forked from OSchip/llvm-project
783 lines
31 KiB
C++
783 lines
31 KiB
C++
//===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------===//
|
|
//
|
|
// This file implements the PredicateInfo class.
|
|
//
|
|
//===----------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/PredicateInfo.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/CFG.h"
|
|
#include "llvm/Analysis/OrderedBasicBlock.h"
|
|
#include "llvm/IR/AssemblyAnnotationWriter.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/DebugCounter.h"
|
|
#include "llvm/Support/FormattedStream.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include <algorithm>
|
|
#define DEBUG_TYPE "predicateinfo"
|
|
using namespace llvm;
|
|
using namespace PatternMatch;
|
|
using namespace llvm::PredicateInfoClasses;
|
|
|
|
INITIALIZE_PASS_BEGIN(PredicateInfoPrinterLegacyPass, "print-predicateinfo",
|
|
"PredicateInfo Printer", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
|
INITIALIZE_PASS_END(PredicateInfoPrinterLegacyPass, "print-predicateinfo",
|
|
"PredicateInfo Printer", false, false)
|
|
static cl::opt<bool> VerifyPredicateInfo(
|
|
"verify-predicateinfo", cl::init(false), cl::Hidden,
|
|
cl::desc("Verify PredicateInfo in legacy printer pass."));
|
|
namespace {
|
|
DEBUG_COUNTER(RenameCounter, "predicateinfo-rename",
|
|
"Controls which variables are renamed with predicateinfo")
|
|
// Given a predicate info that is a type of branching terminator, get the
|
|
// branching block.
|
|
const BasicBlock *getBranchBlock(const PredicateBase *PB) {
|
|
assert(isa<PredicateWithEdge>(PB) &&
|
|
"Only branches and switches should have PHIOnly defs that "
|
|
"require branch blocks.");
|
|
return cast<PredicateWithEdge>(PB)->From;
|
|
}
|
|
|
|
// Given a predicate info that is a type of branching terminator, get the
|
|
// branching terminator.
|
|
static Instruction *getBranchTerminator(const PredicateBase *PB) {
|
|
assert(isa<PredicateWithEdge>(PB) &&
|
|
"Not a predicate info type we know how to get a terminator from.");
|
|
return cast<PredicateWithEdge>(PB)->From->getTerminator();
|
|
}
|
|
|
|
// Given a predicate info that is a type of branching terminator, get the
|
|
// edge this predicate info represents
|
|
const std::pair<BasicBlock *, BasicBlock *>
|
|
getBlockEdge(const PredicateBase *PB) {
|
|
assert(isa<PredicateWithEdge>(PB) &&
|
|
"Not a predicate info type we know how to get an edge from.");
|
|
const auto *PEdge = cast<PredicateWithEdge>(PB);
|
|
return std::make_pair(PEdge->From, PEdge->To);
|
|
}
|
|
}
|
|
|
|
namespace llvm {
|
|
namespace PredicateInfoClasses {
|
|
enum LocalNum {
|
|
// Operations that must appear first in the block.
|
|
LN_First,
|
|
// Operations that are somewhere in the middle of the block, and are sorted on
|
|
// demand.
|
|
LN_Middle,
|
|
// Operations that must appear last in a block, like successor phi node uses.
|
|
LN_Last
|
|
};
|
|
|
|
// Associate global and local DFS info with defs and uses, so we can sort them
|
|
// into a global domination ordering.
|
|
struct ValueDFS {
|
|
int DFSIn = 0;
|
|
int DFSOut = 0;
|
|
unsigned int LocalNum = LN_Middle;
|
|
// Only one of Def or Use will be set.
|
|
Value *Def = nullptr;
|
|
Use *U = nullptr;
|
|
// Neither PInfo nor EdgeOnly participate in the ordering
|
|
PredicateBase *PInfo = nullptr;
|
|
bool EdgeOnly = false;
|
|
};
|
|
|
|
// This compares ValueDFS structures, creating OrderedBasicBlocks where
|
|
// necessary to compare uses/defs in the same block. Doing so allows us to walk
|
|
// the minimum number of instructions necessary to compute our def/use ordering.
|
|
struct ValueDFS_Compare {
|
|
DenseMap<const BasicBlock *, std::unique_ptr<OrderedBasicBlock>> &OBBMap;
|
|
ValueDFS_Compare(
|
|
DenseMap<const BasicBlock *, std::unique_ptr<OrderedBasicBlock>> &OBBMap)
|
|
: OBBMap(OBBMap) {}
|
|
bool operator()(const ValueDFS &A, const ValueDFS &B) const {
|
|
if (&A == &B)
|
|
return false;
|
|
// The only case we can't directly compare them is when they in the same
|
|
// block, and both have localnum == middle. In that case, we have to use
|
|
// comesbefore to see what the real ordering is, because they are in the
|
|
// same basic block.
