mangleCXXCtorType(Ctor_Complete);
|
|
break;
|
|
|
|
case DeclarationName::CXXDestructorName:
|
|
if (ND == Structor)
|
|
// If the named decl is the C++ destructor we're mangling, use the type we
|
|
// were given.
|
|
mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
|
|
else
|
|
// Otherwise, use the complete destructor name. This is relevant if a
|
|
// class with a destructor is declared within a destructor.
|
|
mangleCXXDtorType(Dtor_Complete);
|
|
break;
|
|
|
|
case DeclarationName::CXXConversionFunctionName:
|
|
// <operator-name> ::= cv <type> # (cast)
|
|
Out << "cv";
|
|
mangleType(Name.getCXXNameType());
|
|
break;
|
|
|
|
case DeclarationName::CXXOperatorName: {
|
|
unsigned Arity;
|
|
if (ND) {
|
|
Arity = cast<FunctionDecl>(ND)->getNumParams();
|
|
|
|
// If we have a C++ member function, we need to include the 'this' pointer.
|
|
// FIXME: This does not make sense for operators that are static, but their
|
|
// names stay the same regardless of the arity (operator new for instance).
|
|
if (isa<CXXMethodDecl>(ND))
|
|
Arity++;
|
|
} else
|
|
Arity = KnownArity;
|
|
|
|
mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
|
|
break;
|
|
}
|
|
|
|
case DeclarationName::CXXLiteralOperatorName:
|
|
// FIXME: This mangling is not yet official.
|
|
Out << "li";
|
|
mangleSourceName(Name.getCXXLiteralIdentifier());
|
|
break;
|
|
|
|
case DeclarationName::CXXUsingDirective:
|
|
llvm_unreachable("Can't mangle a using directive name!");
|
|
}
|
|
}
|
|
|
|
void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
|
|
// <source-name> ::= <positive length number> <identifier>
|
|
// <number> ::= [n] <non-negative decimal integer>
|
|
// <identifier> ::= <unqualified source code identifier>
|
|
Out << II->getLength() << II->getName();
|
|
}
|
|
|
|
void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
|
|
const DeclContext *DC,
|
|
bool NoFunction) {
|
|
// <nested-name>
|
|
// ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
|
|
// ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
|
|
// <template-args> E
|
|
|
|
Out << 'N';
|
|
if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
|
|
mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
|
|
mangleRefQualifier(Method->getRefQualifier());
|
|
}
|
|
|
|
// Check if we have a template.
|
|
const TemplateArgumentList *TemplateArgs = 0;
|
|
if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
|
|
mangleTemplatePrefix(TD);
|
|
mangleTemplateArgs(*TemplateArgs);
|
|
}
|
|
else {
|
|
manglePrefix(DC, NoFunction);
|
|
mangleUnqualifiedName(ND);
|
|
}
|
|
|
|
Out << 'E';
|
|
}
|
|
void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
|
|
const TemplateArgument *TemplateArgs,
|
|
unsigned NumTemplateArgs) {
|
|
// <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
|
|
|
|
Out << 'N';
|
|
|
|
mangleTemplatePrefix(TD);
|
|
mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
|
|
|
|
Out << 'E';
|
|
}
|
|
|
|
void CXXNameMangler::mangleLocalName(const NamedDecl *ND) {
|
|
// <local-name> := Z <function encoding> E <entity name> [<discriminator>]
|
|
// := Z <function encoding> E s [<discriminator>]
|
|
// <local-name> := Z <function encoding> E d [ <parameter number> ]
|
|
// _ <entity name>
|
|
// <discriminator> := _ <non-negative number>
|
|
const DeclContext *DC = getEffectiveDeclContext(ND);
|
|
if (isa<ObjCMethodDecl>(DC) && isa<FunctionDecl>(ND)) {
|
|
// Don't add objc method name mangling to locally declared function
|
|
mangleUnqualifiedName(ND);
|
|
return;
|
|
}
|
|
|
|
Out << 'Z';
|
|
|
|
if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) {
|
|
mangleObjCMethodName(MD);
|
|
} else if (const CXXRecordDecl *RD = GetLocalClassDecl(ND)) {
|
|
mangleFunctionEncoding(cast<FunctionDecl>(getEffectiveDeclContext(RD)));
|
|
Out << 'E';
|
|
|
|
// The parameter number is omitted for the last parameter, 0 for the
|
|
// second-to-last parameter, 1 for the third-to-last parameter, etc. The
|
|
// <entity name> will of course contain a <closure-type-name>: Its
|
|
// numbering will be local to the particular argument in which it appears
|
|
// -- other default arguments do not affect its encoding.
|
|
bool SkipDiscriminator = false;
|
|
if (RD->isLambda()) {
|
|
if (const ParmVarDecl *Parm
|
|
= dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) {
|
|
if (const FunctionDecl *Func
|
|
= dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
|
|
Out << 'd';
|
|
unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
|
|
if (Num > 1)
|
|
mangleNumber(Num - 2);
|
|
Out << '_';
|
|
SkipDiscriminator = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Mangle the name relative to the closest enclosing function.
|
|
if (ND == RD) // equality ok because RD derived from ND above
|
|
mangleUnqualifiedName(ND);
|
|
else
|
|
mangleNestedName(ND, DC, true /*NoFunction*/);
|
|
|
|
if (!SkipDiscriminator) {
|
|
unsigned disc;
|
|
if (Context.getNextDiscriminator(RD, disc)) {
|
|
if (disc < 10)
|
|
Out << '_' << disc;
|
|
else
|
|
Out << "__" << disc << '_';
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
else
|
|
mangleFunctionEncoding(cast<FunctionDecl>(DC));
|
|
|
|
Out << 'E';
|
|
mangleUnqualifiedName(ND);
|
|
}
|
|
|
|
void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
|
|
// If the context of a closure type is an initializer for a class member
|
|
// (static or nonstatic), it is encoded in a qualified name with a final
|
|
// <prefix> of the form:
|
|
//
|
|
// <data-member-prefix> := <member source-name> M
|
|
//
|
|
// Technically, the data-member-prefix is part of the <prefix>. However,
|
|
// since a closure type will always be mangled with a prefix, it's easier
|
|
// to emit that last part of the prefix here.
|
|
if (Decl *Context = Lambda->getLambdaContextDecl()) {
|
|
if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
|
|
Context->getDeclContext()->isRecord()) {
|
|
if (const IdentifierInfo *Name
|
|
= cast<NamedDecl>(Context)->getIdentifier()) {
|
|
mangleSourceName(Name);
|
|
Out << 'M';
|
|
}
|
|
}
|
|
}
|
|
|
|
Out << "Ul";
|
|
const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
|
|
getAs<FunctionProtoType>();
|
|
mangleBareFunctionType(Proto, /*MangleReturnType=*/false);
|
|
Out << "E";
|
|
|
|
// The number is omitted for the first closure type with a given
|
|
// <lambda-sig> in a given context; it is n-2 for the nth closure type
|
|
// (in lexical order) with that same <lambda-sig> and context.
|
|
//
|
|
// The AST keeps track of the number for us.
|
|
unsigned Number = Lambda->getLambdaManglingNumber();
|
|
assert(Number > 0 && "Lambda should be mangled as an unnamed class");
|
|
if (Number > 1)
|
|
mangleNumber(Number - 2);
|
|
Out << '_';
|
|
}
|
|
|
|
void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
|
|
switch (qualifier->getKind()) {
|
|
case NestedNameSpecifier::Global:
|
|
// nothing
|
|
return;
|
|
|
|
case NestedNameSpecifier::Namespace:
|
|
mangleName(qualifier->getAsNamespace());
|
|
return;
|
|
|
|
case NestedNameSpecifier::NamespaceAlias:
|
|
mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
|
|
return;
|
|
|
|
case NestedNameSpecifier::TypeSpec:
|
|
case NestedNameSpecifier::TypeSpecWithTemplate:
|
|
manglePrefix(QualType(qualifier->getAsType(), 0));
|
|
return;
|
|
|
|
case NestedNameSpecifier::Identifier:
|
|
// Member expressions can have these without prefixes, but that
|
|
// should end up in mangleUnresolvedPrefix instead.
|
|
assert(qualifier->getPrefix());
|
|
manglePrefix(qualifier->getPrefix());
|
|
|
|
mangleSourceName(qualifier->getAsIdentifier());
|
|
return;
|
|
}
|
|
|
|
llvm_unreachable("unexpected nested name specifier");
|
|
}
|
|
|
|
void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
|
|
// <prefix> ::= <prefix> <unqualified-name>
|
|
// ::= <template-prefix> <template-args>
|
|
// ::= <template-param>
|
|
// ::= # empty
|
|
// ::= <substitution>
|
|
|
|
DC = IgnoreLinkageSpecDecls(DC);
|
|
|
|
if (DC->isTranslationUnit())
|
|
return;
|
|
|
|
if (const BlockDecl *Block = dyn_cast<BlockDecl>(DC)) {
|
|
manglePrefix(getEffectiveParentContext(DC), NoFunction);
|
|
SmallString<64> Name;
|
|
llvm::raw_svector_ostream NameStream(Name);
|
|
Context.mangleBlock(Block, NameStream);
|
|
NameStream.flush();
|
|
Out << Name.size() << Name;
|
|
return;
|
|
}
|
|
|
|
const NamedDecl *ND = cast<NamedDecl>(DC);
|
|
if (mangleSubstitution(ND))
|
|
return;
|
|
|
|
// Check if we have a template.
|
|
const TemplateArgumentList *TemplateArgs = 0;
|
|
if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
|
|
mangleTemplatePrefix(TD);
|
|
mangleTemplateArgs(*TemplateArgs);
|
|
}
|
|
else if(NoFunction && (isa<FunctionDecl>(ND) || isa<ObjCMethodDecl>(ND)))
|
|
return;
|
|
else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(ND))
|
|
mangleObjCMethodName(Method);
|
|
else {
|
|
manglePrefix(getEffectiveDeclContext(ND), NoFunction);
|
|
mangleUnqualifiedName(ND);
|
|
}
|
|
|
|
addSubstitution(ND);
|
|
}
|
|
|
|
void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
|
|
// <template-prefix> ::= <prefix> <template unqualified-name>
|
|
// ::= <template-param>
|
|
// ::= <substitution>
|
|
if (TemplateDecl *TD = Template.getAsTemplateDecl())
|
|
return mangleTemplatePrefix(TD);
|
|
|
|
if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
|
|
manglePrefix(Qualified->getQualifier());
|
|
|
|
if (OverloadedTemplateStorage *Overloaded
|
|
= Template.getAsOverloadedTemplate()) {
|
|
mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(),
|
|
UnknownArity);
|
|
return;
|
|
}
|
|
|
|
DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
|
|
assert(Dependent && "Unknown template name kind?");
|
|
manglePrefix(Dependent->getQualifier());
|
|
mangleUnscopedTemplateName(Template);
|
|
}
|
|
|
|
void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND) {
|
|
// <template-prefix> ::= <prefix> <template unqualified-name>
|
|
// ::= <template-param>
|
|
// ::= <substitution>
|
|
// <template-template-param> ::= <template-param>
|
|
// <substitution>
|
|
|
|
if (mangleSubstitution(ND))
|
|
return;
|
|
|
|
// <template-template-param> ::= <template-param>
|
|
if (const TemplateTemplateParmDecl *TTP
|
|
= dyn_cast<TemplateTemplateParmDecl>(ND)) {
|
|
mangleTemplateParameter(TTP->getIndex());
|
|
return;
|
|
}
|
|
|
|
manglePrefix(getEffectiveDeclContext(ND));
|
|
mangleUnqualifiedName(ND->getTemplatedDecl());
|
|
addSubstitution(ND);
|
|
}
|
|
|
|
/// Mangles a template name under the production <type>. Required for
|
|
/// template template arguments.
