forked from OSchip/llvm-project
608 lines
22 KiB
C++
608 lines
22 KiB
C++
//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// This file implements a TargetTransformInfo analysis pass specific to the
|
|
/// X86 target machine. It uses the target's detailed information to provide
|
|
/// more precise answers to certain TTI queries, while letting the target
|
|
/// independent and default TTI implementations handle the rest.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "x86tti"
|
|
#include "X86.h"
|
|
#include "X86TargetMachine.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/CostTable.h"
|
|
using namespace llvm;
|
|
|
|
// Declare the pass initialization routine locally as target-specific passes
|
|
// don't havve a target-wide initialization entry point, and so we rely on the
|
|
// pass constructor initialization.
|
|
namespace llvm {
|
|
void initializeX86TTIPass(PassRegistry &);
|
|
}
|
|
|
|
namespace {
|
|
|
|
class X86TTI : public ImmutablePass, public TargetTransformInfo {
|
|
const X86Subtarget *ST;
|
|
const X86TargetLowering *TLI;
|
|
|
|
/// Estimate the overhead of scalarizing an instruction. Insert and Extract
|
|
/// are set if the result needs to be inserted and/or extracted from vectors.
|
|
unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
|
|
|
|
public:
|
|
X86TTI() : ImmutablePass(ID), ST(0), TLI(0) {
|
|
llvm_unreachable("This pass cannot be directly constructed");
|
|
}
|
|
|
|
X86TTI(const X86TargetMachine *TM)
|
|
: ImmutablePass(ID), ST(TM->getSubtargetImpl()),
|
|
TLI(TM->getTargetLowering()) {
|
|
initializeX86TTIPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
virtual void initializePass() {
|
|
pushTTIStack(this);
|
|
}
|
|
|
|
virtual void finalizePass() {
|
|
popTTIStack();
|
|
}
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
TargetTransformInfo::getAnalysisUsage(AU);
|
|
}
|
|
|
|
/// Pass identification.
|
|
static char ID;
|
|
|
|
/// Provide necessary pointer adjustments for the two base classes.
|
|
virtual void *getAdjustedAnalysisPointer(const void *ID) {
|
|
if (ID == &TargetTransformInfo::ID)
|
|
return (TargetTransformInfo*)this;
|
|
return this;
|
|
}
|
|
|
|
/// \name Scalar TTI Implementations
|
|
/// @{
|
|
virtual PopcntSupportKind getPopcntSupport(unsigned TyWidth) const;
|
|
|
|
/// @}
|
|
|
|
/// \name Vector TTI Implementations
|
|
/// @{
|
|
|
|
virtual unsigned getNumberOfRegisters(bool Vector) const;
|
|
virtual unsigned getRegisterBitWidth(bool Vector) const;
|
|
virtual unsigned getMaximumUnrollFactor() const;
|
|
virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
|
|
OperandValueKind,
|
|
OperandValueKind) const;
|
|
virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
|
|
int Index, Type *SubTp) const;
|
|
virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
|
|
Type *Src) const;
|
|
virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
|
|
Type *CondTy) const;
|
|
virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
|
|
unsigned Index) const;
|
|
virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src,
|
|
unsigned Alignment,
|
|
unsigned AddressSpace) const;
|
|
|
|
virtual unsigned getAddressComputationCost(Type *PtrTy, bool IsComplex) const;
|
|
|
|
/// @}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
INITIALIZE_AG_PASS(X86TTI, TargetTransformInfo, "x86tti",
|
|
"X86 Target Transform Info", true, true, false)
|
|
char X86TTI::ID = 0;
|
|
|
|
ImmutablePass *
|
|
llvm::createX86TargetTransformInfoPass(const X86TargetMachine *TM) {
|
|
return new X86TTI(TM);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// X86 cost model.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
X86TTI::PopcntSupportKind X86TTI::getPopcntSupport(unsigned TyWidth) const {
|
|
assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
|
|
// TODO: Currently the __builtin_popcount() implementation using SSE3
|
|
// instructions is inefficient. Once the problem is fixed, we should
|
|
// call ST->hasSSE3() instead of ST->hasSSE4().
