llvm-project/llvm/lib/CodeGen/GlobalISel/IRTranslator.cpp

158 lines
5.2 KiB
C++

//===-- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator --*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the IRTranslator class.
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Target/TargetLowering.h"
#define DEBUG_TYPE "irtranslator"
using namespace llvm;
char IRTranslator::ID = 0;
INITIALIZE_PASS(IRTranslator, "irtranslator", "IRTranslator LLVM IR -> MI",
false, false);
IRTranslator::IRTranslator() : MachineFunctionPass(ID), MRI(nullptr) {
initializeIRTranslatorPass(*PassRegistry::getPassRegistry());
}
unsigned IRTranslator::getOrCreateVReg(const Value &Val) {
unsigned &ValReg = ValToVReg[&Val];
// Check if this is the first time we see Val.
if (!ValReg) {
// Fill ValRegsSequence with the sequence of registers
// we need to concat together to produce the value.
assert(Val.getType()->isSized() &&
"Don't know how to create an empty vreg");
assert(!Val.getType()->isAggregateType() && "Not yet implemented");
unsigned Size = Val.getType()->getPrimitiveSizeInBits();
unsigned VReg = MRI->createGenericVirtualRegister(Size);
ValReg = VReg;
assert(!isa<Constant>(Val) && "Not yet implemented");
}
return ValReg;
}
MachineBasicBlock &IRTranslator::getOrCreateBB(const BasicBlock &BB) {
MachineBasicBlock *&MBB = BBToMBB[&BB];
if (!MBB) {
MachineFunction &MF = MIRBuilder.getMF();
MBB = MF.CreateMachineBasicBlock();
MF.push_back(MBB);
}
return *MBB;
}
bool IRTranslator::translateADD(const Instruction &Inst) {
// Get or create a virtual register for each value.
// Unless the value is a Constant => loadimm cst?
// or inline constant each time?
// Creation of a virtual register needs to have a size.
unsigned Op0 = getOrCreateVReg(*Inst.getOperand(0));
unsigned Op1 = getOrCreateVReg(*Inst.getOperand(1));
unsigned Res = getOrCreateVReg(Inst);
MIRBuilder.buildInstr(TargetOpcode::G_ADD, Inst.getType(), Res, Op0, Op1);
return true;
}
bool IRTranslator::translateReturn(const Instruction &Inst) {
assert(isa<ReturnInst>(Inst) && "Return expected");
const Value *Ret = cast<ReturnInst>(Inst).getReturnValue();
// The target may mess up with the insertion point, but
// this is not important as a return is the last instruction
// of the block anyway.
return CLI->LowerReturn(MIRBuilder, Ret, !Ret ? 0 : getOrCreateVReg(*Ret));
}
bool IRTranslator::translateBr(const Instruction &Inst) {
assert(isa<BranchInst>(Inst) && "Branch expected");
const BranchInst &BrInst = *cast<BranchInst>(&Inst);
if (BrInst.isUnconditional()) {
const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getOperand(0));
MachineBasicBlock &TgtBB = getOrCreateBB(BrTgt);
MIRBuilder.buildInstr(TargetOpcode::G_BR, BrTgt.getType(), TgtBB);
} else {
assert(0 && "Not yet implemented");
}
// Link successors.
MachineBasicBlock &CurBB = MIRBuilder.getMBB();
for (const BasicBlock *Succ : BrInst.successors())
CurBB.addSuccessor(&getOrCreateBB(*Succ));
return true;
}
bool IRTranslator::translate(const Instruction &Inst) {
MIRBuilder.setDebugLoc(Inst.getDebugLoc());
switch(Inst.getOpcode()) {
case Instruction::Add:
return translateADD(Inst);
case Instruction::Br:
return translateBr(Inst);
case Instruction::Ret:
return translateReturn(Inst);
default:
llvm_unreachable("Opcode not supported");
}
}
void IRTranslator::finalize() {
// Release the memory used by the different maps we
// needed during the translation.
ValToVReg.clear();
Constants.clear();
}
bool IRTranslator::runOnMachineFunction(MachineFunction &MF) {
const Function &F = *MF.getFunction();
if (F.empty())
return false;
CLI = MF.getSubtarget().getCallLowering();
MIRBuilder.setMF(MF);
MRI = &MF.getRegInfo();
// Setup the arguments.
MachineBasicBlock &MBB = getOrCreateBB(F.front());
MIRBuilder.setMBB(MBB);
SmallVector<unsigned, 8> VRegArgs;
for (const Argument &Arg: F.args())
VRegArgs.push_back(getOrCreateVReg(Arg));
bool Succeeded =
CLI->LowerFormalArguments(MIRBuilder, F.getArgumentList(), VRegArgs);
if (!Succeeded)
report_fatal_error("Unable to lower arguments");
for (const BasicBlock &BB: F) {
MachineBasicBlock &MBB = getOrCreateBB(BB);
// Set the insertion point of all the following translations to
// the end of this basic block.
MIRBuilder.setMBB(MBB);
for (const Instruction &Inst: BB) {
bool Succeeded = translate(Inst);
if (!Succeeded) {
DEBUG(dbgs() << "Cannot translate: " << Inst << '\n');
report_fatal_error("Unable to translate instruction");
}
}
}
return false;
}