llvm-project/compiler-rt/lib/lsan/lsan_common.cc

565 lines
20 KiB
C++

//=-- lsan_common.cc ------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of LeakSanitizer.
// Implementation of common leak checking functionality.
//
//===----------------------------------------------------------------------===//
#include "lsan_common.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_flags.h"
#include "sanitizer_common/sanitizer_placement_new.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "sanitizer_common/sanitizer_stacktrace.h"
#include "sanitizer_common/sanitizer_stoptheworld.h"
#include "sanitizer_common/sanitizer_suppressions.h"
#if CAN_SANITIZE_LEAKS
namespace __lsan {
// This mutex is used to prevent races between DoLeakCheck and IgnoreObject.
BlockingMutex global_mutex(LINKER_INITIALIZED);
THREADLOCAL int disable_counter;
bool DisabledInThisThread() { return disable_counter > 0; }
Flags lsan_flags;
static void InitializeFlags() {
Flags *f = flags();
// Default values.
f->report_objects = false;
f->resolution = 0;
f->max_leaks = 0;
f->exitcode = 23;
f->suppressions="";
f->use_registers = true;
f->use_globals = true;
f->use_stacks = true;
f->use_tls = true;
f->use_unaligned = false;
f->verbosity = 0;
f->log_pointers = false;
f->log_threads = false;
const char *options = GetEnv("LSAN_OPTIONS");
if (options) {
ParseFlag(options, &f->use_registers, "use_registers");
ParseFlag(options, &f->use_globals, "use_globals");
ParseFlag(options, &f->use_stacks, "use_stacks");
ParseFlag(options, &f->use_tls, "use_tls");
ParseFlag(options, &f->use_unaligned, "use_unaligned");
ParseFlag(options, &f->report_objects, "report_objects");
ParseFlag(options, &f->resolution, "resolution");
CHECK_GE(&f->resolution, 0);
ParseFlag(options, &f->max_leaks, "max_leaks");
CHECK_GE(&f->max_leaks, 0);
ParseFlag(options, &f->verbosity, "verbosity");
ParseFlag(options, &f->log_pointers, "log_pointers");
ParseFlag(options, &f->log_threads, "log_threads");
ParseFlag(options, &f->exitcode, "exitcode");
ParseFlag(options, &f->suppressions, "suppressions");
}
}
SuppressionContext *suppression_ctx;
void InitializeSuppressions() {
CHECK(!suppression_ctx);
ALIGNED(64) static char placeholder_[sizeof(SuppressionContext)];
suppression_ctx = new(placeholder_) SuppressionContext;
char *suppressions_from_file;
uptr buffer_size;
if (ReadFileToBuffer(flags()->suppressions, &suppressions_from_file,
&buffer_size, 1 << 26 /* max_len */))
suppression_ctx->Parse(suppressions_from_file);
if (flags()->suppressions[0] && !buffer_size) {
Printf("LeakSanitizer: failed to read suppressions file '%s'\n",
flags()->suppressions);
Die();
}
if (&__lsan_default_suppressions)
suppression_ctx->Parse(__lsan_default_suppressions());
}
void InitCommonLsan() {
InitializeFlags();
InitializeSuppressions();
InitializePlatformSpecificModules();
}
static inline bool CanBeAHeapPointer(uptr p) {
// Since our heap is located in mmap-ed memory, we can assume a sensible lower
// bound on heap addresses.
const uptr kMinAddress = 4 * 4096;
if (p < kMinAddress) return false;
#ifdef __x86_64__
// Accept only canonical form user-space addresses.
return ((p >> 47) == 0);
#else
return true;
#endif
}
// Scans the memory range, looking for byte patterns that point into allocator
// chunks. Marks those chunks with |tag| and adds them to |frontier|.