|
|
return ST->hasSSE41() ? PSK_FastHardware : PSK_Software;
|
|
}
|
|
|
|
unsigned X86TTI::getNumberOfRegisters(bool Vector) const {
|
|
if (Vector && !ST->hasSSE1())
|
|
return 0;
|
|
|
|
if (ST->is64Bit())
|
|
return 16;
|
|
return 8;
|
|
}
|
|
|
|
unsigned X86TTI::getRegisterBitWidth(bool Vector) const {
|
|
if (Vector) {
|
|
if (ST->hasAVX()) return 256;
|
|
if (ST->hasSSE1()) return 128;
|
|
return 0;
|
|
}
|
|
|
|
if (ST->is64Bit())
|
|
return 64;
|
|
return 32;
|
|
|
|
}
|
|
|
|
unsigned X86TTI::getMaximumUnrollFactor() const {
|
|
if (ST->isAtom())
|
|
return 1;
|
|
|
|
// Sandybridge and Haswell have multiple execution ports and pipelined
|
|
// vector units.
|
|
if (ST->hasAVX())
|
|
return 4;
|
|
|
|
return 2;
|
|
}
|
|
|
|
unsigned X86TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
|
|
OperandValueKind Op1Info,
|
|
OperandValueKind Op2Info) const {
|
|
// Legalize the type.
|
|
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
|
|
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Invalid opcode");
|
|
|
|
static const CostTblEntry<MVT::SimpleValueType> AVX2CostTable[] = {
|
|
// Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
|
|
// customize them to detect the cases where shift amount is a scalar one.
|
|
{ ISD::SHL, MVT::v4i32, 1 },
|
|
{ ISD::SRL, MVT::v4i32, 1 },
|
|
{ ISD::SRA, MVT::v4i32, 1 },
|
|
{ ISD::SHL, MVT::v8i32, 1 },
|
|
{ ISD::SRL, MVT::v8i32, 1 },
|
|
{ ISD::SRA, MVT::v8i32, 1 },
|
|
{ ISD::SHL, MVT::v2i64, 1 },
|
|
{ ISD::SRL, MVT::v2i64, 1 },
|
|
{ ISD::SHL, MVT::v4i64, 1 },
|
|
{ ISD::SRL, MVT::v4i64, 1 },
|
|
|
|
{ ISD::SHL, MVT::v32i8, 42 }, // cmpeqb sequence.
|
|
{ ISD::SHL, MVT::v16i16, 16*10 }, // Scalarized.
|
|
|
|
{ ISD::SRL, MVT::v32i8, 32*10 }, // Scalarized.
|
|
{ ISD::SRL, MVT::v16i16, 8*10 }, // Scalarized.
|
|
|
|
{ ISD::SRA, MVT::v32i8, 32*10 }, // Scalarized.
|
|
{ ISD::SRA, MVT::v16i16, 16*10 }, // Scalarized.
|
|
{ ISD::SRA, MVT::v4i64, 4*10 }, // Scalarized.
|
|
|
|
// Vectorizing division is a bad idea. See the SSE2 table for more comments.
|
|
{ ISD::SDIV, MVT::v32i8, 32*20 },
|
|
{ ISD::SDIV, MVT::v16i16, 16*20 },
|
|
{ ISD::SDIV, MVT::v8i32, 8*20 },
|
|
{ ISD::SDIV, MVT::v4i64, 4*20 },
|
|
{ ISD::UDIV, MVT::v32i8, 32*20 },
|
|
{ ISD::UDIV, MVT::v16i16, 16*20 },
|
|
{ ISD::UDIV, MVT::v8i32, 8*20 },
|
|
{ ISD::UDIV, MVT::v4i64, 4*20 },
|
|
};
|
|
|
|
// Look for AVX2 lowering tricks.
|
|
if (ST->hasAVX2()) {
|
|
int Idx = CostTableLookup(AVX2CostTable, ISD, LT.second);
|
|
if (Idx != -1)
|
|
return LT.first * AVX2CostTable[Idx].Cost;
|
|
}
|
|
|
|
static const CostTblEntry<MVT::SimpleValueType>
|
|
SSE2UniformConstCostTable[] = {
|
|
// We don't correctly identify costs of casts because they are marked as
|
|
// custom.