|
|
|
|
bool SameBlock = std::tie(A.DFSIn, A.DFSOut) == std::tie(B.DFSIn, B.DFSOut);
|
|
|
|
// We want to put the def that will get used for a given set of phi uses,
|
|
// before those phi uses.
|
|
// So we sort by edge, then by def.
|
|
// Note that only phi nodes uses and defs can come last.
|
|
if (SameBlock && A.LocalNum == LN_Last && B.LocalNum == LN_Last)
|
|
return comparePHIRelated(A, B);
|
|
|
|
if (!SameBlock || A.LocalNum != LN_Middle || B.LocalNum != LN_Middle)
|
|
return std::tie(A.DFSIn, A.DFSOut, A.LocalNum, A.Def, A.U) <
|
|
std::tie(B.DFSIn, B.DFSOut, B.LocalNum, B.Def, B.U);
|
|
return localComesBefore(A, B);
|
|
}
|
|
|
|
// For a phi use, or a non-materialized def, return the edge it represents.
|
|
const std::pair<BasicBlock *, BasicBlock *>
|
|
getBlockEdge(const ValueDFS &VD) const {
|
|
if (!VD.Def && VD.U) {
|
|
auto *PHI = cast<PHINode>(VD.U->getUser());
|
|
return std::make_pair(PHI->getIncomingBlock(*VD.U), PHI->getParent());
|
|
}
|
|
// This is really a non-materialized def.
|
|
return ::getBlockEdge(VD.PInfo);
|
|
}
|
|
|
|
// For two phi related values, return the ordering.
|
|
bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const {
|
|
auto &ABlockEdge = getBlockEdge(A);
|
|
auto &BBlockEdge = getBlockEdge(B);
|
|
// Now sort by block edge and then defs before uses.
|
|
return std::tie(ABlockEdge, A.Def, A.U) < std::tie(BBlockEdge, B.Def, B.U);
|
|
}
|
|
|
|
// Get the definition of an instruction that occurs in the middle of a block.
|
|
Value *getMiddleDef(const ValueDFS &VD) const {
|
|
if (VD.Def)
|
|
return VD.Def;
|
|
// It's possible for the defs and uses to be null. For branches, the local
|
|
// numbering will say the placed predicaeinfos should go first (IE
|
|
// LN_beginning), so we won't be in this function. For assumes, we will end
|
|
// up here, beause we need to order the def we will place relative to the
|
|
// assume. So for the purpose of ordering, we pretend the def is the assume
|
|
// because that is where we will insert the info.
|
|
if (!VD.U) {
|
|
assert(VD.PInfo &&
|
|
"No def, no use, and no predicateinfo should not occur");
|
|
assert(isa<PredicateAssume>(VD.PInfo) &&
|
|
"Middle of block should only occur for assumes");
|
|
return cast<PredicateAssume>(VD.PInfo)->AssumeInst;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// Return either the Def, if it's not null, or the user of the Use, if the def
|
|
// is null.
|
|
const Instruction *getDefOrUser(const Value *Def, const Use *U) const {
|
|
if (Def)
|
|
return cast<Instruction>(Def);
|
|
return cast<Instruction>(U->getUser());
|
|
}
|
|
|
|
// This performs the necessary local basic block ordering checks to tell
|
|
// whether A comes before B, where both are in the same basic block.
|
|
bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const {
|
|
auto *ADef = getMiddleDef(A);
|
|
auto *BDef = getMiddleDef(B);
|
|
|
|
// See if we have real values or uses. If we have real values, we are
|
|
// guaranteed they are instructions or arguments. No matter what, we are
|
|
// guaranteed they are in the same block if they are instructions.
