llvm-project/clang/lib/Serialization/ASTWriter.cpp

5954 lines
214 KiB
C++

//===--- ASTWriter.cpp - AST File Writer ----------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ASTWriter class, which writes AST files.
//
//===----------------------------------------------------------------------===//
#include "clang/Serialization/ASTWriter.h"
#include "ASTCommon.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclContextInternals.h"
#include "clang/AST/DeclFriend.h"
#include "clang/AST/DeclLookups.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/Type.h"
#include "clang/AST/TypeLocVisitor.h"
#include "clang/Basic/DiagnosticOptions.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/FileSystemStatCache.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/SourceManagerInternals.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/TargetOptions.h"
#include "clang/Basic/Version.h"
#include "clang/Basic/VersionTuple.h"
#include "clang/Lex/HeaderSearch.h"
#include "clang/Lex/HeaderSearchOptions.h"
#include "clang/Lex/MacroInfo.h"
#include "clang/Lex/PreprocessingRecord.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/PreprocessorOptions.h"
#include "clang/Sema/IdentifierResolver.h"
#include "clang/Sema/Sema.h"
#include "clang/Serialization/ASTReader.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Bitcode/BitstreamWriter.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/OnDiskHashTable.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Process.h"
#include <algorithm>
#include <cstdio>
#include <string.h>
#include <utility>
using namespace clang;
using namespace clang::serialization;
template <typename T, typename Allocator>
static StringRef data(const std::vector<T, Allocator> &v) {
if (v.empty()) return StringRef();
return StringRef(reinterpret_cast<const char*>(&v[0]),
sizeof(T) * v.size());
}
template <typename T>
static StringRef data(const SmallVectorImpl<T> &v) {
return StringRef(reinterpret_cast<const char*>(v.data()),
sizeof(T) * v.size());
}
//===----------------------------------------------------------------------===//
// Type serialization
//===----------------------------------------------------------------------===//
namespace {
class ASTTypeWriter {
ASTWriter &Writer;
ASTWriter::RecordDataImpl &Record;
public:
/// \brief Type code that corresponds to the record generated.
TypeCode Code;
/// \brief Abbreviation to use for the record, if any.
unsigned AbbrevToUse;
ASTTypeWriter(ASTWriter &Writer, ASTWriter::RecordDataImpl &Record)
: Writer(Writer), Record(Record), Code(TYPE_EXT_QUAL) { }
void VisitArrayType(const ArrayType *T);
void VisitFunctionType(const FunctionType *T);
void VisitTagType(const TagType *T);
#define TYPE(Class, Base) void Visit##Class##Type(const Class##Type *T);
#define ABSTRACT_TYPE(Class, Base)
#include "clang/AST/TypeNodes.def"
};
}
void ASTTypeWriter::VisitBuiltinType(const BuiltinType *T) {
llvm_unreachable("Built-in types are never serialized");
}
void ASTTypeWriter::VisitComplexType(const ComplexType *T) {
Writer.AddTypeRef(T->getElementType(), Record);
Code = TYPE_COMPLEX;
}
void ASTTypeWriter::VisitPointerType(const PointerType *T) {
Writer.AddTypeRef(T->getPointeeType(), Record);
Code = TYPE_POINTER;
}
void ASTTypeWriter::VisitDecayedType(const DecayedType *T) {
Writer.AddTypeRef(T->getOriginalType(), Record);
Code = TYPE_DECAYED;
}
void ASTTypeWriter::VisitAdjustedType(const AdjustedType *T) {
Writer.AddTypeRef(T->getOriginalType(), Record);
Writer.AddTypeRef(T->getAdjustedType(), Record);
Code = TYPE_ADJUSTED;
}
void ASTTypeWriter::VisitBlockPointerType(const BlockPointerType *T) {
Writer.AddTypeRef(T->getPointeeType(), Record);
Code = TYPE_BLOCK_POINTER;
}
void ASTTypeWriter::VisitLValueReferenceType(const LValueReferenceType *T) {
Writer.AddTypeRef(T->getPointeeTypeAsWritten(), Record);
Record.push_back(T->isSpelledAsLValue());
Code = TYPE_LVALUE_REFERENCE;
}
void ASTTypeWriter::VisitRValueReferenceType(const RValueReferenceType *T) {
Writer.AddTypeRef(T->getPointeeTypeAsWritten(), Record);
Code = TYPE_RVALUE_REFERENCE;
}
void ASTTypeWriter::VisitMemberPointerType(const MemberPointerType *T) {
Writer.AddTypeRef(T->getPointeeType(), Record);
Writer.AddTypeRef(QualType(T->getClass(), 0), Record);
Code = TYPE_MEMBER_POINTER;
}
void ASTTypeWriter::VisitArrayType(const ArrayType *T) {
Writer.AddTypeRef(T->getElementType(), Record);
Record.push_back(T->getSizeModifier()); // FIXME: stable values
Record.push_back(T->getIndexTypeCVRQualifiers()); // FIXME: stable values
}
void ASTTypeWriter::VisitConstantArrayType(const ConstantArrayType *T) {
VisitArrayType(T);
Writer.AddAPInt(T->getSize(), Record);
Code = TYPE_CONSTANT_ARRAY;
}
void ASTTypeWriter::VisitIncompleteArrayType(const IncompleteArrayType *T) {
VisitArrayType(T);
Code = TYPE_INCOMPLETE_ARRAY;
}
void ASTTypeWriter::VisitVariableArrayType(const VariableArrayType *T) {
VisitArrayType(T);
Writer.AddSourceLocation(T->getLBracketLoc(), Record);
Writer.AddSourceLocation(T->getRBracketLoc(), Record);
Writer.AddStmt(T->getSizeExpr());
Code = TYPE_VARIABLE_ARRAY;
}
void ASTTypeWriter::VisitVectorType(const VectorType *T) {
Writer.AddTypeRef(T->getElementType(), Record);
Record.push_back(T->getNumElements());
Record.push_back(T->getVectorKind());
Code = TYPE_VECTOR;
}
void ASTTypeWriter::VisitExtVectorType(const ExtVectorType *T) {
VisitVectorType(T);
Code = TYPE_EXT_VECTOR;
}
void ASTTypeWriter::VisitFunctionType(const FunctionType *T) {
Writer.AddTypeRef(T->getReturnType(), Record);
FunctionType::ExtInfo C = T->getExtInfo();
Record.push_back(C.getNoReturn());
Record.push_back(C.getHasRegParm());
Record.push_back(C.getRegParm());
// FIXME: need to stabilize encoding of calling convention...
Record.push_back(C.getCC());
Record.push_back(C.getProducesResult());
if (C.getHasRegParm() || C.getRegParm() || C.getProducesResult())
AbbrevToUse = 0;
}
void ASTTypeWriter::VisitFunctionNoProtoType(const FunctionNoProtoType *T) {
VisitFunctionType(T);
Code = TYPE_FUNCTION_NO_PROTO;
}
static void addExceptionSpec(ASTWriter &Writer, const FunctionProtoType *T,
ASTWriter::RecordDataImpl &Record) {
Record.push_back(T->getExceptionSpecType());
if (T->getExceptionSpecType() == EST_Dynamic) {
Record.push_back(T->getNumExceptions());
for (unsigned I = 0, N = T->getNumExceptions(); I != N; ++I)
Writer.AddTypeRef(T->getExceptionType(I), Record);
} else if (T->getExceptionSpecType() == EST_ComputedNoexcept) {
Writer.AddStmt(T->getNoexceptExpr());
} else if (T->getExceptionSpecType() == EST_Uninstantiated) {
Writer.AddDeclRef(T->getExceptionSpecDecl(), Record);
Writer.AddDeclRef(T->getExceptionSpecTemplate(), Record);
} else if (T->getExceptionSpecType() == EST_Unevaluated) {
Writer.AddDeclRef(T->getExceptionSpecDecl(), Record);
}
}
void ASTTypeWriter::VisitFunctionProtoType(const FunctionProtoType *T) {
VisitFunctionType(T);
Record.push_back(T->isVariadic());
Record.push_back(T->hasTrailingReturn());
Record.push_back(T->getTypeQuals());
Record.push_back(static_cast<unsigned>(T->getRefQualifier()));
addExceptionSpec(Writer, T, Record);
Record.push_back(T->getNumParams());
for (unsigned I = 0, N = T->getNumParams(); I != N; ++I)
Writer.AddTypeRef(T->getParamType(I), Record);
if (T->isVariadic() || T->hasTrailingReturn() || T->getTypeQuals() ||
T->getRefQualifier() || T->getExceptionSpecType() != EST_None)
AbbrevToUse = 0;
Code = TYPE_FUNCTION_PROTO;
}
void ASTTypeWriter::VisitUnresolvedUsingType(const UnresolvedUsingType *T) {
Writer.AddDeclRef(T->getDecl(), Record);
Code = TYPE_UNRESOLVED_USING;
}
void ASTTypeWriter::VisitTypedefType(const TypedefType *T) {
Writer.AddDeclRef(T->getDecl(), Record);
assert(!T->isCanonicalUnqualified() && "Invalid typedef ?");
Writer.AddTypeRef(T->getCanonicalTypeInternal(), Record);
Code = TYPE_TYPEDEF;
}
void ASTTypeWriter::VisitTypeOfExprType(const TypeOfExprType *T) {
Writer.AddStmt(T->getUnderlyingExpr());
Code = TYPE_TYPEOF_EXPR;
}
void ASTTypeWriter::VisitTypeOfType(const TypeOfType *T) {
Writer.AddTypeRef(T->getUnderlyingType(), Record);
Code = TYPE_TYPEOF;
}
void ASTTypeWriter::VisitDecltypeType(const DecltypeType *T) {
Writer.AddTypeRef(T->getUnderlyingType(), Record);
Writer.AddStmt(T->getUnderlyingExpr());
Code = TYPE_DECLTYPE;
}
void ASTTypeWriter::VisitUnaryTransformType(const UnaryTransformType *T) {
Writer.AddTypeRef(T->getBaseType(), Record);
Writer.AddTypeRef(T->getUnderlyingType(), Record);
Record.push_back(T->getUTTKind());
Code = TYPE_UNARY_TRANSFORM;
}
void ASTTypeWriter::VisitAutoType(const AutoType *T) {
Writer.AddTypeRef(T->getDeducedType(), Record);
Record.push_back(T->isDecltypeAuto());
if (T->getDeducedType().isNull())
Record.push_back(T->isDependentType());
Code = TYPE_AUTO;
}
void ASTTypeWriter::VisitTagType(const TagType *T) {
Record.push_back(T->isDependentType());
Writer.AddDeclRef(T->getDecl()->getCanonicalDecl(), Record);
assert(!T->isBeingDefined() &&
"Cannot serialize in the middle of a type definition");
}
void ASTTypeWriter::VisitRecordType(const RecordType *T) {
VisitTagType(T);
Code = TYPE_RECORD;
}
void ASTTypeWriter::VisitEnumType(const EnumType *T) {
VisitTagType(T);
Code = TYPE_ENUM;
}
void ASTTypeWriter::VisitAttributedType(const AttributedType *T) {
Writer.AddTypeRef(T->getModifiedType(), Record);
Writer.AddTypeRef(T->getEquivalentType(), Record);
Record.push_back(T->getAttrKind());
Code = TYPE_ATTRIBUTED;
}
void
ASTTypeWriter::VisitSubstTemplateTypeParmType(
const SubstTemplateTypeParmType *T) {
Writer.AddTypeRef(QualType(T->getReplacedParameter(), 0), Record);
Writer.AddTypeRef(T->getReplacementType(), Record);
Code = TYPE_SUBST_TEMPLATE_TYPE_PARM;
}
void
ASTTypeWriter::VisitSubstTemplateTypeParmPackType(
const SubstTemplateTypeParmPackType *T) {
Writer.AddTypeRef(QualType(T->getReplacedParameter(), 0), Record);
Writer.AddTemplateArgument(T->getArgumentPack(), Record);
Code = TYPE_SUBST_TEMPLATE_TYPE_PARM_PACK;
}
void
ASTTypeWriter::VisitTemplateSpecializationType(
const TemplateSpecializationType *T) {
Record.push_back(T->isDependentType());
Writer.AddTemplateName(T->getTemplateName(), Record);
Record.push_back(T->getNumArgs());
for (TemplateSpecializationType::iterator ArgI = T->begin(), ArgE = T->end();
ArgI != ArgE; ++ArgI)
Writer.AddTemplateArgument(*ArgI, Record);
Writer.AddTypeRef(T->isTypeAlias() ? T->getAliasedType() :
T->isCanonicalUnqualified() ? QualType()
: T->getCanonicalTypeInternal(),
Record);
Code = TYPE_TEMPLATE_SPECIALIZATION;
}
void
ASTTypeWriter::VisitDependentSizedArrayType(const DependentSizedArrayType *T) {
VisitArrayType(T);
Writer.AddStmt(T->getSizeExpr());
Writer.AddSourceRange(T->getBracketsRange(), Record);
Code = TYPE_DEPENDENT_SIZED_ARRAY;
}
void
ASTTypeWriter::VisitDependentSizedExtVectorType(
const DependentSizedExtVectorType *T) {
// FIXME: Serialize this type (C++ only)
llvm_unreachable("Cannot serialize dependent sized extended vector types");
}
void
ASTTypeWriter::VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
Record.push_back(T->getDepth());
Record.push_back(T->getIndex());
Record.push_back(T->isParameterPack());
Writer.AddDeclRef(T->getDecl(), Record);
Code = TYPE_TEMPLATE_TYPE_PARM;
}
void
ASTTypeWriter::VisitDependentNameType(const DependentNameType *T) {
Record.push_back(T->getKeyword());
Writer.AddNestedNameSpecifier(T->getQualifier(), Record);
Writer.AddIdentifierRef(T->getIdentifier(), Record);
Writer.AddTypeRef(T->isCanonicalUnqualified() ? QualType()
: T->getCanonicalTypeInternal(),
Record);
Code = TYPE_DEPENDENT_NAME;
}
void
ASTTypeWriter::VisitDependentTemplateSpecializationType(
const DependentTemplateSpecializationType *T) {
Record.push_back(T->getKeyword());
Writer.AddNestedNameSpecifier(T->getQualifier(), Record);
Writer.AddIdentifierRef(T->getIdentifier(), Record);
Record.push_back(T->getNumArgs());
for (DependentTemplateSpecializationType::iterator
I = T->begin(), E = T->end(); I != E; ++I)
Writer.AddTemplateArgument(*I, Record);
Code = TYPE_DEPENDENT_TEMPLATE_SPECIALIZATION;
}
void ASTTypeWriter::VisitPackExpansionType(const PackExpansionType *T) {
Writer.AddTypeRef(T->getPattern(), Record);