|
|
// Constant splats are cheaper for the following instructions.
|
|
{ ISD::SHL, MVT::v16i8, 1 }, // psllw.
|
|
{ ISD::SHL, MVT::v8i16, 1 }, // psllw.
|
|
{ ISD::SHL, MVT::v4i32, 1 }, // pslld
|
|
{ ISD::SHL, MVT::v2i64, 1 }, // psllq.
|
|
|
|
{ ISD::SRL, MVT::v16i8, 1 }, // psrlw.
|
|
{ ISD::SRL, MVT::v8i16, 1 }, // psrlw.
|
|
{ ISD::SRL, MVT::v4i32, 1 }, // psrld.
|
|
{ ISD::SRL, MVT::v2i64, 1 }, // psrlq.
|
|
|
|
{ ISD::SRA, MVT::v16i8, 4 }, // psrlw, pand, pxor, psubb.
|
|
{ ISD::SRA, MVT::v8i16, 1 }, // psraw.
|
|
{ ISD::SRA, MVT::v4i32, 1 }, // psrad.
|
|
};
|
|
|
|
if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
|
|
ST->hasSSE2()) {
|
|
int Idx = CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second);
|
|
if (Idx != -1)
|
|
return LT.first * SSE2UniformConstCostTable[Idx].Cost;
|
|
}
|
|
|
|
|
|
static const CostTblEntry<MVT::SimpleValueType> SSE2CostTable[] = {
|
|
// We don't correctly identify costs of casts because they are marked as
|
|
// custom.
|
|
// For some cases, where the shift amount is a scalar we would be able
|
|
// to generate better code. Unfortunately, when this is the case the value
|
|
// (the splat) will get hoisted out of the loop, thereby making it invisible
|
|
// to ISel. The cost model must return worst case assumptions because it is
|
|
// used for vectorization and we don't want to make vectorized code worse
|
|
// than scalar code.
|
|
{ ISD::SHL, MVT::v16i8, 30 }, // cmpeqb sequence.
|
|
{ ISD::SHL, MVT::v8i16, 8*10 }, // Scalarized.
|
|
{ ISD::SHL, MVT::v4i32, 2*5 }, // We optimized this using mul.
|
|
{ ISD::SHL, MVT::v2i64, 2*10 }, // Scalarized.
|
|
|
|
{ ISD::SRL, MVT::v16i8, 16*10 }, // Scalarized.
|
|
{ ISD::SRL, MVT::v8i16, 8*10 }, // Scalarized.
|
|
{ ISD::SRL, MVT::v4i32, 4*10 }, // Scalarized.
|
|
{ ISD::SRL, MVT::v2i64, 2*10 }, // Scalarized.
|
|
|
|
{ ISD::SRA, MVT::v16i8, 16*10 }, // Scalarized.
|
|
{ ISD::SRA, MVT::v8i16, 8*10 }, // Scalarized.
|
|
{ ISD::SRA, MVT::v4i32, 4*10 }, // Scalarized.
|
|
{ ISD::SRA, MVT::v2i64, 2*10 }, // Scalarized.
|
|
|
|
// It is not a good idea to vectorize division. We have to scalarize it and
|
|
// in the process we will often end up having to spilling regular
|
|
// registers. The overhead of division is going to dominate most kernels
|
|
// anyways so try hard to prevent vectorization of division - it is
|
|
// generally a bad idea. Assume somewhat arbitrarily that we have to be able
|
|
// to hide "20 cycles" for each lane.