|
|
/// <type> ::= <class-enum-type>
|
|
/// ::= <template-param>
|
|
/// ::= <substitution>
|
|
void CXXNameMangler::mangleType(TemplateName TN) {
|
|
if (mangleSubstitution(TN))
|
|
return;
|
|
|
|
TemplateDecl *TD = 0;
|
|
|
|
switch (TN.getKind()) {
|
|
case TemplateName::QualifiedTemplate:
|
|
TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
|
|
goto HaveDecl;
|
|
|
|
case TemplateName::Template:
|
|
TD = TN.getAsTemplateDecl();
|
|
goto HaveDecl;
|
|
|
|
HaveDecl:
|
|
if (isa<TemplateTemplateParmDecl>(TD))
|
|
mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
|
|
else
|
|
mangleName(TD);
|
|
break;
|
|
|
|
case TemplateName::OverloadedTemplate:
|
|
llvm_unreachable("can't mangle an overloaded template name as a <type>");
|
|
|
|
case TemplateName::DependentTemplate: {
|
|
const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
|
|
assert(Dependent->isIdentifier());
|
|
|
|
// <class-enum-type> ::= <name>
|
|
// <name> ::= <nested-name>
|
|
mangleUnresolvedPrefix(Dependent->getQualifier(), 0);
|
|
mangleSourceName(Dependent->getIdentifier());
|
|
break;
|
|
}
|
|
|
|
case TemplateName::SubstTemplateTemplateParm: {
|
|
// Substituted template parameters are mangled as the substituted
|
|
// template. This will check for the substitution twice, which is
|
|
// fine, but we have to return early so that we don't try to *add*
|
|
// the substitution twice.
|
|
SubstTemplateTemplateParmStorage *subst
|
|
= TN.getAsSubstTemplateTemplateParm();
|
|
mangleType(subst->getReplacement());
|
|
return;
|
|
}
|
|
|
|
case TemplateName::SubstTemplateTemplateParmPack: {
|
|
// FIXME: not clear how to mangle this!
|
|
// template <template <class> class T...> class A {
|
|
// template <template <class> class U...> void foo(B<T,U> x...);
|
|
// };
|
|
Out << "_SUBSTPACK_";
|
|
break;
|
|
}
|
|
}
|
|
|
|
addSubstitution(TN);
|
|
}
|
|
|
|
void
|
|
CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
|
|
switch (OO) {
|
|
// <operator-name> ::= nw # new
|
|
case OO_New: Out << "nw"; break;
|
|
// ::= na # new[]
|
|
case OO_Array_New: Out << "na"; break;
|
|
// ::= dl # delete
|
|
case OO_Delete: Out << "dl"; break;
|
|
// ::= da # delete[]
|
|
case OO_Array_Delete: Out << "da"; break;
|
|
// ::= ps # + (unary)
|
|
// ::= pl # + (binary or unknown)
|
|
case OO_Plus:
|
|
Out << (Arity == 1? "ps" : "pl"); break;
|
|
// ::= ng # - (unary)
|
|
// ::= mi # - (binary or unknown)
|
|
case OO_Minus:
|
|
Out << (Arity == 1? "ng" : "mi"); break;
|
|
// ::= ad # & (unary)
|
|
// ::= an # & (binary or unknown)
|
|
case OO_Amp:
|
|
Out << (Arity == 1? "ad" : "an"); break;
|
|
// ::= de # * (unary)
|
|
// ::= ml # * (binary or unknown)
|
|
case OO_Star:
|
|
// Use binary when unknown.
|
|
Out << (Arity == 1? "de" : "ml"); break;
|
|
// ::= co # ~
|
|
case OO_Tilde: Out << "co"; break;
|
|
// ::= dv # /
|
|
case OO_Slash: Out << "dv"; break;
|
|
// ::= rm # %
|
|
case OO_Percent: Out << "rm"; break;
|
|
// ::= or # |
|
|
case OO_Pipe: Out << "or"; break;
|
|
// ::= eo # ^
|
|
case OO_Caret: Out << "eo"; break;
|
|
// ::= aS # =
|
|
case OO_Equal: Out << "aS"; break;
|
|
// ::= pL # +=
|
|
case OO_PlusEqual: Out << "pL"; break;
|
|
// ::= mI # -=
|
|
case OO_MinusEqual: Out << "mI"; break;
|
|
// ::= mL # *=
|
|
case OO_StarEqual: Out << "mL"; break;
|
|
// ::= dV # /=
|
|
case OO_SlashEqual: Out << "dV"; break;
|
|
// ::= rM # %=
|
|
case OO_PercentEqual: Out << "rM"; break;
|
|
// ::= aN # &=
|
|
case OO_AmpEqual: Out << "aN"; break;
|
|
// ::= oR # |=
|
|
case OO_PipeEqual: Out << "oR"; break;
|
|
// ::= eO # ^=
|
|
case OO_CaretEqual: Out << "eO"; break;
|
|
// ::= ls # <<
|
|
case OO_LessLess: Out << "ls"; break;
|
|
// ::= rs # >>
|
|
case OO_GreaterGreater: Out << "rs"; break;
|
|
// ::= lS # <<=
|
|
case OO_LessLessEqual: Out << "lS"; break;
|
|
// ::= rS # >>=
|
|
case OO_GreaterGreaterEqual: Out << "rS"; break;
|
|
// ::= eq # ==
|
|
case OO_EqualEqual: Out << "eq"; break;
|
|
// ::= ne # !=
|
|
case OO_ExclaimEqual: Out << "ne"; break;
|
|
// ::= lt # <
|
|
case OO_Less: Out << "lt"; break;
|
|
// ::= gt # >
|
|
case OO_Greater: Out << "gt"; break;
|
|
// ::= le # <=
|
|
case OO_LessEqual: Out << "le"; break;
|
|
// ::= ge # >=
|
|
case OO_GreaterEqual: Out << "ge"; break;
|
|
// ::= nt # !
|
|
case OO_Exclaim: Out << "nt"; break;
|
|
// ::= aa # &&
|
|
case OO_AmpAmp: Out << "aa"; break;
|
|
// ::= oo # ||
|
|
case OO_PipePipe: Out << "oo"; break;
|
|
// ::= pp # ++
|
|
case OO_PlusPlus: Out << "pp"; break;
|
|
// ::= mm # --
|
|
case OO_MinusMinus: Out << "mm"; break;
|
|
// ::= cm # ,
|
|
case OO_Comma: Out << "cm"; break;
|
|
// ::= pm # ->*
|
|
case OO_ArrowStar: Out << "pm"; break;
|
|
// ::= pt # ->
|
|
case OO_Arrow: Out << "pt"; break;
|
|
// ::= cl # ()
|
|
case OO_Call: Out << "cl"; break;
|
|
// ::= ix # []
|
|
case OO_Subscript: Out << "ix"; break;
|
|
|
|
// ::= qu # ?
|
|
// The conditional operator can't be overloaded, but we still handle it when
|
|
// mangling expressions.
|
|
case OO_Conditional: Out << "qu"; break;
|
|
|
|
case OO_None:
|
|
case NUM_OVERLOADED_OPERATORS:
|
|
llvm_unreachable("Not an overloaded operator");
|
|
}
|
|
}
|
|
|
|
void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
|
|
// <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const
|
|
if (Quals.hasRestrict())
|
|
Out << 'r';
|
|
if (Quals.hasVolatile())
|
|
Out << 'V';
|
|
if (Quals.hasConst())
|
|
Out << 'K';
|
|
|
|
if (Quals.hasAddressSpace()) {
|
|
// Extension:
|
|
//
|
|
// <type> ::= U <address-space-number>
|
|
//
|
|
// where <address-space-number> is a source name consisting of 'AS'
|
|
// followed by the address space <number>.
|
|
SmallString<64> ASString;
|
|
ASString = "AS" + llvm::utostr_32(Quals.getAddressSpace());
|
|
Out << 'U' << ASString.size() << ASString;
|
|
}
|
|
|
|
StringRef LifetimeName;
|
|
switch (Quals.getObjCLifetime()) {
|
|
// Objective-C ARC Extension:
|
|
//
|
|
// <type> ::= U "__strong"
|
|
// <type> ::= U "__weak"
|
|
// <type> ::= U "__autoreleasing"
|
|
case Qualifiers::OCL_None:
|
|
break;
|
|
|
|
case Qualifiers::OCL_Weak:
|
|
LifetimeName = "__weak";
|
|
break;
|
|
|
|
case Qualifiers::OCL_Strong:
|
|
LifetimeName = "__strong";
|
|
break;
|
|
|
|
case Qualifiers::OCL_Autoreleasing:
|
|
LifetimeName = "__autoreleasing";
|
|
break;
|
|
|
|
case Qualifiers::OCL_ExplicitNone:
|
|
// The __unsafe_unretained qualifier is *not* mangled, so that
|
|
// __unsafe_unretained types in ARC produce the same manglings as the
|
|
// equivalent (but, naturally, unqualified) types in non-ARC, providing
|
|
// better ABI compatibility.
|
|
//
|
|
// It's safe to do this because unqualified 'id' won't show up
|
|
// in any type signatures that need to be mangled.
|
|
break;
|
|
}
|
|
if (!LifetimeName.empty())
|
|
Out << 'U' << LifetimeName.size() << LifetimeName;
|
|
}
|
|
|
|
void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
|
|
// <ref-qualifier> ::= R # lvalue reference
|
|
// ::= O # rvalue-reference
|
|
// Proposal to Itanium C++ ABI list on 1/26/11
|
|
switch (RefQualifier) {
|
|
case RQ_None:
|
|
break;
|
|
|
|
case RQ_LValue:
|
|
Out << 'R';
|
|
break;
|
|
|
|
case RQ_RValue:
|
|
Out << 'O';
|
|
break;
|
|
}
|
|
}
|
|
|
|
void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
|
|
Context.mangleObjCMethodName(MD, Out);
|
|
}
|
|
|
|
void CXXNameMangler::mangleType(QualType T) {
|
|
// If our type is instantiation-dependent but not dependent, we mangle
|
|
// it as it was written in the source, removing any top-level sugar.
|
|
// Otherwise, use the canonical type.
|
|
//
|
|
// FIXME: This is an approximation of the instantiation-dependent name
|
|
// mangling rules, since we should really be using the type as written and
|
|
// augmented via semantic analysis (i.e., with implicit conversions and
|
|
// default template arguments) for any instantiation-dependent type.
|
|
// Unfortunately, that requires several changes to our AST:
|
|
// - Instantiation-dependent TemplateSpecializationTypes will need to be
|
|
// uniqued, so that we can handle substitutions properly
|
|
// - Default template arguments will need to be represented in the
|
|
// TemplateSpecializationType, since they need to be mangled even though
|
|
// they aren't written.
|
|
// - Conversions on non-type template arguments need to be expressed, since
|
|
// they can affect the mangling of sizeof/alignof.
|
|
if (!T->isInstantiationDependentType() || T->isDependentType())
|
|
T = T.getCanonicalType();
|
|
else {
|
|
// Desugar any types that are purely sugar.
|
|
do {
|
|
// Don't desugar through template specialization types that aren't
|
|
// type aliases. We need to mangle the template arguments as written.
