llvm-project/llvm/lib/CodeGen/BasicTargetTransformInfo.cpp

652 lines
24 KiB
C++

//===- BasicTargetTransformInfo.cpp - Basic target-independent TTI impl ---===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file provides the implementation of a basic TargetTransformInfo pass
/// predicated on the target abstractions present in the target independent
/// code generator. It uses these (primarily TargetLowering) to model as much
/// of the TTI query interface as possible. It is included by most targets so
/// that they can specialize only a small subset of the query space.
///
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/Passes.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include <utility>
using namespace llvm;
static cl::opt<unsigned>
PartialUnrollingThreshold("partial-unrolling-threshold", cl::init(0),
cl::desc("Threshold for partial unrolling"), cl::Hidden);
#define DEBUG_TYPE "basictti"
namespace {
class BasicTTI final : public ImmutablePass, public TargetTransformInfo {
const TargetMachine *TM;
/// Estimate the overhead of scalarizing an instruction. Insert and Extract
/// are set if the result needs to be inserted and/or extracted from vectors.
unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
/// Estimate the cost overhead of SK_Alternate shuffle.
unsigned getAltShuffleOverhead(Type *Ty) const;
const TargetLoweringBase *getTLI() const {
return TM->getSubtargetImpl()->getTargetLowering();
}
public:
BasicTTI() : ImmutablePass(ID), TM(nullptr) {
llvm_unreachable("This pass cannot be directly constructed");
}
BasicTTI(const TargetMachine *TM) : ImmutablePass(ID), TM(TM) {
initializeBasicTTIPass(*PassRegistry::getPassRegistry());
}
void initializePass() override {
pushTTIStack(this);
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
TargetTransformInfo::getAnalysisUsage(AU);
}
/// Pass identification.
static char ID;
/// Provide necessary pointer adjustments for the two base classes.
void *getAdjustedAnalysisPointer(const void *ID) override {
if (ID == &TargetTransformInfo::ID)
return (TargetTransformInfo*)this;
return this;
}
bool hasBranchDivergence() const override;
/// \name Scalar TTI Implementations
/// @{
bool isLegalAddImmediate(int64_t imm) const override;
bool isLegalICmpImmediate(int64_t imm) const override;
bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
int64_t BaseOffset, bool HasBaseReg,
int64_t Scale) const override;
int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
int64_t BaseOffset, bool HasBaseReg,
int64_t Scale) const override;
bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
bool isTypeLegal(Type *Ty) const override;
unsigned getJumpBufAlignment() const override;
unsigned getJumpBufSize() const override;
bool shouldBuildLookupTables() const override;
bool haveFastSqrt(Type *Ty) const override;
void getUnrollingPreferences(const Function *F, Loop *L,
UnrollingPreferences &UP) const override;
/// @}
/// \name Vector TTI Implementations
/// @{
unsigned getNumberOfRegisters(bool Vector) const override;
unsigned getMaxInterleaveFactor() const override;
unsigned getRegisterBitWidth(bool Vector) const override;
unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind,
OperandValueKind, OperandValueProperties,
OperandValueProperties) const override;
unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
int Index, Type *SubTp) const override;
unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
Type *Src) const override;
unsigned getCFInstrCost(unsigned Opcode) const override;
unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
Type *CondTy) const override;
unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
unsigned Index) const override;
unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
unsigned AddressSpace) const override;
unsigned getIntrinsicInstrCost(Intrinsic::ID, Type *RetTy,
ArrayRef<Type*> Tys) const override;
unsigned getNumberOfParts(Type *Tp) const override;
unsigned getAddressComputationCost( Type *Ty, bool IsComplex) const override;
unsigned getReductionCost(unsigned Opcode, Type *Ty,
bool IsPairwise) const override;
/// @}
};
}