// There are two usage modes for this function: finding reachable or ignored
// chunks (|tag| = kReachable or kIgnored) and finding indirectly leaked chunks
// (|tag| = kIndirectlyLeaked). In the second case, there's no flood fill,
// so |frontier| = 0.
void ScanRangeForPointers(uptr begin, uptr end,
Frontier *frontier,
const char *region_type, ChunkTag tag) {
const uptr alignment = flags()->pointer_alignment();
if (flags()->log_pointers)
Report("Scanning %s range %p-%p.\n", region_type, begin, end);
uptr pp = begin;
if (pp % alignment)
pp = pp + alignment - pp % alignment;
for (; pp + sizeof(void *) <= end; pp += alignment) { // NOLINT
void *p = *reinterpret_cast<void **>(pp);
if (!CanBeAHeapPointer(reinterpret_cast<uptr>(p))) continue;
uptr chunk = PointsIntoChunk(p);
if (!chunk) continue;
LsanMetadata m(chunk);
// Reachable beats ignored beats leaked.
if (m.tag() == kReachable) continue;
if (m.tag() == kIgnored && tag != kReachable) continue;
m.set_tag(tag);
if (flags()->log_pointers)
Report("%p: found %p pointing into chunk %p-%p of size %zu.\n", pp, p,
chunk, chunk + m.requested_size(), m.requested_size());
if (frontier)
frontier->push_back(chunk);
}
}
// Scans thread data (stacks and TLS) for heap pointers.
static void ProcessThreads(SuspendedThreadsList const &suspended_threads,
Frontier *frontier) {
InternalScopedBuffer<uptr> registers(SuspendedThreadsList::RegisterCount());
uptr registers_begin = reinterpret_cast<uptr>(registers.data());
uptr registers_end = registers_begin + registers.size();
for (uptr i = 0; i < suspended_threads.thread_count(); i++) {
uptr os_id = static_cast<uptr>(suspended_threads.GetThreadID(i));
if (flags()->log_threads) Report("Processing thread %d.\n", os_id);
uptr stack_begin, stack_end, tls_begin, tls_end, cache_begin, cache_end;
bool thread_found = GetThreadRangesLocked(os_id, &stack_begin, &stack_end,
&tls_begin, &tls_end,
&cache_begin, &cache_end);
if (!thread_found) {
// If a thread can't be found in the thread registry, it's probably in the
// process of destruction. Log this event and move on.
if (flags()->log_threads)
Report("Thread %d not found in registry.\n", os_id);
continue;
}
uptr sp;
bool have_registers =
(suspended_threads.GetRegistersAndSP(i, registers.data(), &sp) == 0);
if (!have_registers) {
Report("Unable to get registers from thread %d.\n");
// If unable to get SP, consider the entire stack to be reachable.
sp = stack_begin;
}
if (flags()->use_registers && have_registers)
ScanRangeForPointers(registers_begin, registers_end, frontier,
"REGISTERS", kReachable);
if (flags()->use_stacks) {
if (flags()->log_threads)
Report("Stack at %p-%p, SP = %p.\n", stack_begin, stack_end, sp);
if (sp < stack_begin || sp >= stack_end) {
// SP is outside the recorded stack range (e.g. the thread is running a
// signal handler on alternate stack). Again, consider the entire stack
// range to be reachable.
if (flags()->log_threads)
Report("WARNING: stack pointer not in stack range.\n");
} else {
// Shrink the stack range to ignore out-of-scope values.
stack_begin = sp;
}
ScanRangeForPointers(stack_begin, stack_end, frontier, "STACK",
kReachable);
}
if (flags()->use_tls) {
if (flags()->log_threads) Report("TLS at %p-%p.\n", tls_begin, tls_end);
if (cache_begin == cache_end) {
ScanRangeForPointers(tls_begin, tls_end, frontier, "TLS", kReachable);
} else {
// Because LSan should not be loaded with dlopen(), we can assume
// that allocator cache will be part of static TLS image.
CHECK_LE(tls_begin, cache_begin);
CHECK_GE(tls_end, cache_end);
if (tls_begin < cache_begin)
ScanRangeForPointers(tls_begin, cache_begin, frontier, "TLS",
kReachable);
if (tls_end > cache_end)
ScanRangeForPointers(cache_end, tls_end, frontier, "TLS", kReachable);
}
}
}
}
static void FloodFillTag(Frontier *frontier, ChunkTag tag) {
while (frontier->size()) {
uptr next_chunk = frontier->back();
frontier->pop_back();
LsanMetadata m(next_chunk);
ScanRangeForPointers(next_chunk, next_chunk + m.requested_size(), frontier,
"HEAP", tag);
}
}
// ForEachChunk callback. If the chunk is marked as leaked, marks all chunks
// which are reachable from it as indirectly leaked.