if (Optional<unsigned> NumExpansions = T->getNumExpansions())
Record.push_back(*NumExpansions + 1);
else
Record.push_back(0);
Code = TYPE_PACK_EXPANSION;
}
void ASTTypeWriter::VisitParenType(const ParenType *T) {
Writer.AddTypeRef(T->getInnerType(), Record);
Code = TYPE_PAREN;
}
void ASTTypeWriter::VisitElaboratedType(const ElaboratedType *T) {
Record.push_back(T->getKeyword());
Writer.AddNestedNameSpecifier(T->getQualifier(), Record);
Writer.AddTypeRef(T->getNamedType(), Record);
Code = TYPE_ELABORATED;
}
void ASTTypeWriter::VisitInjectedClassNameType(const InjectedClassNameType *T) {
Writer.AddDeclRef(T->getDecl()->getCanonicalDecl(), Record);
Writer.AddTypeRef(T->getInjectedSpecializationType(), Record);
Code = TYPE_INJECTED_CLASS_NAME;
}
void ASTTypeWriter::VisitObjCInterfaceType(const ObjCInterfaceType *T) {
Writer.AddDeclRef(T->getDecl()->getCanonicalDecl(), Record);
Code = TYPE_OBJC_INTERFACE;
}
void ASTTypeWriter::VisitObjCObjectType(const ObjCObjectType *T) {
Writer.AddTypeRef(T->getBaseType(), Record);
Record.push_back(T->getNumProtocols());
for (const auto *I : T->quals())
Writer.AddDeclRef(I, Record);
Code = TYPE_OBJC_OBJECT;
}
void
ASTTypeWriter::VisitObjCObjectPointerType(const ObjCObjectPointerType *T) {
Writer.AddTypeRef(T->getPointeeType(), Record);
Code = TYPE_OBJC_OBJECT_POINTER;
}
void
ASTTypeWriter::VisitAtomicType(const AtomicType *T) {
Writer.AddTypeRef(T->getValueType(), Record);
Code = TYPE_ATOMIC;
}
namespace {
class TypeLocWriter : public TypeLocVisitor<TypeLocWriter> {
ASTWriter &Writer;
ASTWriter::RecordDataImpl &Record;
public:
TypeLocWriter(ASTWriter &Writer, ASTWriter::RecordDataImpl &Record)
: Writer(Writer), Record(Record) { }
#define ABSTRACT_TYPELOC(CLASS, PARENT)
#define TYPELOC(CLASS, PARENT) \
void Visit##CLASS##TypeLoc(CLASS##TypeLoc TyLoc);
#include "clang/AST/TypeLocNodes.def"
void VisitArrayTypeLoc(ArrayTypeLoc TyLoc);
void VisitFunctionTypeLoc(FunctionTypeLoc TyLoc);
};
}
void TypeLocWriter::VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
// nothing to do
}
void TypeLocWriter::VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
Writer.AddSourceLocation(TL.getBuiltinLoc(), Record);
if (TL.needsExtraLocalData()) {
Record.push_back(TL.getWrittenTypeSpec());
Record.push_back(TL.getWrittenSignSpec());
Record.push_back(TL.getWrittenWidthSpec());
Record.push_back(TL.hasModeAttr());
}
}
void TypeLocWriter::VisitComplexTypeLoc(ComplexTypeLoc TL) {
Writer.AddSourceLocation(TL.getNameLoc(), Record);
}
void TypeLocWriter::VisitPointerTypeLoc(PointerTypeLoc TL) {
Writer.AddSourceLocation(TL.getStarLoc(), Record);
}
void TypeLocWriter::VisitDecayedTypeLoc(DecayedTypeLoc TL) {
// nothing to do
}
void TypeLocWriter::VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
// nothing to do
}
void TypeLocWriter::VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
Writer.AddSourceLocation(TL.getCaretLoc(), Record);
}
void TypeLocWriter::VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
Writer.AddSourceLocation(TL.getAmpLoc(), Record);
}
void TypeLocWriter::VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
Writer.AddSourceLocation(TL.getAmpAmpLoc(), Record);
}
void TypeLocWriter::VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
Writer.AddSourceLocation(TL.getStarLoc(), Record);
Writer.AddTypeSourceInfo(TL.getClassTInfo(), Record);
}
void TypeLocWriter::VisitArrayTypeLoc(ArrayTypeLoc TL) {
Writer.AddSourceLocation(TL.getLBracketLoc(), Record);
Writer.AddSourceLocation(TL.getRBracketLoc(), Record);
Record.push_back(TL.getSizeExpr() ? 1 : 0);
if (TL.getSizeExpr())
Writer.AddStmt(TL.getSizeExpr());
}
void TypeLocWriter::VisitConstantArrayTypeLoc(ConstantArrayTypeLoc TL) {
VisitArrayTypeLoc(TL);
}
void TypeLocWriter::VisitIncompleteArrayTypeLoc(IncompleteArrayTypeLoc TL) {
VisitArrayTypeLoc(TL);
}
void TypeLocWriter::VisitVariableArrayTypeLoc(VariableArrayTypeLoc TL) {
VisitArrayTypeLoc(TL);
}
void TypeLocWriter::VisitDependentSizedArrayTypeLoc(
DependentSizedArrayTypeLoc TL) {
VisitArrayTypeLoc(TL);
}
void TypeLocWriter::VisitDependentSizedExtVectorTypeLoc(
DependentSizedExtVectorTypeLoc TL) {
Writer.AddSourceLocation(TL.getNameLoc(), Record);
}
void TypeLocWriter::VisitVectorTypeLoc(VectorTypeLoc TL) {
Writer.AddSourceLocation(TL.getNameLoc(), Record);
}
void TypeLocWriter::VisitExtVectorTypeLoc(ExtVectorTypeLoc TL) {
Writer.AddSourceLocation(TL.getNameLoc(), Record);
}
void TypeLocWriter::VisitFunctionTypeLoc(FunctionTypeLoc TL) {
Writer.AddSourceLocation(TL.getLocalRangeBegin(), Record);
Writer.AddSourceLocation(TL.getLParenLoc(), Record);
Writer.AddSourceLocation(TL.getRParenLoc(), Record);
Writer.AddSourceLocation(TL.getLocalRangeEnd(), Record);
for (unsigned i = 0, e = TL.getNumParams(); i != e; ++i)
Writer.AddDeclRef(TL.getParam(i), Record);
}
void TypeLocWriter::VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc TL) {
VisitFunctionTypeLoc(TL);
}
void TypeLocWriter::VisitFunctionNoProtoTypeLoc(FunctionNoProtoTypeLoc TL) {
VisitFunctionTypeLoc(TL);
}
void TypeLocWriter::VisitUnresolvedUsingTypeLoc(UnresolvedUsingTypeLoc TL) {
Writer.AddSourceLocation(TL.getNameLoc(), Record);
}
void TypeLocWriter::VisitTypedefTypeLoc(TypedefTypeLoc TL) {
Writer.AddSourceLocation(TL.getNameLoc(), Record);
}
void TypeLocWriter::VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
Writer.AddSourceLocation(TL.getTypeofLoc(), Record);
Writer.AddSourceLocation(TL.getLParenLoc(), Record);
Writer.AddSourceLocation(TL.getRParenLoc(), Record);
}
void TypeLocWriter::VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
Writer.AddSourceLocation(TL.getTypeofLoc(), Record);
Writer.AddSourceLocation(TL.getLParenLoc(), Record);
Writer.AddSourceLocation(TL.getRParenLoc(), Record);
Writer.AddTypeSourceInfo(TL.getUnderlyingTInfo(), Record);
}
void TypeLocWriter::VisitDecltypeTypeLoc(DecltypeTypeLoc TL) {
Writer.AddSourceLocation(TL.getNameLoc(), Record);
}
void TypeLocWriter::VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
Writer.AddSourceLocation(TL.getKWLoc(), Record);
Writer.AddSourceLocation(TL.getLParenLoc(), Record);
Writer.AddSourceLocation(TL.getRParenLoc(), Record);
Writer.AddTypeSourceInfo(TL.getUnderlyingTInfo(), Record);
}
void TypeLocWriter::VisitAutoTypeLoc(AutoTypeLoc TL) {
Writer.AddSourceLocation(TL.getNameLoc(), Record);
}
void TypeLocWriter::VisitRecordTypeLoc(RecordTypeLoc TL) {
Writer.AddSourceLocation(TL.getNameLoc(), Record);
}
void TypeLocWriter::VisitEnumTypeLoc(EnumTypeLoc TL) {
Writer.AddSourceLocation(TL.getNameLoc(), Record);
}
void TypeLocWriter::VisitAttributedTypeLoc(AttributedTypeLoc TL) {
Writer.AddSourceLocation(TL.getAttrNameLoc(), Record);
if (TL.hasAttrOperand()) {
SourceRange range = TL.getAttrOperandParensRange();
Writer.AddSourceLocation(range.getBegin(), Record);
Writer.AddSourceLocation(range.getEnd(), Record);
}
if (TL.hasAttrExprOperand()) {
Expr *operand = TL.getAttrExprOperand();
Record.push_back(operand ? 1 : 0);
if (operand) Writer.AddStmt(operand);
} else if (TL.hasAttrEnumOperand()) {
Writer.AddSourceLocation(TL.getAttrEnumOperandLoc(), Record);
}
}
void TypeLocWriter::VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
Writer.AddSourceLocation(TL.getNameLoc(), Record);
}
void TypeLocWriter::VisitSubstTemplateTypeParmTypeLoc(
SubstTemplateTypeParmTypeLoc TL) {
Writer.AddSourceLocation(TL.getNameLoc(), Record);
}
void TypeLocWriter::VisitSubstTemplateTypeParmPackTypeLoc(
SubstTemplateTypeParmPackTypeLoc TL) {
Writer.AddSourceLocation(TL.getNameLoc(), Record);
}
void TypeLocWriter::VisitTemplateSpecializationTypeLoc(
TemplateSpecializationTypeLoc TL) {
Writer.AddSourceLocation(TL.getTemplateKeywordLoc(), Record);
Writer.AddSourceLocation(TL.getTemplateNameLoc(), Record);
Writer.AddSourceLocation(TL.getLAngleLoc(), Record);
Writer.AddSourceLocation(TL.getRAngleLoc(), Record);
for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
Writer.AddTemplateArgumentLocInfo(TL.getArgLoc(i).getArgument().getKind(),
TL.getArgLoc(i).getLocInfo(), Record);
}
void TypeLocWriter::VisitParenTypeLoc(ParenTypeLoc TL) {
Writer.AddSourceLocation(TL.getLParenLoc(), Record);
Writer.AddSourceLocation(TL.getRParenLoc(), Record);
}
void TypeLocWriter::VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
Writer.AddSourceLocation(TL.getElaboratedKeywordLoc(), Record);
Writer.AddNestedNameSpecifierLoc(TL.getQualifierLoc(), Record);
}
void TypeLocWriter::VisitInjectedClassNameTypeLoc(InjectedClassNameTypeLoc TL) {
Writer.AddSourceLocation(TL.getNameLoc(), Record);
}
void TypeLocWriter::VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
Writer.AddSourceLocation(TL.getElaboratedKeywordLoc(), Record);
Writer.AddNestedNameSpecifierLoc(TL.getQualifierLoc(), Record);
Writer.AddSourceLocation(TL.getNameLoc(), Record);
}
void TypeLocWriter::VisitDependentTemplateSpecializationTypeLoc(
DependentTemplateSpecializationTypeLoc TL) {
Writer.AddSourceLocation(TL.getElaboratedKeywordLoc(), Record);
Writer.AddNestedNameSpecifierLoc(TL.getQualifierLoc(), Record);
Writer.AddSourceLocation(TL.getTemplateKeywordLoc(), Record);
Writer.AddSourceLocation(TL.getTemplateNameLoc(), Record);
Writer.AddSourceLocation(TL.getLAngleLoc(), Record);
Writer.AddSourceLocation(TL.getRAngleLoc(), Record);
for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I)
Writer.AddTemplateArgumentLocInfo(TL.getArgLoc(I).getArgument().getKind(),
TL.getArgLoc(I).getLocInfo(), Record);
}
void TypeLocWriter::VisitPackExpansionTypeLoc(PackExpansionTypeLoc TL) {
Writer.AddSourceLocation(TL.getEllipsisLoc(), Record);
}
void TypeLocWriter::VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
Writer.AddSourceLocation(TL.getNameLoc(), Record);
}
void TypeLocWriter::VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
Record.push_back(TL.hasBaseTypeAsWritten());
Writer.AddSourceLocation(TL.getLAngleLoc(), Record);
Writer.AddSourceLocation(TL.getRAngleLoc(), Record);
for (unsigned i = 0, e = TL.getNumProtocols(); i != e; ++i)
Writer.AddSourceLocation(TL.getProtocolLoc(i), Record);
}
void TypeLocWriter::VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
Writer.AddSourceLocation(TL.getStarLoc(), Record);
}
void TypeLocWriter::VisitAtomicTypeLoc(AtomicTypeLoc TL) {
Writer.AddSourceLocation(TL.getKWLoc(), Record);
Writer.AddSourceLocation(TL.getLParenLoc(), Record);
Writer.AddSourceLocation(TL.getRParenLoc(), Record);
}
void ASTWriter::WriteTypeAbbrevs() {
using namespace llvm;
BitCodeAbbrev *Abv;
// Abbreviation for TYPE_EXT_QUAL
Abv = new BitCodeAbbrev();
Abv->Add(BitCodeAbbrevOp(serialization::TYPE_EXT_QUAL));
Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Type
Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 3)); // Quals
TypeExtQualAbbrev = Stream.EmitAbbrev(Abv);
// Abbreviation for TYPE_FUNCTION_PROTO
Abv = new BitCodeAbbrev();
Abv->Add(BitCodeAbbrevOp(serialization::TYPE_FUNCTION_PROTO));
// FunctionType
Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ReturnType
Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // NoReturn
Abv->Add(BitCodeAbbrevOp(0)); // HasRegParm
Abv->Add(BitCodeAbbrevOp(0)); // RegParm
Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // CC
Abv->Add(BitCodeAbbrevOp(0)); // ProducesResult
// FunctionProtoType
Abv->Add(BitCodeAbbrevOp(0)); // IsVariadic
Abv->Add(BitCodeAbbrevOp(0)); // HasTrailingReturn
Abv->Add(BitCodeAbbrevOp(0)); // TypeQuals
Abv->Add(BitCodeAbbrevOp(0)); // RefQualifier
Abv->Add(BitCodeAbbrevOp(EST_None)); // ExceptionSpec
Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // NumParams
Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Params
TypeFunctionProtoAbbrev = Stream.EmitAbbrev(Abv);
}
//===----------------------------------------------------------------------===//
// ASTWriter Implementation
//===----------------------------------------------------------------------===//
static void EmitBlockID(unsigned ID, const char *Name,
llvm::BitstreamWriter &Stream,
ASTWriter::RecordDataImpl &Record) {
Record.clear();
Record.push_back(ID);
Stream.EmitRecord(llvm::bitc::BLOCKINFO_CODE_SETBID, Record);
// Emit the block name if present.
