forked from OSchip/llvm-project
385 lines
13 KiB
C++
385 lines
13 KiB
C++
//===- Symbols.h ------------------------------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Linker
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines various types of Symbols.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLD_ELF_SYMBOLS_H
|
|
#define LLD_ELF_SYMBOLS_H
|
|
|
|
#include "InputSection.h"
|
|
#include "lld/Common/LLVM.h"
|
|
#include "lld/Common/Strings.h"
|
|
#include "llvm/Object/Archive.h"
|
|
#include "llvm/Object/ELF.h"
|
|
|
|
namespace lld {
|
|
namespace elf {
|
|
|
|
class ArchiveFile;
|
|
class BitcodeFile;
|
|
class BssSection;
|
|
class InputFile;
|
|
class LazyObjFile;
|
|
template <class ELFT> class ObjFile;
|
|
class OutputSection;
|
|
template <class ELFT> class SharedFile;
|
|
|
|
// This is a StringRef-like container that doesn't run strlen().
|
|
//
|
|
// ELF string tables contain a lot of null-terminated strings. Most of them
|
|
// are not necessary for the linker because they are names of local symbols,
|
|
// and the linker doesn't use local symbol names for name resolution. So, we
|
|
// use this class to represents strings read from string tables.
|
|
struct StringRefZ {
|
|
StringRefZ(const char *S) : Data(S), Size(-1) {}
|
|
StringRefZ(StringRef S) : Data(S.data()), Size(S.size()) {}
|
|
|
|
const char *Data;
|
|
const uint32_t Size;
|
|
};
|
|
|
|
// The base class for real symbol classes.
|
|
class Symbol {
|
|
public:
|
|
enum Kind {
|
|
DefinedKind,
|
|
SharedKind,
|
|
UndefinedKind,
|
|
LazyArchiveKind,
|
|
LazyObjectKind,
|
|
};
|
|
|
|
Kind kind() const { return static_cast<Kind>(SymbolKind); }
|
|
|
|
// The file from which this symbol was created.
|
|
InputFile *File;
|
|
|
|
protected:
|
|
const char *NameData;
|
|
mutable uint32_t NameSize;
|
|
|
|
public:
|
|
uint32_t DynsymIndex = 0;
|
|
uint32_t GotIndex = -1;
|
|
uint32_t PltIndex = -1;
|
|
uint32_t GlobalDynIndex = -1;
|
|
|
|
// This field is a index to the symbol's version definition.
|
|
uint32_t VerdefIndex = -1;
|
|
|
|
// Version definition index.
|
|
uint16_t VersionId;
|
|
|
|
// Symbol binding. This is not overwritten by replaceSymbol to track
|
|
// changes during resolution. In particular:
|
|
// - An undefined weak is still weak when it resolves to a shared library.
|
|
// - An undefined weak will not fetch archive members, but we have to
|
|
// remember it is weak.
|
|
uint8_t Binding;
|
|
|
|
// The following fields have the same meaning as the ELF symbol attributes.
|
|
uint8_t Type; // symbol type
|
|
uint8_t StOther; // st_other field value
|
|
|
|
const uint8_t SymbolKind;
|
|
|
|
// Symbol visibility. This is the computed minimum visibility of all
|
|
// observed non-DSO symbols.
|
|
unsigned Visibility : 2;
|
|
|
|
// True if the symbol was used for linking and thus need to be added to the
|
|
// output file's symbol table. This is true for all symbols except for
|
|
// unreferenced DSO symbols and bitcode symbols that are unreferenced except
|
|
// by other bitcode objects.
|
|
unsigned IsUsedInRegularObj : 1;
|
|
|
|
// If this flag is true and the symbol has protected or default visibility, it
|
|
// will appear in .dynsym. This flag is set by interposable DSO symbols in
|
|
// executables, by most symbols in DSOs and executables built with
|
|
// --export-dynamic, and by dynamic lists.
|
|
unsigned ExportDynamic : 1;
|
|
|
|
// False if LTO shouldn't inline whatever this symbol points to. If a symbol
|
|
// is overwritten after LTO, LTO shouldn't inline the symbol because it
|
|
// doesn't know the final contents of the symbol.
|
|
unsigned CanInline : 1;
|
|
|
|
// True if this symbol is specified by --trace-symbol option.