|
|
{ ISD::SDIV, MVT::v16i8, 16*20 },
|
|
{ ISD::SDIV, MVT::v8i16, 8*20 },
|
|
{ ISD::SDIV, MVT::v4i32, 4*20 },
|
|
{ ISD::SDIV, MVT::v2i64, 2*20 },
|
|
{ ISD::UDIV, MVT::v16i8, 16*20 },
|
|
{ ISD::UDIV, MVT::v8i16, 8*20 },
|
|
{ ISD::UDIV, MVT::v4i32, 4*20 },
|
|
{ ISD::UDIV, MVT::v2i64, 2*20 },
|
|
};
|
|
|
|
if (ST->hasSSE2()) {
|
|
int Idx = CostTableLookup(SSE2CostTable, ISD, LT.second);
|
|
if (Idx != -1)
|
|
return LT.first * SSE2CostTable[Idx].Cost;
|
|
}
|
|
|
|
static const CostTblEntry<MVT::SimpleValueType> AVX1CostTable[] = {
|
|
// We don't have to scalarize unsupported ops. We can issue two half-sized
|
|
// operations and we only need to extract the upper YMM half.
|
|
// Two ops + 1 extract + 1 insert = 4.
|
|
{ ISD::MUL, MVT::v8i32, 4 },
|
|
{ ISD::SUB, MVT::v8i32, 4 },
|
|
{ ISD::ADD, MVT::v8i32, 4 },
|
|
{ ISD::SUB, MVT::v4i64, 4 },
|
|
{ ISD::ADD, MVT::v4i64, 4 },
|
|
// A v4i64 multiply is custom lowered as two split v2i64 vectors that then
|
|
// are lowered as a series of long multiplies(3), shifts(4) and adds(2)
|
|
// Because we believe v4i64 to be a legal type, we must also include the
|
|
// split factor of two in the cost table. Therefore, the cost here is 18
|
|
// instead of 9.
|
|
{ ISD::MUL, MVT::v4i64, 18 },
|
|
};
|
|
|
|
// Look for AVX1 lowering tricks.
|
|
if (ST->hasAVX() && !ST->hasAVX2()) {
|
|
int Idx = CostTableLookup(AVX1CostTable, ISD, LT.second);
|
|
if (Idx != -1)
|
|
return LT.first * AVX1CostTable[Idx].Cost;
|
|
}
|
|
|
|
// Custom lowering of vectors.
|
|
static const CostTblEntry<MVT::SimpleValueType> CustomLowered[] = {
|
|
// A v2i64/v4i64 and multiply is custom lowered as a series of long
|
|
// multiplies(3), shifts(4) and adds(2).
|
|
{ ISD::MUL, MVT::v2i64, 9 },
|
|
{ ISD::MUL, MVT::v4i64, 9 },
|
|
};
|
|
int Idx = CostTableLookup(CustomLowered, ISD, LT.second);
|
|
if (Idx != -1)
|
|
return LT.first * CustomLowered[Idx].Cost;
|
|
|
|
// Special lowering of v4i32 mul on sse2, sse3: Lower v4i32 mul as 2x shuffle,
|
|
// 2x pmuludq, 2x shuffle.
|
|
if (ISD == ISD::MUL && LT.second == MVT::v4i32 && ST->hasSSE2() &&
|
|
!ST->hasSSE41())
|
|
return 6;
|
|
|
|
// Fallback to the default implementation.
|
|
return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty, Op1Info,
|
|
Op2Info);
|
|
}
|
|
|
|
unsigned X86TTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
|
|
Type *SubTp) const {
|
|
// We only estimate the cost of reverse shuffles.
|
|
if (Kind != SK_Reverse)
|
|
return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
|
|
|
|
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
|
|
unsigned Cost = 1;
|
|
if (LT.second.getSizeInBits() > 128)
|
|
Cost = 3; // Extract + insert + copy.
|
|
|
|
// Multiple by the number of parts.
|
|
return Cost * LT.first;
|
|
}
|
|
|
|
unsigned X86TTI::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const {
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Invalid opcode");
|
|
|
|
std::pair<unsigned, MVT> LTSrc = TLI->getTypeLegalizationCost(Src);
|
|
std::pair<unsigned, MVT> LTDest = TLI->getTypeLegalizationCost(Dst);
|
|
|
|
static const TypeConversionCostTblEntry<MVT::SimpleValueType>
|
|
SSE2ConvTbl[] = {
|
|
// These are somewhat magic numbers justified by looking at the output of
|
|
// Intel's IACA, running some kernels and making sure when we take
|
|
// legalization into account the throughput will be overestimated.