|
|
auto *ArgA = dyn_cast_or_null<Argument>(ADef);
|
|
auto *ArgB = dyn_cast_or_null<Argument>(BDef);
|
|
|
|
if (ArgA && !ArgB)
|
|
return true;
|
|
if (ArgB && !ArgA)
|
|
return false;
|
|
if (ArgA && ArgB)
|
|
return ArgA->getArgNo() < ArgB->getArgNo();
|
|
|
|
auto *AInst = getDefOrUser(ADef, A.U);
|
|
auto *BInst = getDefOrUser(BDef, B.U);
|
|
|
|
auto *BB = AInst->getParent();
|
|
auto LookupResult = OBBMap.find(BB);
|
|
if (LookupResult != OBBMap.end())
|
|
return LookupResult->second->dominates(AInst, BInst);
|
|
|
|
auto Result = OBBMap.insert({BB, make_unique<OrderedBasicBlock>(BB)});
|
|
return Result.first->second->dominates(AInst, BInst);
|
|
}
|
|
};
|
|
|
|
} // namespace PredicateInfoClasses
|
|
|
|
bool PredicateInfo::stackIsInScope(const ValueDFSStack &Stack,
|
|
const ValueDFS &VDUse) const {
|
|
if (Stack.empty())
|
|
return false;
|
|
// If it's a phi only use, make sure it's for this phi node edge, and that the
|
|
// use is in a phi node. If it's anything else, and the top of the stack is
|
|
// EdgeOnly, we need to pop the stack. We deliberately sort phi uses next to
|
|
// the defs they must go with so that we can know it's time to pop the stack
|
|
// when we hit the end of the phi uses for a given def.
|
|
if (Stack.back().EdgeOnly) {
|
|
if (!VDUse.U)
|
|
return false;
|
|
auto *PHI = dyn_cast<PHINode>(VDUse.U->getUser());
|
|
if (!PHI)
|
|
return false;
|
|
// Check edge
|
|
BasicBlock *EdgePred = PHI->getIncomingBlock(*VDUse.U);
|
|
if (EdgePred != getBranchBlock(Stack.back().PInfo))
|
|
return false;
|
|
|
|
// Use dominates, which knows how to handle edge dominance.
|
|
return DT.dominates(getBlockEdge(Stack.back().PInfo), *VDUse.U);
|
|
}
|
|
|
|
return (VDUse.DFSIn >= Stack.back().DFSIn &&
|
|
VDUse.DFSOut <= Stack.back().DFSOut);
|
|
}
|
|
|
|
void PredicateInfo::popStackUntilDFSScope(ValueDFSStack &Stack,
|
|
const ValueDFS &VD) {
|
|
while (!Stack.empty() && !stackIsInScope(Stack, VD))
|
|
Stack.pop_back();
|
|
}
|
|
|
|
// Convert the uses of Op into a vector of uses, associating global and local
|
|
// DFS info with each one.
|
|
void PredicateInfo::convertUsesToDFSOrdered(
|
|
Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) {
|
|
for (auto &U : Op->uses()) {
|
|
if (auto *I = dyn_cast<Instruction>(U.getUser())) {
|
|
ValueDFS VD;
|
|
// Put the phi node uses in the incoming block.
|
|
BasicBlock *IBlock;
|
|
if (auto *PN = dyn_cast<PHINode>(I)) {
|
|
IBlock = PN->getIncomingBlock(U);
|
|
// Make phi node users appear last in the incoming block
|
|
// they are from.
|
|
VD.LocalNum = LN_Last;
|
|
} else {
|
|
// If it's not a phi node use, it is somewhere in the middle of the
|
|
// block.
|
|
IBlock = I->getParent();
|
|
VD.LocalNum = LN_Middle;
|
|
}
|
|
DomTreeNode *DomNode = DT.getNode(IBlock);
|
|
// It's possible our use is in an unreachable block. Skip it if so.
|
|
if (!DomNode)
|
|
continue;
|
|
VD.DFSIn = DomNode->getDFSNumIn();
|
|
VD.DFSOut = DomNode->getDFSNumOut();
|
|
VD.U = &U;
|
|
DFSOrderedSet.push_back(VD);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Collect relevant operations from Comparison that we may want to insert copies
|
|
// for.
|
|
void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) {
|
|
auto *Op0 = Comparison->getOperand(0);
|
|
auto *Op1 = Comparison->getOperand(1);
|
|
if (Op0 == Op1)
|
|
return;
|
|
CmpOperands.push_back(Comparison);
|
|
// Only want real values, not constants. Additionally, operands with one use
|
|
// are only being used in the comparison, which means they will not be useful
|
|
// for us to consider for predicateinfo.
|
|
//
|
|
if ((isa<Instruction>(Op0) || isa<Argument>(Op0)) && !Op0->hasOneUse())
|
|
CmpOperands.push_back(Op0);
|
|
if ((isa<Instruction>(Op1) || isa<Argument>(Op1)) && !Op1->hasOneUse())
|
|
CmpOperands.push_back(Op1);
|
|
}
|
|
|
|
// Add Op, PB to the list of value infos for Op, and mark Op to be renamed.
|
|
void PredicateInfo::addInfoFor(SmallPtrSetImpl<Value *> &OpsToRename, Value *Op,
|
|
PredicateBase *PB) {
|
|
OpsToRename.insert(Op);
|
|
auto &OperandInfo = getOrCreateValueInfo(Op);
|
|
AllInfos.push_back(PB);
|
|
OperandInfo.Infos.push_back(PB);
|
|
}
|
|
|
|
// Process an assume instruction and place relevant operations we want to rename
|
|
// into OpsToRename.