|
|
if (const TemplateSpecializationType *TST
|
|
= dyn_cast<TemplateSpecializationType>(T))
|
|
if (!TST->isTypeAlias())
|
|
break;
|
|
|
|
QualType Desugared
|
|
= T.getSingleStepDesugaredType(Context.getASTContext());
|
|
if (Desugared == T)
|
|
break;
|
|
|
|
T = Desugared;
|
|
} while (true);
|
|
}
|
|
SplitQualType split = T.split();
|
|
Qualifiers quals = split.Quals;
|
|
const Type *ty = split.Ty;
|
|
|
|
bool isSubstitutable = quals || !isa<BuiltinType>(T);
|
|
if (isSubstitutable && mangleSubstitution(T))
|
|
return;
|
|
|
|
// If we're mangling a qualified array type, push the qualifiers to
|
|
// the element type.
|
|
if (quals && isa<ArrayType>(T)) {
|
|
ty = Context.getASTContext().getAsArrayType(T);
|
|
quals = Qualifiers();
|
|
|
|
// Note that we don't update T: we want to add the
|
|
// substitution at the original type.
|
|
}
|
|
|
|
if (quals) {
|
|
mangleQualifiers(quals);
|
|
// Recurse: even if the qualified type isn't yet substitutable,
|
|
// the unqualified type might be.
|
|
mangleType(QualType(ty, 0));
|
|
} else {
|
|
switch (ty->getTypeClass()) {
|
|
#define ABSTRACT_TYPE(CLASS, PARENT)
|
|
#define NON_CANONICAL_TYPE(CLASS, PARENT) \
|
|
case Type::CLASS: \
|
|
llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
|
|
return;
|
|
#define TYPE(CLASS, PARENT) \
|
|
case Type::CLASS: \
|
|
mangleType(static_cast<const CLASS##Type*>(ty)); \
|
|
break;
|
|
#include "clang/AST/TypeNodes.def"
|
|
}
|
|
}
|
|
|
|
// Add the substitution.
|
|
if (isSubstitutable)
|
|
addSubstitution(T);
|
|
}
|
|
|
|
void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
|
|
if (!mangleStandardSubstitution(ND))
|
|
mangleName(ND);
|
|
}
|
|
|
|
void CXXNameMangler::mangleType(const BuiltinType *T) {
|
|
// <type> ::= <builtin-type>
|
|
// <builtin-type> ::= v # void
|
|
// ::= w # wchar_t
|
|
// ::= b # bool
|
|
// ::= c # char
|
|
// ::= a # signed char
|
|
// ::= h # unsigned char
|
|
// ::= s # short
|
|
// ::= t # unsigned short
|
|
// ::= i # int
|
|
// ::= j # unsigned int
|
|
// ::= l # long
|
|
// ::= m # unsigned long
|
|
// ::= x # long long, __int64
|
|
// ::= y # unsigned long long, __int64
|
|
// ::= n # __int128
|
|
// UNSUPPORTED: ::= o # unsigned __int128
|
|
// ::= f # float
|
|
// ::= d # double
|
|
// ::= e # long double, __float80
|
|
// UNSUPPORTED: ::= g # __float128
|
|
// UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits)
|
|
// UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits)
|
|
// UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits)
|
|
// ::= Dh # IEEE 754r half-precision floating point (16 bits)
|
|
// ::= Di # char32_t
|
|
// ::= Ds # char16_t
|
|
// ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
|
|
// ::= u <source-name> # vendor extended type
|
|
switch (T->getKind()) {
|
|
case BuiltinType::Void: Out << 'v'; break;
|
|
case BuiltinType::Bool: Out << 'b'; break;
|
|
case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
|
|
case BuiltinType::UChar: Out << 'h'; break;
|
|
case BuiltinType::UShort: Out << 't'; break;
|
|
case BuiltinType::UInt: Out << 'j'; break;
|
|
case BuiltinType::ULong: Out << 'm'; break;
|
|
case BuiltinType::ULongLong: Out << 'y'; break;
|
|
case BuiltinType::UInt128: Out << 'o'; break;
|
|
case BuiltinType::SChar: Out << 'a'; break;
|
|
case BuiltinType::WChar_S:
|
|
case BuiltinType::WChar_U: Out << 'w'; break;
|
|
case BuiltinType::Char16: Out << "Ds"; break;
|
|
case BuiltinType::Char32: Out << "Di"; break;
|
|
case BuiltinType::Short: Out << 's'; break;
|
|
case BuiltinType::Int: Out << 'i'; break;
|
|
case BuiltinType::Long: Out << 'l'; break;
|
|
case BuiltinType::LongLong: Out << 'x'; break;
|
|
case BuiltinType::Int128: Out << 'n'; break;
|
|
case BuiltinType::Half: Out << "Dh"; break;
|
|
case BuiltinType::Float: Out << 'f'; break;
|
|
case BuiltinType::Double: Out << 'd'; break;
|
|
case BuiltinType::LongDouble: Out << 'e'; break;
|
|
case BuiltinType::NullPtr: Out << "Dn"; break;
|
|
|
|
#define BUILTIN_TYPE(Id, SingletonId)
|
|
#define PLACEHOLDER_TYPE(Id, SingletonId) \
|
|
case BuiltinType::Id:
|
|
#include "clang/AST/BuiltinTypes.def"
|
|
case BuiltinType::Dependent:
|
|
llvm_unreachable("mangling a placeholder type");
|
|
case BuiltinType::ObjCId: Out << "11objc_object"; break;
|
|
case BuiltinType::ObjCClass: Out << "10objc_class"; break;
|
|
case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
|
|
case BuiltinType::OCLImage1d: Out << "11ocl_image1d"; break;
|
|
case BuiltinType::OCLImage1dArray: Out << "16ocl_image1darray"; break;
|
|
case BuiltinType::OCLImage1dBuffer: Out << "17ocl_image1dbuffer"; break;
|
|
case BuiltinType::OCLImage2d: Out << "11ocl_image2d"; break;
|
|
case BuiltinType::OCLImage2dArray: Out << "16ocl_image2darray"; break;
|
|
case BuiltinType::OCLImage3d: Out << "11ocl_image3d"; break;
|
|
}
|
|
}
|
|
|
|
// <type> ::= <function-type>
|
|
// <function-type> ::= [<CV-qualifiers>] F [Y]
|
|
// <bare-function-type> [<ref-qualifier>] E
|
|
// (Proposal to cxx-abi-dev, 2012-05-11)
|
|
void CXXNameMangler::mangleType(const FunctionProtoType *T) {
|
|
// Mangle CV-qualifiers, if present. These are 'this' qualifiers,
|
|
// e.g. "const" in "int (A::*)() const".
|
|
mangleQualifiers(Qualifiers::fromCVRMask(T->getTypeQuals()));
|
|
|
|
Out << 'F';
|
|
|
|
// FIXME: We don't have enough information in the AST to produce the 'Y'
|
|
// encoding for extern "C" function types.
|
|
mangleBareFunctionType(T, /*MangleReturnType=*/true);
|
|
|
|
// Mangle the ref-qualifier, if present.
|
|
mangleRefQualifier(T->getRefQualifier());
|
|
|
|
Out << 'E';
|
|
}
|
|
void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
|
|
llvm_unreachable("Can't mangle K&R function prototypes");
|
|
}
|
|
void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
|
|
bool MangleReturnType) {
|
|
// We should never be mangling something without a prototype.
|
|
const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
|
|
|
|
// Record that we're in a function type. See mangleFunctionParam
|
|
// for details on what we're trying to achieve here.
|
|
FunctionTypeDepthState saved = FunctionTypeDepth.push();
|
|
|
|
// <bare-function-type> ::= <signature type>+
|
|
if (MangleReturnType) {
|
|
FunctionTypeDepth.enterResultType();
|
|
mangleType(Proto->getResultType());
|
|
FunctionTypeDepth.leaveResultType();
|
|
}
|
|
|
|
if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
|
|
// <builtin-type> ::= v # void
|
|
Out << 'v';
|
|
|
|
FunctionTypeDepth.pop(saved);
|
|
return;
|
|
}
|
|
|
|
for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
|
|
ArgEnd = Proto->arg_type_end();
|
|
Arg != ArgEnd; ++Arg)
|
|
mangleType(Context.getASTContext().getSignatureParameterType(*Arg));
|
|
|
|
FunctionTypeDepth.pop(saved);
|
|
|
|
// <builtin-type> ::= z # ellipsis
|
|
if (Proto->isVariadic())
|
|
Out << 'z';
|
|
}
|
|
|
|
// <type> ::= <class-enum-type>
|
|
// <class-enum-type> ::= <name>
|
|
void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
|
|
mangleName(T->getDecl());
|
|
}
|
|
|
|
// <type> ::= <class-enum-type>
|
|
// <class-enum-type> ::= <name>
|
|
void CXXNameMangler::mangleType(const EnumType *T) {
|
|
mangleType(static_cast<const TagType*>(T));
|
|
}
|
|
void CXXNameMangler::mangleType(const RecordType *T) {
|
|
mangleType(static_cast<const TagType*>(T));
|
|
}
|
|
void CXXNameMangler::mangleType(const TagType *T) {
|
|
mangleName(T->getDecl());
|
|
}
|
|
|
|
// <type> ::= <array-type>
|
|
// <array-type> ::= A <positive dimension number> _ <element type>
|
|
// ::= A [<dimension expression>] _ <element type>
|
|
void CXXNameMangler::mangleType(const ConstantArrayType *T) {
|
|
Out << 'A' << T->getSize() << '_';
|
|
mangleType(T->getElementType());
|
|
}
|
|
void CXXNameMangler::mangleType(const VariableArrayType *T) {
|
|
Out << 'A';
|
|
// decayed vla types (size 0) will just be skipped.
|
|
if (T->getSizeExpr())
|
|
mangleExpression(T->getSizeExpr());
|
|
Out << '_';
|
|
mangleType(T->getElementType());
|
|
}
|
|
void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
|
|
Out << 'A';
|
|
mangleExpression(T->getSizeExpr());
|
|
Out << '_';
|
|
mangleType(T->getElementType());
|
|
}
|
|
void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
|
|
Out << "A_";
|
|
mangleType(T->getElementType());
|
|
}
|
|
|
|
// <type> ::= <pointer-to-member-type>
|
|
// <pointer-to-member-type> ::= M <class type> <member type>
|
|
void CXXNameMangler::mangleType(const MemberPointerType *T) {
|
|
Out << 'M';
|
|
mangleType(QualType(T->getClass(), 0));
|
|
QualType PointeeType = T->getPointeeType();
|
|
if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
|
|
mangleType(FPT);
|
|
|
|
// Itanium C++ ABI 5.1.8:
|
|
//
|
|
// The type of a non-static member function is considered to be different,
|
|
// for the purposes of substitution, from the type of a namespace-scope or
|
|
// static member function whose type appears similar. The types of two
|
|
// non-static member functions are considered to be different, for the
|
|
// purposes of substitution, if the functions are members of different
|
|
// classes. In other words, for the purposes of substitution, the class of
|
|
// which the function is a member is considered part of the type of
|
|
// function.
|
|
|
|
// Given that we already substitute member function pointers as a
|
|
// whole, the net effect of this rule is just to unconditionally
|
|
// suppress substitution on the function type in a member pointer.
|
|
// We increment the SeqID here to emulate adding an entry to the
|
|
// substitution table.
|
|
++SeqID;
|
|
} else
|
|
mangleType(PointeeType);
|
|
}
|
|
|
|
// <type> ::= <template-param>
|
|
void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
|
|
mangleTemplateParameter(T->getIndex());
|
|
}
|
|
|
|
// <type> ::= <template-param>
|
|
void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
|
|
// FIXME: not clear how to mangle this!