INITIALIZE_AG_PASS(BasicTTI, TargetTransformInfo, "basictti",
"Target independent code generator's TTI", true, true, false)
char BasicTTI::ID = 0;
ImmutablePass *
llvm::createBasicTargetTransformInfoPass(const TargetMachine *TM) {
return new BasicTTI(TM);
}
bool BasicTTI::hasBranchDivergence() const { return false; }
bool BasicTTI::isLegalAddImmediate(int64_t imm) const {
return getTLI()->isLegalAddImmediate(imm);
}
bool BasicTTI::isLegalICmpImmediate(int64_t imm) const {
return getTLI()->isLegalICmpImmediate(imm);
}
bool BasicTTI::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
int64_t BaseOffset, bool HasBaseReg,
int64_t Scale) const {
TargetLoweringBase::AddrMode AM;
AM.BaseGV = BaseGV;
AM.BaseOffs = BaseOffset;
AM.HasBaseReg = HasBaseReg;
AM.Scale = Scale;
return getTLI()->isLegalAddressingMode(AM, Ty);
}
int BasicTTI::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
int64_t BaseOffset, bool HasBaseReg,
int64_t Scale) const {
TargetLoweringBase::AddrMode AM;
AM.BaseGV = BaseGV;
AM.BaseOffs = BaseOffset;
AM.HasBaseReg = HasBaseReg;
AM.Scale = Scale;
return getTLI()->getScalingFactorCost(AM, Ty);
}
bool BasicTTI::isTruncateFree(Type *Ty1, Type *Ty2) const {
return getTLI()->isTruncateFree(Ty1, Ty2);
}
bool BasicTTI::isTypeLegal(Type *Ty) const {
EVT T = getTLI()->getValueType(Ty);
return getTLI()->isTypeLegal(T);
}
unsigned BasicTTI::getJumpBufAlignment() const {
return getTLI()->getJumpBufAlignment();
}
unsigned BasicTTI::getJumpBufSize() const {
return getTLI()->getJumpBufSize();
}
bool BasicTTI::shouldBuildLookupTables() const {
const TargetLoweringBase *TLI = getTLI();
return TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
}
bool BasicTTI::haveFastSqrt(Type *Ty) const {
const TargetLoweringBase *TLI = getTLI();
EVT VT = TLI->getValueType(Ty);
return TLI->isTypeLegal(VT) && TLI->isOperationLegalOrCustom(ISD::FSQRT, VT);
}
void BasicTTI::getUnrollingPreferences(const Function *F, Loop *L,
UnrollingPreferences &UP) const {
// This unrolling functionality is target independent, but to provide some
// motivation for its intended use, for x86:
// According to the Intel 64 and IA-32 Architectures Optimization Reference
// Manual, Intel Core models and later have a loop stream detector
// (and associated uop queue) that can benefit from partial unrolling.
// The relevant requirements are:
// - The loop must have no more than 4 (8 for Nehalem and later) branches
// taken, and none of them may be calls.
// - The loop can have no more than 18 (28 for Nehalem and later) uops.
// According to the Software Optimization Guide for AMD Family 15h Processors,
// models 30h-4fh (Steamroller and later) have a loop predictor and loop
// buffer which can benefit from partial unrolling.
// The relevant requirements are:
// - The loop must have fewer than 16 branches
// - The loop must have less than 40 uops in all executed loop branches
// The number of taken branches in a loop is hard to estimate here, and
// benchmarking has revealed that it is better not to be conservative when
// estimating the branch count. As a result, we'll ignore the branch limits
// until someone finds a case where it matters in practice.
unsigned MaxOps;
const TargetSubtargetInfo *ST = TM->getSubtargetImpl(*F);
if (PartialUnrollingThreshold.getNumOccurrences() > 0)
MaxOps = PartialUnrollingThreshold;
else if (ST->getSchedModel().LoopMicroOpBufferSize > 0)
MaxOps = ST->getSchedModel().LoopMicroOpBufferSize;
else
return;
// Scan the loop: don't unroll loops with calls.
for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
I != E; ++I) {
BasicBlock *BB = *I;
for (BasicBlock::iterator J = BB->begin(), JE = BB->end(); J != JE; ++J)
if (isa<CallInst>(J) || isa<InvokeInst>(J)) {
ImmutableCallSite CS(J);
if (const Function *F = CS.getCalledFunction()) {
if (!TopTTI->isLoweredToCall(F))
continue;
}
return;
}
}
// Enable runtime and partial unrolling up to the specified size.
UP.Partial = UP.Runtime = true;
UP.PartialThreshold = UP.PartialOptSizeThreshold = MaxOps;
}
//===----------------------------------------------------------------------===//
//
// Calls used by the vectorizers.