static void MarkIndirectlyLeakedCb(uptr chunk, void *arg) {
chunk = GetUserBegin(chunk);
LsanMetadata m(chunk);
if (m.allocated() && m.tag() != kReachable) {
ScanRangeForPointers(chunk, chunk + m.requested_size(),
/* frontier */ 0, "HEAP", kIndirectlyLeaked);
}
}
// ForEachChunk callback. If chunk is marked as ignored, adds its address to
// frontier.
static void CollectIgnoredCb(uptr chunk, void *arg) {
CHECK(arg);
chunk = GetUserBegin(chunk);
LsanMetadata m(chunk);
if (m.allocated() && m.tag() == kIgnored)
reinterpret_cast<Frontier *>(arg)->push_back(chunk);
}
// Sets the appropriate tag on each chunk.
static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads) {
// Holds the flood fill frontier.
Frontier frontier(GetPageSizeCached());
if (flags()->use_globals)
ProcessGlobalRegions(&frontier);
ProcessThreads(suspended_threads, &frontier);
FloodFillTag(&frontier, kReachable);
// The check here is relatively expensive, so we do this in a separate flood
// fill. That way we can skip the check for chunks that are reachable
// otherwise.
ProcessPlatformSpecificAllocations(&frontier);
FloodFillTag(&frontier, kReachable);
if (flags()->log_pointers)
Report("Scanning ignored chunks.\n");
CHECK_EQ(0, frontier.size());
ForEachChunk(CollectIgnoredCb, &frontier);
FloodFillTag(&frontier, kIgnored);
// Iterate over leaked chunks and mark those that are reachable from other
// leaked chunks.
if (flags()->log_pointers)
Report("Scanning leaked chunks.\n");
ForEachChunk(MarkIndirectlyLeakedCb, 0 /* arg */);
}
static void PrintStackTraceById(u32 stack_trace_id) {
CHECK(stack_trace_id);
uptr size = 0;
const uptr *trace = StackDepotGet(stack_trace_id, &size);
StackTrace::PrintStack(trace, size, common_flags()->symbolize,
common_flags()->strip_path_prefix, 0);
}
// ForEachChunk callback. Aggregates unreachable chunks into a LeakReport.
static void CollectLeaksCb(uptr chunk, void *arg) {
CHECK(arg);
LeakReport *leak_report = reinterpret_cast<LeakReport *>(arg);
chunk = GetUserBegin(chunk);
LsanMetadata m(chunk);
if (!m.allocated()) return;
if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) {
uptr resolution = flags()->resolution;
if (resolution > 0) {
uptr size = 0;
const uptr *trace = StackDepotGet(m.stack_trace_id(), &size);
size = Min(size, resolution);
leak_report->Add(StackDepotPut(trace, size), m.requested_size(), m.tag());
} else {
leak_report->Add(m.stack_trace_id(), m.requested_size(), m.tag());
}
}
}
// ForEachChunkCallback. Prints addresses of unreachable chunks.
static void PrintLeakedCb(uptr chunk, void *arg) {
chunk = GetUserBegin(chunk);
LsanMetadata m(chunk);
if (!m.allocated()) return;
if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) {
Printf("%s leaked %zu byte object at %p.\n",
m.tag() == kDirectlyLeaked ? "Directly" : "Indirectly",
m.requested_size(), chunk);
}
}
static void PrintMatchedSuppressions() {
InternalMmapVector<Suppression *> matched(1);
suppression_ctx->GetMatched(&matched);
if (!matched.size())
return;
const char *line = "-----------------------------------------------------";
Printf("%s\n", line);
Printf("Suppressions used:\n");
Printf(" count bytes template\n");
for (uptr i = 0; i < matched.size(); i++)
Printf("%7zu %10zu %s\n", static_cast<uptr>(matched[i]->hit_count),
matched[i]->weight, matched[i]->templ);
Printf("%s\n\n", line);
}
static void PrintLeaked() {
Printf("\n");
Printf("Reporting individual objects:\n");
ForEachChunk(PrintLeakedCb, 0 /* arg */);
}
struct DoLeakCheckParam {