|
|
// template <class T...> class A {
|
|
// template <class U...> void foo(T(*)(U) x...);
|
|
// };
|
|
Out << "_SUBSTPACK_";
|
|
}
|
|
|
|
// <type> ::= P <type> # pointer-to
|
|
void CXXNameMangler::mangleType(const PointerType *T) {
|
|
Out << 'P';
|
|
mangleType(T->getPointeeType());
|
|
}
|
|
void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
|
|
Out << 'P';
|
|
mangleType(T->getPointeeType());
|
|
}
|
|
|
|
// <type> ::= R <type> # reference-to
|
|
void CXXNameMangler::mangleType(const LValueReferenceType *T) {
|
|
Out << 'R';
|
|
mangleType(T->getPointeeType());
|
|
}
|
|
|
|
// <type> ::= O <type> # rvalue reference-to (C++0x)
|
|
void CXXNameMangler::mangleType(const RValueReferenceType *T) {
|
|
Out << 'O';
|
|
mangleType(T->getPointeeType());
|
|
}
|
|
|
|
// <type> ::= C <type> # complex pair (C 2000)
|
|
void CXXNameMangler::mangleType(const ComplexType *T) {
|
|
Out << 'C';
|
|
mangleType(T->getElementType());
|
|
}
|
|
|
|
// ARM's ABI for Neon vector types specifies that they should be mangled as
|
|
// if they are structs (to match ARM's initial implementation). The
|
|
// vector type must be one of the special types predefined by ARM.
|
|
void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
|
|
QualType EltType = T->getElementType();
|
|
assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
|
|
const char *EltName = 0;
|
|
if (T->getVectorKind() == VectorType::NeonPolyVector) {
|
|
switch (cast<BuiltinType>(EltType)->getKind()) {
|
|
case BuiltinType::SChar: EltName = "poly8_t"; break;
|
|
case BuiltinType::Short: EltName = "poly16_t"; break;
|
|
default: llvm_unreachable("unexpected Neon polynomial vector element type");
|
|
}
|
|
} else {
|
|
switch (cast<BuiltinType>(EltType)->getKind()) {
|
|
case BuiltinType::SChar: EltName = "int8_t"; break;
|
|
case BuiltinType::UChar: EltName = "uint8_t"; break;
|
|
case BuiltinType::Short: EltName = "int16_t"; break;
|
|
case BuiltinType::UShort: EltName = "uint16_t"; break;
|
|
case BuiltinType::Int: EltName = "int32_t"; break;
|
|
case BuiltinType::UInt: EltName = "uint32_t"; break;
|
|
case BuiltinType::LongLong: EltName = "int64_t"; break;
|
|
case BuiltinType::ULongLong: EltName = "uint64_t"; break;
|
|
case BuiltinType::Float: EltName = "float32_t"; break;
|
|
default: llvm_unreachable("unexpected Neon vector element type");
|
|
}
|
|
}
|
|
const char *BaseName = 0;
|
|
unsigned BitSize = (T->getNumElements() *
|
|
getASTContext().getTypeSize(EltType));
|
|
if (BitSize == 64)
|
|
BaseName = "__simd64_";
|
|
else {
|
|
assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
|
|
BaseName = "__simd128_";
|
|
}
|
|
Out << strlen(BaseName) + strlen(EltName);
|
|
Out << BaseName << EltName;
|
|
}
|
|
|
|
// GNU extension: vector types
|
|
// <type> ::= <vector-type>
|
|
// <vector-type> ::= Dv <positive dimension number> _
|
|
// <extended element type>
|
|
// ::= Dv [<dimension expression>] _ <element type>
|
|
// <extended element type> ::= <element type>
|
|
// ::= p # AltiVec vector pixel
|
|
// ::= b # Altivec vector bool
|
|
void CXXNameMangler::mangleType(const VectorType *T) {
|
|
if ((T->getVectorKind() == VectorType::NeonVector ||
|
|
T->getVectorKind() == VectorType::NeonPolyVector)) {
|
|
mangleNeonVectorType(T);
|
|
return;
|
|
}
|
|
Out << "Dv" << T->getNumElements() << '_';
|
|
if (T->getVectorKind() == VectorType::AltiVecPixel)
|
|
Out << 'p';
|
|
else if (T->getVectorKind() == VectorType::AltiVecBool)
|
|
Out << 'b';
|
|
else
|
|
mangleType(T->getElementType());
|
|
}
|
|
void CXXNameMangler::mangleType(const ExtVectorType *T) {
|
|
mangleType(static_cast<const VectorType*>(T));
|
|
}
|
|
void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
|
|
Out << "Dv";
|
|
mangleExpression(T->getSizeExpr());
|
|
Out << '_';
|
|
mangleType(T->getElementType());
|
|
}
|
|
|
|
void CXXNameMangler::mangleType(const PackExpansionType *T) {
|
|
// <type> ::= Dp <type> # pack expansion (C++0x)
|
|
Out << "Dp";
|
|
mangleType(T->getPattern());
|
|
}
|
|
|
|
void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
|
|
mangleSourceName(T->getDecl()->getIdentifier());
|
|
}
|
|
|
|
void CXXNameMangler::mangleType(const ObjCObjectType *T) {
|
|
// We don't allow overloading by different protocol qualification,
|
|
// so mangling them isn't necessary.
|
|
mangleType(T->getBaseType());
|
|
}
|
|
|
|
void CXXNameMangler::mangleType(const BlockPointerType *T) {
|
|
Out << "U13block_pointer";
|
|
mangleType(T->getPointeeType());
|
|
}
|
|
|
|
void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
|
|
// Mangle injected class name types as if the user had written the
|
|
// specialization out fully. It may not actually be possible to see
|
|
// this mangling, though.
|
|
mangleType(T->getInjectedSpecializationType());
|
|
}
|
|
|
|
void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
|
|
if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
|
|
mangleName(TD, T->getArgs(), T->getNumArgs());
|
|
} else {
|
|
if (mangleSubstitution(QualType(T, 0)))
|
|
return;
|
|
|
|
mangleTemplatePrefix(T->getTemplateName());
|
|
|
|
// FIXME: GCC does not appear to mangle the template arguments when
|
|
// the template in question is a dependent template name. Should we
|
|
// emulate that badness?
|
|
mangleTemplateArgs(T->getArgs(), T->getNumArgs());
|
|
addSubstitution(QualType(T, 0));
|
|
}
|
|
}
|
|
|
|
void CXXNameMangler::mangleType(const DependentNameType *T) {
|
|
// Typename types are always nested
|
|
Out << 'N';
|
|
manglePrefix(T->getQualifier());
|
|
mangleSourceName(T->getIdentifier());
|
|
Out << 'E';
|
|
}
|
|
|
|
void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
|
|
// Dependently-scoped template types are nested if they have a prefix.
|
|
Out << 'N';
|
|
|
|
// TODO: avoid making this TemplateName.
|
|
TemplateName Prefix =
|
|
getASTContext().getDependentTemplateName(T->getQualifier(),
|
|
T->getIdentifier());
|
|
mangleTemplatePrefix(Prefix);
|
|
|
|
// FIXME: GCC does not appear to mangle the template arguments when
|
|
// the template in question is a dependent template name. Should we
|
|
// emulate that badness?
|
|
mangleTemplateArgs(T->getArgs(), T->getNumArgs());
|
|
Out << 'E';
|
|
}
|
|
|
|
void CXXNameMangler::mangleType(const TypeOfType *T) {
|
|
// FIXME: this is pretty unsatisfactory, but there isn't an obvious
|
|
// "extension with parameters" mangling.
|
|
Out << "u6typeof";
|
|
}
|
|
|
|
void CXXNameMangler::mangleType(const TypeOfExprType *T) {
|
|
// FIXME: this is pretty unsatisfactory, but there isn't an obvious
|
|
// "extension with parameters" mangling.
|
|
Out << "u6typeof";
|
|
}
|
|
|
|
void CXXNameMangler::mangleType(const DecltypeType *T) {
|
|
Expr *E = T->getUnderlyingExpr();
|
|
|
|
// type ::= Dt <expression> E # decltype of an id-expression
|
|
// # or class member access
|
|
// ::= DT <expression> E # decltype of an expression
|
|
|
|
// This purports to be an exhaustive list of id-expressions and
|
|
// class member accesses. Note that we do not ignore parentheses;
|
|
// parentheses change the semantics of decltype for these
|
|
// expressions (and cause the mangler to use the other form).
|
|
if (isa<DeclRefExpr>(E) ||
|
|
isa<MemberExpr>(E) ||
|
|
isa<UnresolvedLookupExpr>(E) ||
|
|
isa<DependentScopeDeclRefExpr>(E) ||
|
|
isa<CXXDependentScopeMemberExpr>(E) ||
|
|
isa<UnresolvedMemberExpr>(E))
|
|
Out << "Dt";
|
|
else
|
|
Out << "DT";
|
|
mangleExpression(E);
|
|
Out << 'E';
|
|
}
|
|
|
|
void CXXNameMangler::mangleType(const UnaryTransformType *T) {
|
|
// If this is dependent, we need to record that. If not, we simply
|
|
// mangle it as the underlying type since they are equivalent.
|
|
if (T->isDependentType()) {
|
|
Out << 'U';
|
|
|
|
switch (T->getUTTKind()) {
|
|
case UnaryTransformType::EnumUnderlyingType:
|
|
Out << "3eut";
|
|
break;
|
|
}
|
|
}
|
|
|
|
mangleType(T->getUnderlyingType());
|
|
}
|
|
|
|
void CXXNameMangler::mangleType(const AutoType *T) {
|
|
QualType D = T->getDeducedType();
|
|
// <builtin-type> ::= Da # dependent auto
|
|
if (D.isNull())
|
|
Out << "Da";
|
|
else
|
|
mangleType(D);
|
|
}
|
|
|
|
void CXXNameMangler::mangleType(const AtomicType *T) {
|
|
// <type> ::= U <source-name> <type> # vendor extended type qualifier
|
|
// (Until there's a standardized mangling...)
|
|
Out << "U7_Atomic";
|
|
mangleType(T->getValueType());
|
|
}
|
|
|
|
void CXXNameMangler::mangleIntegerLiteral(QualType T,
|
|
const llvm::APSInt &Value) {
|
|
// <expr-primary> ::= L <type> <value number> E # integer literal
|
|
Out << 'L';
|
|
|
|
mangleType(T);
|
|
if (T->isBooleanType()) {
|
|
// Boolean values are encoded as 0/1.
|
|
Out << (Value.getBoolValue() ? '1' : '0');
|
|
} else {
|
|
mangleNumber(Value);
|
|
}
|
|
Out << 'E';
|
|
|
|
}
|
|
|
|
/// Mangles a member expression.
|
|
void CXXNameMangler::mangleMemberExpr(const Expr *base,
|
|
bool isArrow,
|
|
NestedNameSpecifier *qualifier,
|
|
NamedDecl *firstQualifierLookup,
|
|
DeclarationName member,
|
|
unsigned arity) {
|
|
// <expression> ::= dt <expression> <unresolved-name>
|
|
// ::= pt <expression> <unresolved-name>
|
|
if (base) {
|
|
if (base->isImplicitCXXThis()) {
|
|
// Note: GCC mangles member expressions to the implicit 'this' as
|
|
// *this., whereas we represent them as this->. The Itanium C++ ABI
|
|
// does not specify anything here, so we follow GCC.
|
|
Out << "dtdefpT";
|
|
} else {
|
|
Out << (isArrow ? "pt" : "dt");
|
|
mangleExpression(base);
|
|
}
|
|
}
|
|
mangleUnresolvedName(qualifier, firstQualifierLookup, member, arity);
|
|
}
|
|
|
|
/// Look at the callee of the given call expression and determine if
|
|
/// it's a parenthesized id-expression which would have triggered ADL
|
|
/// otherwise.