//
//===----------------------------------------------------------------------===//
unsigned BasicTTI::getScalarizationOverhead(Type *Ty, bool Insert,
bool Extract) const {
assert (Ty->isVectorTy() && "Can only scalarize vectors");
unsigned Cost = 0;
for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
if (Insert)
Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
if (Extract)
Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
}
return Cost;
}
unsigned BasicTTI::getNumberOfRegisters(bool Vector) const {
return 1;
}
unsigned BasicTTI::getRegisterBitWidth(bool Vector) const {
return 32;
}
unsigned BasicTTI::getMaxInterleaveFactor() const {
return 1;
}
unsigned BasicTTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
OperandValueKind, OperandValueKind,
OperandValueProperties,
OperandValueProperties) const {
// Check if any of the operands are vector operands.
const TargetLoweringBase *TLI = getTLI();
int ISD = TLI->InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
bool IsFloat = Ty->getScalarType()->isFloatingPointTy();
// Assume that floating point arithmetic operations cost twice as much as
// integer operations.
unsigned OpCost = (IsFloat ? 2 : 1);
if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
// The operation is legal. Assume it costs 1.
// If the type is split to multiple registers, assume that there is some
// overhead to this.
// TODO: Once we have extract/insert subvector cost we need to use them.
if (LT.first > 1)
return LT.first * 2 * OpCost;
return LT.first * 1 * OpCost;
}
if (!TLI->isOperationExpand(ISD, LT.second)) {
// If the operation is custom lowered then assume
// thare the code is twice as expensive.
return LT.first * 2 * OpCost;
}
// Else, assume that we need to scalarize this op.
if (Ty->isVectorTy()) {
unsigned Num = Ty->getVectorNumElements();
unsigned Cost = TopTTI->getArithmeticInstrCost(Opcode, Ty->getScalarType());
// return the cost of multiple scalar invocation plus the cost of inserting
// and extracting the values.
return getScalarizationOverhead(Ty, true, true) + Num * Cost;
}
// We don't know anything about this scalar instruction.
return OpCost;
}
unsigned BasicTTI::getAltShuffleOverhead(Type *Ty) const {
assert(Ty->isVectorTy() && "Can only shuffle vectors");
unsigned Cost = 0;
// Shuffle cost is equal to the cost of extracting element from its argument
// plus the cost of inserting them onto the result vector.
// e.g. <4 x float> has a mask of <0,5,2,7> i.e we need to extract from index
// 0 of first vector, index 1 of second vector,index 2 of first vector and
// finally index 3 of second vector and insert them at index <0,1,2,3> of
// result vector.
for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
}
return Cost;
}
unsigned BasicTTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
Type *SubTp) const {
if (Kind == SK_Alternate) {
return getAltShuffleOverhead(Tp);
}
return 1;
}
unsigned BasicTTI::getCastInstrCost(unsigned Opcode, Type *Dst,
Type *Src) const {
const TargetLoweringBase *TLI = getTLI();
int ISD = TLI->InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
std::pair<unsigned, MVT> SrcLT = TLI->getTypeLegalizationCost(Src);
std::pair<unsigned, MVT> DstLT = TLI->getTypeLegalizationCost(Dst);
// Check for NOOP conversions.
if (SrcLT.first == DstLT.first &&
SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
// Bitcast between types that are legalized to the same type are free.
if (Opcode == Instruction::BitCast || Opcode == Instruction::Trunc)
return 0;
}
if (Opcode == Instruction::Trunc &&
TLI->isTruncateFree(SrcLT.second, DstLT.second))
return 0;
if (Opcode == Instruction::ZExt &&
TLI->isZExtFree(SrcLT.second, DstLT.second))
return 0;
// If the cast is marked as legal (or promote) then assume low cost.
if (SrcLT.first == DstLT.first &&
TLI->isOperationLegalOrPromote(ISD, DstLT.second))
return 1;
// Handle scalar conversions.
if (!Src->isVectorTy() && !Dst->isVectorTy()) {
// Scalar bitcasts are usually free.
if (Opcode == Instruction::BitCast)
return 0;
// Just check the op cost. If the operation is legal then assume it costs 1.
if (!TLI->isOperationExpand(ISD, DstLT.second))
return 1;
// Assume that illegal scalar instruction are expensive.
return 4;
}
// Check vector-to-vector casts.
if (Dst->isVectorTy() && Src->isVectorTy()) {
// If the cast is between same-sized registers, then the check is simple.
if (SrcLT.first == DstLT.first &&
SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
// Assume that Zext is done using AND.
if (Opcode == Instruction::ZExt)
return 1;
// Assume that sext is done using SHL and SRA.
if (Opcode == Instruction::SExt)
return 2;
// Just check the op cost. If the operation is legal then assume it costs
// 1 and multiply by the type-legalization overhead.