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
|
|
// There are faster sequences for float conversions.
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 15 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 15 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
|
|
};
|
|
|
|
if (ST->hasSSE2() && !ST->hasAVX()) {
|
|
int Idx =
|
|
ConvertCostTableLookup(SSE2ConvTbl, ISD, LTDest.second, LTSrc.second);
|
|
if (Idx != -1)
|
|
return LTSrc.first * SSE2ConvTbl[Idx].Cost;
|
|
}
|
|
|
|
EVT SrcTy = TLI->getValueType(Src);
|
|
EVT DstTy = TLI->getValueType(Dst);
|
|
|
|
// The function getSimpleVT only handles simple value types.
|
|
if (!SrcTy.isSimple() || !DstTy.isSimple())
|
|
return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
|
|
|
|
static const TypeConversionCostTblEntry<MVT::SimpleValueType>
|
|
AVXConversionTbl[] = {
|
|
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
|
|
{ ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 1 },
|
|
{ ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 1 },
|
|
|
|
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, 8 },
|
|
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 8 },
|
|
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
|
|
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i1, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i8, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i16, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
|
|
|
|
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i1, 6 },
|
|
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 5 },
|
|
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
|
|
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 9 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 7 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 6 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i1, 7 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 6 },
|
|
|
|
{ ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 1 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 6 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 9 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 8 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 6 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 6 },
|
|
{ ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 3 },
|
|
};
|
|
|
|
if (ST->hasAVX()) {
|
|
int Idx = ConvertCostTableLookup(AVXConversionTbl, ISD, DstTy.getSimpleVT(),
|
|
SrcTy.getSimpleVT());
|
|
if (Idx != -1)
|
|
return AVXConversionTbl[Idx].Cost;
|
|
}
|
|
|
|
return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
|
|
}
|
|
|
|
unsigned X86TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
|
|
Type *CondTy) const {
|
|
// Legalize the type.
|
|
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
|
|
|
|
MVT MTy = LT.second;
|
|
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Invalid opcode");
|
|
|
|
static const CostTblEntry<MVT::SimpleValueType> SSE42CostTbl[] = {
|
|
{ ISD::SETCC, MVT::v2f64, 1 },
|
|
{ ISD::SETCC, MVT::v4f32, 1 },
|
|
{ ISD::SETCC, MVT::v2i64, 1 },
|
|
{ ISD::SETCC, MVT::v4i32, 1 },
|
|
{ ISD::SETCC, MVT::v8i16, 1 },
|
|
{ ISD::SETCC, MVT::v16i8, 1 },
|
|
};
|
|
|
|
static const CostTblEntry<MVT::SimpleValueType> AVX1CostTbl[] = {
|
|
{ ISD::SETCC, MVT::v4f64, 1 },
|
|
{ ISD::SETCC, MVT::v8f32, 1 },
|
|
// AVX1 does not support 8-wide integer compare.
|
|
{ ISD::SETCC, MVT::v4i64, 4 },
|
|
{ ISD::SETCC, MVT::v8i32, 4 },
|
|
{ ISD::SETCC, MVT::v16i16, 4 },
|
|
{ ISD::SETCC, MVT::v32i8, 4 },
|
|
};
|
|
|
|
static const CostTblEntry<MVT::SimpleValueType> AVX2CostTbl[] = {
|
|
{ ISD::SETCC, MVT::v4i64, 1 },
|
|
{ ISD::SETCC, MVT::v8i32, 1 },
|
|
{ ISD::SETCC, MVT::v16i16, 1 },
|
|
{ ISD::SETCC, MVT::v32i8, 1 },
|
|
};
|
|
|
|
if (ST->hasAVX2()) {
|
|
int Idx = CostTableLookup(AVX2CostTbl, ISD, MTy);
|
|
if (Idx != -1)
|
|
return LT.first * AVX2CostTbl[Idx].Cost;
|
|
}
|
|
|
|
if (ST->hasAVX()) {
|
|
int Idx = CostTableLookup(AVX1CostTbl, ISD, MTy);
|
|
if (Idx != -1)
|
|
return LT.first * AVX1CostTbl[Idx].Cost;
|
|
}
|
|
|
|
if (ST->hasSSE42()) {
|
|
int Idx = CostTableLookup(SSE42CostTbl, ISD, MTy);
|
|
if (Idx != -1)
|
|
return LT.first * SSE42CostTbl[Idx].Cost;
|
|
}
|
|
|
|
return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
|
|
}
|
|
|
|
unsigned X86TTI::getVectorInstrCost(unsigned Opcode, Type *Val,
|
|
unsigned Index) const {
|
|
assert(Val->isVectorTy() && "This must be a vector type");
|
|
|
|
if (Index != -1U) {
|
|
// Legalize the type.