|
|
unsigned Traced : 1;
|
|
|
|
bool includeInDynsym() const;
|
|
uint8_t computeBinding() const;
|
|
bool isWeak() const { return Binding == llvm::ELF::STB_WEAK; }
|
|
|
|
bool isUndefined() const { return SymbolKind == UndefinedKind; }
|
|
bool isDefined() const { return SymbolKind == DefinedKind; }
|
|
bool isShared() const { return SymbolKind == SharedKind; }
|
|
bool isLocal() const { return Binding == llvm::ELF::STB_LOCAL; }
|
|
|
|
bool isLazy() const {
|
|
return SymbolKind == LazyArchiveKind || SymbolKind == LazyObjectKind;
|
|
}
|
|
|
|
// True if this is an undefined weak symbol.
|
|
bool isUndefWeak() const { return isWeak() && isUndefined(); }
|
|
|
|
StringRef getName() const {
|
|
if (NameSize == (uint32_t)-1)
|
|
NameSize = strlen(NameData);
|
|
return {NameData, NameSize};
|
|
}
|
|
|
|
void parseSymbolVersion();
|
|
|
|
bool isInGot() const { return GotIndex != -1U; }
|
|
bool isInPlt() const { return PltIndex != -1U; }
|
|
|
|
uint64_t getVA(int64_t Addend = 0) const;
|
|
|
|
uint64_t getGotOffset() const;
|
|
uint64_t getGotVA() const;
|
|
uint64_t getGotPltOffset() const;
|
|
uint64_t getGotPltVA() const;
|
|
uint64_t getPltVA() const;
|
|
uint64_t getPltOffset() const;
|
|
uint64_t getSize() const;
|
|
OutputSection *getOutputSection() const;
|
|
|
|
protected:
|
|
Symbol(Kind K, InputFile *File, StringRefZ Name, uint8_t Binding,
|
|
uint8_t StOther, uint8_t Type)
|
|
: File(File), NameData(Name.Data), NameSize(Name.Size), Binding(Binding),
|
|
Type(Type), StOther(StOther), SymbolKind(K), NeedsPltAddr(false),
|
|
IsInGlobalMipsGot(false), Is32BitMipsGot(false), IsInIplt(false),
|
|
IsInIgot(false), IsPreemptible(false), Used(!Config->GcSections) {}
|
|
|
|
public:
|
|
// True the symbol should point to its PLT entry.
|
|
// For SharedSymbol only.
|
|
unsigned NeedsPltAddr : 1;
|
|
// True if this symbol has an entry in the global part of MIPS GOT.
|
|
unsigned IsInGlobalMipsGot : 1;
|
|
|
|
// True if this symbol is referenced by 32-bit GOT relocations.
|
|
unsigned Is32BitMipsGot : 1;
|
|
|
|
// True if this symbol is in the Iplt sub-section of the Plt.
|
|
unsigned IsInIplt : 1;
|
|
|
|
// True if this symbol is in the Igot sub-section of the .got.plt or .got.
|
|
unsigned IsInIgot : 1;
|
|
|
|
// True if this symbol is preemptible at load time.
|
|
unsigned IsPreemptible : 1;
|
|
|
|
// True if an undefined or shared symbol is used from a live section.
|
|
unsigned Used : 1;
|
|
|
|
// The Type field may also have this value. It means that we have not yet seen
|
|
// a non-Lazy symbol with this name, so we don't know what its type is. The
|
|
// Type field is normally set to this value for Lazy symbols unless we saw a
|
|
// weak undefined symbol first, in which case we need to remember the original
|
|
// symbol's type in order to check for TLS mismatches.
|
|
enum { UnknownType = 255 };
|
|
|
|
bool isSection() const { return Type == llvm::ELF::STT_SECTION; }
|
|
bool isTls() const { return Type == llvm::ELF::STT_TLS; }
|
|
bool isFunc() const { return Type == llvm::ELF::STT_FUNC; }
|
|
bool isGnuIFunc() const { return Type == llvm::ELF::STT_GNU_IFUNC; }
|
|
bool isObject() const { return Type == llvm::ELF::STT_OBJECT; }
|
|
bool isFile() const { return Type == llvm::ELF::STT_FILE; }
|
|
};
|
|
|
|
// Represents a symbol that is defined in the current output file.