if (!TLI->isOperationExpand(ISD, DstLT.second))
return SrcLT.first * 1;
}
// If we are converting vectors and the operation is illegal, or
// if the vectors are legalized to different types, estimate the
// scalarization costs.
unsigned Num = Dst->getVectorNumElements();
unsigned Cost = TopTTI->getCastInstrCost(Opcode, Dst->getScalarType(),
Src->getScalarType());
// Return the cost of multiple scalar invocation plus the cost of
// inserting and extracting the values.
return getScalarizationOverhead(Dst, true, true) + Num * Cost;
}
// We already handled vector-to-vector and scalar-to-scalar conversions. This
// is where we handle bitcast between vectors and scalars. We need to assume
// that the conversion is scalarized in one way or another.
if (Opcode == Instruction::BitCast)
// Illegal bitcasts are done by storing and loading from a stack slot.
return (Src->isVectorTy()? getScalarizationOverhead(Src, false, true):0) +
(Dst->isVectorTy()? getScalarizationOverhead(Dst, true, false):0);
llvm_unreachable("Unhandled cast");
}
unsigned BasicTTI::getCFInstrCost(unsigned Opcode) const {
// Branches are assumed to be predicted.
return 0;
}
unsigned BasicTTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
Type *CondTy) const {
const TargetLoweringBase *TLI = getTLI();
int ISD = TLI->InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
// Selects on vectors are actually vector selects.
if (ISD == ISD::SELECT) {
assert(CondTy && "CondTy must exist");
if (CondTy->isVectorTy())
ISD = ISD::VSELECT;
}
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
if (!(ValTy->isVectorTy() && !LT.second.isVector()) &&
!TLI->isOperationExpand(ISD, LT.second)) {
// The operation is legal. Assume it costs 1. Multiply
// by the type-legalization overhead.
return LT.first * 1;
}
// Otherwise, assume that the cast is scalarized.
if (ValTy->isVectorTy()) {
unsigned Num = ValTy->getVectorNumElements();
if (CondTy)
CondTy = CondTy->getScalarType();
unsigned Cost = TopTTI->getCmpSelInstrCost(Opcode, ValTy->getScalarType(),
CondTy);
// Return the cost of multiple scalar invocation plus the cost of inserting
// and extracting the values.
return getScalarizationOverhead(ValTy, true, false) + Num * Cost;
}
// Unknown scalar opcode.
return 1;
}
unsigned BasicTTI::getVectorInstrCost(unsigned Opcode, Type *Val,
unsigned Index) const {
std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(Val->getScalarType());
return LT.first;
}
unsigned BasicTTI::getMemoryOpCost(unsigned Opcode, Type *Src,
unsigned Alignment,
unsigned AddressSpace) const {
assert(!Src->isVoidTy() && "Invalid type");
std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(Src);
// Assuming that all loads of legal types cost 1.
unsigned Cost = LT.first;
if (Src->isVectorTy() &&
Src->getPrimitiveSizeInBits() < LT.second.getSizeInBits()) {
// This is a vector load that legalizes to a larger type than the vector
// itself. Unless the corresponding extending load or truncating store is
// legal, then this will scalarize.
TargetLowering::LegalizeAction LA = TargetLowering::Expand;
EVT MemVT = getTLI()->getValueType(Src, true);
if (MemVT.isSimple() && MemVT != MVT::Other) {
if (Opcode == Instruction::Store)
LA = getTLI()->getTruncStoreAction(LT.second, MemVT.getSimpleVT());
else
LA = getTLI()->getLoadExtAction(ISD::EXTLOAD, LT.second, MemVT);
}
if (LA != TargetLowering::Legal && LA != TargetLowering::Custom) {
// This is a vector load/store for some illegal type that is scalarized.
// We must account for the cost of building or decomposing the vector.