|
|
void PredicateInfo::processAssume(IntrinsicInst *II, BasicBlock *AssumeBB,
|
|
SmallPtrSetImpl<Value *> &OpsToRename) {
|
|
// See if we have a comparison we support
|
|
SmallVector<Value *, 8> CmpOperands;
|
|
SmallVector<Value *, 2> ConditionsToProcess;
|
|
CmpInst::Predicate Pred;
|
|
Value *Operand = II->getOperand(0);
|
|
if (m_c_And(m_Cmp(Pred, m_Value(), m_Value()),
|
|
m_Cmp(Pred, m_Value(), m_Value()))
|
|
.match(II->getOperand(0))) {
|
|
ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(0));
|
|
ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(1));
|
|
ConditionsToProcess.push_back(Operand);
|
|
} else if (isa<CmpInst>(Operand)) {
|
|
|
|
ConditionsToProcess.push_back(Operand);
|
|
}
|
|
for (auto Cond : ConditionsToProcess) {
|
|
if (auto *Cmp = dyn_cast<CmpInst>(Cond)) {
|
|
collectCmpOps(Cmp, CmpOperands);
|
|
// Now add our copy infos for our operands
|
|
for (auto *Op : CmpOperands) {
|
|
auto *PA = new PredicateAssume(Op, II, Cmp);
|
|
addInfoFor(OpsToRename, Op, PA);
|
|
}
|
|
CmpOperands.clear();
|
|
} else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) {
|
|
// Otherwise, it should be an AND.
|
|
assert(BinOp->getOpcode() == Instruction::And &&
|
|
"Should have been an AND");
|
|
auto *PA = new PredicateAssume(BinOp, II, BinOp);
|
|
addInfoFor(OpsToRename, BinOp, PA);
|
|
} else {
|
|
llvm_unreachable("Unknown type of condition");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Process a block terminating branch, and place relevant operations to be
|
|
// renamed into OpsToRename.
|
|
void PredicateInfo::processBranch(BranchInst *BI, BasicBlock *BranchBB,
|
|
SmallPtrSetImpl<Value *> &OpsToRename) {
|
|
BasicBlock *FirstBB = BI->getSuccessor(0);
|
|
BasicBlock *SecondBB = BI->getSuccessor(1);
|
|
SmallVector<BasicBlock *, 2> SuccsToProcess;
|
|
SuccsToProcess.push_back(FirstBB);
|
|
SuccsToProcess.push_back(SecondBB);
|
|
SmallVector<Value *, 2> ConditionsToProcess;
|
|
|
|
auto InsertHelper = [&](Value *Op, bool isAnd, bool isOr, Value *Cond) {
|
|
for (auto *Succ : SuccsToProcess) {
|
|
// Don't try to insert on a self-edge. This is mainly because we will
|
|
// eliminate during renaming anyway.
|
|
if (Succ == BranchBB)
|
|
continue;
|
|
bool TakenEdge = (Succ == FirstBB);
|
|
// For and, only insert on the true edge
|
|
// For or, only insert on the false edge
|
|
if ((isAnd && !TakenEdge) || (isOr && TakenEdge))
|
|
continue;
|
|
PredicateBase *PB =
|
|
new PredicateBranch(Op, BranchBB, Succ, Cond, TakenEdge);
|
|
addInfoFor(OpsToRename, Op, PB);
|
|
if (!Succ->getSinglePredecessor())
|
|
EdgeUsesOnly.insert({BranchBB, Succ});
|
|
}
|
|
};
|
|
|
|
// Match combinations of conditions.
|
|
CmpInst::Predicate Pred;
|
|
bool isAnd = false;
|
|
bool isOr = false;
|
|
SmallVector<Value *, 8> CmpOperands;
|
|
if (match(BI->getCondition(), m_And(m_Cmp(Pred, m_Value(), m_Value()),
|
|
m_Cmp(Pred, m_Value(), m_Value()))) ||
|
|
match(BI->getCondition(), m_Or(m_Cmp(Pred, m_Value(), m_Value()),
|
|
m_Cmp(Pred, m_Value(), m_Value())))) {
|
|
auto *BinOp = cast<BinaryOperator>(BI->getCondition());
|
|
if (BinOp->getOpcode() == Instruction::And)
|
|
isAnd = true;
|
|
else if (BinOp->getOpcode() == Instruction::Or)
|
|
isOr = true;
|
|
ConditionsToProcess.push_back(BinOp->getOperand(0));
|
|
ConditionsToProcess.push_back(BinOp->getOperand(1));
|
|
ConditionsToProcess.push_back(BI->getCondition());
|
|
} else if (isa<CmpInst>(BI->getCondition())) {
|
|
ConditionsToProcess.push_back(BI->getCondition());
|
|
}
|
|
for (auto Cond : ConditionsToProcess) {
|
|
if (auto *Cmp = dyn_cast<CmpInst>(Cond)) {
|
|
collectCmpOps(Cmp, CmpOperands);
|
|
// Now add our copy infos for our operands
|
|
for (auto *Op : CmpOperands)
|
|
InsertHelper(Op, isAnd, isOr, Cmp);
|
|
} else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) {
|
|
// This must be an AND or an OR.