if (!Name || Name[0] == 0)
return;
Record.clear();
while (*Name)
Record.push_back(*Name++);
Stream.EmitRecord(llvm::bitc::BLOCKINFO_CODE_BLOCKNAME, Record);
}
static void EmitRecordID(unsigned ID, const char *Name,
llvm::BitstreamWriter &Stream,
ASTWriter::RecordDataImpl &Record) {
Record.clear();
Record.push_back(ID);
while (*Name)
Record.push_back(*Name++);
Stream.EmitRecord(llvm::bitc::BLOCKINFO_CODE_SETRECORDNAME, Record);
}
static void AddStmtsExprs(llvm::BitstreamWriter &Stream,
ASTWriter::RecordDataImpl &Record) {
#define RECORD(X) EmitRecordID(X, #X, Stream, Record)
RECORD(STMT_STOP);
RECORD(STMT_NULL_PTR);
RECORD(STMT_REF_PTR);
RECORD(STMT_NULL);
RECORD(STMT_COMPOUND);
RECORD(STMT_CASE);
RECORD(STMT_DEFAULT);
RECORD(STMT_LABEL);
RECORD(STMT_ATTRIBUTED);
RECORD(STMT_IF);
RECORD(STMT_SWITCH);
RECORD(STMT_WHILE);
RECORD(STMT_DO);
RECORD(STMT_FOR);
RECORD(STMT_GOTO);
RECORD(STMT_INDIRECT_GOTO);
RECORD(STMT_CONTINUE);
RECORD(STMT_BREAK);
RECORD(STMT_RETURN);
RECORD(STMT_DECL);
RECORD(STMT_GCCASM);
RECORD(STMT_MSASM);
RECORD(EXPR_PREDEFINED);
RECORD(EXPR_DECL_REF);
RECORD(EXPR_INTEGER_LITERAL);
RECORD(EXPR_FLOATING_LITERAL);
RECORD(EXPR_IMAGINARY_LITERAL);
RECORD(EXPR_STRING_LITERAL);
RECORD(EXPR_CHARACTER_LITERAL);
RECORD(EXPR_PAREN);
RECORD(EXPR_PAREN_LIST);
RECORD(EXPR_UNARY_OPERATOR);
RECORD(EXPR_SIZEOF_ALIGN_OF);
RECORD(EXPR_ARRAY_SUBSCRIPT);
RECORD(EXPR_CALL);
RECORD(EXPR_MEMBER);
RECORD(EXPR_BINARY_OPERATOR);
RECORD(EXPR_COMPOUND_ASSIGN_OPERATOR);
RECORD(EXPR_CONDITIONAL_OPERATOR);
RECORD(EXPR_IMPLICIT_CAST);
RECORD(EXPR_CSTYLE_CAST);
RECORD(EXPR_COMPOUND_LITERAL);
RECORD(EXPR_EXT_VECTOR_ELEMENT);
RECORD(EXPR_INIT_LIST);
RECORD(EXPR_DESIGNATED_INIT);
RECORD(EXPR_IMPLICIT_VALUE_INIT);
RECORD(EXPR_VA_ARG);
RECORD(EXPR_ADDR_LABEL);
RECORD(EXPR_STMT);
RECORD(EXPR_CHOOSE);
RECORD(EXPR_GNU_NULL);
RECORD(EXPR_SHUFFLE_VECTOR);
RECORD(EXPR_BLOCK);
RECORD(EXPR_GENERIC_SELECTION);
RECORD(EXPR_OBJC_STRING_LITERAL);
RECORD(EXPR_OBJC_BOXED_EXPRESSION);
RECORD(EXPR_OBJC_ARRAY_LITERAL);
RECORD(EXPR_OBJC_DICTIONARY_LITERAL);
RECORD(EXPR_OBJC_ENCODE);
RECORD(EXPR_OBJC_SELECTOR_EXPR);
RECORD(EXPR_OBJC_PROTOCOL_EXPR);
RECORD(EXPR_OBJC_IVAR_REF_EXPR);
RECORD(EXPR_OBJC_PROPERTY_REF_EXPR);
RECORD(EXPR_OBJC_KVC_REF_EXPR);
RECORD(EXPR_OBJC_MESSAGE_EXPR);
RECORD(STMT_OBJC_FOR_COLLECTION);
RECORD(STMT_OBJC_CATCH);
RECORD(STMT_OBJC_FINALLY);
RECORD(STMT_OBJC_AT_TRY);
RECORD(STMT_OBJC_AT_SYNCHRONIZED);
RECORD(STMT_OBJC_AT_THROW);
RECORD(EXPR_OBJC_BOOL_LITERAL);
RECORD(STMT_CXX_CATCH);
RECORD(STMT_CXX_TRY);
RECORD(STMT_CXX_FOR_RANGE);
RECORD(EXPR_CXX_OPERATOR_CALL);
RECORD(EXPR_CXX_MEMBER_CALL);
RECORD(EXPR_CXX_CONSTRUCT);
RECORD(EXPR_CXX_TEMPORARY_OBJECT);
RECORD(EXPR_CXX_STATIC_CAST);
RECORD(EXPR_CXX_DYNAMIC_CAST);
RECORD(EXPR_CXX_REINTERPRET_CAST);
RECORD(EXPR_CXX_CONST_CAST);
RECORD(EXPR_CXX_FUNCTIONAL_CAST);
RECORD(EXPR_USER_DEFINED_LITERAL);
RECORD(EXPR_CXX_STD_INITIALIZER_LIST);
RECORD(EXPR_CXX_BOOL_LITERAL);
RECORD(EXPR_CXX_NULL_PTR_LITERAL);
RECORD(EXPR_CXX_TYPEID_EXPR);
RECORD(EXPR_CXX_TYPEID_TYPE);
RECORD(EXPR_CXX_THIS);
RECORD(EXPR_CXX_THROW);
RECORD(EXPR_CXX_DEFAULT_ARG);
RECORD(EXPR_CXX_DEFAULT_INIT);
RECORD(EXPR_CXX_BIND_TEMPORARY);
RECORD(EXPR_CXX_SCALAR_VALUE_INIT);
RECORD(EXPR_CXX_NEW);
RECORD(EXPR_CXX_DELETE);
RECORD(EXPR_CXX_PSEUDO_DESTRUCTOR);
RECORD(EXPR_EXPR_WITH_CLEANUPS);
RECORD(EXPR_CXX_DEPENDENT_SCOPE_MEMBER);
RECORD(EXPR_CXX_DEPENDENT_SCOPE_DECL_REF);
RECORD(EXPR_CXX_UNRESOLVED_CONSTRUCT);
RECORD(EXPR_CXX_UNRESOLVED_MEMBER);
RECORD(EXPR_CXX_UNRESOLVED_LOOKUP);
RECORD(EXPR_CXX_EXPRESSION_TRAIT);
RECORD(EXPR_CXX_NOEXCEPT);
RECORD(EXPR_OPAQUE_VALUE);
RECORD(EXPR_BINARY_CONDITIONAL_OPERATOR);
RECORD(EXPR_TYPE_TRAIT);
RECORD(EXPR_ARRAY_TYPE_TRAIT);
RECORD(EXPR_PACK_EXPANSION);
RECORD(EXPR_SIZEOF_PACK);
RECORD(EXPR_SUBST_NON_TYPE_TEMPLATE_PARM);
RECORD(EXPR_SUBST_NON_TYPE_TEMPLATE_PARM_PACK);
RECORD(EXPR_FUNCTION_PARM_PACK);
RECORD(EXPR_MATERIALIZE_TEMPORARY);
RECORD(EXPR_CUDA_KERNEL_CALL);
RECORD(EXPR_CXX_UUIDOF_EXPR);
RECORD(EXPR_CXX_UUIDOF_TYPE);
RECORD(EXPR_LAMBDA);
#undef RECORD
}
void ASTWriter::WriteBlockInfoBlock() {
RecordData Record;
Stream.EnterSubblock(llvm::bitc::BLOCKINFO_BLOCK_ID, 3);
#define BLOCK(X) EmitBlockID(X ## _ID, #X, Stream, Record)
#define RECORD(X) EmitRecordID(X, #X, Stream, Record)
// Control Block.
BLOCK(CONTROL_BLOCK);
RECORD(METADATA);
RECORD(SIGNATURE);
RECORD(MODULE_NAME);
RECORD(MODULE_MAP_FILE);
RECORD(IMPORTS);
RECORD(LANGUAGE_OPTIONS);
RECORD(TARGET_OPTIONS);
RECORD(ORIGINAL_FILE);
RECORD(ORIGINAL_PCH_DIR);
RECORD(ORIGINAL_FILE_ID);
RECORD(INPUT_FILE_OFFSETS);
RECORD(DIAGNOSTIC_OPTIONS);
RECORD(FILE_SYSTEM_OPTIONS);
RECORD(HEADER_SEARCH_OPTIONS);
RECORD(PREPROCESSOR_OPTIONS);
BLOCK(INPUT_FILES_BLOCK);
RECORD(INPUT_FILE);
// AST Top-Level Block.
BLOCK(AST_BLOCK);
RECORD(TYPE_OFFSET);
RECORD(DECL_OFFSET);
RECORD(IDENTIFIER_OFFSET);
RECORD(IDENTIFIER_TABLE);
RECORD(EAGERLY_DESERIALIZED_DECLS);
RECORD(SPECIAL_TYPES);
RECORD(STATISTICS);
RECORD(TENTATIVE_DEFINITIONS);
RECORD(UNUSED_FILESCOPED_DECLS);
RECORD(LOCALLY_SCOPED_EXTERN_C_DECLS);
RECORD(SELECTOR_OFFSETS);
RECORD(METHOD_POOL);
RECORD(PP_COUNTER_VALUE);
RECORD(SOURCE_LOCATION_OFFSETS);
RECORD(SOURCE_LOCATION_PRELOADS);
RECORD(EXT_VECTOR_DECLS);
RECORD(PPD_ENTITIES_OFFSETS);
RECORD(REFERENCED_SELECTOR_POOL);
RECORD(TU_UPDATE_LEXICAL);
RECORD(LOCAL_REDECLARATIONS_MAP);
RECORD(SEMA_DECL_REFS);
RECORD(WEAK_UNDECLARED_IDENTIFIERS);
RECORD(PENDING_IMPLICIT_INSTANTIATIONS);
RECORD(DECL_REPLACEMENTS);
RECORD(UPDATE_VISIBLE);
RECORD(DECL_UPDATE_OFFSETS);
RECORD(DECL_UPDATES);
RECORD(CXX_BASE_SPECIFIER_OFFSETS);
RECORD(DIAG_PRAGMA_MAPPINGS);
RECORD(CUDA_SPECIAL_DECL_REFS);
RECORD(HEADER_SEARCH_TABLE);
RECORD(FP_PRAGMA_OPTIONS);
RECORD(OPENCL_EXTENSIONS);
RECORD(DELEGATING_CTORS);
RECORD(KNOWN_NAMESPACES);
RECORD(UNDEFINED_BUT_USED);
RECORD(MODULE_OFFSET_MAP);
RECORD(SOURCE_MANAGER_LINE_TABLE);
RECORD(OBJC_CATEGORIES_MAP);
RECORD(FILE_SORTED_DECLS);
RECORD(IMPORTED_MODULES);
RECORD(MERGED_DECLARATIONS);
RECORD(LOCAL_REDECLARATIONS);
RECORD(OBJC_CATEGORIES);
RECORD(MACRO_OFFSET);
RECORD(MACRO_TABLE);
RECORD(LATE_PARSED_TEMPLATE);
RECORD(OPTIMIZE_PRAGMA_OPTIONS);
// SourceManager Block.
BLOCK(SOURCE_MANAGER_BLOCK);
RECORD(SM_SLOC_FILE_ENTRY);
RECORD(SM_SLOC_BUFFER_ENTRY);
RECORD(SM_SLOC_BUFFER_BLOB);
RECORD(SM_SLOC_EXPANSION_ENTRY);
// Preprocessor Block.
BLOCK(PREPROCESSOR_BLOCK);
RECORD(PP_MACRO_OBJECT_LIKE);
RECORD(PP_MACRO_FUNCTION_LIKE);
RECORD(PP_TOKEN);
// Decls and Types block.
BLOCK(DECLTYPES_BLOCK);
RECORD(TYPE_EXT_QUAL);
RECORD(TYPE_COMPLEX);
RECORD(TYPE_POINTER);
RECORD(TYPE_BLOCK_POINTER);
RECORD(TYPE_LVALUE_REFERENCE);
RECORD(TYPE_RVALUE_REFERENCE);
RECORD(TYPE_MEMBER_POINTER);
RECORD(TYPE_CONSTANT_ARRAY);
RECORD(TYPE_INCOMPLETE_ARRAY);
RECORD(TYPE_VARIABLE_ARRAY);
RECORD(TYPE_VECTOR);
RECORD(TYPE_EXT_VECTOR);
RECORD(TYPE_FUNCTION_NO_PROTO);
RECORD(TYPE_FUNCTION_PROTO);
RECORD(TYPE_TYPEDEF);
RECORD(TYPE_TYPEOF_EXPR);
RECORD(TYPE_TYPEOF);
RECORD(TYPE_RECORD);
RECORD(TYPE_ENUM);
RECORD(TYPE_OBJC_INTERFACE);
RECORD(TYPE_OBJC_OBJECT_POINTER);
RECORD(TYPE_DECLTYPE);
RECORD(TYPE_ELABORATED);
RECORD(TYPE_SUBST_TEMPLATE_TYPE_PARM);
RECORD(TYPE_UNRESOLVED_USING);
RECORD(TYPE_INJECTED_CLASS_NAME);
RECORD(TYPE_OBJC_OBJECT);
RECORD(TYPE_TEMPLATE_TYPE_PARM);
RECORD(TYPE_TEMPLATE_SPECIALIZATION);
RECORD(TYPE_DEPENDENT_NAME);
RECORD(TYPE_DEPENDENT_TEMPLATE_SPECIALIZATION);
RECORD(TYPE_DEPENDENT_SIZED_ARRAY);
RECORD(TYPE_PAREN);
RECORD(TYPE_PACK_EXPANSION);
RECORD(TYPE_ATTRIBUTED);
RECORD(TYPE_SUBST_TEMPLATE_TYPE_PARM_PACK);
RECORD(TYPE_AUTO);
RECORD(TYPE_UNARY_TRANSFORM);
RECORD(TYPE_ATOMIC);
RECORD(TYPE_DECAYED);
RECORD(TYPE_ADJUSTED);
RECORD(DECL_TYPEDEF);
RECORD(DECL_TYPEALIAS);
RECORD(DECL_ENUM);
RECORD(DECL_RECORD);
RECORD(DECL_ENUM_CONSTANT);
RECORD(DECL_FUNCTION);
RECORD(DECL_OBJC_METHOD);
RECORD(DECL_OBJC_INTERFACE);
RECORD(DECL_OBJC_PROTOCOL);
RECORD(DECL_OBJC_IVAR);
RECORD(DECL_OBJC_AT_DEFS_FIELD);
RECORD(DECL_OBJC_CATEGORY);
RECORD(DECL_OBJC_CATEGORY_IMPL);
RECORD(DECL_OBJC_IMPLEMENTATION);
RECORD(DECL_OBJC_COMPATIBLE_ALIAS);
RECORD(DECL_OBJC_PROPERTY);
RECORD(DECL_OBJC_PROPERTY_IMPL);
RECORD(DECL_FIELD);
RECORD(DECL_MS_PROPERTY);
RECORD(DECL_VAR);
RECORD(DECL_IMPLICIT_PARAM);
RECORD(DECL_PARM_VAR);
RECORD(DECL_FILE_SCOPE_ASM);
RECORD(DECL_BLOCK);
RECORD(DECL_CONTEXT_LEXICAL);
RECORD(DECL_CONTEXT_VISIBLE);
RECORD(DECL_NAMESPACE);
RECORD(DECL_NAMESPACE_ALIAS);
RECORD(DECL_USING);
RECORD(DECL_USING_SHADOW);
RECORD(DECL_USING_DIRECTIVE);
RECORD(DECL_UNRESOLVED_USING_VALUE);
RECORD(DECL_UNRESOLVED_USING_TYPENAME);
RECORD(DECL_LINKAGE_SPEC);
RECORD(DECL_CXX_RECORD);
RECORD(DECL_CXX_METHOD);
RECORD(DECL_CXX_CONSTRUCTOR);
RECORD(DECL_CXX_DESTRUCTOR);
RECORD(DECL_CXX_CONVERSION);
RECORD(DECL_ACCESS_SPEC);
RECORD(DECL_FRIEND);
RECORD(DECL_FRIEND_TEMPLATE);
RECORD(DECL_CLASS_TEMPLATE);
RECORD(DECL_CLASS_TEMPLATE_SPECIALIZATION);
RECORD(DECL_CLASS_TEMPLATE_PARTIAL_SPECIALIZATION);
RECORD(DECL_VAR_TEMPLATE);
RECORD(DECL_VAR_TEMPLATE_SPECIALIZATION);
RECORD(DECL_VAR_TEMPLATE_PARTIAL_SPECIALIZATION);
RECORD(DECL_FUNCTION_TEMPLATE);
RECORD(DECL_TEMPLATE_TYPE_PARM);
RECORD(DECL_NON_TYPE_TEMPLATE_PARM);
RECORD(DECL_TEMPLATE_TEMPLATE_PARM);
RECORD(DECL_STATIC_ASSERT);
RECORD(DECL_CXX_BASE_SPECIFIERS);
RECORD(DECL_INDIRECTFIELD);
RECORD(DECL_EXPANDED_NON_TYPE_TEMPLATE_PARM_PACK);
// Statements and Exprs can occur in the Decls and Types block.
AddStmtsExprs(Stream, Record);
BLOCK(PREPROCESSOR_DETAIL_BLOCK);
RECORD(PPD_MACRO_EXPANSION);
RECORD(PPD_MACRO_DEFINITION);
RECORD(PPD_INCLUSION_DIRECTIVE);
#undef RECORD
#undef BLOCK
Stream.ExitBlock();
}
/// \brief Prepares a path for being written to an AST file by converting it
/// to an absolute path and removing nested './'s.
///
/// \return \c true if the path was changed.
bool cleanPathForOutput(FileManager &FileMgr, SmallVectorImpl<char> &Path) {
bool Changed = false;
if (!llvm::sys::path::is_absolute(StringRef(Path.data(), Path.size()))) {
llvm::sys::fs::make_absolute(Path);
Changed = true;
}
return Changed | FileMgr.removeDotPaths(Path);
}
/// \brief Adjusts the given filename to only write out the portion of the
/// filename that is not part of the system root directory.
///
/// \param Filename the file name to adjust.
///
/// \param BaseDir When non-NULL, the PCH file is a relocatable AST file and
/// the returned filename will be adjusted by this root directory.