|
|
class Defined : public Symbol {
|
|
public:
|
|
Defined(InputFile *File, StringRefZ Name, uint8_t Binding, uint8_t StOther,
|
|
uint8_t Type, uint64_t Value, uint64_t Size, SectionBase *Section)
|
|
: Symbol(DefinedKind, File, Name, Binding, StOther, Type), Value(Value),
|
|
Size(Size), Section(Section) {}
|
|
|
|
static bool classof(const Symbol *S) { return S->isDefined(); }
|
|
|
|
uint64_t Value;
|
|
uint64_t Size;
|
|
SectionBase *Section;
|
|
};
|
|
|
|
class Undefined : public Symbol {
|
|
public:
|
|
Undefined(InputFile *File, StringRefZ Name, uint8_t Binding, uint8_t StOther,
|
|
uint8_t Type)
|
|
: Symbol(UndefinedKind, File, Name, Binding, StOther, Type) {}
|
|
|
|
static bool classof(const Symbol *S) { return S->kind() == UndefinedKind; }
|
|
};
|
|
|
|
class SharedSymbol : public Symbol {
|
|
public:
|
|
static bool classof(const Symbol *S) { return S->kind() == SharedKind; }
|
|
|
|
SharedSymbol(InputFile &File, StringRef Name, uint8_t Binding,
|
|
uint8_t StOther, uint8_t Type, uint64_t Value, uint64_t Size,
|
|
uint32_t Alignment, uint32_t VerdefIndex)
|
|
: Symbol(SharedKind, &File, Name, Binding, StOther, Type),
|
|
Alignment(Alignment), Value(Value), Size(Size) {
|
|
this->VerdefIndex = VerdefIndex;
|
|
// GNU ifunc is a mechanism to allow user-supplied functions to
|
|
// resolve PLT slot values at load-time. This is contrary to the
|
|
// regular symbol resolution scheme in which symbols are resolved just
|
|
// by name. Using this hook, you can program how symbols are solved
|
|
// for you program. For example, you can make "memcpy" to be resolved
|
|
// to a SSE-enabled version of memcpy only when a machine running the
|
|
// program supports the SSE instruction set.
|
|
//
|
|
// Naturally, such symbols should always be called through their PLT
|
|
// slots. What GNU ifunc symbols point to are resolver functions, and
|
|
// calling them directly doesn't make sense (unless you are writing a
|
|
// loader).
|
|
//
|
|
// For DSO symbols, we always call them through PLT slots anyway.
|
|
// So there's no difference between GNU ifunc and regular function
|
|
// symbols if they are in DSOs. So we can handle GNU_IFUNC as FUNC.
|
|
if (this->Type == llvm::ELF::STT_GNU_IFUNC)
|
|
this->Type = llvm::ELF::STT_FUNC;
|
|
}
|
|
|
|
template <class ELFT> SharedFile<ELFT> &getFile() const {
|
|
return *cast<SharedFile<ELFT>>(File);
|
|
}
|
|
|
|
uint32_t Alignment;
|
|
|
|
uint64_t Value; // st_value
|
|
uint64_t Size; // st_size
|
|
};
|
|
|
|
// LazyArchive and LazyObject represent a symbols that is not yet in the link,
|
|
// but we know where to find it if needed. If the resolver finds both Undefined
|
|
// and Lazy for the same name, it will ask the Lazy to load a file.
|
|
//
|
|
// A special complication is the handling of weak undefined symbols. They should
|
|
// not load a file, but we have to remember we have seen both the weak undefined
|
|
// and the lazy. We represent that with a lazy symbol with a weak binding. This
|
|
// means that code looking for undefined symbols normally also has to take lazy
|
|
// symbols into consideration.
|
|
|
|
// This class represents a symbol defined in an archive file. It is
|
|
// created from an archive file header, and it knows how to load an
|
|
// object file from an archive to replace itself with a defined
|
|
// symbol.