|
|
assert((BinOp->getOpcode() == Instruction::And ||
|
|
BinOp->getOpcode() == Instruction::Or) &&
|
|
"Should have been an AND or an OR");
|
|
// The actual value of the binop is not subject to the same restrictions
|
|
// as the comparison. It's either true or false on the true/false branch.
|
|
InsertHelper(BinOp, false, false, BinOp);
|
|
} else {
|
|
llvm_unreachable("Unknown type of condition");
|
|
}
|
|
CmpOperands.clear();
|
|
}
|
|
}
|
|
// Process a block terminating switch, and place relevant operations to be
|
|
// renamed into OpsToRename.
|
|
void PredicateInfo::processSwitch(SwitchInst *SI, BasicBlock *BranchBB,
|
|
SmallPtrSetImpl<Value *> &OpsToRename) {
|
|
Value *Op = SI->getCondition();
|
|
if ((!isa<Instruction>(Op) && !isa<Argument>(Op)) || Op->hasOneUse())
|
|
return;
|
|
|
|
// Remember how many outgoing edges there are to every successor.
|
|
SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
|
|
for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
|
|
BasicBlock *TargetBlock = SI->getSuccessor(i);
|
|
++SwitchEdges[TargetBlock];
|
|
}
|
|
|
|
// Now propagate info for each case value
|
|
for (auto C : SI->cases()) {
|
|
BasicBlock *TargetBlock = C.getCaseSuccessor();
|
|
if (SwitchEdges.lookup(TargetBlock) == 1) {
|
|
PredicateSwitch *PS = new PredicateSwitch(
|
|
Op, SI->getParent(), TargetBlock, C.getCaseValue(), SI);
|
|
addInfoFor(OpsToRename, Op, PS);
|
|
if (!TargetBlock->getSinglePredecessor())
|
|
EdgeUsesOnly.insert({BranchBB, TargetBlock});
|
|
}
|
|
}
|
|
}
|
|
|
|
// Build predicate info for our function
|
|
void PredicateInfo::buildPredicateInfo() {
|
|
DT.updateDFSNumbers();
|
|
// Collect operands to rename from all conditional branch terminators, as well
|
|
// as assume statements.
|
|
SmallPtrSet<Value *, 8> OpsToRename;
|
|
for (auto DTN : depth_first(DT.getRootNode())) {
|
|
BasicBlock *BranchBB = DTN->getBlock();
|
|
if (auto *BI = dyn_cast<BranchInst>(BranchBB->getTerminator())) {
|
|
if (!BI->isConditional())
|
|
continue;
|
|
processBranch(BI, BranchBB, OpsToRename);
|
|
} else if (auto *SI = dyn_cast<SwitchInst>(BranchBB->getTerminator())) {
|
|
processSwitch(SI, BranchBB, OpsToRename);
|
|
}
|
|
}
|
|
for (auto &Assume : AC.assumptions()) {
|
|
if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume))
|
|
processAssume(II, II->getParent(), OpsToRename);
|
|
}
|
|
// Now rename all our operations.
|
|
renameUses(OpsToRename);
|
|
}
|
|
|
|
// Given the renaming stack, make all the operands currently on the stack real
|
|
// by inserting them into the IR. Return the last operation's value.
|
|
Value *PredicateInfo::materializeStack(unsigned int &Counter,
|
|
ValueDFSStack &RenameStack,
|
|
Value *OrigOp) {
|
|
// Find the first thing we have to materialize
|
|
auto RevIter = RenameStack.rbegin();
|
|
for (; RevIter != RenameStack.rend(); ++RevIter)
|
|
if (RevIter->Def)
|
|
break;
|
|
|
|
size_t Start = RevIter - RenameStack.rbegin();
|
|
// The maximum number of things we should be trying to materialize at once
|
|
// right now is 4, depending on if we had an assume, a branch, and both used
|
|
// and of conditions.