///
/// \returns either the original filename (if it needs no adjustment) or the
/// adjusted filename (which points into the @p Filename parameter).
static const char *
adjustFilenameForRelocatableAST(const char *Filename, StringRef BaseDir) {
assert(Filename && "No file name to adjust?");
if (BaseDir.empty())
return Filename;
// Verify that the filename and the system root have the same prefix.
unsigned Pos = 0;
for (; Filename[Pos] && Pos < BaseDir.size(); ++Pos)
if (Filename[Pos] != BaseDir[Pos])
return Filename; // Prefixes don't match.
// We hit the end of the filename before we hit the end of the system root.
if (!Filename[Pos])
return Filename;
// If there's not a path separator at the end of the base directory nor
// immediately after it, then this isn't within the base directory.
if (!llvm::sys::path::is_separator(Filename[Pos])) {
if (!llvm::sys::path::is_separator(BaseDir.back()))
return Filename;
} else {
// If the file name has a '/' at the current position, skip over the '/'.
// We distinguish relative paths from absolute paths by the
// absence of '/' at the beginning of relative paths.
//
// FIXME: This is wrong. We distinguish them by asking if the path is
// absolute, which isn't the same thing. And there might be multiple '/'s
// in a row. Use a better mechanism to indicate whether we have emitted an
// absolute or relative path.
++Pos;
}
return Filename + Pos;
}
static ASTFileSignature getSignature() {
while (1) {
if (ASTFileSignature S = llvm::sys::Process::GetRandomNumber())
return S;
// Rely on GetRandomNumber to eventually return non-zero...
}
}
/// \brief Write the control block.
void ASTWriter::WriteControlBlock(Preprocessor &PP, ASTContext &Context,
StringRef isysroot,
const std::string &OutputFile) {
using namespace llvm;
Stream.EnterSubblock(CONTROL_BLOCK_ID, 5);
RecordData Record;
// Metadata
BitCodeAbbrev *MetadataAbbrev = new BitCodeAbbrev();
MetadataAbbrev->Add(BitCodeAbbrevOp(METADATA));
MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // Major
MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // Minor
MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // Clang maj.
MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // Clang min.
MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Relocatable
MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Errors
MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // SVN branch/tag
unsigned MetadataAbbrevCode = Stream.EmitAbbrev(MetadataAbbrev);
Record.push_back(METADATA);
Record.push_back(VERSION_MAJOR);
Record.push_back(VERSION_MINOR);
Record.push_back(CLANG_VERSION_MAJOR);
Record.push_back(CLANG_VERSION_MINOR);
assert((!WritingModule || isysroot.empty()) &&
"writing module as a relocatable PCH?");
Record.push_back(!isysroot.empty());
Record.push_back(ASTHasCompilerErrors);
Stream.EmitRecordWithBlob(MetadataAbbrevCode, Record,
getClangFullRepositoryVersion());
// Signature
Record.clear();
Record.push_back(getSignature());
Stream.EmitRecord(SIGNATURE, Record);
if (WritingModule) {
// Module name
BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(MODULE_NAME));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
unsigned AbbrevCode = Stream.EmitAbbrev(Abbrev);
RecordData Record;
Record.push_back(MODULE_NAME);
Stream.EmitRecordWithBlob(AbbrevCode, Record, WritingModule->Name);
}
if (WritingModule && WritingModule->Directory) {
// Module directory.
BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(MODULE_DIRECTORY));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Directory
unsigned AbbrevCode = Stream.EmitAbbrev(Abbrev);
RecordData Record;
Record.push_back(MODULE_DIRECTORY);
SmallString<128> BaseDir(WritingModule->Directory->getName());
cleanPathForOutput(Context.getSourceManager().getFileManager(), BaseDir);
Stream.EmitRecordWithBlob(AbbrevCode, Record, BaseDir);
// Write out all other paths relative to the base directory if possible.
BaseDirectory.assign(BaseDir.begin(), BaseDir.end());
} else if (!isysroot.empty()) {
// Write out paths relative to the sysroot if possible.
BaseDirectory = isysroot;
}
// Module map file
if (WritingModule) {
Record.clear();
auto &Map = PP.getHeaderSearchInfo().getModuleMap();
// Primary module map file.
AddPath(Map.getModuleMapFileForUniquing(WritingModule)->getName(), Record);
// Additional module map files.
if (auto *AdditionalModMaps =
Map.getAdditionalModuleMapFiles(WritingModule)) {
Record.push_back(AdditionalModMaps->size());
for (const FileEntry *F : *AdditionalModMaps)
AddPath(F->getName(), Record);
} else {
Record.push_back(0);
}
Stream.EmitRecord(MODULE_MAP_FILE, Record);
}
// Imports
if (Chain) {
serialization::ModuleManager &Mgr = Chain->getModuleManager();
Record.clear();
for (ModuleManager::ModuleIterator M = Mgr.begin(), MEnd = Mgr.end();
M != MEnd; ++M) {
// Skip modules that weren't directly imported.
if (!(*M)->isDirectlyImported())
continue;
Record.push_back((unsigned)(*M)->Kind); // FIXME: Stable encoding
AddSourceLocation((*M)->ImportLoc, Record);
Record.push_back((*M)->File->getSize());
Record.push_back((*M)->File->getModificationTime());
Record.push_back((*M)->Signature);
AddPath((*M)->FileName, Record);
}
Stream.EmitRecord(IMPORTS, Record);
}
// Language options.
Record.clear();
const LangOptions &LangOpts = Context.getLangOpts();
#define LANGOPT(Name, Bits, Default, Description) \
Record.push_back(LangOpts.Name);
#define ENUM_LANGOPT(Name, Type, Bits, Default, Description) \
Record.push_back(static_cast<unsigned>(LangOpts.get##Name()));
#include "clang/Basic/LangOptions.def"
#define SANITIZER(NAME, ID) \
Record.push_back(LangOpts.Sanitize.has(SanitizerKind::ID));
#include "clang/Basic/Sanitizers.def"
Record.push_back((unsigned) LangOpts.ObjCRuntime.getKind());
AddVersionTuple(LangOpts.ObjCRuntime.getVersion(), Record);
Record.push_back(LangOpts.CurrentModule.size());
Record.append(LangOpts.CurrentModule.begin(), LangOpts.CurrentModule.end());
// Comment options.
Record.push_back(LangOpts.CommentOpts.BlockCommandNames.size());
for (CommentOptions::BlockCommandNamesTy::const_iterator
I = LangOpts.CommentOpts.BlockCommandNames.begin(),
IEnd = LangOpts.CommentOpts.BlockCommandNames.end();
I != IEnd; ++I) {
AddString(*I, Record);
}
Record.push_back(LangOpts.CommentOpts.ParseAllComments);
Stream.EmitRecord(LANGUAGE_OPTIONS, Record);
// Target options.
Record.clear();
const TargetInfo &Target = Context.getTargetInfo();
const TargetOptions &TargetOpts = Target.getTargetOpts();
AddString(TargetOpts.Triple, Record);
AddString(TargetOpts.CPU, Record);
AddString(TargetOpts.ABI, Record);
Record.push_back(TargetOpts.FeaturesAsWritten.size());
for (unsigned I = 0, N = TargetOpts.FeaturesAsWritten.size(); I != N; ++I) {
AddString(TargetOpts.FeaturesAsWritten[I], Record);
}
Record.push_back(TargetOpts.Features.size());
for (unsigned I = 0, N = TargetOpts.Features.size(); I != N; ++I) {
AddString(TargetOpts.Features[I], Record);
}
Stream.EmitRecord(TARGET_OPTIONS, Record);
// Diagnostic options.
Record.clear();
const DiagnosticOptions &DiagOpts
= Context.getDiagnostics().getDiagnosticOptions();
#define DIAGOPT(Name, Bits, Default) Record.push_back(DiagOpts.Name);
#define ENUM_DIAGOPT(Name, Type, Bits, Default) \
Record.push_back(static_cast<unsigned>(DiagOpts.get##Name()));
#include "clang/Basic/DiagnosticOptions.def"
Record.push_back(DiagOpts.Warnings.size());
for (unsigned I = 0, N = DiagOpts.Warnings.size(); I != N; ++I)
AddString(DiagOpts.Warnings[I], Record);
Record.push_back(DiagOpts.Remarks.size());
for (unsigned I = 0, N = DiagOpts.Remarks.size(); I != N; ++I)
AddString(DiagOpts.Remarks[I], Record);
// Note: we don't serialize the log or serialization file names, because they
// are generally transient files and will almost always be overridden.
Stream.EmitRecord(DIAGNOSTIC_OPTIONS, Record);
// File system options.
Record.clear();
const FileSystemOptions &FSOpts
= Context.getSourceManager().getFileManager().getFileSystemOptions();
AddString(FSOpts.WorkingDir, Record);
Stream.EmitRecord(FILE_SYSTEM_OPTIONS, Record);
// Header search options.
Record.clear();
const HeaderSearchOptions &HSOpts
= PP.getHeaderSearchInfo().getHeaderSearchOpts();
AddString(HSOpts.Sysroot, Record);
// Include entries.
Record.push_back(HSOpts.UserEntries.size());
for (unsigned I = 0, N = HSOpts.UserEntries.size(); I != N; ++I) {
const HeaderSearchOptions::Entry &Entry = HSOpts.UserEntries[I];
AddString(Entry.Path, Record);
Record.push_back(static_cast<unsigned>(Entry.Group));
Record.push_back(Entry.IsFramework);
Record.push_back(Entry.IgnoreSysRoot);
}
// System header prefixes.
Record.push_back(HSOpts.SystemHeaderPrefixes.size());
for (unsigned I = 0, N = HSOpts.SystemHeaderPrefixes.size(); I != N; ++I) {
AddString(HSOpts.SystemHeaderPrefixes[I].Prefix, Record);
Record.push_back(HSOpts.SystemHeaderPrefixes[I].IsSystemHeader);
}
AddString(HSOpts.ResourceDir, Record);
AddString(HSOpts.ModuleCachePath, Record);
AddString(HSOpts.ModuleUserBuildPath, Record);
Record.push_back(HSOpts.DisableModuleHash);
Record.push_back(HSOpts.UseBuiltinIncludes);
Record.push_back(HSOpts.UseStandardSystemIncludes);
Record.push_back(HSOpts.UseStandardCXXIncludes);
Record.push_back(HSOpts.UseLibcxx);
Stream.EmitRecord(HEADER_SEARCH_OPTIONS, Record);
// Preprocessor options.
Record.clear();
const PreprocessorOptions &PPOpts = PP.getPreprocessorOpts();
// Macro definitions.
Record.push_back(PPOpts.Macros.size());
for (unsigned I = 0, N = PPOpts.Macros.size(); I != N; ++I) {
AddString(PPOpts.Macros[I].first, Record);
Record.push_back(PPOpts.Macros[I].second);
}
// Includes
Record.push_back(PPOpts.Includes.size());
for (unsigned I = 0, N = PPOpts.Includes.size(); I != N; ++I)
AddString(PPOpts.Includes[I], Record);
// Macro includes
Record.push_back(PPOpts.MacroIncludes.size());
for (unsigned I = 0, N = PPOpts.MacroIncludes.size(); I != N; ++I)
AddString(PPOpts.MacroIncludes[I], Record);
Record.push_back(PPOpts.UsePredefines);
// Detailed record is important since it is used for the module cache hash.
Record.push_back(PPOpts.DetailedRecord);
AddString(PPOpts.ImplicitPCHInclude, Record);
AddString(PPOpts.ImplicitPTHInclude, Record);
Record.push_back(static_cast<unsigned>(PPOpts.ObjCXXARCStandardLibrary));
Stream.EmitRecord(PREPROCESSOR_OPTIONS, Record);
// Original file name and file ID
SourceManager &SM = Context.getSourceManager();
if (const FileEntry *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
BitCodeAbbrev *FileAbbrev = new BitCodeAbbrev();
FileAbbrev->Add(BitCodeAbbrevOp(ORIGINAL_FILE));
FileAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // File ID
FileAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // File name
unsigned FileAbbrevCode = Stream.EmitAbbrev(FileAbbrev);
Record.clear();
Record.push_back(ORIGINAL_FILE);
Record.push_back(SM.getMainFileID().getOpaqueValue());
EmitRecordWithPath(FileAbbrevCode, Record, MainFile->getName());
}
Record.clear();
Record.push_back(SM.getMainFileID().getOpaqueValue());
Stream.EmitRecord(ORIGINAL_FILE_ID, Record);
// Original PCH directory
if (!OutputFile.empty() && OutputFile != "-") {
BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(ORIGINAL_PCH_DIR));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // File name
unsigned AbbrevCode = Stream.EmitAbbrev(Abbrev);
SmallString<128> OutputPath(OutputFile);
llvm::sys::fs::make_absolute(OutputPath);
StringRef origDir = llvm::sys::path::parent_path(OutputPath);
RecordData Record;
Record.push_back(ORIGINAL_PCH_DIR);
Stream.EmitRecordWithBlob(AbbrevCode, Record, origDir);
}
WriteInputFiles(Context.SourceMgr,
PP.getHeaderSearchInfo().getHeaderSearchOpts(),
PP.getLangOpts().Modules);
Stream.ExitBlock();
}
namespace {
/// \brief An input file.
struct InputFileEntry {
const FileEntry *File;
bool IsSystemFile;
bool BufferOverridden;
};
}
void ASTWriter::WriteInputFiles(SourceManager &SourceMgr,
HeaderSearchOptions &HSOpts,
bool Modules) {
using namespace llvm;
Stream.EnterSubblock(INPUT_FILES_BLOCK_ID, 4);
RecordData Record;
// Create input-file abbreviation.
BitCodeAbbrev *IFAbbrev = new BitCodeAbbrev();
IFAbbrev->Add(BitCodeAbbrevOp(INPUT_FILE));
IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ID
IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 12)); // Size
IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 32)); // Modification time
IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Overridden
IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // File name
unsigned IFAbbrevCode = Stream.EmitAbbrev(IFAbbrev);
// Get all ContentCache objects for files, sorted by whether the file is a
// system one or not. System files go at the back, users files at the front.
std::deque<InputFileEntry> SortedFiles;
for (unsigned I = 1, N = SourceMgr.local_sloc_entry_size(); I != N; ++I) {
// Get this source location entry.
const SrcMgr::SLocEntry *SLoc = &SourceMgr.getLocalSLocEntry(I);
assert(&SourceMgr.getSLocEntry(FileID::get(I)) == SLoc);
// We only care about file entries that were not overridden.
if (!SLoc->isFile())
continue;
const SrcMgr::ContentCache *Cache = SLoc->getFile().getContentCache();
if (!Cache->OrigEntry)
continue;
InputFileEntry Entry;
Entry.File = Cache->OrigEntry;
Entry.IsSystemFile = Cache->IsSystemFile;
Entry.BufferOverridden = Cache->BufferOverridden;
if (Cache->IsSystemFile)
SortedFiles.push_back(Entry);
else
SortedFiles.push_front(Entry);
}
unsigned UserFilesNum = 0;
// Write out all of the input files.
std::vector<uint32_t> InputFileOffsets;
for (std::deque<InputFileEntry>::iterator
I = SortedFiles.begin(), E = SortedFiles.end(); I != E; ++I) {
const InputFileEntry &Entry = *I;
uint32_t &InputFileID = InputFileIDs[Entry.File];
if (InputFileID != 0)
continue; // already recorded this file.
// Record this entry's offset.
InputFileOffsets.push_back(Stream.GetCurrentBitNo());
InputFileID = InputFileOffsets.size();
if (!Entry.IsSystemFile)
++UserFilesNum;
Record.clear();
Record.push_back(INPUT_FILE);
Record.push_back(InputFileOffsets.size());
// Emit size/modification time for this file.
Record.push_back(Entry.File->getSize());
Record.push_back(Entry.File->getModificationTime());
// Whether this file was overridden.
Record.push_back(Entry.BufferOverridden);
EmitRecordWithPath(IFAbbrevCode, Record, Entry.File->getName());
}
Stream.ExitBlock();
// Create input file offsets abbreviation.
BitCodeAbbrev *OffsetsAbbrev = new BitCodeAbbrev();
OffsetsAbbrev->Add(BitCodeAbbrevOp(INPUT_FILE_OFFSETS));
OffsetsAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # input files
OffsetsAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # non-system
// input files
OffsetsAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Array
unsigned OffsetsAbbrevCode = Stream.EmitAbbrev(OffsetsAbbrev);
// Write input file offsets.