|
|
static bool isParenthesizedADLCallee(const CallExpr *call) {
|
|
const Expr *callee = call->getCallee();
|
|
const Expr *fn = callee->IgnoreParens();
|
|
|
|
// Must be parenthesized. IgnoreParens() skips __extension__ nodes,
|
|
// too, but for those to appear in the callee, it would have to be
|
|
// parenthesized.
|
|
if (callee == fn) return false;
|
|
|
|
// Must be an unresolved lookup.
|
|
const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
|
|
if (!lookup) return false;
|
|
|
|
assert(!lookup->requiresADL());
|
|
|
|
// Must be an unqualified lookup.
|
|
if (lookup->getQualifier()) return false;
|
|
|
|
// Must not have found a class member. Note that if one is a class
|
|
// member, they're all class members.
|
|
if (lookup->getNumDecls() > 0 &&
|
|
(*lookup->decls_begin())->isCXXClassMember())
|
|
return false;
|
|
|
|
// Otherwise, ADL would have been triggered.
|
|
return true;
|
|
}
|
|
|
|
void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
|
|
// <expression> ::= <unary operator-name> <expression>
|
|
// ::= <binary operator-name> <expression> <expression>
|
|
// ::= <trinary operator-name> <expression> <expression> <expression>
|
|
// ::= cv <type> expression # conversion with one argument
|
|
// ::= cv <type> _ <expression>* E # conversion with a different number of arguments
|
|
// ::= st <type> # sizeof (a type)
|
|
// ::= at <type> # alignof (a type)
|
|
// ::= <template-param>
|
|
// ::= <function-param>
|
|
// ::= sr <type> <unqualified-name> # dependent name
|
|
// ::= sr <type> <unqualified-name> <template-args> # dependent template-id
|
|
// ::= ds <expression> <expression> # expr.*expr
|
|
// ::= sZ <template-param> # size of a parameter pack
|
|
// ::= sZ <function-param> # size of a function parameter pack
|
|
// ::= <expr-primary>
|
|
// <expr-primary> ::= L <type> <value number> E # integer literal
|
|
// ::= L <type <value float> E # floating literal
|
|
// ::= L <mangled-name> E # external name
|
|
// ::= fpT # 'this' expression
|
|
QualType ImplicitlyConvertedToType;
|
|
|
|
recurse:
|
|
switch (E->getStmtClass()) {
|
|
case Expr::NoStmtClass:
|
|
#define ABSTRACT_STMT(Type)
|
|
#define EXPR(Type, Base)
|
|
#define STMT(Type, Base) \
|
|
case Expr::Type##Class:
|
|
#include "clang/AST/StmtNodes.inc"
|
|
// fallthrough
|
|
|
|
// These all can only appear in local or variable-initialization
|
|
// contexts and so should never appear in a mangling.
|
|
case Expr::AddrLabelExprClass:
|
|
case Expr::DesignatedInitExprClass:
|
|
case Expr::ImplicitValueInitExprClass:
|
|
case Expr::ParenListExprClass:
|
|
case Expr::LambdaExprClass:
|
|
llvm_unreachable("unexpected statement kind");
|
|
|
|
// FIXME: invent manglings for all these.
|
|
case Expr::BlockExprClass:
|
|
case Expr::CXXPseudoDestructorExprClass:
|
|
case Expr::ChooseExprClass:
|
|
case Expr::CompoundLiteralExprClass:
|
|
case Expr::ExtVectorElementExprClass:
|
|
case Expr::GenericSelectionExprClass:
|
|
case Expr::ObjCEncodeExprClass:
|
|
case Expr::ObjCIsaExprClass:
|
|
case Expr::ObjCIvarRefExprClass:
|
|
case Expr::ObjCMessageExprClass:
|
|
case Expr::ObjCPropertyRefExprClass:
|
|
case Expr::ObjCProtocolExprClass:
|
|
case Expr::ObjCSelectorExprClass:
|
|
case Expr::ObjCStringLiteralClass:
|
|
case Expr::ObjCBoxedExprClass:
|
|
case Expr::ObjCArrayLiteralClass:
|
|
case Expr::ObjCDictionaryLiteralClass:
|
|
case Expr::ObjCSubscriptRefExprClass:
|
|
case Expr::ObjCIndirectCopyRestoreExprClass:
|
|
case Expr::OffsetOfExprClass:
|
|
case Expr::PredefinedExprClass:
|
|
case Expr::ShuffleVectorExprClass:
|
|
case Expr::StmtExprClass:
|
|
case Expr::UnaryTypeTraitExprClass:
|
|
case Expr::BinaryTypeTraitExprClass:
|
|
case Expr::TypeTraitExprClass:
|
|
case Expr::ArrayTypeTraitExprClass:
|
|
case Expr::ExpressionTraitExprClass:
|
|
case Expr::VAArgExprClass:
|
|
case Expr::CXXUuidofExprClass:
|
|
case Expr::CUDAKernelCallExprClass:
|
|
case Expr::AsTypeExprClass:
|
|
case Expr::PseudoObjectExprClass:
|
|
case Expr::AtomicExprClass:
|
|
{
|
|
// As bad as this diagnostic is, it's better than crashing.
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot yet mangle expression type %0");
|
|
Diags.Report(E->getExprLoc(), DiagID)
|
|
<< E->getStmtClassName() << E->getSourceRange();
|
|
break;
|
|
}
|
|
|
|
// Even gcc-4.5 doesn't mangle this.
|
|
case Expr::BinaryConditionalOperatorClass: {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID =
|
|
Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"?: operator with omitted middle operand cannot be mangled");
|
|
Diags.Report(E->getExprLoc(), DiagID)
|
|
<< E->getStmtClassName() << E->getSourceRange();
|
|
break;
|
|
}
|
|
|
|
// These are used for internal purposes and cannot be meaningfully mangled.
|
|
case Expr::OpaqueValueExprClass:
|
|
llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
|
|
|
|
case Expr::InitListExprClass: {
|
|
// Proposal by Jason Merrill, 2012-01-03
|
|
Out << "il";
|
|
const InitListExpr *InitList = cast<InitListExpr>(E);
|
|
for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
|
|
mangleExpression(InitList->getInit(i));
|
|
Out << "E";
|
|
break;
|
|
}
|
|
|
|
case Expr::CXXDefaultArgExprClass:
|
|
mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
|
|
break;
|
|
|
|
case Expr::SubstNonTypeTemplateParmExprClass:
|
|
mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
|
|
Arity);
|
|
break;
|
|
|
|
case Expr::UserDefinedLiteralClass:
|
|
// We follow g++'s approach of mangling a UDL as a call to the literal
|
|
// operator.
|
|
case Expr::CXXMemberCallExprClass: // fallthrough
|
|
case Expr::CallExprClass: {
|
|
const CallExpr *CE = cast<CallExpr>(E);
|
|
|
|
// <expression> ::= cp <simple-id> <expression>* E
|
|
// We use this mangling only when the call would use ADL except
|
|
// for being parenthesized. Per discussion with David
|
|
// Vandervoorde, 2011.04.25.
|
|
if (isParenthesizedADLCallee(CE)) {
|
|
Out << "cp";
|
|
// The callee here is a parenthesized UnresolvedLookupExpr with
|
|
// no qualifier and should always get mangled as a <simple-id>
|
|
// anyway.
|
|
|
|
// <expression> ::= cl <expression>* E
|
|
} else {
|
|
Out << "cl";
|
|
}
|
|
|
|
mangleExpression(CE->getCallee(), CE->getNumArgs());
|
|
for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
|
|
mangleExpression(CE->getArg(I));
|
|
Out << 'E';
|
|
break;
|
|
}
|
|
|
|
case Expr::CXXNewExprClass: {
|
|
const CXXNewExpr *New = cast<CXXNewExpr>(E);
|
|
if (New->isGlobalNew()) Out << "gs";
|
|
Out << (New->isArray() ? "na" : "nw");
|
|
for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
|
|
E = New->placement_arg_end(); I != E; ++I)
|
|
mangleExpression(*I);
|
|
Out << '_';
|
|
mangleType(New->getAllocatedType());
|
|
if (New->hasInitializer()) {
|
|
// Proposal by Jason Merrill, 2012-01-03
|
|
if (New->getInitializationStyle() == CXXNewExpr::ListInit)
|
|
Out << "il";
|
|
else
|
|
Out << "pi";
|
|
const Expr *Init = New->getInitializer();
|
|
if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
|
|
// Directly inline the initializers.
|
|
for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
|
|
E = CCE->arg_end();
|
|
I != E; ++I)
|
|
mangleExpression(*I);
|
|
} else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
|
|
for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
|
|
mangleExpression(PLE->getExpr(i));
|
|
} else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
|
|
isa<InitListExpr>(Init)) {
|
|
// Only take InitListExprs apart for list-initialization.
|
|
const InitListExpr *InitList = cast<InitListExpr>(Init);
|
|
for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
|
|
mangleExpression(InitList->getInit(i));
|
|
} else
|
|
mangleExpression(Init);
|
|
}
|
|
Out << 'E';
|
|
break;
|
|
}
|
|
|
|
case Expr::MemberExprClass: {
|
|
const MemberExpr *ME = cast<MemberExpr>(E);
|
|
mangleMemberExpr(ME->getBase(), ME->isArrow(),
|
|
ME->getQualifier(), 0, ME->getMemberDecl()->getDeclName(),
|
|
Arity);
|
|
break;
|
|
}
|
|
|
|
case Expr::UnresolvedMemberExprClass: {
|
|
const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
|
|
mangleMemberExpr(ME->getBase(), ME->isArrow(),
|
|
ME->getQualifier(), 0, ME->getMemberName(),
|
|
Arity);
|
|
if (ME->hasExplicitTemplateArgs())
|
|
mangleTemplateArgs(ME->getExplicitTemplateArgs());
|
|
break;
|
|
}
|
|
|
|
case Expr::CXXDependentScopeMemberExprClass: {
|
|
const CXXDependentScopeMemberExpr *ME
|
|
= cast<CXXDependentScopeMemberExpr>(E);
|
|
mangleMemberExpr(ME->getBase(), ME->isArrow(),
|
|
ME->getQualifier(), ME->getFirstQualifierFoundInScope(),
|
|
ME->getMember(), Arity);
|
|
if (ME->hasExplicitTemplateArgs())
|
|
mangleTemplateArgs(ME->getExplicitTemplateArgs());
|
|
break;
|
|
}
|
|
|
|
case Expr::UnresolvedLookupExprClass: {
|
|
const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
|
|
mangleUnresolvedName(ULE->getQualifier(), 0, ULE->getName(), Arity);
|
|
|
|
// All the <unresolved-name> productions end in a
|
|
// base-unresolved-name, where <template-args> are just tacked
|
|
// onto the end.