|
|
for (auto RenameIter = RenameStack.end() - Start;
|
|
RenameIter != RenameStack.end(); ++RenameIter) {
|
|
auto *Op =
|
|
RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def;
|
|
ValueDFS &Result = *RenameIter;
|
|
auto *ValInfo = Result.PInfo;
|
|
// For edge predicates, we can just place the operand in the block before
|
|
// the terminator. For assume, we have to place it right before the assume
|
|
// to ensure we dominate all of our uses. Always insert right before the
|
|
// relevant instruction (terminator, assume), so that we insert in proper
|
|
// order in the case of multiple predicateinfo in the same block.
|
|
if (isa<PredicateWithEdge>(ValInfo)) {
|
|
IRBuilder<> B(getBranchTerminator(ValInfo));
|
|
Function *IF = Intrinsic::getDeclaration(
|
|
F.getParent(), Intrinsic::ssa_copy, Op->getType());
|
|
CallInst *PIC =
|
|
B.CreateCall(IF, Op, Op->getName() + "." + Twine(Counter++));
|
|
PredicateMap.insert({PIC, ValInfo});
|
|
Result.Def = PIC;
|
|
} else {
|
|
auto *PAssume = dyn_cast<PredicateAssume>(ValInfo);
|
|
assert(PAssume &&
|
|
"Should not have gotten here without it being an assume");
|
|
IRBuilder<> B(PAssume->AssumeInst);
|
|
Function *IF = Intrinsic::getDeclaration(
|
|
F.getParent(), Intrinsic::ssa_copy, Op->getType());
|
|
CallInst *PIC = B.CreateCall(IF, Op);
|
|
PredicateMap.insert({PIC, ValInfo});
|
|
Result.Def = PIC;
|
|
}
|
|
}
|
|
return RenameStack.back().Def;
|
|
}
|
|
|
|
// Instead of the standard SSA renaming algorithm, which is O(Number of
|
|
// instructions), and walks the entire dominator tree, we walk only the defs +
|
|
// uses. The standard SSA renaming algorithm does not really rely on the
|
|
// dominator tree except to order the stack push/pops of the renaming stacks, so
|
|
// that defs end up getting pushed before hitting the correct uses. This does
|
|
// not require the dominator tree, only the *order* of the dominator tree. The
|
|
// complete and correct ordering of the defs and uses, in dominator tree is
|
|
// contained in the DFS numbering of the dominator tree. So we sort the defs and
|
|
// uses into the DFS ordering, and then just use the renaming stack as per
|
|
// normal, pushing when we hit a def (which is a predicateinfo instruction),
|
|
// popping when we are out of the dfs scope for that def, and replacing any uses
|
|
// with top of stack if it exists. In order to handle liveness without
|
|
// propagating liveness info, we don't actually insert the predicateinfo
|
|
// instruction def until we see a use that it would dominate. Once we see such
|
|
// a use, we materialize the predicateinfo instruction in the right place and
|
|
// use it.
|
|
//
|
|
// TODO: Use this algorithm to perform fast single-variable renaming in
|
|
// promotememtoreg and memoryssa.
|
|
void PredicateInfo::renameUses(SmallPtrSetImpl<Value *> &OpsToRename) {
|
|
ValueDFS_Compare Compare(OBBMap);
|
|
// Compute liveness, and rename in O(uses) per Op.
|
|
for (auto *Op : OpsToRename) {
|
|
unsigned Counter = 0;
|
|
SmallVector<ValueDFS, 16> OrderedUses;
|
|
const auto &ValueInfo = getValueInfo(Op);
|
|
// Insert the possible copies into the def/use list.
|
|
// They will become real copies if we find a real use for them, and never
|
|
// created otherwise.
|
|
for (auto &PossibleCopy : ValueInfo.Infos) {
|
|
ValueDFS VD;
|
|
// Determine where we are going to place the copy by the copy type.
|
|
// The predicate info for branches always come first, they will get
|
|
// materialized in the split block at the top of the block.
|
|
// The predicate info for assumes will be somewhere in the middle,
|
|
// it will get materialized in front of the assume.
|
|
if (const auto *PAssume = dyn_cast<PredicateAssume>(PossibleCopy)) {
|
|
VD.LocalNum = LN_Middle;
|
|
DomTreeNode *DomNode = DT.getNode(PAssume->AssumeInst->getParent());
|
|
if (!DomNode)
|
|
continue;
|
|
VD.DFSIn = DomNode->getDFSNumIn();
|
|
VD.DFSOut = DomNode->getDFSNumOut();
|
|
VD.PInfo = PossibleCopy;
|
|
OrderedUses.push_back(VD);
|
|
} else if (isa<PredicateWithEdge>(PossibleCopy)) {
|
|
// If we can only do phi uses, we treat it like it's in the branch
|
|
// block, and handle it specially. We know that it goes last, and only
|
|
// dominate phi uses.