Record.clear();
Record.push_back(INPUT_FILE_OFFSETS);
Record.push_back(InputFileOffsets.size());
Record.push_back(UserFilesNum);
Stream.EmitRecordWithBlob(OffsetsAbbrevCode, Record, data(InputFileOffsets));
}
//===----------------------------------------------------------------------===//
// Source Manager Serialization
//===----------------------------------------------------------------------===//
/// \brief Create an abbreviation for the SLocEntry that refers to a
/// file.
static unsigned CreateSLocFileAbbrev(llvm::BitstreamWriter &Stream) {
using namespace llvm;
BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(SM_SLOC_FILE_ENTRY));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Offset
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Include location
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2)); // Characteristic
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Line directives
// FileEntry fields.
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Input File ID
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // NumCreatedFIDs
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 24)); // FirstDeclIndex
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // NumDecls
return Stream.EmitAbbrev(Abbrev);
}
/// \brief Create an abbreviation for the SLocEntry that refers to a
/// buffer.
static unsigned CreateSLocBufferAbbrev(llvm::BitstreamWriter &Stream) {
using namespace llvm;
BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(SM_SLOC_BUFFER_ENTRY));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Offset
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Include location
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2)); // Characteristic
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Line directives
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Buffer name blob
return Stream.EmitAbbrev(Abbrev);
}
/// \brief Create an abbreviation for the SLocEntry that refers to a
/// buffer's blob.
static unsigned CreateSLocBufferBlobAbbrev(llvm::BitstreamWriter &Stream) {
using namespace llvm;
BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(SM_SLOC_BUFFER_BLOB));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Blob
return Stream.EmitAbbrev(Abbrev);
}
/// \brief Create an abbreviation for the SLocEntry that refers to a macro
/// expansion.
static unsigned CreateSLocExpansionAbbrev(llvm::BitstreamWriter &Stream) {
using namespace llvm;
BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(SM_SLOC_EXPANSION_ENTRY));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Offset
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Spelling location
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Start location
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // End location
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Token length
return Stream.EmitAbbrev(Abbrev);
}
namespace {
// Trait used for the on-disk hash table of header search information.
class HeaderFileInfoTrait {
ASTWriter &Writer;
const HeaderSearch &HS;
// Keep track of the framework names we've used during serialization.
SmallVector<char, 128> FrameworkStringData;
llvm::StringMap<unsigned> FrameworkNameOffset;
public:
HeaderFileInfoTrait(ASTWriter &Writer, const HeaderSearch &HS)
: Writer(Writer), HS(HS) { }
struct key_type {
const FileEntry *FE;
const char *Filename;
};
typedef const key_type &key_type_ref;
typedef HeaderFileInfo data_type;
typedef const data_type &data_type_ref;
typedef unsigned hash_value_type;
typedef unsigned offset_type;
static hash_value_type ComputeHash(key_type_ref key) {
// The hash is based only on size/time of the file, so that the reader can
// match even when symlinking or excess path elements ("foo/../", "../")
// change the form of the name. However, complete path is still the key.
//
// FIXME: Using the mtime here will cause problems for explicit module
// imports.
return llvm::hash_combine(key.FE->getSize(),
key.FE->getModificationTime());
}
std::pair<unsigned,unsigned>
EmitKeyDataLength(raw_ostream& Out, key_type_ref key, data_type_ref Data) {
using namespace llvm::support;
endian::Writer<little> Writer(Out);
unsigned KeyLen = strlen(key.Filename) + 1 + 8 + 8;
Writer.write<uint16_t>(KeyLen);
unsigned DataLen = 1 + 2 + 4 + 4;
if (Data.isModuleHeader)
DataLen += 4;
Writer.write<uint8_t>(DataLen);
return std::make_pair(KeyLen, DataLen);
}
void EmitKey(raw_ostream& Out, key_type_ref key, unsigned KeyLen) {
using namespace llvm::support;
endian::Writer<little> LE(Out);
LE.write<uint64_t>(key.FE->getSize());
KeyLen -= 8;
LE.write<uint64_t>(key.FE->getModificationTime());
KeyLen -= 8;
Out.write(key.Filename, KeyLen);
}
void EmitData(raw_ostream &Out, key_type_ref key,
data_type_ref Data, unsigned DataLen) {
using namespace llvm::support;
endian::Writer<little> LE(Out);
uint64_t Start = Out.tell(); (void)Start;
unsigned char Flags = (Data.HeaderRole << 6)
| (Data.isImport << 5)
| (Data.isPragmaOnce << 4)
| (Data.DirInfo << 2)
| (Data.Resolved << 1)
| Data.IndexHeaderMapHeader;
LE.write<uint8_t>(Flags);
LE.write<uint16_t>(Data.NumIncludes);
if (!Data.ControllingMacro)
LE.write<uint32_t>(Data.ControllingMacroID);
else
LE.write<uint32_t>(Writer.getIdentifierRef(Data.ControllingMacro));
unsigned Offset = 0;
if (!Data.Framework.empty()) {
// If this header refers into a framework, save the framework name.
llvm::StringMap<unsigned>::iterator Pos
= FrameworkNameOffset.find(Data.Framework);
if (Pos == FrameworkNameOffset.end()) {
Offset = FrameworkStringData.size() + 1;
FrameworkStringData.append(Data.Framework.begin(),
Data.Framework.end());
FrameworkStringData.push_back(0);
FrameworkNameOffset[Data.Framework] = Offset;
} else
Offset = Pos->second;
}
LE.write<uint32_t>(Offset);
if (Data.isModuleHeader) {
Module *Mod = HS.findModuleForHeader(key.FE).getModule();
LE.write<uint32_t>(Writer.getExistingSubmoduleID(Mod));
}
assert(Out.tell() - Start == DataLen && "Wrong data length");
}
const char *strings_begin() const { return FrameworkStringData.begin(); }
const char *strings_end() const { return FrameworkStringData.end(); }
};
} // end anonymous namespace
/// \brief Write the header search block for the list of files that
///
/// \param HS The header search structure to save.
void ASTWriter::WriteHeaderSearch(const HeaderSearch &HS) {
SmallVector<const FileEntry *, 16> FilesByUID;
HS.getFileMgr().GetUniqueIDMapping(FilesByUID);
if (FilesByUID.size() > HS.header_file_size())
FilesByUID.resize(HS.header_file_size());
HeaderFileInfoTrait GeneratorTrait(*this, HS);
llvm::OnDiskChainedHashTableGenerator<HeaderFileInfoTrait> Generator;
SmallVector<const char *, 4> SavedStrings;
unsigned NumHeaderSearchEntries = 0;
for (unsigned UID = 0, LastUID = FilesByUID.size(); UID != LastUID; ++UID) {
const FileEntry *File = FilesByUID[UID];
if (!File)
continue;
// Use HeaderSearch's getFileInfo to make sure we get the HeaderFileInfo
// from the external source if it was not provided already.
HeaderFileInfo HFI;
if (!HS.tryGetFileInfo(File, HFI) ||
(HFI.External && Chain) ||
(HFI.isModuleHeader && !HFI.isCompilingModuleHeader))
continue;
// Massage the file path into an appropriate form.
const char *Filename = File->getName();
SmallString<128> FilenameTmp(Filename);
if (PreparePathForOutput(FilenameTmp)) {
// If we performed any translation on the file name at all, we need to
// save this string, since the generator will refer to it later.
Filename = strdup(FilenameTmp.c_str());
SavedStrings.push_back(Filename);
}
HeaderFileInfoTrait::key_type key = { File, Filename };
Generator.insert(key, HFI, GeneratorTrait);
++NumHeaderSearchEntries;
}
// Create the on-disk hash table in a buffer.
SmallString<4096> TableData;
uint32_t BucketOffset;
{
using namespace llvm::support;
llvm::raw_svector_ostream Out(TableData);
// Make sure that no bucket is at offset 0
endian::Writer<little>(Out).write<uint32_t>(0);
BucketOffset = Generator.Emit(Out, GeneratorTrait);
}
// Create a blob abbreviation
using namespace llvm;
BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(HEADER_SEARCH_TABLE));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
unsigned TableAbbrev = Stream.EmitAbbrev(Abbrev);
// Write the header search table
RecordData Record;
Record.push_back(HEADER_SEARCH_TABLE);
Record.push_back(BucketOffset);
Record.push_back(NumHeaderSearchEntries);
Record.push_back(TableData.size());
TableData.append(GeneratorTrait.strings_begin(),GeneratorTrait.strings_end());
Stream.EmitRecordWithBlob(TableAbbrev, Record, TableData.str());
// Free all of the strings we had to duplicate.
for (unsigned I = 0, N = SavedStrings.size(); I != N; ++I)
free(const_cast<char *>(SavedStrings[I]));
}
/// \brief Writes the block containing the serialized form of the
/// source manager.
///
/// TODO: We should probably use an on-disk hash table (stored in a
/// blob), indexed based on the file name, so that we only create
/// entries for files that we actually need. In the common case (no
/// errors), we probably won't have to create file entries for any of
/// the files in the AST.
void ASTWriter::WriteSourceManagerBlock(SourceManager &SourceMgr,
const Preprocessor &PP) {
RecordData Record;
// Enter the source manager block.
Stream.EnterSubblock(SOURCE_MANAGER_BLOCK_ID, 3);
// Abbreviations for the various kinds of source-location entries.
unsigned SLocFileAbbrv = CreateSLocFileAbbrev(Stream);
unsigned SLocBufferAbbrv = CreateSLocBufferAbbrev(Stream);
unsigned SLocBufferBlobAbbrv = CreateSLocBufferBlobAbbrev(Stream);
unsigned SLocExpansionAbbrv = CreateSLocExpansionAbbrev(Stream);
// Write out the source location entry table. We skip the first
// entry, which is always the same dummy entry.
std::vector<uint32_t> SLocEntryOffsets;
RecordData PreloadSLocs;
SLocEntryOffsets.reserve(SourceMgr.local_sloc_entry_size() - 1);
for (unsigned I = 1, N = SourceMgr.local_sloc_entry_size();
I != N; ++I) {
// Get this source location entry.
const SrcMgr::SLocEntry *SLoc = &SourceMgr.getLocalSLocEntry(I);
FileID FID = FileID::get(I);
assert(&SourceMgr.getSLocEntry(FID) == SLoc);
// Record the offset of this source-location entry.
SLocEntryOffsets.push_back(Stream.GetCurrentBitNo());
// Figure out which record code to use.
unsigned Code;
if (SLoc->isFile()) {
const SrcMgr::ContentCache *Cache = SLoc->getFile().getContentCache();
if (Cache->OrigEntry) {
Code = SM_SLOC_FILE_ENTRY;
} else
Code = SM_SLOC_BUFFER_ENTRY;
} else
Code = SM_SLOC_EXPANSION_ENTRY;
Record.clear();
Record.push_back(Code);
// Starting offset of this entry within this module, so skip the dummy.
Record.push_back(SLoc->getOffset() - 2);
if (SLoc->isFile()) {
const SrcMgr::FileInfo &File = SLoc->getFile();
Record.push_back(File.getIncludeLoc().getRawEncoding());
Record.push_back(File.getFileCharacteristic()); // FIXME: stable encoding
Record.push_back(File.hasLineDirectives());
const SrcMgr::ContentCache *Content = File.getContentCache();
if (Content->OrigEntry) {
assert(Content->OrigEntry == Content->ContentsEntry &&
"Writing to AST an overridden file is not supported");
// The source location entry is a file. Emit input file ID.
assert(InputFileIDs[Content->OrigEntry] != 0 && "Missed file entry");
Record.push_back(InputFileIDs[Content->OrigEntry]);
Record.push_back(File.NumCreatedFIDs);
FileDeclIDsTy::iterator FDI = FileDeclIDs.find(FID);
if (FDI != FileDeclIDs.end()) {
Record.push_back(FDI->second->FirstDeclIndex);
Record.push_back(FDI->second->DeclIDs.size());
} else {
Record.push_back(0);
Record.push_back(0);
}
Stream.EmitRecordWithAbbrev(SLocFileAbbrv, Record);
if (Content->BufferOverridden) {
Record.clear();
Record.push_back(SM_SLOC_BUFFER_BLOB);
const llvm::MemoryBuffer *Buffer
= Content->getBuffer(PP.getDiagnostics(), PP.getSourceManager());
Stream.EmitRecordWithBlob(SLocBufferBlobAbbrv, Record,
StringRef(Buffer->getBufferStart(),
Buffer->getBufferSize() + 1));
}
} else {
// The source location entry is a buffer. The blob associated
// with this entry contains the contents of the buffer.
// We add one to the size so that we capture the trailing NULL
// that is required by llvm::MemoryBuffer::getMemBuffer (on
// the reader side).
const llvm::MemoryBuffer *Buffer
= Content->getBuffer(PP.getDiagnostics(), PP.getSourceManager());
const char *Name = Buffer->getBufferIdentifier();
Stream.EmitRecordWithBlob(SLocBufferAbbrv, Record,
StringRef(Name, strlen(Name) + 1));
Record.clear();
Record.push_back(SM_SLOC_BUFFER_BLOB);
Stream.EmitRecordWithBlob(SLocBufferBlobAbbrv, Record,
StringRef(Buffer->getBufferStart(),
Buffer->getBufferSize() + 1));
if (strcmp(Name, "<built-in>") == 0) {
PreloadSLocs.push_back(SLocEntryOffsets.size());
}
}
} else {
// The source location entry is a macro expansion.
const SrcMgr::ExpansionInfo &Expansion = SLoc->getExpansion();
Record.push_back(Expansion.getSpellingLoc().getRawEncoding());
Record.push_back(Expansion.getExpansionLocStart().getRawEncoding());
Record.push_back(Expansion.isMacroArgExpansion() ? 0
: Expansion.getExpansionLocEnd().getRawEncoding());
// Compute the token length for this macro expansion.
unsigned NextOffset = SourceMgr.getNextLocalOffset();
if (I + 1 != N)
NextOffset = SourceMgr.getLocalSLocEntry(I + 1).getOffset();
Record.push_back(NextOffset - SLoc->getOffset() - 1);
Stream.EmitRecordWithAbbrev(SLocExpansionAbbrv, Record);
}
}
Stream.ExitBlock();
if (SLocEntryOffsets.empty())
return;
// Write the source-location offsets table into the AST block. This
// table is used for lazily loading source-location information.
using namespace llvm;
BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(SOURCE_LOCATION_OFFSETS));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 16)); // # of slocs
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 16)); // total size
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // offsets
unsigned SLocOffsetsAbbrev = Stream.EmitAbbrev(Abbrev);
Record.clear();
Record.push_back(SOURCE_LOCATION_OFFSETS);
Record.push_back(SLocEntryOffsets.size());
Record.push_back(SourceMgr.getNextLocalOffset() - 1); // skip dummy
Stream.EmitRecordWithBlob(SLocOffsetsAbbrev, Record, data(SLocEntryOffsets));
// Write the source location entry preloads array, telling the AST
// reader which source locations entries it should load eagerly.
Stream.EmitRecord(SOURCE_LOCATION_PRELOADS, PreloadSLocs);
// Write the line table. It depends on remapping working, so it must come
// after the source location offsets.
if (SourceMgr.hasLineTable()) {
LineTableInfo &LineTable = SourceMgr.getLineTable();
Record.clear();
// Emit the file names.