|
|
if (ULE->hasExplicitTemplateArgs())
|
|
mangleTemplateArgs(ULE->getExplicitTemplateArgs());
|
|
break;
|
|
}
|
|
|
|
case Expr::CXXUnresolvedConstructExprClass: {
|
|
const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
|
|
unsigned N = CE->arg_size();
|
|
|
|
Out << "cv";
|
|
mangleType(CE->getType());
|
|
if (N != 1) Out << '_';
|
|
for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
|
|
if (N != 1) Out << 'E';
|
|
break;
|
|
}
|
|
|
|
case Expr::CXXTemporaryObjectExprClass:
|
|
case Expr::CXXConstructExprClass: {
|
|
const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
|
|
unsigned N = CE->getNumArgs();
|
|
|
|
// Proposal by Jason Merrill, 2012-01-03
|
|
if (CE->isListInitialization())
|
|
Out << "tl";
|
|
else
|
|
Out << "cv";
|
|
mangleType(CE->getType());
|
|
if (N != 1) Out << '_';
|
|
for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
|
|
if (N != 1) Out << 'E';
|
|
break;
|
|
}
|
|
|
|
case Expr::CXXScalarValueInitExprClass:
|
|
Out <<"cv";
|
|
mangleType(E->getType());
|
|
Out <<"_E";
|
|
break;
|
|
|
|
case Expr::CXXNoexceptExprClass:
|
|
Out << "nx";
|
|
mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
|
|
break;
|
|
|
|
case Expr::UnaryExprOrTypeTraitExprClass: {
|
|
const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
|
|
|
|
if (!SAE->isInstantiationDependent()) {
|
|
// Itanium C++ ABI:
|
|
// If the operand of a sizeof or alignof operator is not
|
|
// instantiation-dependent it is encoded as an integer literal
|
|
// reflecting the result of the operator.
|
|
//
|
|
// If the result of the operator is implicitly converted to a known
|
|
// integer type, that type is used for the literal; otherwise, the type
|
|
// of std::size_t or std::ptrdiff_t is used.
|
|
QualType T = (ImplicitlyConvertedToType.isNull() ||
|
|
!ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
|
|
: ImplicitlyConvertedToType;
|
|
llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
|
|
mangleIntegerLiteral(T, V);
|
|
break;
|
|
}
|
|
|
|
switch(SAE->getKind()) {
|
|
case UETT_SizeOf:
|
|
Out << 's';
|
|
break;
|
|
case UETT_AlignOf:
|
|
Out << 'a';
|
|
break;
|
|
case UETT_VecStep:
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot yet mangle vec_step expression");
|
|
Diags.Report(DiagID);
|
|
return;
|
|
}
|
|
if (SAE->isArgumentType()) {
|
|
Out << 't';
|
|
mangleType(SAE->getArgumentType());
|
|
} else {
|
|
Out << 'z';
|
|
mangleExpression(SAE->getArgumentExpr());
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Expr::CXXThrowExprClass: {
|
|
const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
|
|
|
|
// Proposal from David Vandervoorde, 2010.06.30
|
|
if (TE->getSubExpr()) {
|
|
Out << "tw";
|
|
mangleExpression(TE->getSubExpr());
|
|
} else {
|
|
Out << "tr";
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Expr::CXXTypeidExprClass: {
|
|
const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
|
|
|
|
// Proposal from David Vandervoorde, 2010.06.30
|
|
if (TIE->isTypeOperand()) {
|
|
Out << "ti";
|
|
mangleType(TIE->getTypeOperand());
|
|
} else {
|
|
Out << "te";
|
|
mangleExpression(TIE->getExprOperand());
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Expr::CXXDeleteExprClass: {
|
|
const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
|
|
|
|
// Proposal from David Vandervoorde, 2010.06.30
|
|
if (DE->isGlobalDelete()) Out << "gs";
|
|
Out << (DE->isArrayForm() ? "da" : "dl");
|
|
mangleExpression(DE->getArgument());
|
|
break;
|
|
}
|
|
|
|
case Expr::UnaryOperatorClass: {
|
|
const UnaryOperator *UO = cast<UnaryOperator>(E);
|
|
mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
|
|
/*Arity=*/1);
|
|
mangleExpression(UO->getSubExpr());
|
|
break;
|
|
}
|
|
|
|
case Expr::ArraySubscriptExprClass: {
|
|
const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
|
|
|
|
// Array subscript is treated as a syntactically weird form of
|
|
// binary operator.
|
|
Out << "ix";
|
|
mangleExpression(AE->getLHS());
|
|
mangleExpression(AE->getRHS());
|
|
break;
|
|
}
|
|
|
|
case Expr::CompoundAssignOperatorClass: // fallthrough
|
|
case Expr::BinaryOperatorClass: {
|
|
const BinaryOperator *BO = cast<BinaryOperator>(E);
|
|
if (BO->getOpcode() == BO_PtrMemD)
|
|
Out << "ds";
|
|
else
|
|
mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
|
|
/*Arity=*/2);
|
|
mangleExpression(BO->getLHS());
|
|
mangleExpression(BO->getRHS());
|
|
break;
|
|
}
|
|
|
|
case Expr::ConditionalOperatorClass: {
|
|
const ConditionalOperator *CO = cast<ConditionalOperator>(E);
|
|
mangleOperatorName(OO_Conditional, /*Arity=*/3);
|
|
mangleExpression(CO->getCond());
|
|
mangleExpression(CO->getLHS(), Arity);
|
|
mangleExpression(CO->getRHS(), Arity);
|
|
break;
|
|
}
|
|
|
|
case Expr::ImplicitCastExprClass: {
|
|
ImplicitlyConvertedToType = E->getType();
|
|
E = cast<ImplicitCastExpr>(E)->getSubExpr();
|
|
goto recurse;
|
|
}
|
|
|
|
case Expr::ObjCBridgedCastExprClass: {
|
|
// Mangle ownership casts as a vendor extended operator __bridge,
|
|
// __bridge_transfer, or __bridge_retain.
|
|
StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
|
|
Out << "v1U" << Kind.size() << Kind;
|
|
}
|
|
// Fall through to mangle the cast itself.
|
|
|
|
case Expr::CStyleCastExprClass:
|
|
case Expr::CXXStaticCastExprClass:
|
|
case Expr::CXXDynamicCastExprClass:
|
|
case Expr::CXXReinterpretCastExprClass:
|
|
case Expr::CXXConstCastExprClass:
|
|
case Expr::CXXFunctionalCastExprClass: {
|
|
const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
|
|
Out << "cv";
|
|
mangleType(ECE->getType());
|
|
mangleExpression(ECE->getSubExpr());
|
|
break;
|
|
}
|
|
|
|
case Expr::CXXOperatorCallExprClass: {
|
|
const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
|
|
unsigned NumArgs = CE->getNumArgs();
|
|
mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
|
|
// Mangle the arguments.
|
|
for (unsigned i = 0; i != NumArgs; ++i)
|
|
mangleExpression(CE->getArg(i));
|
|
break;
|
|
}
|
|
|
|
case Expr::ParenExprClass:
|
|
mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
|
|
break;
|
|
|
|
case Expr::DeclRefExprClass: {
|
|
const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
|
|
|
|
switch (D->getKind()) {
|
|
default:
|
|
// <expr-primary> ::= L <mangled-name> E # external name
|
|
Out << 'L';
|
|
mangle(D, "_Z");
|
|
Out << 'E';
|
|
break;
|
|
|
|
case Decl::ParmVar:
|
|
mangleFunctionParam(cast<ParmVarDecl>(D));
|
|
break;
|
|
|
|
case Decl::EnumConstant: {
|
|
const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
|
|
mangleIntegerLiteral(ED->getType(), ED->getInitVal());
|
|
break;
|
|
}
|
|
|
|
case Decl::NonTypeTemplateParm: {
|
|
const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
|
|
mangleTemplateParameter(PD->getIndex());
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case Expr::SubstNonTypeTemplateParmPackExprClass:
|
|
// FIXME: not clear how to mangle this!
|
|
// template <unsigned N...> class A {
|
|
// template <class U...> void foo(U (&x)[N]...);
|
|
// };
|
|
Out << "_SUBSTPACK_";
|
|
break;
|
|
|
|
case Expr::FunctionParmPackExprClass: {
|
|
// FIXME: not clear how to mangle this!
|
|
const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
|
|
Out << "v110_SUBSTPACK";
|
|
mangleFunctionParam(FPPE->getParameterPack());
|
|
break;
|
|
}
|
|
|
|
case Expr::DependentScopeDeclRefExprClass: {
|
|
const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
|
|
mangleUnresolvedName(DRE->getQualifier(), 0, DRE->getDeclName(), Arity);
|
|
|
|
// All the <unresolved-name> productions end in a
|
|
// base-unresolved-name, where <template-args> are just tacked
|
|
// onto the end.
|
|
if (DRE->hasExplicitTemplateArgs())
|
|
mangleTemplateArgs(DRE->getExplicitTemplateArgs());
|
|
break;
|
|
}
|
|
|
|
case Expr::CXXBindTemporaryExprClass:
|
|
mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
|
|
break;
|
|
|
|
case Expr::ExprWithCleanupsClass:
|
|
mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
|
|
break;
|
|
|
|
case Expr::FloatingLiteralClass: {
|
|
const FloatingLiteral *FL = cast<FloatingLiteral>(E);
|
|
Out << 'L';
|
|
mangleType(FL->getType());
|
|
mangleFloat(FL->getValue());
|
|
Out << 'E';
|
|
break;
|
|
}
|
|
|
|
case Expr::CharacterLiteralClass:
|
|
Out << 'L';
|
|
mangleType(E->getType());
|
|
Out << cast<CharacterLiteral>(E)->getValue();
|
|
Out << 'E';
|
|
break;
|
|
|
|
// FIXME. __objc_yes/__objc_no are mangled same as true/false
|
|
case Expr::ObjCBoolLiteralExprClass:
|
|
Out << "Lb";
|
|
Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
|
|
Out << 'E';
|
|
break;
|
|
|
|
case Expr::CXXBoolLiteralExprClass:
|
|
Out << "Lb";
|
|
Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
|
|
Out << 'E';
|
|
break;
|
|
|
|
case Expr::IntegerLiteralClass: {
|
|
llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
|
|
if (E->getType()->isSignedIntegerType())
|
|
Value.setIsSigned(true);
|
|
mangleIntegerLiteral(E->getType(), Value);
|
|
break;
|
|
}
|
|
|
|
case Expr::ImaginaryLiteralClass: {
|
|
const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
|
|
// Mangle as if a complex literal.
|
|
// Proposal from David Vandevoorde, 2010.06.30.
|
|
Out << 'L';
|
|
mangleType(E->getType());
|
|
if (const FloatingLiteral *Imag =
|
|
dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
|
|
// Mangle a floating-point zero of the appropriate type.
|
|
mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
|
|
Out << '_';
|
|
mangleFloat(Imag->getValue());
|
|
} else {
|
|
Out << "0_";
|
|
llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
|
|
if (IE->getSubExpr()->getType()->isSignedIntegerType())
|
|
Value.setIsSigned(true);
|
|
mangleNumber(Value);
|
|
}
|
|
Out << 'E';
|
|
break;
|
|
}
|
|
|
|
case Expr::StringLiteralClass: {
|
|
// Revised proposal from David Vandervoorde, 2010.07.15.
|
|
Out << 'L';
|
|
assert(isa<ConstantArrayType>(E->getType()));
|
|
mangleType(E->getType());
|
|
Out << 'E';
|
|
break;
|
|
}
|
|
|
|
case Expr::GNUNullExprClass:
|
|
// FIXME: should this really be mangled the same as nullptr?
|
|
// fallthrough
|
|
|
|
case Expr::CXXNullPtrLiteralExprClass: {
|
|
// Proposal from David Vandervoorde, 2010.06.30, as
|
|
// modified by ABI list discussion.
|
|
Out << "LDnE";
|
|
break;
|
|
}
|
|
|
|
case Expr::PackExpansionExprClass:
|
|
Out << "sp";
|
|
mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
|
|
break;
|
|
|
|
case Expr::SizeOfPackExprClass: {
|
|
Out << "sZ";
|
|
const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
|
|
if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
|
|
mangleTemplateParameter(TTP->getIndex());
|
|
else if (const NonTypeTemplateParmDecl *NTTP
|
|
= dyn_cast<NonTypeTemplateParmDecl>(Pack))
|
|
mangleTemplateParameter(NTTP->getIndex());
|
|
else if (const TemplateTemplateParmDecl *TempTP
|
|
= dyn_cast<TemplateTemplateParmDecl>(Pack))
|
|
mangleTemplateParameter(TempTP->getIndex());
|
|
else
|
|
mangleFunctionParam(cast<ParmVarDecl>(Pack));
|
|
break;
|
|
}
|
|
|
|
case Expr::MaterializeTemporaryExprClass: {
|
|
mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
|
|
break;
|
|
}
|
|
|
|
case Expr::CXXThisExprClass:
|
|
Out << "fpT";
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// Mangle an expression which refers to a parameter variable.