|
|
class LazyArchive : public Symbol {
|
|
public:
|
|
LazyArchive(InputFile &File, uint8_t Type,
|
|
const llvm::object::Archive::Symbol S)
|
|
: Symbol(LazyArchiveKind, &File, S.getName(), llvm::ELF::STB_GLOBAL,
|
|
llvm::ELF::STV_DEFAULT, Type),
|
|
Sym(S) {}
|
|
|
|
static bool classof(const Symbol *S) { return S->kind() == LazyArchiveKind; }
|
|
|
|
InputFile *fetch();
|
|
|
|
private:
|
|
const llvm::object::Archive::Symbol Sym;
|
|
};
|
|
|
|
// LazyObject symbols represents symbols in object files between
|
|
// --start-lib and --end-lib options.
|
|
class LazyObject : public Symbol {
|
|
public:
|
|
LazyObject(InputFile &File, uint8_t Type, StringRef Name)
|
|
: Symbol(LazyObjectKind, &File, Name, llvm::ELF::STB_GLOBAL,
|
|
llvm::ELF::STV_DEFAULT, Type) {}
|
|
|
|
static bool classof(const Symbol *S) { return S->kind() == LazyObjectKind; }
|
|
};
|
|
|
|
// Some linker-generated symbols need to be created as
|
|
// Defined symbols.
|
|
struct ElfSym {
|
|
// __bss_start
|
|
static Defined *Bss;
|
|
|
|
// etext and _etext
|
|
static Defined *Etext1;
|
|
static Defined *Etext2;
|
|
|
|
// edata and _edata
|
|
static Defined *Edata1;
|
|
static Defined *Edata2;
|
|
|
|
// end and _end
|
|
static Defined *End1;
|
|
static Defined *End2;
|
|
|
|
// The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention to
|
|
// be at some offset from the base of the .got section, usually 0 or
|
|
// the end of the .got.
|
|
static Defined *GlobalOffsetTable;
|
|
|
|
// _gp, _gp_disp and __gnu_local_gp symbols. Only for MIPS.
|
|
static Defined *MipsGp;
|
|
static Defined *MipsGpDisp;
|
|
static Defined *MipsLocalGp;
|
|
|
|
// __rela_iplt_end or __rel_iplt_end
|
|
static Defined *RelaIpltEnd;
|
|
};
|
|
|
|
// A buffer class that is large enough to hold any Symbol-derived
|
|
// object. We allocate memory using this class and instantiate a symbol
|
|
// using the placement new.
|
|
union SymbolUnion {
|
|
alignas(Defined) char A[sizeof(Defined)];
|
|
alignas(Undefined) char C[sizeof(Undefined)];
|
|
alignas(SharedSymbol) char D[sizeof(SharedSymbol)];
|
|
alignas(LazyArchive) char E[sizeof(LazyArchive)];
|
|
alignas(LazyObject) char F[sizeof(LazyObject)];
|
|
};
|
|
|
|
void printTraceSymbol(Symbol *Sym);
|
|
|
|
template <typename T, typename... ArgT>
|
|
void replaceSymbol(Symbol *S, ArgT &&... Arg) {
|
|
static_assert(std::is_trivially_destructible<T>(),
|
|
"Symbol types must be trivially destructible");
|
|
static_assert(sizeof(T) <= sizeof(SymbolUnion), "SymbolUnion too small");
|
|
static_assert(alignof(T) <= alignof(SymbolUnion),
|
|
"SymbolUnion not aligned enough");
|
|
assert(static_cast<Symbol *>(static_cast<T *>(nullptr)) == nullptr &&
|
|
"Not a Symbol");
|
|
|
|
Symbol Sym = *S;
|
|
|
|
new (S) T(std::forward<ArgT>(Arg)...);
|
|
|
|
S->VersionId = Sym.VersionId;
|
|
S->Visibility = Sym.Visibility;
|
|
S->IsUsedInRegularObj = Sym.IsUsedInRegularObj;
|
|
S->ExportDynamic = Sym.ExportDynamic;
|
|
S->CanInline = Sym.CanInline;
|
|
S->Traced = Sym.Traced;
|
|
|
|
// Print out a log message if --trace-symbol was specified.
|
|
// This is for debugging.
|
|
if (S->Traced)
|
|
printTraceSymbol(S);
|
|
}
|
|
|
|
void warnUnorderableSymbol(const Symbol *Sym);
|
|
} // namespace elf
|
|
|
|
std::string toString(const elf::Symbol &B);
|
|
} // namespace lld
|
|
|
|
#endif
|