Record.push_back(LineTable.getNumFilenames());
for (unsigned I = 0, N = LineTable.getNumFilenames(); I != N; ++I)
AddPath(LineTable.getFilename(I), Record);
// Emit the line entries
for (LineTableInfo::iterator L = LineTable.begin(), LEnd = LineTable.end();
L != LEnd; ++L) {
// Only emit entries for local files.
if (L->first.ID < 0)
continue;
// Emit the file ID
Record.push_back(L->first.ID);
// Emit the line entries
Record.push_back(L->second.size());
for (std::vector<LineEntry>::iterator LE = L->second.begin(),
LEEnd = L->second.end();
LE != LEEnd; ++LE) {
Record.push_back(LE->FileOffset);
Record.push_back(LE->LineNo);
Record.push_back(LE->FilenameID);
Record.push_back((unsigned)LE->FileKind);
Record.push_back(LE->IncludeOffset);
}
}
Stream.EmitRecord(SOURCE_MANAGER_LINE_TABLE, Record);
}
}
//===----------------------------------------------------------------------===//
// Preprocessor Serialization
//===----------------------------------------------------------------------===//
namespace {
class ASTMacroTableTrait {
public:
typedef IdentID key_type;
typedef key_type key_type_ref;
struct Data {
uint32_t MacroDirectivesOffset;
};
typedef Data data_type;
typedef const data_type &data_type_ref;
typedef unsigned hash_value_type;
typedef unsigned offset_type;
static hash_value_type ComputeHash(IdentID IdID) {
return llvm::hash_value(IdID);
}
std::pair<unsigned,unsigned>
static EmitKeyDataLength(raw_ostream& Out,
key_type_ref Key, data_type_ref Data) {
unsigned KeyLen = 4; // IdentID.
unsigned DataLen = 4; // MacroDirectivesOffset.
return std::make_pair(KeyLen, DataLen);
}
static void EmitKey(raw_ostream& Out, key_type_ref Key, unsigned KeyLen) {
using namespace llvm::support;
endian::Writer<little>(Out).write<uint32_t>(Key);
}
static void EmitData(raw_ostream& Out, key_type_ref Key, data_type_ref Data,
unsigned) {
using namespace llvm::support;
endian::Writer<little>(Out).write<uint32_t>(Data.MacroDirectivesOffset);
}
};
} // end anonymous namespace
static int compareMacroDirectives(
const std::pair<const IdentifierInfo *, MacroDirective *> *X,
const std::pair<const IdentifierInfo *, MacroDirective *> *Y) {
return X->first->getName().compare(Y->first->getName());
}
static bool shouldIgnoreMacro(MacroDirective *MD, bool IsModule,
const Preprocessor &PP) {
if (MacroInfo *MI = MD->getMacroInfo())
if (MI->isBuiltinMacro())
return true;
if (IsModule) {
// Re-export any imported directives.
if (MD->isImported())
return false;
SourceLocation Loc = MD->getLocation();
if (Loc.isInvalid())
return true;
if (PP.getSourceManager().getFileID(Loc) == PP.getPredefinesFileID())
return true;
}
return false;
}
/// \brief Writes the block containing the serialized form of the
/// preprocessor.
///
void ASTWriter::WritePreprocessor(const Preprocessor &PP, bool IsModule) {
PreprocessingRecord *PPRec = PP.getPreprocessingRecord();
if (PPRec)
WritePreprocessorDetail(*PPRec);
RecordData Record;
// If the preprocessor __COUNTER__ value has been bumped, remember it.
if (PP.getCounterValue() != 0) {
Record.push_back(PP.getCounterValue());
Stream.EmitRecord(PP_COUNTER_VALUE, Record);
Record.clear();
}
// Enter the preprocessor block.
Stream.EnterSubblock(PREPROCESSOR_BLOCK_ID, 3);
// If the AST file contains __DATE__ or __TIME__ emit a warning about this.
// FIXME: use diagnostics subsystem for localization etc.
if (PP.SawDateOrTime())
fprintf(stderr, "warning: precompiled header used __DATE__ or __TIME__.\n");
// Loop over all the macro directives that are live at the end of the file,
// emitting each to the PP section.
// Construct the list of macro directives that need to be serialized.
SmallVector<std::pair<const IdentifierInfo *, MacroDirective *>, 2>
MacroDirectives;
for (Preprocessor::macro_iterator
I = PP.macro_begin(/*IncludeExternalMacros=*/false),
E = PP.macro_end(/*IncludeExternalMacros=*/false);
I != E; ++I) {
MacroDirectives.push_back(std::make_pair(I->first, I->second));
}
// Sort the set of macro definitions that need to be serialized by the
// name of the macro, to provide a stable ordering.
llvm::array_pod_sort(MacroDirectives.begin(), MacroDirectives.end(),
&compareMacroDirectives);
llvm::OnDiskChainedHashTableGenerator<ASTMacroTableTrait> Generator;
// Emit the macro directives as a list and associate the offset with the
// identifier they belong to.
for (unsigned I = 0, N = MacroDirectives.size(); I != N; ++I) {
const IdentifierInfo *Name = MacroDirectives[I].first;
uint64_t MacroDirectiveOffset = Stream.GetCurrentBitNo();
MacroDirective *MD = MacroDirectives[I].second;
// If the macro or identifier need no updates, don't write the macro history
// for this one.
// FIXME: Chain the macro history instead of re-writing it.
if (MD->isFromPCH() &&
Name->isFromAST() && !Name->hasChangedSinceDeserialization())
continue;
// Emit the macro directives in reverse source order.
for (; MD; MD = MD->getPrevious()) {
if (shouldIgnoreMacro(MD, IsModule, PP))
continue;
AddSourceLocation(MD->getLocation(), Record);
Record.push_back(MD->getKind());
if (auto *DefMD = dyn_cast<DefMacroDirective>(MD)) {
MacroID InfoID = getMacroRef(DefMD->getInfo(), Name);
Record.push_back(InfoID);
Record.push_back(DefMD->getOwningModuleID());
Record.push_back(DefMD->isAmbiguous());
} else if (auto *UndefMD = dyn_cast<UndefMacroDirective>(MD)) {
Record.push_back(UndefMD->getOwningModuleID());
} else {
auto *VisMD = cast<VisibilityMacroDirective>(MD);
Record.push_back(VisMD->isPublic());
}
if (MD->isImported()) {
auto Overrides = MD->getOverriddenModules();
Record.push_back(Overrides.size());
for (auto Override : Overrides)
Record.push_back(Override);
}
}
if (Record.empty())
continue;
Stream.EmitRecord(PP_MACRO_DIRECTIVE_HISTORY, Record);
Record.clear();
IdentMacroDirectivesOffsetMap[Name] = MacroDirectiveOffset;
IdentID NameID = getIdentifierRef(Name);
ASTMacroTableTrait::Data data;
data.MacroDirectivesOffset = MacroDirectiveOffset;
Generator.insert(NameID, data);
}
/// \brief Offsets of each of the macros into the bitstream, indexed by
/// the local macro ID
///
/// For each identifier that is associated with a macro, this map
/// provides the offset into the bitstream where that macro is
/// defined.
std::vector<uint32_t> MacroOffsets;
for (unsigned I = 0, N = MacroInfosToEmit.size(); I != N; ++I) {
const IdentifierInfo *Name = MacroInfosToEmit[I].Name;
MacroInfo *MI = MacroInfosToEmit[I].MI;
MacroID ID = MacroInfosToEmit[I].ID;
if (ID < FirstMacroID) {
assert(0 && "Loaded MacroInfo entered MacroInfosToEmit ?");
continue;
}
// Record the local offset of this macro.
unsigned Index = ID - FirstMacroID;
if (Index == MacroOffsets.size())
MacroOffsets.push_back(Stream.GetCurrentBitNo());
else {
if (Index > MacroOffsets.size())
MacroOffsets.resize(Index + 1);
MacroOffsets[Index] = Stream.GetCurrentBitNo();
}
AddIdentifierRef(Name, Record);
Record.push_back(inferSubmoduleIDFromLocation(MI->getDefinitionLoc()));
AddSourceLocation(MI->getDefinitionLoc(), Record);
AddSourceLocation(MI->getDefinitionEndLoc(), Record);
Record.push_back(MI->isUsed());
Record.push_back(MI->isUsedForHeaderGuard());
unsigned Code;
if (MI->isObjectLike()) {
Code = PP_MACRO_OBJECT_LIKE;
} else {
Code = PP_MACRO_FUNCTION_LIKE;
Record.push_back(MI->isC99Varargs());
Record.push_back(MI->isGNUVarargs());
Record.push_back(MI->hasCommaPasting());
Record.push_back(MI->getNumArgs());
for (MacroInfo::arg_iterator I = MI->arg_begin(), E = MI->arg_end();
I != E; ++I)
AddIdentifierRef(*I, Record);
}
// If we have a detailed preprocessing record, record the macro definition
// ID that corresponds to this macro.
if (PPRec)
Record.push_back(MacroDefinitions[PPRec->findMacroDefinition(MI)]);
Stream.EmitRecord(Code, Record);
Record.clear();
// Emit the tokens array.
for (unsigned TokNo = 0, e = MI->getNumTokens(); TokNo != e; ++TokNo) {
// Note that we know that the preprocessor does not have any annotation
// tokens in it because they are created by the parser, and thus can't
// be in a macro definition.
const Token &Tok = MI->getReplacementToken(TokNo);
AddToken(Tok, Record);
Stream.EmitRecord(PP_TOKEN, Record);
Record.clear();
}
++NumMacros;
}
Stream.ExitBlock();
// Create the on-disk hash table in a buffer.
SmallString<4096> MacroTable;
uint32_t BucketOffset;
{
using namespace llvm::support;
llvm::raw_svector_ostream Out(MacroTable);
// Make sure that no bucket is at offset 0
endian::Writer<little>(Out).write<uint32_t>(0);
BucketOffset = Generator.Emit(Out);
}
// Write the macro table
using namespace llvm;
BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(MACRO_TABLE));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
unsigned MacroTableAbbrev = Stream.EmitAbbrev(Abbrev);
Record.push_back(MACRO_TABLE);
Record.push_back(BucketOffset);
Stream.EmitRecordWithBlob(MacroTableAbbrev, Record, MacroTable.str());
Record.clear();
// Write the offsets table for macro IDs.
using namespace llvm;
Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(MACRO_OFFSET));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // # of macros
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // first ID
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
unsigned MacroOffsetAbbrev = Stream.EmitAbbrev(Abbrev);
Record.clear();
Record.push_back(MACRO_OFFSET);
Record.push_back(MacroOffsets.size());
Record.push_back(FirstMacroID - NUM_PREDEF_MACRO_IDS);
Stream.EmitRecordWithBlob(MacroOffsetAbbrev, Record,
data(MacroOffsets));
}
void ASTWriter::WritePreprocessorDetail(PreprocessingRecord &PPRec) {
if (PPRec.local_begin() == PPRec.local_end())
return;
SmallVector<PPEntityOffset, 64> PreprocessedEntityOffsets;
// Enter the preprocessor block.
Stream.EnterSubblock(PREPROCESSOR_DETAIL_BLOCK_ID, 3);
// If the preprocessor has a preprocessing record, emit it.
unsigned NumPreprocessingRecords = 0;
using namespace llvm;
// Set up the abbreviation for
unsigned InclusionAbbrev = 0;
{
BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(PPD_INCLUSION_DIRECTIVE));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // filename length
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // in quotes
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2)); // kind
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // imported module
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
InclusionAbbrev = Stream.EmitAbbrev(Abbrev);
}
unsigned FirstPreprocessorEntityID
= (Chain ? PPRec.getNumLoadedPreprocessedEntities() : 0)
+ NUM_PREDEF_PP_ENTITY_IDS;
unsigned NextPreprocessorEntityID = FirstPreprocessorEntityID;
RecordData Record;
for (PreprocessingRecord::iterator E = PPRec.local_begin(),
EEnd = PPRec.local_end();
E != EEnd;
(void)++E, ++NumPreprocessingRecords, ++NextPreprocessorEntityID) {
Record.clear();
PreprocessedEntityOffsets.push_back(PPEntityOffset((*E)->getSourceRange(),
Stream.GetCurrentBitNo()));
if (MacroDefinition *MD = dyn_cast<MacroDefinition>(*E)) {
// Record this macro definition's ID.
MacroDefinitions[MD] = NextPreprocessorEntityID;
AddIdentifierRef(MD->getName(), Record);
Stream.EmitRecord(PPD_MACRO_DEFINITION, Record);
continue;
}
if (MacroExpansion *ME = dyn_cast<MacroExpansion>(*E)) {
Record.push_back(ME->isBuiltinMacro());
if (ME->isBuiltinMacro())
AddIdentifierRef(ME->getName(), Record);
else
Record.push_back(MacroDefinitions[ME->getDefinition()]);
Stream.EmitRecord(PPD_MACRO_EXPANSION, Record);
continue;
}
if (InclusionDirective *ID = dyn_cast<InclusionDirective>(*E)) {
Record.push_back(PPD_INCLUSION_DIRECTIVE);
Record.push_back(ID->getFileName().size());
Record.push_back(ID->wasInQuotes());
Record.push_back(static_cast<unsigned>(ID->getKind()));
Record.push_back(ID->importedModule());
SmallString<64> Buffer;
Buffer += ID->getFileName();
// Check that the FileEntry is not null because it was not resolved and
// we create a PCH even with compiler errors.
if (ID->getFile())
Buffer += ID->getFile()->getName();
Stream.EmitRecordWithBlob(InclusionAbbrev, Record, Buffer);
continue;
}
llvm_unreachable("Unhandled PreprocessedEntity in ASTWriter");
}
Stream.ExitBlock();
// Write the offsets table for the preprocessing record.
if (NumPreprocessingRecords > 0) {
assert(PreprocessedEntityOffsets.size() == NumPreprocessingRecords);
// Write the offsets table for identifier IDs.
using namespace llvm;
BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(PPD_ENTITIES_OFFSETS));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // first pp entity
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
unsigned PPEOffsetAbbrev = Stream.EmitAbbrev(Abbrev);
Record.clear();
Record.push_back(PPD_ENTITIES_OFFSETS);
Record.push_back(FirstPreprocessorEntityID - NUM_PREDEF_PP_ENTITY_IDS);
Stream.EmitRecordWithBlob(PPEOffsetAbbrev, Record,
data(PreprocessedEntityOffsets));
}
}
unsigned ASTWriter::getSubmoduleID(Module *Mod) {
llvm::DenseMap<Module *, unsigned>::iterator Known = SubmoduleIDs.find(Mod);
if (Known != SubmoduleIDs.end())
return Known->second;
return SubmoduleIDs[Mod] = NextSubmoduleID++;
}
unsigned ASTWriter::getExistingSubmoduleID(Module *Mod) const {
if (!Mod)
return 0;
llvm::DenseMap<Module *, unsigned>::const_iterator
Known = SubmoduleIDs.find(Mod);
if (Known != SubmoduleIDs.end())
return Known->second;
return 0;
}
/// \brief Compute the number of modules within the given tree (including the
/// given module).
static unsigned getNumberOfModules(Module *Mod) {
unsigned ChildModules = 0;
for (Module::submodule_iterator Sub = Mod->submodule_begin(),
SubEnd = Mod->submodule_end();
Sub != SubEnd; ++Sub)
ChildModules += getNumberOfModules(*Sub);
return ChildModules + 1;
}
void ASTWriter::WriteSubmodules(Module *WritingModule) {
// Determine the dependencies of our module and each of it's submodules.
// FIXME: This feels like it belongs somewhere else, but there are no
// other consumers of this information.
SourceManager &SrcMgr = PP->getSourceManager();
ModuleMap &ModMap = PP->getHeaderSearchInfo().getModuleMap();
for (const auto *I : Context->local_imports()) {
if (Module *ImportedFrom
= ModMap.inferModuleFromLocation(FullSourceLoc(I->getLocation(),
SrcMgr))) {
ImportedFrom->Imports.push_back(I->getImportedModule());
}
}
// Enter the submodule description block.
Stream.EnterSubblock(SUBMODULE_BLOCK_ID, /*bits for abbreviations*/5);
// Write the abbreviations needed for the submodules block.
using namespace llvm;
BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_DEFINITION));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ID
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Parent
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsFramework
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsExplicit
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsSystem
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsExternC
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // InferSubmodules...
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // InferExplicit...
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // InferExportWild...
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ConfigMacrosExh...