|
|
///
|
|
/// <expression> ::= <function-param>
|
|
/// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0
|
|
/// <function-param> ::= fp <top-level CV-qualifiers>
|
|
/// <parameter-2 non-negative number> _ # L == 0, I > 0
|
|
/// <function-param> ::= fL <L-1 non-negative number>
|
|
/// p <top-level CV-qualifiers> _ # L > 0, I == 0
|
|
/// <function-param> ::= fL <L-1 non-negative number>
|
|
/// p <top-level CV-qualifiers>
|
|
/// <I-1 non-negative number> _ # L > 0, I > 0
|
|
///
|
|
/// L is the nesting depth of the parameter, defined as 1 if the
|
|
/// parameter comes from the innermost function prototype scope
|
|
/// enclosing the current context, 2 if from the next enclosing
|
|
/// function prototype scope, and so on, with one special case: if
|
|
/// we've processed the full parameter clause for the innermost
|
|
/// function type, then L is one less. This definition conveniently
|
|
/// makes it irrelevant whether a function's result type was written
|
|
/// trailing or leading, but is otherwise overly complicated; the
|
|
/// numbering was first designed without considering references to
|
|
/// parameter in locations other than return types, and then the
|
|
/// mangling had to be generalized without changing the existing
|
|
/// manglings.
|
|
///
|
|
/// I is the zero-based index of the parameter within its parameter
|
|
/// declaration clause. Note that the original ABI document describes
|
|
/// this using 1-based ordinals.
|
|
void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
|
|
unsigned parmDepth = parm->getFunctionScopeDepth();
|
|
unsigned parmIndex = parm->getFunctionScopeIndex();
|
|
|
|
// Compute 'L'.
|
|
// parmDepth does not include the declaring function prototype.
|
|
// FunctionTypeDepth does account for that.
|
|
assert(parmDepth < FunctionTypeDepth.getDepth());
|
|
unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
|
|
if (FunctionTypeDepth.isInResultType())
|
|
nestingDepth--;
|
|
|
|
if (nestingDepth == 0) {
|
|
Out << "fp";
|
|
} else {
|
|
Out << "fL" << (nestingDepth - 1) << 'p';
|
|
}
|
|
|
|
// Top-level qualifiers. We don't have to worry about arrays here,
|
|
// because parameters declared as arrays should already have been
|
|
// transformed to have pointer type. FIXME: apparently these don't
|
|
// get mangled if used as an rvalue of a known non-class type?
|
|
assert(!parm->getType()->isArrayType()
|
|
&& "parameter's type is still an array type?");
|
|
mangleQualifiers(parm->getType().getQualifiers());
|
|
|
|
// Parameter index.
|
|
if (parmIndex != 0) {
|
|
Out << (parmIndex - 1);
|
|
}
|
|
Out << '_';
|
|
}
|
|
|
|
void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
|
|
// <ctor-dtor-name> ::= C1 # complete object constructor
|
|
// ::= C2 # base object constructor
|
|
// ::= C3 # complete object allocating constructor
|
|
//
|
|
switch (T) {
|
|
case Ctor_Complete:
|
|
Out << "C1";
|
|
break;
|
|
case Ctor_Base:
|
|
Out << "C2";
|
|
break;
|
|
case Ctor_CompleteAllocating:
|
|
Out << "C3";
|
|
break;
|
|
}
|
|
}
|
|
|
|
void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
|
|
// <ctor-dtor-name> ::= D0 # deleting destructor
|
|
// ::= D1 # complete object destructor
|
|
// ::= D2 # base object destructor
|
|
//
|
|
switch (T) {
|
|
case Dtor_Deleting:
|
|
Out << "D0";
|
|
break;
|
|
case Dtor_Complete:
|
|
Out << "D1";
|
|
break;
|
|
case Dtor_Base:
|
|
Out << "D2";
|
|
break;
|
|
}
|
|
}
|
|
|
|
void CXXNameMangler::mangleTemplateArgs(
|
|
const ASTTemplateArgumentListInfo &TemplateArgs) {
|
|
// <template-args> ::= I <template-arg>+ E
|
|
Out << 'I';
|
|
for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)
|
|
mangleTemplateArg(TemplateArgs.getTemplateArgs()[i].getArgument());
|
|
Out << 'E';
|
|
}
|
|
|
|
void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
|
|
// <template-args> ::= I <template-arg>+ E
|
|
Out << 'I';
|
|
for (unsigned i = 0, e = AL.size(); i != e; ++i)
|
|
mangleTemplateArg(AL[i]);
|
|
Out << 'E';
|
|
}
|
|
|
|
void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
|
|
unsigned NumTemplateArgs) {
|
|
// <template-args> ::= I <template-arg>+ E
|
|
Out << 'I';
|
|
for (unsigned i = 0; i != NumTemplateArgs; ++i)
|
|
mangleTemplateArg(TemplateArgs[i]);
|
|
Out << 'E';
|
|
}
|
|
|
|
void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
|
|
// <template-arg> ::= <type> # type or template
|
|
// ::= X <expression> E # expression
|
|
// ::= <expr-primary> # simple expressions
|
|
// ::= J <template-arg>* E # argument pack
|
|
// ::= sp <expression> # pack expansion of (C++0x)
|
|
if (!A.isInstantiationDependent() || A.isDependent())
|
|
A = Context.getASTContext().getCanonicalTemplateArgument(A);
|
|
|
|
switch (A.getKind()) {
|
|
case TemplateArgument::Null:
|
|
llvm_unreachable("Cannot mangle NULL template argument");
|
|
|
|
case TemplateArgument::Type:
|
|
mangleType(A.getAsType());
|
|
break;
|
|
case TemplateArgument::Template:
|
|
// This is mangled as <type>.
|
|
mangleType(A.getAsTemplate());
|
|
break;
|
|
case TemplateArgument::TemplateExpansion:
|
|
// <type> ::= Dp <type> # pack expansion (C++0x)
|
|
Out << "Dp";
|
|
mangleType(A.getAsTemplateOrTemplatePattern());
|
|
break;
|
|
case TemplateArgument::Expression: {
|
|
// It's possible to end up with a DeclRefExpr here in certain
|
|
// dependent cases, in which case we should mangle as a
|
|
// declaration.
|
|
const Expr *E = A.getAsExpr()->IgnoreParens();
|
|
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
|
|
const ValueDecl *D = DRE->getDecl();
|
|
if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
|
|
Out << "L";
|
|
mangle(D, "_Z");
|
|
Out << 'E';
|
|
break;
|
|
}
|
|
}
|
|
|
|
Out << 'X';
|
|
mangleExpression(E);
|
|
Out << 'E';
|
|
break;
|
|
}
|
|
case TemplateArgument::Integral:
|
|
mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
|
|
break;
|
|
case TemplateArgument::Declaration: {
|
|
// <expr-primary> ::= L <mangled-name> E # external name
|
|
// Clang produces AST's where pointer-to-member-function expressions
|
|
// and pointer-to-function expressions are represented as a declaration not
|
|
// an expression. We compensate for it here to produce the correct mangling.
|
|
ValueDecl *D = A.getAsDecl();
|
|
bool compensateMangling = !A.isDeclForReferenceParam();
|
|
if (compensateMangling) {
|
|
Out << 'X';
|
|
mangleOperatorName(OO_Amp, 1);
|
|
}
|
|
|
|
Out << 'L';
|
|
// References to external entities use the mangled name; if the name would
|
|
// not normally be manged then mangle it as unqualified.
|
|
//
|
|
// FIXME: The ABI specifies that external names here should have _Z, but
|
|
// gcc leaves this off.
|
|
if (compensateMangling)
|
|
mangle(D, "_Z");
|
|
else
|
|
mangle(D, "Z");
|
|
Out << 'E';
|
|
|
|
if (compensateMangling)
|
|
Out << 'E';
|
|
|
|
break;
|
|
}
|
|
case TemplateArgument::NullPtr: {
|
|
// <expr-primary> ::= L <type> 0 E
|
|
Out << 'L';
|
|
mangleType(A.getNullPtrType());
|
|
Out << "0E";
|
|
break;
|
|
}
|
|
case TemplateArgument::Pack: {
|
|
// Note: proposal by Mike Herrick on 12/20/10
|
|
Out << 'J';
|
|
for (TemplateArgument::pack_iterator PA = A.pack_begin(),
|
|
PAEnd = A.pack_end();
|
|
PA != PAEnd; ++PA)
|
|
mangleTemplateArg(*PA);
|
|
Out << 'E';
|
|
}
|
|
}
|
|
}
|
|
|
|
void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
|
|
// <template-param> ::= T_ # first template parameter
|
|
// ::= T <parameter-2 non-negative number> _
|
|
if (Index == 0)
|
|
Out << "T_";
|
|
else
|
|
Out << 'T' << (Index - 1) << '_';
|
|
}
|
|
|
|
void CXXNameMangler::mangleExistingSubstitution(QualType type) {
|
|
bool result = mangleSubstitution(type);
|
|
assert(result && "no existing substitution for type");
|
|
(void) result;
|
|
}
|
|
|
|
void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
|
|
bool result = mangleSubstitution(tname);
|
|
assert(result && "no existing substitution for template name");
|
|
(void) result;
|
|
}
|
|
|
|
// <substitution> ::= S <seq-id> _
|
|
// ::= S_
|
|
bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
|
|
// Try one of the standard substitutions first.
|
|
if (mangleStandardSubstitution(ND))
|
|
return true;
|
|
|
|
ND = cast<NamedDecl>(ND->getCanonicalDecl());
|
|
return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
|
|
}
|
|
|
|
/// \brief Determine whether the given type has any qualifiers that are
|
|
/// relevant for substitutions.
|
|
static bool hasMangledSubstitutionQualifiers(QualType T) {
|
|
Qualifiers Qs = T.getQualifiers();
|
|
return Qs.getCVRQualifiers() || Qs.hasAddressSpace();
|
|
}
|
|
|
|
bool CXXNameMangler::mangleSubstitution(QualType T) {
|
|
if (!hasMangledSubstitutionQualifiers(T)) {
|
|
if (const RecordType *RT = T->getAs<RecordType>())
|
|
return mangleSubstitution(RT->getDecl());
|
|
}
|
|
|
|
uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
|
|
|
|
return mangleSubstitution(TypePtr);
|
|
}
|
|
|
|
bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
|
|
if (TemplateDecl *TD = Template.getAsTemplateDecl())
|
|
return mangleSubstitution(TD);
|
|
|
|
Template = Context.getASTContext().getCanonicalTemplateName(Template);
|
|
return mangleSubstitution(
|
|
reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
|
|
}
|
|
|
|
bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
|
|
llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
|
|
if (I == Substitutions.end())
|
|
return false;
|
|
|
|
unsigned SeqID = I->second;
|
|
if (SeqID == 0)
|
|
Out << "S_";
|
|
else {
|
|
SeqID--;
|
|
|
|
// <seq-id> is encoded in base-36, using digits and upper case letters.