bool success;
LeakReport leak_report;
};
static void DoLeakCheckCallback(const SuspendedThreadsList &suspended_threads,
void *arg) {
DoLeakCheckParam *param = reinterpret_cast<DoLeakCheckParam *>(arg);
CHECK(param);
CHECK(!param->success);
CHECK(param->leak_report.IsEmpty());
ClassifyAllChunks(suspended_threads);
ForEachChunk(CollectLeaksCb, &param->leak_report);
if (!param->leak_report.IsEmpty() && flags()->report_objects)
PrintLeaked();
param->success = true;
}
void DoLeakCheck() {
EnsureMainThreadIDIsCorrect();
BlockingMutexLock l(&global_mutex);
static bool already_done;
if (already_done) return;
already_done = true;
if (&__lsan_is_turned_off && __lsan_is_turned_off())
return;
DoLeakCheckParam param;
param.success = false;
LockThreadRegistry();
LockAllocator();
StopTheWorld(DoLeakCheckCallback, &param);
UnlockAllocator();
UnlockThreadRegistry();
if (!param.success) {
Report("LeakSanitizer has encountered a fatal error.\n");
Die();
}
uptr have_unsuppressed = param.leak_report.ApplySuppressions();
if (have_unsuppressed) {
Printf("\n"
"================================================================="
"\n");
Report("ERROR: LeakSanitizer: detected memory leaks\n");
param.leak_report.PrintLargest(flags()->max_leaks);
}
if (have_unsuppressed || (flags()->verbosity >= 1)) {
PrintMatchedSuppressions();
param.leak_report.PrintSummary();
}
if (have_unsuppressed && flags()->exitcode)
internal__exit(flags()->exitcode);
}
static Suppression *GetSuppressionForAddr(uptr addr) {
static const uptr kMaxAddrFrames = 16;
InternalScopedBuffer<AddressInfo> addr_frames(kMaxAddrFrames);
for (uptr i = 0; i < kMaxAddrFrames; i++) new (&addr_frames[i]) AddressInfo();
uptr addr_frames_num = __sanitizer::SymbolizeCode(addr, addr_frames.data(),
kMaxAddrFrames);
for (uptr i = 0; i < addr_frames_num; i++) {
Suppression* s;
if (suppression_ctx->Match(addr_frames[i].function, SuppressionLeak, &s) ||
suppression_ctx->Match(addr_frames[i].file, SuppressionLeak, &s) ||
suppression_ctx->Match(addr_frames[i].module, SuppressionLeak, &s))
return s;
}
return 0;
}
static Suppression *GetSuppressionForStack(u32 stack_trace_id) {
uptr size = 0;
const uptr *trace = StackDepotGet(stack_trace_id, &size);
for (uptr i = 0; i < size; i++) {
Suppression *s =
GetSuppressionForAddr(StackTrace::GetPreviousInstructionPc(trace[i]));
if (s) return s;
}
return 0;
}
///// LeakReport implementation. /////
// A hard limit on the number of distinct leaks, to avoid quadratic complexity
// in LeakReport::Add(). We don't expect to ever see this many leaks in
// real-world applications.
// FIXME: Get rid of this limit by changing the implementation of LeakReport to
// use a hash table.
const uptr kMaxLeaksConsidered = 5000;
void LeakReport::Add(u32 stack_trace_id, uptr leaked_size, ChunkTag tag) {
CHECK(tag == kDirectlyLeaked || tag == kIndirectlyLeaked);
bool is_directly_leaked = (tag == kDirectlyLeaked);
for (uptr i = 0; i < leaks_.size(); i++)
if (leaks_[i].stack_trace_id == stack_trace_id &&
leaks_[i].is_directly_leaked == is_directly_leaked) {
leaks_[i].hit_count++;
leaks_[i].total_size += leaked_size;
return;
}
if (leaks_.size() == kMaxLeaksConsidered) return;
Leak leak = { /* hit_count */ 1, leaked_size, stack_trace_id,
is_directly_leaked, /* is_suppressed */ false };
leaks_.push_back(leak);
}
static bool LeakComparator(const Leak &leak1, const Leak &leak2) {
if (leak1.is_directly_leaked == leak2.is_directly_leaked)
return leak1.total_size > leak2.total_size;
else