|
|
auto BlockEdge = getBlockEdge(PossibleCopy);
|
|
if (EdgeUsesOnly.count(BlockEdge)) {
|
|
VD.LocalNum = LN_Last;
|
|
auto *DomNode = DT.getNode(BlockEdge.first);
|
|
if (DomNode) {
|
|
VD.DFSIn = DomNode->getDFSNumIn();
|
|
VD.DFSOut = DomNode->getDFSNumOut();
|
|
VD.PInfo = PossibleCopy;
|
|
VD.EdgeOnly = true;
|
|
OrderedUses.push_back(VD);
|
|
}
|
|
} else {
|
|
// Otherwise, we are in the split block (even though we perform
|
|
// insertion in the branch block).
|
|
// Insert a possible copy at the split block and before the branch.
|
|
VD.LocalNum = LN_First;
|
|
auto *DomNode = DT.getNode(BlockEdge.second);
|
|
if (DomNode) {
|
|
VD.DFSIn = DomNode->getDFSNumIn();
|
|
VD.DFSOut = DomNode->getDFSNumOut();
|
|
VD.PInfo = PossibleCopy;
|
|
OrderedUses.push_back(VD);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
convertUsesToDFSOrdered(Op, OrderedUses);
|
|
std::sort(OrderedUses.begin(), OrderedUses.end(), Compare);
|
|
SmallVector<ValueDFS, 8> RenameStack;
|
|
// For each use, sorted into dfs order, push values and replaces uses with
|
|
// top of stack, which will represent the reaching def.
|
|
for (auto &VD : OrderedUses) {
|
|
// We currently do not materialize copy over copy, but we should decide if
|
|
// we want to.
|
|
bool PossibleCopy = VD.PInfo != nullptr;
|
|
if (RenameStack.empty()) {
|
|
DEBUG(dbgs() << "Rename Stack is empty\n");
|
|
} else {
|
|
DEBUG(dbgs() << "Rename Stack Top DFS numbers are ("
|
|
<< RenameStack.back().DFSIn << ","
|
|
<< RenameStack.back().DFSOut << ")\n");
|
|
}
|
|
|
|
DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << ","
|
|
<< VD.DFSOut << ")\n");
|
|
|
|
bool ShouldPush = (VD.Def || PossibleCopy);
|
|
bool OutOfScope = !stackIsInScope(RenameStack, VD);
|
|
if (OutOfScope || ShouldPush) {
|
|
// Sync to our current scope.
|
|
popStackUntilDFSScope(RenameStack, VD);
|
|
if (ShouldPush) {
|
|
RenameStack.push_back(VD);
|
|
}
|
|
}
|
|
// If we get to this point, and the stack is empty we must have a use
|
|
// with no renaming needed, just skip it.
|
|
if (RenameStack.empty())
|
|
continue;
|
|
// Skip values, only want to rename the uses
|
|
if (VD.Def || PossibleCopy)
|
|
continue;
|
|
if (!DebugCounter::shouldExecute(RenameCounter)) {
|
|
DEBUG(dbgs() << "Skipping execution due to debug counter\n");
|
|
continue;
|
|
}
|
|
ValueDFS &Result = RenameStack.back();
|
|
|
|
// If the possible copy dominates something, materialize our stack up to
|
|
// this point. This ensures every comparison that affects our operation
|
|
// ends up with predicateinfo.