|
|
char Buffer[10];
|
|
char *BufferPtr = llvm::array_endof(Buffer);
|
|
|
|
if (SeqID == 0) *--BufferPtr = '0';
|
|
|
|
while (SeqID) {
|
|
assert(BufferPtr > Buffer && "Buffer overflow!");
|
|
|
|
char c = static_cast<char>(SeqID % 36);
|
|
|
|
*--BufferPtr = (c < 10 ? '0' + c : 'A' + c - 10);
|
|
SeqID /= 36;
|
|
}
|
|
|
|
Out << 'S'
|
|
<< StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr)
|
|
<< '_';
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool isCharType(QualType T) {
|
|
if (T.isNull())
|
|
return false;
|
|
|
|
return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
|
|
T->isSpecificBuiltinType(BuiltinType::Char_U);
|
|
}
|
|
|
|
/// isCharSpecialization - Returns whether a given type is a template
|
|
/// specialization of a given name with a single argument of type char.
|
|
static bool isCharSpecialization(QualType T, const char *Name) {
|
|
if (T.isNull())
|
|
return false;
|
|
|
|
const RecordType *RT = T->getAs<RecordType>();
|
|
if (!RT)
|
|
return false;
|
|
|
|
const ClassTemplateSpecializationDecl *SD =
|
|
dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
|
|
if (!SD)
|
|
return false;
|
|
|
|
if (!isStdNamespace(getEffectiveDeclContext(SD)))
|
|
return false;
|
|
|
|
const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
|
|
if (TemplateArgs.size() != 1)
|
|
return false;
|
|
|
|
if (!isCharType(TemplateArgs[0].getAsType()))
|
|
return false;
|
|
|
|
return SD->getIdentifier()->getName() == Name;
|
|
}
|
|
|
|
template <std::size_t StrLen>
|
|
static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
|
|
const char (&Str)[StrLen]) {
|
|
if (!SD->getIdentifier()->isStr(Str))
|
|
return false;
|
|
|
|
const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
|
|
if (TemplateArgs.size() != 2)
|
|
return false;
|
|
|
|
if (!isCharType(TemplateArgs[0].getAsType()))
|
|
return false;
|
|
|
|
if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
|
|
// <substitution> ::= St # ::std::
|
|
if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
|
|
if (isStd(NS)) {
|
|
Out << "St";
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
|
|
if (!isStdNamespace(getEffectiveDeclContext(TD)))
|
|
return false;
|
|
|
|
// <substitution> ::= Sa # ::std::allocator
|
|
if (TD->getIdentifier()->isStr("allocator")) {
|
|
Out << "Sa";
|
|
return true;
|
|
}
|
|
|
|
// <<substitution> ::= Sb # ::std::basic_string
|
|
if (TD->getIdentifier()->isStr("basic_string")) {
|
|
Out << "Sb";
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (const ClassTemplateSpecializationDecl *SD =
|
|
dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
|
|
if (!isStdNamespace(getEffectiveDeclContext(SD)))
|
|
return false;
|
|
|
|
// <substitution> ::= Ss # ::std::basic_string<char,
|
|
// ::std::char_traits<char>,
|
|
// ::std::allocator<char> >
|
|
if (SD->getIdentifier()->isStr("basic_string")) {
|
|
const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
|
|
|
|
if (TemplateArgs.size() != 3)
|
|
return false;
|
|
|
|
if (!isCharType(TemplateArgs[0].getAsType()))
|
|
return false;
|
|
|
|
if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
|
|
return false;
|
|
|
|
if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
|
|
return false;
|
|
|
|
Out << "Ss";
|
|
return true;
|
|
}
|
|
|
|
// <substitution> ::= Si # ::std::basic_istream<char,
|
|
// ::std::char_traits<char> >
|
|
if (isStreamCharSpecialization(SD, "basic_istream")) {
|
|
Out << "Si";
|
|
return true;
|
|
}
|
|
|
|
// <substitution> ::= So # ::std::basic_ostream<char,
|
|
// ::std::char_traits<char> >
|
|
if (isStreamCharSpecialization(SD, "basic_ostream")) {
|
|
Out << "So";
|
|
return true;
|
|
}
|
|
|
|
// <substitution> ::= Sd # ::std::basic_iostream<char,
|
|
// ::std::char_traits<char> >
|
|
if (isStreamCharSpecialization(SD, "basic_iostream")) {
|
|
Out << "Sd";
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void CXXNameMangler::addSubstitution(QualType T) {
|
|
if (!hasMangledSubstitutionQualifiers(T)) {
|
|
if (const RecordType *RT = T->getAs<RecordType>()) {
|
|
addSubstitution(RT->getDecl());
|
|
return;
|
|
}
|
|
}
|
|
|
|
uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
|
|
addSubstitution(TypePtr);
|
|
}
|
|
|
|
void CXXNameMangler::addSubstitution(TemplateName Template) {
|
|
if (TemplateDecl *TD = Template.getAsTemplateDecl())
|
|
return addSubstitution(TD);
|
|
|
|
Template = Context.getASTContext().getCanonicalTemplateName(Template);
|
|
addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
|
|
}
|
|
|
|
void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
|
|
assert(!Substitutions.count(Ptr) && "Substitution already exists!");
|
|
Substitutions[Ptr] = SeqID++;
|
|
}
|
|
|
|
//
|
|
|
|
/// \brief Mangles the name of the declaration D and emits that name to the
|
|
/// given output stream.
|
|
///
|
|
/// If the declaration D requires a mangled name, this routine will emit that
|
|
/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
|
|
/// and this routine will return false. In this case, the caller should just
|
|
/// emit the identifier of the declaration (\c D->getIdentifier()) as its
|
|
/// name.
|
|
void ItaniumMangleContext::mangleName(const NamedDecl *D,
|
|
raw_ostream &Out) {
|
|
assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
|
|
"Invalid mangleName() call, argument is not a variable or function!");
|
|
assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
|
|
"Invalid mangleName() call on 'structor decl!");
|
|
|
|
PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
|
|
getASTContext().getSourceManager(),
|
|
"Mangling declaration");
|
|
|
|
CXXNameMangler Mangler(*this, Out, D);
|
|
return Mangler.mangle(D);
|
|
}
|
|
|
|
void ItaniumMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
|
|
CXXCtorType Type,
|
|
raw_ostream &Out) {
|
|
CXXNameMangler Mangler(*this, Out, D, Type);
|
|
Mangler.mangle(D);
|
|
}
|
|
|
|
void ItaniumMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
|
|
CXXDtorType Type,
|
|
raw_ostream &Out) {
|
|
CXXNameMangler Mangler(*this, Out, D, Type);
|
|
Mangler.mangle(D);
|
|
}
|
|
|
|
void ItaniumMangleContext::mangleThunk(const CXXMethodDecl *MD,
|
|
const ThunkInfo &Thunk,
|
|
raw_ostream &Out) {
|
|
// <special-name> ::= T <call-offset> <base encoding>
|
|
// # base is the nominal target function of thunk
|
|
// <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
|
|
// # base is the nominal target function of thunk
|
|
// # first call-offset is 'this' adjustment
|
|
// # second call-offset is result adjustment
|
|
|
|
assert(!isa<CXXDestructorDecl>(MD) &&
|
|
"Use mangleCXXDtor for destructor decls!");
|
|
CXXNameMangler Mangler(*this, Out);
|
|
Mangler.getStream() << "_ZT";
|
|
if (!Thunk.Return.isEmpty())
|
|
Mangler.getStream() << 'c';
|
|
|
|
// Mangle the 'this' pointer adjustment.
|
|
Mangler.mangleCallOffset(Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset);
|
|
|
|
// Mangle the return pointer adjustment if there is one.
|
|
if (!Thunk.Return.isEmpty())
|
|
Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
|
|
Thunk.Return.VBaseOffsetOffset);
|
|
|
|
Mangler.mangleFunctionEncoding(MD);
|
|
}
|
|
|
|
void
|
|
ItaniumMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
|
|
CXXDtorType Type,
|
|
const ThisAdjustment &ThisAdjustment,
|
|
raw_ostream &Out) {
|
|
// <special-name> ::= T <call-offset> <base encoding>
|
|
// # base is the nominal target function of thunk
|
|
CXXNameMangler Mangler(*this, Out, DD, Type);
|
|
Mangler.getStream() << "_ZT";
|
|
|
|
// Mangle the 'this' pointer adjustment.
|
|
Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
|
|
ThisAdjustment.VCallOffsetOffset);
|
|
|
|
Mangler.mangleFunctionEncoding(DD);
|
|
}
|
|
|
|
/// mangleGuardVariable - Returns the mangled name for a guard variable
|
|
/// for the passed in VarDecl.
|
|
void ItaniumMangleContext::mangleItaniumGuardVariable(const VarDecl *D,
|
|
raw_ostream &Out) {
|
|
// <special-name> ::= GV <object name> # Guard variable for one-time
|
|
// # initialization
|
|
CXXNameMangler Mangler(*this, Out);
|
|
Mangler.getStream() << "_ZGV";
|
|
Mangler.mangleName(D);
|
|
}
|
|
|
|
void ItaniumMangleContext::mangleReferenceTemporary(const VarDecl *D,
|
|
raw_ostream &Out) {
|
|
// We match the GCC mangling here.
|
|
// <special-name> ::= GR <object name>
|
|
CXXNameMangler Mangler(*this, Out);
|
|
Mangler.getStream() << "_ZGR";
|
|
Mangler.mangleName(D);
|
|
}
|
|
|
|
void ItaniumMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
|
|
raw_ostream &Out) {
|
|
// <special-name> ::= TV <type> # virtual table
|
|
CXXNameMangler Mangler(*this, Out);
|
|
Mangler.getStream() << "_ZTV";
|
|
Mangler.mangleNameOrStandardSubstitution(RD);
|
|
}
|
|
|
|
void ItaniumMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
|
|
raw_ostream &Out) {
|
|
// <special-name> ::= TT <type> # VTT structure
|
|
CXXNameMangler Mangler(*this, Out);
|
|
Mangler.getStream() << "_ZTT";
|
|
Mangler.mangleNameOrStandardSubstitution(RD);
|
|
}
|
|
|
|
void ItaniumMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
|
|
int64_t Offset,
|
|
const CXXRecordDecl *Type,
|
|
raw_ostream &Out) {
|
|
// <special-name> ::= TC <type> <offset number> _ <base type>
|
|
CXXNameMangler Mangler(*this, Out);
|
|
Mangler.getStream() << "_ZTC";
|
|
Mangler.mangleNameOrStandardSubstitution(RD);
|
|
Mangler.getStream() << Offset;
|
|
Mangler.getStream() << '_';
|
|
Mangler.mangleNameOrStandardSubstitution(Type);
|
|
}
|
|
|
|
void ItaniumMangleContext::mangleCXXRTTI(QualType Ty,
|
|
raw_ostream &Out) {
|
|
// <special-name> ::= TI <type> # typeinfo structure
|
|
assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
|
|
CXXNameMangler Mangler(*this, Out);
|
|
Mangler.getStream() << "_ZTI";
|
|
Mangler.mangleType(Ty);
|
|
}
|
|
|
|
void ItaniumMangleContext::mangleCXXRTTIName(QualType Ty,
|
|
raw_ostream &Out) {
|
|
// <special-name> ::= TS <type> # typeinfo name (null terminated byte string)
|
|
CXXNameMangler Mangler(*this, Out);
|
|
Mangler.getStream() << "_ZTS";
|
|
Mangler.mangleType(Ty);
|
|
}
|
|
|
|
MangleContext *clang::createItaniumMangleContext(ASTContext &Context,
|
|
DiagnosticsEngine &Diags) {
|
|
return new ItaniumMangleContext(Context, Diags);
|
|
}
|