Cost += getScalarizationOverhead(Src, Opcode != Instruction::Store,
Opcode == Instruction::Store);
}
}
return Cost;
}
unsigned BasicTTI::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
ArrayRef<Type *> Tys) const {
unsigned ISD = 0;
switch (IID) {
default: {
// Assume that we need to scalarize this intrinsic.
unsigned ScalarizationCost = 0;
unsigned ScalarCalls = 1;
if (RetTy->isVectorTy()) {
ScalarizationCost = getScalarizationOverhead(RetTy, true, false);
ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
}
for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
if (Tys[i]->isVectorTy()) {
ScalarizationCost += getScalarizationOverhead(Tys[i], false, true);
ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
}
}
return ScalarCalls + ScalarizationCost;
}
// Look for intrinsics that can be lowered directly or turned into a scalar
// intrinsic call.
case Intrinsic::sqrt: ISD = ISD::FSQRT; break;
case Intrinsic::sin: ISD = ISD::FSIN; break;
case Intrinsic::cos: ISD = ISD::FCOS; break;
case Intrinsic::exp: ISD = ISD::FEXP; break;
case Intrinsic::exp2: ISD = ISD::FEXP2; break;
case Intrinsic::log: ISD = ISD::FLOG; break;
case Intrinsic::log10: ISD = ISD::FLOG10; break;
case Intrinsic::log2: ISD = ISD::FLOG2; break;
case Intrinsic::fabs: ISD = ISD::FABS; break;
case Intrinsic::minnum: ISD = ISD::FMINNUM; break;
case Intrinsic::maxnum: ISD = ISD::FMAXNUM; break;
case Intrinsic::copysign: ISD = ISD::FCOPYSIGN; break;
case Intrinsic::floor: ISD = ISD::FFLOOR; break;
case Intrinsic::ceil: ISD = ISD::FCEIL; break;
case Intrinsic::trunc: ISD = ISD::FTRUNC; break;
case Intrinsic::nearbyint:
ISD = ISD::FNEARBYINT; break;
case Intrinsic::rint: ISD = ISD::FRINT; break;
case Intrinsic::round: ISD = ISD::FROUND; break;
case Intrinsic::pow: ISD = ISD::FPOW; break;
case Intrinsic::fma: ISD = ISD::FMA; break;
case Intrinsic::fmuladd: ISD = ISD::FMA; break;
// FIXME: We should return 0 whenever getIntrinsicCost == TCC_Free.
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end:
return 0;
case Intrinsic::masked_store:
return TopTTI->getMaskedMemoryOpCost(Instruction::Store, Tys[0], 0, 0);
case Intrinsic::masked_load:
return TopTTI->getMaskedMemoryOpCost(Instruction::Load, RetTy, 0, 0);
}
const TargetLoweringBase *TLI = getTLI();
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(RetTy);
if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
// The operation is legal. Assume it costs 1.
// If the type is split to multiple registers, assume that there is some
// overhead to this.
// TODO: Once we have extract/insert subvector cost we need to use them.
if (LT.first > 1)
return LT.first * 2;
return LT.first * 1;
}
if (!TLI->isOperationExpand(ISD, LT.second)) {
// If the operation is custom lowered then assume
// thare the code is twice as expensive.
return LT.first * 2;
}
// If we can't lower fmuladd into an FMA estimate the cost as a floating
// point mul followed by an add.
if (IID == Intrinsic::fmuladd)
return TopTTI->getArithmeticInstrCost(BinaryOperator::FMul, RetTy) +
TopTTI->getArithmeticInstrCost(BinaryOperator::FAdd, RetTy);
// Else, assume that we need to scalarize this intrinsic. For math builtins
// this will emit a costly libcall, adding call overhead and spills. Make it
// very expensive.
if (RetTy->isVectorTy()) {
unsigned Num = RetTy->getVectorNumElements();
unsigned Cost = TopTTI->getIntrinsicInstrCost(IID, RetTy->getScalarType(),
Tys);
return 10 * Cost * Num;
}
// This is going to be turned into a library call, make it expensive.
return 10;
}
unsigned BasicTTI::getNumberOfParts(Type *Tp) const {
std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(Tp);
return LT.first;
}
unsigned BasicTTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
return 0;
}
unsigned BasicTTI::getReductionCost(unsigned Opcode, Type *Ty,
bool IsPairwise) const {
assert(Ty->isVectorTy() && "Expect a vector type");
unsigned NumVecElts = Ty->getVectorNumElements();
unsigned NumReduxLevels = Log2_32(NumVecElts);
unsigned ArithCost = NumReduxLevels *
TopTTI->getArithmeticInstrCost(Opcode, Ty);
// Assume the pairwise shuffles add a cost.
unsigned ShuffleCost =
NumReduxLevels * (IsPairwise + 1) *
TopTTI->getShuffleCost(SK_ExtractSubvector, Ty, NumVecElts / 2, Ty);
return ShuffleCost + ArithCost + getScalarizationOverhead(Ty, false, true);
}