|
|
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val);
|
|
|
|
// This type is legalized to a scalar type.
|
|
if (!LT.second.isVector())
|
|
return 0;
|
|
|
|
// The type may be split. Normalize the index to the new type.
|
|
unsigned Width = LT.second.getVectorNumElements();
|
|
Index = Index % Width;
|
|
|
|
// Floating point scalars are already located in index #0.
|
|
if (Val->getScalarType()->isFloatingPointTy() && Index == 0)
|
|
return 0;
|
|
}
|
|
|
|
return TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index);
|
|
}
|
|
|
|
unsigned X86TTI::getScalarizationOverhead(Type *Ty, bool Insert,
|
|
bool Extract) const {
|
|
assert (Ty->isVectorTy() && "Can only scalarize vectors");
|
|
unsigned Cost = 0;
|
|
|
|
for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
|
|
if (Insert)
|
|
Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
|
|
if (Extract)
|
|
Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
|
|
}
|
|
|
|
return Cost;
|
|
}
|
|
|
|
unsigned X86TTI::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
|
|
unsigned AddressSpace) const {
|
|
// Handle non power of two vectors such as <3 x float>
|
|
if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
|
|
unsigned NumElem = VTy->getVectorNumElements();
|
|
|
|
// Handle a few common cases:
|
|
// <3 x float>
|
|
if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
|
|
// Cost = 64 bit store + extract + 32 bit store.
|
|
return 3;
|
|
|
|
// <3 x double>
|
|
if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
|
|
// Cost = 128 bit store + unpack + 64 bit store.
|
|
return 3;
|
|
|
|
// Assume that all other non power-of-two numbers are scalarized.
|
|
if (!isPowerOf2_32(NumElem)) {
|
|
unsigned Cost = TargetTransformInfo::getMemoryOpCost(Opcode,
|
|
VTy->getScalarType(),
|
|
Alignment,
|
|
AddressSpace);
|
|
unsigned SplitCost = getScalarizationOverhead(Src,
|
|
Opcode == Instruction::Load,
|
|
Opcode==Instruction::Store);
|
|
return NumElem * Cost + SplitCost;
|
|
}
|
|
}
|
|
|
|
// Legalize the type.
|
|
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
|
|
assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
|
|
"Invalid Opcode");
|
|
|
|
// Each load/store unit costs 1.
|
|
unsigned Cost = LT.first * 1;
|
|
|
|
// On Sandybridge 256bit load/stores are double pumped
|
|
// (but not on Haswell).
|
|
if (LT.second.getSizeInBits() > 128 && !ST->hasAVX2())
|
|
Cost*=2;
|
|
|
|
return Cost;
|
|
}
|
|
|
|
unsigned X86TTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
|
|
// Address computations in vectorized code with non-consecutive addresses will
|
|
// likely result in more instructions compared to scalar code where the
|
|
// computation can more often be merged into the index mode. The resulting
|
|
// extra micro-ops can significantly decrease throughput.
|
|
unsigned NumVectorInstToHideOverhead = 10;
|
|
|
|
if (Ty->isVectorTy() && IsComplex)
|
|
return NumVectorInstToHideOverhead;
|
|
|
|
return TargetTransformInfo::getAddressComputationCost(Ty, IsComplex);
|
|
}
|