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
unsigned DefinitionAbbrev = Stream.EmitAbbrev(Abbrev);
Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_UMBRELLA_HEADER));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
unsigned UmbrellaAbbrev = Stream.EmitAbbrev(Abbrev);
Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_HEADER));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
unsigned HeaderAbbrev = Stream.EmitAbbrev(Abbrev);
Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_TOPHEADER));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
unsigned TopHeaderAbbrev = Stream.EmitAbbrev(Abbrev);
Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_UMBRELLA_DIR));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
unsigned UmbrellaDirAbbrev = Stream.EmitAbbrev(Abbrev);
Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_REQUIRES));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // State
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Feature
unsigned RequiresAbbrev = Stream.EmitAbbrev(Abbrev);
Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_EXCLUDED_HEADER));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
unsigned ExcludedHeaderAbbrev = Stream.EmitAbbrev(Abbrev);
Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_TEXTUAL_HEADER));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
unsigned TextualHeaderAbbrev = Stream.EmitAbbrev(Abbrev);
Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_PRIVATE_HEADER));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
unsigned PrivateHeaderAbbrev = Stream.EmitAbbrev(Abbrev);
Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_PRIVATE_TEXTUAL_HEADER));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
unsigned PrivateTextualHeaderAbbrev = Stream.EmitAbbrev(Abbrev);
Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_LINK_LIBRARY));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsFramework
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
unsigned LinkLibraryAbbrev = Stream.EmitAbbrev(Abbrev);
Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_CONFIG_MACRO));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Macro name
unsigned ConfigMacroAbbrev = Stream.EmitAbbrev(Abbrev);
Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_CONFLICT));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Other module
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Message
unsigned ConflictAbbrev = Stream.EmitAbbrev(Abbrev);
// Write the submodule metadata block.
RecordData Record;
Record.push_back(getNumberOfModules(WritingModule));
Record.push_back(FirstSubmoduleID - NUM_PREDEF_SUBMODULE_IDS);
Stream.EmitRecord(SUBMODULE_METADATA, Record);
// Write all of the submodules.
std::queue<Module *> Q;
Q.push(WritingModule);
while (!Q.empty()) {
Module *Mod = Q.front();
Q.pop();
unsigned ID = getSubmoduleID(Mod);
// Emit the definition of the block.
Record.clear();
Record.push_back(SUBMODULE_DEFINITION);
Record.push_back(ID);
if (Mod->Parent) {
assert(SubmoduleIDs[Mod->Parent] && "Submodule parent not written?");
Record.push_back(SubmoduleIDs[Mod->Parent]);
} else {
Record.push_back(0);
}
Record.push_back(Mod->IsFramework);
Record.push_back(Mod->IsExplicit);
Record.push_back(Mod->IsSystem);
Record.push_back(Mod->IsExternC);
Record.push_back(Mod->InferSubmodules);
Record.push_back(Mod->InferExplicitSubmodules);
Record.push_back(Mod->InferExportWildcard);
Record.push_back(Mod->ConfigMacrosExhaustive);
Stream.EmitRecordWithBlob(DefinitionAbbrev, Record, Mod->Name);
// Emit the requirements.
for (unsigned I = 0, N = Mod->Requirements.size(); I != N; ++I) {
Record.clear();
Record.push_back(SUBMODULE_REQUIRES);
Record.push_back(Mod->Requirements[I].second);
Stream.EmitRecordWithBlob(RequiresAbbrev, Record,
Mod->Requirements[I].first);
}
// Emit the umbrella header, if there is one.
if (const FileEntry *UmbrellaHeader = Mod->getUmbrellaHeader()) {
Record.clear();
Record.push_back(SUBMODULE_UMBRELLA_HEADER);
Stream.EmitRecordWithBlob(UmbrellaAbbrev, Record,
UmbrellaHeader->getName());
} else if (const DirectoryEntry *UmbrellaDir = Mod->getUmbrellaDir()) {
Record.clear();
Record.push_back(SUBMODULE_UMBRELLA_DIR);
Stream.EmitRecordWithBlob(UmbrellaDirAbbrev, Record,
UmbrellaDir->getName());
}
// Emit the headers.
struct {
unsigned RecordKind;
unsigned Abbrev;
Module::HeaderKind HeaderKind;
} HeaderLists[] = {
{SUBMODULE_HEADER, HeaderAbbrev, Module::HK_Normal},
{SUBMODULE_TEXTUAL_HEADER, TextualHeaderAbbrev, Module::HK_Textual},
{SUBMODULE_PRIVATE_HEADER, PrivateHeaderAbbrev, Module::HK_Private},
{SUBMODULE_PRIVATE_TEXTUAL_HEADER, PrivateTextualHeaderAbbrev,
Module::HK_PrivateTextual},
{SUBMODULE_EXCLUDED_HEADER, ExcludedHeaderAbbrev, Module::HK_Excluded}
};
for (auto &HL : HeaderLists) {
Record.clear();
Record.push_back(HL.RecordKind);
for (auto &H : Mod->Headers[HL.HeaderKind])
Stream.EmitRecordWithBlob(HL.Abbrev, Record, H.NameAsWritten);
}
// Emit the top headers.
{
auto TopHeaders = Mod->getTopHeaders(PP->getFileManager());
Record.clear();
Record.push_back(SUBMODULE_TOPHEADER);
for (auto *H : TopHeaders)
Stream.EmitRecordWithBlob(TopHeaderAbbrev, Record, H->getName());
}
// Emit the imports.
if (!Mod->Imports.empty()) {
Record.clear();
for (unsigned I = 0, N = Mod->Imports.size(); I != N; ++I) {
unsigned ImportedID = getSubmoduleID(Mod->Imports[I]);
assert(ImportedID && "Unknown submodule!");
Record.push_back(ImportedID);
}
Stream.EmitRecord(SUBMODULE_IMPORTS, Record);
}
// Emit the exports.
if (!Mod->Exports.empty()) {
Record.clear();
for (unsigned I = 0, N = Mod->Exports.size(); I != N; ++I) {
if (Module *Exported = Mod->Exports[I].getPointer()) {
unsigned ExportedID = SubmoduleIDs[Exported];
assert(ExportedID > 0 && "Unknown submodule ID?");
Record.push_back(ExportedID);
} else {
Record.push_back(0);
}
Record.push_back(Mod->Exports[I].getInt());
}
Stream.EmitRecord(SUBMODULE_EXPORTS, Record);
}
//FIXME: How do we emit the 'use'd modules? They may not be submodules.
// Might be unnecessary as use declarations are only used to build the
// module itself.
// Emit the link libraries.
for (unsigned I = 0, N = Mod->LinkLibraries.size(); I != N; ++I) {
Record.clear();
Record.push_back(SUBMODULE_LINK_LIBRARY);
Record.push_back(Mod->LinkLibraries[I].IsFramework);
Stream.EmitRecordWithBlob(LinkLibraryAbbrev, Record,
Mod->LinkLibraries[I].Library);
}
// Emit the conflicts.
for (unsigned I = 0, N = Mod->Conflicts.size(); I != N; ++I) {
Record.clear();
Record.push_back(SUBMODULE_CONFLICT);
unsigned OtherID = getSubmoduleID(Mod->Conflicts[I].Other);
assert(OtherID && "Unknown submodule!");
Record.push_back(OtherID);
Stream.EmitRecordWithBlob(ConflictAbbrev, Record,
Mod->Conflicts[I].Message);
}
// Emit the configuration macros.
for (unsigned I = 0, N = Mod->ConfigMacros.size(); I != N; ++I) {
Record.clear();
Record.push_back(SUBMODULE_CONFIG_MACRO);
Stream.EmitRecordWithBlob(ConfigMacroAbbrev, Record,
Mod->ConfigMacros[I]);
}
// Queue up the submodules of this module.
for (Module::submodule_iterator Sub = Mod->submodule_begin(),
SubEnd = Mod->submodule_end();
Sub != SubEnd; ++Sub)
Q.push(*Sub);
}
Stream.ExitBlock();
assert((NextSubmoduleID - FirstSubmoduleID
== getNumberOfModules(WritingModule)) && "Wrong # of submodules");
}
serialization::SubmoduleID
ASTWriter::inferSubmoduleIDFromLocation(SourceLocation Loc) {
if (Loc.isInvalid() || !WritingModule)
return 0; // No submodule
// Find the module that owns this location.
ModuleMap &ModMap = PP->getHeaderSearchInfo().getModuleMap();
Module *OwningMod
= ModMap.inferModuleFromLocation(FullSourceLoc(Loc,PP->getSourceManager()));
if (!OwningMod)
return 0;
// Check whether this submodule is part of our own module.
if (WritingModule != OwningMod && !OwningMod->isSubModuleOf(WritingModule))
return 0;
return getSubmoduleID(OwningMod);
}
void ASTWriter::WritePragmaDiagnosticMappings(const DiagnosticsEngine &Diag,
bool isModule) {
// Make sure set diagnostic pragmas don't affect the translation unit that
// imports the module.
// FIXME: Make diagnostic pragma sections work properly with modules.
if (isModule)
return;
llvm::SmallDenseMap<const DiagnosticsEngine::DiagState *, unsigned, 64>
DiagStateIDMap;
unsigned CurrID = 0;
DiagStateIDMap[&Diag.DiagStates.front()] = ++CurrID; // the command-line one.
RecordData Record;
for (DiagnosticsEngine::DiagStatePointsTy::const_iterator
I = Diag.DiagStatePoints.begin(), E = Diag.DiagStatePoints.end();
I != E; ++I) {
const DiagnosticsEngine::DiagStatePoint &point = *I;
if (point.Loc.isInvalid())
continue;
Record.push_back(point.Loc.getRawEncoding());
unsigned &DiagStateID = DiagStateIDMap[point.State];
Record.push_back(DiagStateID);
if (DiagStateID == 0) {
DiagStateID = ++CurrID;
for (DiagnosticsEngine::DiagState::const_iterator
I = point.State->begin(), E = point.State->end(); I != E; ++I) {
if (I->second.isPragma()) {
Record.push_back(I->first);
Record.push_back((unsigned)I->second.getSeverity());
}
}
Record.push_back(-1); // mark the end of the diag/map pairs for this
// location.
}
}
if (!Record.empty())
Stream.EmitRecord(DIAG_PRAGMA_MAPPINGS, Record);
}
void ASTWriter::WriteCXXBaseSpecifiersOffsets() {
if (CXXBaseSpecifiersOffsets.empty())
return;
RecordData Record;
// Create a blob abbreviation for the C++ base specifiers offsets.
using namespace llvm;
BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(CXX_BASE_SPECIFIER_OFFSETS));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // size
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
unsigned BaseSpecifierOffsetAbbrev = Stream.EmitAbbrev(Abbrev);
// Write the base specifier offsets table.
Record.clear();
Record.push_back(CXX_BASE_SPECIFIER_OFFSETS);
Record.push_back(CXXBaseSpecifiersOffsets.size());
Stream.EmitRecordWithBlob(BaseSpecifierOffsetAbbrev, Record,
data(CXXBaseSpecifiersOffsets));
}
//===----------------------------------------------------------------------===//
// Type Serialization
//===----------------------------------------------------------------------===//
/// \brief Write the representation of a type to the AST stream.
void ASTWriter::WriteType(QualType T) {
TypeIdx &Idx = TypeIdxs[T];
if (Idx.getIndex() == 0) // we haven't seen this type before.
Idx = TypeIdx(NextTypeID++);
assert(Idx.getIndex() >= FirstTypeID && "Re-writing a type from a prior AST");
// Record the offset for this type.
unsigned Index = Idx.getIndex() - FirstTypeID;
if (TypeOffsets.size() == Index)
TypeOffsets.push_back(Stream.GetCurrentBitNo());
else if (TypeOffsets.size() < Index) {
TypeOffsets.resize(Index + 1);
TypeOffsets[Index] = Stream.GetCurrentBitNo();
}
RecordData Record;
// Emit the type's representation.
ASTTypeWriter W(*this, Record);
W.AbbrevToUse = 0;
if (T.hasLocalNonFastQualifiers()) {
Qualifiers Qs = T.getLocalQualifiers();
AddTypeRef(T.getLocalUnqualifiedType(), Record);
Record.push_back(Qs.getAsOpaqueValue());
W.Code = TYPE_EXT_QUAL;
W.AbbrevToUse = TypeExtQualAbbrev;
} else {
switch (T->getTypeClass()) {
// For all of the concrete, non-dependent types, call the
// appropriate visitor function.
#define TYPE(Class, Base) \
case Type::Class: W.Visit##Class##Type(cast<Class##Type>(T)); break;
#define ABSTRACT_TYPE(Class, Base)
#include "clang/AST/TypeNodes.def"
}
}
// Emit the serialized record.
Stream.EmitRecord(W.Code, Record, W.AbbrevToUse);
// Flush any expressions that were written as part of this type.
FlushStmts();
}
//===----------------------------------------------------------------------===//
// Declaration Serialization
//===----------------------------------------------------------------------===//
/// \brief Write the block containing all of the declaration IDs
/// lexically declared within the given DeclContext.
///
/// \returns the offset of the DECL_CONTEXT_LEXICAL block within the
/// bistream, or 0 if no block was written.
uint64_t ASTWriter::WriteDeclContextLexicalBlock(ASTContext &Context,
DeclContext *DC) {
if (DC->decls_empty())
return 0;
uint64_t Offset = Stream.GetCurrentBitNo();
RecordData Record;
Record.push_back(DECL_CONTEXT_LEXICAL);
SmallVector<KindDeclIDPair, 64> Decls;
for (const auto *D : DC->decls())
Decls.push_back(std::make_pair(D->getKind(), GetDeclRef(D)));
++NumLexicalDeclContexts;
Stream.EmitRecordWithBlob(DeclContextLexicalAbbrev, Record, data(Decls));
return Offset;
}
void ASTWriter::WriteTypeDeclOffsets() {
using namespace llvm;
RecordData Record;
// Write the type offsets array
BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(TYPE_OFFSET));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // # of types
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // base type index
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // types block
unsigned TypeOffsetAbbrev = Stream.EmitAbbrev(Abbrev);
Record.clear();
Record.push_back(TYPE_OFFSET);
Record.push_back(TypeOffsets.size());
Record.push_back(FirstTypeID - NUM_PREDEF_TYPE_IDS);
Stream.EmitRecordWithBlob(TypeOffsetAbbrev, Record, data(TypeOffsets));
// Write the declaration offsets array
Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(DECL_OFFSET));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // # of declarations
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // base decl ID
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // declarations block
unsigned DeclOffsetAbbrev = Stream.EmitAbbrev(Abbrev);
Record.clear();
Record.push_back(DECL_OFFSET);
Record.push_back(DeclOffsets.size());
Record.push_back(FirstDeclID - NUM_PREDEF_DECL_IDS);
Stream.EmitRecordWithBlob(DeclOffsetAbbrev, Record, data(DeclOffsets));
}
void ASTWriter::WriteFileDeclIDsMap() {
using namespace llvm;
RecordData Record;
// Join the vectors of DeclIDs from all files.