return leak1.is_directly_leaked;
}
void LeakReport::PrintLargest(uptr num_leaks_to_print) {
CHECK(leaks_.size() <= kMaxLeaksConsidered);
Printf("\n");
if (leaks_.size() == kMaxLeaksConsidered)
Printf("Too many leaks! Only the first %zu leaks encountered will be "
"reported.\n",
kMaxLeaksConsidered);
uptr unsuppressed_count = 0;
for (uptr i = 0; i < leaks_.size(); i++)
if (!leaks_[i].is_suppressed) unsuppressed_count++;
if (num_leaks_to_print > 0 && num_leaks_to_print < unsuppressed_count)
Printf("The %zu largest leak(s):\n", num_leaks_to_print);
InternalSort(&leaks_, leaks_.size(), LeakComparator);
uptr leaks_printed = 0;
for (uptr i = 0; i < leaks_.size(); i++) {
if (leaks_[i].is_suppressed) continue;
Printf("%s leak of %zu byte(s) in %zu object(s) allocated from:\n",
leaks_[i].is_directly_leaked ? "Direct" : "Indirect",
leaks_[i].total_size, leaks_[i].hit_count);
PrintStackTraceById(leaks_[i].stack_trace_id);
Printf("\n");
leaks_printed++;
if (leaks_printed == num_leaks_to_print) break;
}
if (leaks_printed < unsuppressed_count) {
uptr remaining = unsuppressed_count - leaks_printed;
Printf("Omitting %zu more leak(s).\n", remaining);
}
}
void LeakReport::PrintSummary() {
CHECK(leaks_.size() <= kMaxLeaksConsidered);
uptr bytes = 0, allocations = 0;
for (uptr i = 0; i < leaks_.size(); i++) {
if (leaks_[i].is_suppressed) continue;
bytes += leaks_[i].total_size;
allocations += leaks_[i].hit_count;
}
const int kMaxSummaryLength = 128;
InternalScopedBuffer<char> summary(kMaxSummaryLength);
internal_snprintf(summary.data(), kMaxSummaryLength,
"LeakSanitizer: %zu byte(s) leaked in %zu allocation(s).",
bytes, allocations);
__sanitizer_report_error_summary(summary.data());
}
uptr LeakReport::ApplySuppressions() {
uptr unsuppressed_count = 0;
for (uptr i = 0; i < leaks_.size(); i++) {
Suppression *s = GetSuppressionForStack(leaks_[i].stack_trace_id);
if (s) {
s->weight += leaks_[i].total_size;
s->hit_count += leaks_[i].hit_count;
leaks_[i].is_suppressed = true;
} else {
unsuppressed_count++;
}
}
return unsuppressed_count;
}
} // namespace __lsan
#endif // CAN_SANITIZE_LEAKS
using namespace __lsan; // NOLINT
extern "C" {
SANITIZER_INTERFACE_ATTRIBUTE
void __lsan_ignore_object(const void *p) {
#if CAN_SANITIZE_LEAKS
// Cannot use PointsIntoChunk or LsanMetadata here, since the allocator is not
// locked.
BlockingMutexLock l(&global_mutex);
IgnoreObjectResult res = IgnoreObjectLocked(p);
if (res == kIgnoreObjectInvalid && flags()->verbosity >= 2)
Report("__lsan_ignore_object(): no heap object found at %p", p);
if (res == kIgnoreObjectAlreadyIgnored && flags()->verbosity >= 2)
Report("__lsan_ignore_object(): "
"heap object at %p is already being ignored\n", p);
if (res == kIgnoreObjectSuccess && flags()->verbosity >= 3)
Report("__lsan_ignore_object(): ignoring heap object at %p\n", p);
#endif // CAN_SANITIZE_LEAKS
}
SANITIZER_INTERFACE_ATTRIBUTE
void __lsan_disable() {
#if CAN_SANITIZE_LEAKS
__lsan::disable_counter++;
#endif
}
SANITIZER_INTERFACE_ATTRIBUTE
void __lsan_enable() {
#if CAN_SANITIZE_LEAKS
if (!__lsan::disable_counter) {
Report("Unmatched call to __lsan_enable().\n");
Die();
}
__lsan::disable_counter--;
#endif
}
SANITIZER_INTERFACE_ATTRIBUTE
void __lsan_do_leak_check() {
#if CAN_SANITIZE_LEAKS
if (common_flags()->detect_leaks)
__lsan::DoLeakCheck();
#endif // CAN_SANITIZE_LEAKS
}
#if !SANITIZER_SUPPORTS_WEAK_HOOKS
SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
int __lsan_is_turned_off() {
return 0;
}
#endif
} // extern "C"