|
|
if (!Result.Def)
|
|
Result.Def = materializeStack(Counter, RenameStack, Op);
|
|
|
|
DEBUG(dbgs() << "Found replacement " << *Result.Def << " for "
|
|
<< *VD.U->get() << " in " << *(VD.U->getUser()) << "\n");
|
|
assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) &&
|
|
"Predicateinfo def should have dominated this use");
|
|
VD.U->set(Result.Def);
|
|
}
|
|
}
|
|
}
|
|
|
|
PredicateInfo::ValueInfo &PredicateInfo::getOrCreateValueInfo(Value *Operand) {
|
|
auto OIN = ValueInfoNums.find(Operand);
|
|
if (OIN == ValueInfoNums.end()) {
|
|
// This will grow it
|
|
ValueInfos.resize(ValueInfos.size() + 1);
|
|
// This will use the new size and give us a 0 based number of the info
|
|
auto InsertResult = ValueInfoNums.insert({Operand, ValueInfos.size() - 1});
|
|
assert(InsertResult.second && "Value info number already existed?");
|
|
return ValueInfos[InsertResult.first->second];
|
|
}
|
|
return ValueInfos[OIN->second];
|
|
}
|
|
|
|
const PredicateInfo::ValueInfo &
|
|
PredicateInfo::getValueInfo(Value *Operand) const {
|
|
auto OINI = ValueInfoNums.lookup(Operand);
|
|
assert(OINI != 0 && "Operand was not really in the Value Info Numbers");
|
|
assert(OINI < ValueInfos.size() &&
|
|
"Value Info Number greater than size of Value Info Table");
|
|
return ValueInfos[OINI];
|
|
}
|
|
|
|
PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT,
|
|
AssumptionCache &AC)
|
|
: F(F), DT(DT), AC(AC) {
|
|
// Push an empty operand info so that we can detect 0 as not finding one
|
|
ValueInfos.resize(1);
|
|
buildPredicateInfo();
|
|
}
|
|
|
|
PredicateInfo::~PredicateInfo() {}
|
|
|
|
void PredicateInfo::verifyPredicateInfo() const {}
|
|
|
|
char PredicateInfoPrinterLegacyPass::ID = 0;
|
|
|
|
PredicateInfoPrinterLegacyPass::PredicateInfoPrinterLegacyPass()
|
|
: FunctionPass(ID) {
|
|
initializePredicateInfoPrinterLegacyPassPass(
|
|
*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void PredicateInfoPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
AU.addRequiredTransitive<DominatorTreeWrapperPass>();
|
|
AU.addRequired<AssumptionCacheTracker>();
|
|
}
|
|
|
|
bool PredicateInfoPrinterLegacyPass::runOnFunction(Function &F) {
|
|
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
|
|
auto PredInfo = make_unique<PredicateInfo>(F, DT, AC);
|
|
PredInfo->print(dbgs());
|
|
if (VerifyPredicateInfo)
|
|
PredInfo->verifyPredicateInfo();
|
|
return false;
|
|
}
|
|
|
|
PreservedAnalyses PredicateInfoPrinterPass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
|
|
auto &AC = AM.getResult<AssumptionAnalysis>(F);
|
|
OS << "PredicateInfo for function: " << F.getName() << "\n";
|
|
make_unique<PredicateInfo>(F, DT, AC)->print(OS);
|
|
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
/// \brief An assembly annotator class to print PredicateInfo information in
|
|
/// comments.
|
|
class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter {
|
|
friend class PredicateInfo;
|
|
const PredicateInfo *PredInfo;
|
|
|
|
public:
|
|
PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {}
|
|
|
|
virtual void emitBasicBlockStartAnnot(const BasicBlock *BB,
|
|
formatted_raw_ostream &OS) {}
|
|
|
|
virtual void emitInstructionAnnot(const Instruction *I,
|
|
formatted_raw_ostream &OS) {
|
|
if (const auto *PI = PredInfo->getPredicateInfoFor(I)) {
|
|
OS << "; Has predicate info\n";
|
|
if (const auto *PB = dyn_cast<PredicateBranch>(PI)) {
|
|
OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge
|
|
<< " Comparison:" << *PB->Condition << " Edge: [";
|
|
PB->From->printAsOperand(OS);
|
|
OS << ",";
|
|
PB->To->printAsOperand(OS);
|
|
OS << "] }\n";
|
|
} else if (const auto *PS = dyn_cast<PredicateSwitch>(PI)) {
|
|
OS << "; switch predicate info { CaseValue: " << *PS->CaseValue
|
|
<< " Switch:" << *PS->Switch << " Edge: [";
|
|
PS->From->printAsOperand(OS);
|
|
OS << ",";
|
|
PS->To->printAsOperand(OS);
|
|
OS << "] }\n";
|
|
} else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) {
|
|
OS << "; assume predicate info {"
|
|
<< " Comparison:" << *PA->Condition << " }\n";
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
void PredicateInfo::print(raw_ostream &OS) const {
|
|
PredicateInfoAnnotatedWriter Writer(this);
|
|
F.print(OS, &Writer);
|
|
}
|
|
|
|
void PredicateInfo::dump() const {
|
|
PredicateInfoAnnotatedWriter Writer(this);
|
|
F.print(dbgs(), &Writer);
|
|
}
|
|
|
|
PreservedAnalyses PredicateInfoVerifierPass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
|
|
auto &AC = AM.getResult<AssumptionAnalysis>(F);
|
|
make_unique<PredicateInfo>(F, DT, AC)->verifyPredicateInfo();
|
|
|
|
return PreservedAnalyses::all();
|
|
}
|
|
}
|