SmallVector<DeclID, 256> FileSortedIDs;
for (FileDeclIDsTy::iterator
FI = FileDeclIDs.begin(), FE = FileDeclIDs.end(); FI != FE; ++FI) {
DeclIDInFileInfo &Info = *FI->second;
Info.FirstDeclIndex = FileSortedIDs.size();
for (LocDeclIDsTy::iterator
DI = Info.DeclIDs.begin(), DE = Info.DeclIDs.end(); DI != DE; ++DI)
FileSortedIDs.push_back(DI->second);
}
BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(FILE_SORTED_DECLS));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
unsigned AbbrevCode = Stream.EmitAbbrev(Abbrev);
Record.push_back(FILE_SORTED_DECLS);
Record.push_back(FileSortedIDs.size());
Stream.EmitRecordWithBlob(AbbrevCode, Record, data(FileSortedIDs));
}
void ASTWriter::WriteComments() {
Stream.EnterSubblock(COMMENTS_BLOCK_ID, 3);
ArrayRef<RawComment *> RawComments = Context->Comments.getComments();
RecordData Record;
for (ArrayRef<RawComment *>::iterator I = RawComments.begin(),
E = RawComments.end();
I != E; ++I) {
Record.clear();
AddSourceRange((*I)->getSourceRange(), Record);
Record.push_back((*I)->getKind());
Record.push_back((*I)->isTrailingComment());
Record.push_back((*I)->isAlmostTrailingComment());
Stream.EmitRecord(COMMENTS_RAW_COMMENT, Record);
}
Stream.ExitBlock();
}
//===----------------------------------------------------------------------===//
// Global Method Pool and Selector Serialization
//===----------------------------------------------------------------------===//
namespace {
// Trait used for the on-disk hash table used in the method pool.
class ASTMethodPoolTrait {
ASTWriter &Writer;
public:
typedef Selector key_type;
typedef key_type key_type_ref;
struct data_type {
SelectorID ID;
ObjCMethodList Instance, Factory;
};
typedef const data_type& data_type_ref;
typedef unsigned hash_value_type;
typedef unsigned offset_type;
explicit ASTMethodPoolTrait(ASTWriter &Writer) : Writer(Writer) { }
static hash_value_type ComputeHash(Selector Sel) {
return serialization::ComputeHash(Sel);
}
std::pair<unsigned,unsigned>
EmitKeyDataLength(raw_ostream& Out, Selector Sel,
data_type_ref Methods) {
using namespace llvm::support;
endian::Writer<little> LE(Out);
unsigned KeyLen = 2 + (Sel.getNumArgs()? Sel.getNumArgs() * 4 : 4);
LE.write<uint16_t>(KeyLen);
unsigned DataLen = 4 + 2 + 2; // 2 bytes for each of the method counts
for (const ObjCMethodList *Method = &Methods.Instance; Method;
Method = Method->getNext())
if (Method->getMethod())
DataLen += 4;
for (const ObjCMethodList *Method = &Methods.Factory; Method;
Method = Method->getNext())
if (Method->getMethod())
DataLen += 4;
LE.write<uint16_t>(DataLen);
return std::make_pair(KeyLen, DataLen);
}
void EmitKey(raw_ostream& Out, Selector Sel, unsigned) {
using namespace llvm::support;
endian::Writer<little> LE(Out);
uint64_t Start = Out.tell();
assert((Start >> 32) == 0 && "Selector key offset too large");
Writer.SetSelectorOffset(Sel, Start);
unsigned N = Sel.getNumArgs();
LE.write<uint16_t>(N);
if (N == 0)
N = 1;
for (unsigned I = 0; I != N; ++I)
LE.write<uint32_t>(
Writer.getIdentifierRef(Sel.getIdentifierInfoForSlot(I)));
}
void EmitData(raw_ostream& Out, key_type_ref,
data_type_ref Methods, unsigned DataLen) {
using namespace llvm::support;
endian::Writer<little> LE(Out);
uint64_t Start = Out.tell(); (void)Start;
LE.write<uint32_t>(Methods.ID);
unsigned NumInstanceMethods = 0;
for (const ObjCMethodList *Method = &Methods.Instance; Method;
Method = Method->getNext())
if (Method->getMethod())
++NumInstanceMethods;
unsigned NumFactoryMethods = 0;
for (const ObjCMethodList *Method = &Methods.Factory; Method;
Method = Method->getNext())
if (Method->getMethod())
++NumFactoryMethods;
unsigned InstanceBits = Methods.Instance.getBits();
assert(InstanceBits < 4);
unsigned InstanceHasMoreThanOneDeclBit =
Methods.Instance.hasMoreThanOneDecl();
unsigned FullInstanceBits = (NumInstanceMethods << 3) |
(InstanceHasMoreThanOneDeclBit << 2) |
InstanceBits;
unsigned FactoryBits = Methods.Factory.getBits();
assert(FactoryBits < 4);
unsigned FactoryHasMoreThanOneDeclBit =
Methods.Factory.hasMoreThanOneDecl();
unsigned FullFactoryBits = (NumFactoryMethods << 3) |
(FactoryHasMoreThanOneDeclBit << 2) |
FactoryBits;
LE.write<uint16_t>(FullInstanceBits);
LE.write<uint16_t>(FullFactoryBits);
for (const ObjCMethodList *Method = &Methods.Instance; Method;
Method = Method->getNext())
if (Method->getMethod())
LE.write<uint32_t>(Writer.getDeclID(Method->getMethod()));
for (const ObjCMethodList *Method = &Methods.Factory; Method;
Method = Method->getNext())
if (Method->getMethod())
LE.write<uint32_t>(Writer.getDeclID(Method->getMethod()));
assert(Out.tell() - Start == DataLen && "Data length is wrong");
}
};
} // end anonymous namespace
/// \brief Write ObjC data: selectors and the method pool.
///
/// The method pool contains both instance and factory methods, stored
/// in an on-disk hash table indexed by the selector. The hash table also
/// contains an empty entry for every other selector known to Sema.
void ASTWriter::WriteSelectors(Sema &SemaRef) {
using namespace llvm;
// Do we have to do anything at all?
if (SemaRef.MethodPool.empty() && SelectorIDs.empty())
return;
unsigned NumTableEntries = 0;
// Create and write out the blob that contains selectors and the method pool.
{
llvm::OnDiskChainedHashTableGenerator<ASTMethodPoolTrait> Generator;
ASTMethodPoolTrait Trait(*this);
// Create the on-disk hash table representation. We walk through every
// selector we've seen and look it up in the method pool.
SelectorOffsets.resize(NextSelectorID - FirstSelectorID);
for (llvm::DenseMap<Selector, SelectorID>::iterator
I = SelectorIDs.begin(), E = SelectorIDs.end();
I != E; ++I) {
Selector S = I->first;
Sema::GlobalMethodPool::iterator F = SemaRef.MethodPool.find(S);
ASTMethodPoolTrait::data_type Data = {
I->second,
ObjCMethodList(),
ObjCMethodList()
};
if (F != SemaRef.MethodPool.end()) {
Data.Instance = F->second.first;
Data.Factory = F->second.second;
}
// Only write this selector if it's not in an existing AST or something
// changed.
if (Chain && I->second < FirstSelectorID) {
// Selector already exists. Did it change?
bool changed = false;
for (ObjCMethodList *M = &Data.Instance;
!changed && M && M->getMethod(); M = M->getNext()) {
if (!M->getMethod()->isFromASTFile())
changed = true;
}
for (ObjCMethodList *M = &Data.Factory; !changed && M && M->getMethod();
M = M->getNext()) {
if (!M->getMethod()->isFromASTFile())
changed = true;
}
if (!changed)
continue;
} else if (Data.Instance.getMethod() || Data.Factory.getMethod()) {
// A new method pool entry.
++NumTableEntries;
}
Generator.insert(S, Data, Trait);
}
// Create the on-disk hash table in a buffer.
SmallString<4096> MethodPool;
uint32_t BucketOffset;
{
using namespace llvm::support;
ASTMethodPoolTrait Trait(*this);
llvm::raw_svector_ostream Out(MethodPool);
// Make sure that no bucket is at offset 0
endian::Writer<little>(Out).write<uint32_t>(0);
BucketOffset = Generator.Emit(Out, Trait);
}
// Create a blob abbreviation
BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(METHOD_POOL));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
unsigned MethodPoolAbbrev = Stream.EmitAbbrev(Abbrev);
// Write the method pool
RecordData Record;
Record.push_back(METHOD_POOL);
Record.push_back(BucketOffset);
Record.push_back(NumTableEntries);
Stream.EmitRecordWithBlob(MethodPoolAbbrev, Record, MethodPool.str());
// Create a blob abbreviation for the selector table offsets.
Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(SELECTOR_OFFSETS));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // size
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // first ID
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
unsigned SelectorOffsetAbbrev = Stream.EmitAbbrev(Abbrev);
// Write the selector offsets table.
Record.clear();
Record.push_back(SELECTOR_OFFSETS);
Record.push_back(SelectorOffsets.size());
Record.push_back(FirstSelectorID - NUM_PREDEF_SELECTOR_IDS);
Stream.EmitRecordWithBlob(SelectorOffsetAbbrev, Record,
data(SelectorOffsets));
}
}
/// \brief Write the selectors referenced in @selector expression into AST file.
void ASTWriter::WriteReferencedSelectorsPool(Sema &SemaRef) {
using namespace llvm;
if (SemaRef.ReferencedSelectors.empty())
return;
RecordData Record;
// Note: this writes out all references even for a dependent AST. But it is
// very tricky to fix, and given that @selector shouldn't really appear in
// headers, probably not worth it. It's not a correctness issue.
for (DenseMap<Selector, SourceLocation>::iterator S =
SemaRef.ReferencedSelectors.begin(),
E = SemaRef.ReferencedSelectors.end(); S != E; ++S) {
Selector Sel = (*S).first;
SourceLocation Loc = (*S).second;
AddSelectorRef(Sel, Record);
AddSourceLocation(Loc, Record);
}
Stream.EmitRecord(REFERENCED_SELECTOR_POOL, Record);
}
//===----------------------------------------------------------------------===//
// Identifier Table Serialization
//===----------------------------------------------------------------------===//
namespace {
class ASTIdentifierTableTrait {
ASTWriter &Writer;
Preprocessor &PP;
IdentifierResolver &IdResolver;
bool IsModule;
/// \brief Determines whether this is an "interesting" identifier
/// that needs a full IdentifierInfo structure written into the hash
/// table.
bool isInterestingIdentifier(IdentifierInfo *II, MacroDirective *&Macro) {
if (II->isPoisoned() ||
II->isExtensionToken() ||
II->getObjCOrBuiltinID() ||
II->hasRevertedTokenIDToIdentifier() ||
II->getFETokenInfo<void>())
return true;
return hadMacroDefinition(II, Macro);
}
bool hadMacroDefinition(IdentifierInfo *II, MacroDirective *&Macro) {
if (!II->hadMacroDefinition())
return false;
if (Macro || (Macro = PP.getMacroDirectiveHistory(II))) {
if (!IsModule)
return !shouldIgnoreMacro(Macro, IsModule, PP);
MacroState State;
if (getFirstPublicSubmoduleMacro(Macro, State))
return true;
}
return false;
}
enum class SubmoduleMacroState {
/// We've seen nothing about this macro.
None,
/// We've seen a public visibility directive.
Public,
/// We've either exported a macro for this module or found that the
/// module's definition of this macro is private.
Done
};
typedef llvm::DenseMap<SubmoduleID, SubmoduleMacroState> MacroState;
MacroDirective *
getFirstPublicSubmoduleMacro(MacroDirective *MD, MacroState &State) {
if (MacroDirective *NextMD = getPublicSubmoduleMacro(MD, State))
return NextMD;
return nullptr;
}
MacroDirective *
getNextPublicSubmoduleMacro(MacroDirective *MD, MacroState &State) {
if (MacroDirective *NextMD =
getPublicSubmoduleMacro(MD->getPrevious(), State))
return NextMD;
return nullptr;
}
/// \brief Traverses the macro directives history and returns the next
/// public macro definition or undefinition that has not been found so far.
///
/// A macro that is defined in submodule A and undefined in submodule B
/// will still be considered as defined/exported from submodule A.
MacroDirective *getPublicSubmoduleMacro(MacroDirective *MD,
MacroState &State) {
if (!MD)
return nullptr;
Optional<bool> IsPublic;
for (; MD; MD = MD->getPrevious()) {
// Once we hit an ignored macro, we're done: the rest of the chain
// will all be ignored macros.
if (shouldIgnoreMacro(MD, IsModule, PP))
break;
// If this macro was imported, re-export it.
if (MD->isImported())
return MD;
SubmoduleID ModID = getSubmoduleID(MD);
auto &S = State[ModID];
assert(ModID && "found macro in no submodule");
if (S == SubmoduleMacroState::Done)
continue;
if (auto *VisMD = dyn_cast<VisibilityMacroDirective>(MD)) {
// The latest visibility directive for a name in a submodule affects all
// the directives that come before it.
if (S == SubmoduleMacroState::None)
S = VisMD->isPublic() ? SubmoduleMacroState::Public
: SubmoduleMacroState::Done;
} else {
S = SubmoduleMacroState::Done;
return MD;
}
}
return nullptr;
}
ArrayRef<SubmoduleID>
getOverriddenSubmodules(MacroDirective *MD,
SmallVectorImpl<SubmoduleID> &ScratchSpace) {
assert(!isa<VisibilityMacroDirective>(MD) &&
"only #define and #undef can override");
if (MD->isImported())
return MD->getOverriddenModules();
ScratchSpace.clear();
SubmoduleID ModID = getSubmoduleID(MD);
for (MD = MD->getPrevious(); MD; MD = MD->getPrevious()) {
if (shouldIgnoreMacro(MD, IsModule, PP))
break;
// If this is a definition from a submodule import, that submodule's
// definition is overridden by the definition or undefinition that we
// started with.
if (MD->isImported()) {
if (auto *DefMD = dyn_cast<DefMacroDirective>(MD)) {
SubmoduleID DefModuleID = DefMD->getInfo()->getOwningModuleID();
assert(DefModuleID && "imported macro has no owning module");
ScratchSpace.push_back(DefModuleID);
} else if (auto *UndefMD = dyn_cast<UndefMacroDirective>(MD)) {
// If we override a #undef, we override anything that #undef overrides.
// We don't need to override it, since an active #undef doesn't affect
// the meaning of a macro.
auto Overrides = UndefMD->getOverriddenModules();
ScratchSpace.insert(ScratchSpace.end(),
Overrides.begin(), Overrides.end());
}
}
// Stop once we leave the original macro's submodule.
//
// Either this submodule #included another submodule of the same
// module or it just happened to be built after the other module.
// In the former case, we override the submodule's macro.
//
// FIXME: In the latter case, we shouldn't do so, but we can't tell
// these cases apart.
//
// FIXME: We can leave this submodule and re-enter it if it #includes a
// header within a different submodule of the same module. In such cases
// the overrides list will be incomplete.
SubmoduleID DirectiveModuleID = getSubmoduleID(MD);
if (DirectiveModuleID != ModID) {
if (DirectiveModuleID && !MD->isImported())
ScratchSpace.push_back(DirectiveModuleID);
break;
}
}
std::sort(ScratchSpace.begin(), ScratchSpace.end());
ScratchSpace.erase(std::unique(ScratchSpace.begin(), ScratchSpace.end()),
ScratchSpace.end());
return ScratchSpace;
}
SubmoduleID getSubmoduleID(MacroDirective *MD) {
return Writer.inferSubmoduleIDFromLocation(MD->getLocation());
}
public:
typedef IdentifierInfo* key_type;
typedef key_type key_type_ref;
typedef IdentID data_type;
typedef data_type data_type_ref;
typedef unsigned hash_value_type;
typedef unsigned offset_type;
ASTIdentifierTableTrait(ASTWriter &Writer, Preprocessor &PP,
IdentifierResolver &IdResolver, bool IsModule)
: Writer(Writer), PP(PP), IdResolver(IdResolver), IsModule(IsModule) { }
static hash_value_type ComputeHash(const IdentifierInfo* II) {
return llvm::HashString(II->getName());
}
std::pair<unsigned,unsigned>
EmitKeyDataLength(raw_ostream& Out, IdentifierInfo* II, IdentID ID) {
unsigned KeyLen = II->getLength() + 1;
unsigned DataLen = 4; // 4 bytes for the persistent ID << 1
MacroDirective *Macro = nullptr;
if (isInterestingIdentifier(II, Macro)) {
DataLen += 2; // 2 bytes for builtin ID
DataLen += 2; // 2 bytes for flags
if (hadMacroDefinition(II, Macro)) {
DataLen += 4; // MacroDirectives offset.
if (IsModule) {
MacroState State;
SmallVector<SubmoduleID, 16> Scratch;
for (MacroDirective *MD = getFirstPublicSubmoduleMacro(Macro, State);
MD; MD = getNextPublicSubmoduleMacro(MD, State)) {
DataLen += 4; // MacroInfo ID or ModuleID.
if (unsigned NumOverrides =
getOverriddenSubmodules(MD, Scratch).size())
DataLen += 4 * (1 + NumOverrides);
}
DataLen += 4; // 0 terminator.
}
}
for (IdentifierResolver::iterator D = IdResolver.begin(II),
DEnd = IdResolver.end();
D != DEnd; ++D)
DataLen += 4;
}
using namespace llvm::support;
endian::Writer<little> LE(Out);
LE.write<uint16_t>(DataLen);
// We emit the key length after the data length so that every
// string is preceded by a 16-bit length. This matches the PTH
// format for storing identifiers.
LE.write<uint16_t>(KeyLen);
return std::make_pair(KeyLen, DataLen);
}
void EmitKey(raw_ostream& Out, const IdentifierInfo* II,
unsigned KeyLen) {
// Record the location of the key data. This is used when generating
// the mapping from persistent IDs to strings.
Writer.SetIdentifierOffset(II, Out.tell());
Out.write(II->getNameStart(), KeyLen);
}
static void emitMacroOverrides(raw_ostream &Out,
ArrayRef<SubmoduleID> Overridden) {
if (!Overridden.empty()) {
using namespace llvm::support;
endian::Writer<little> LE(Out);
LE.write<uint32_t>(Overridden.size() | 0x80000000U);
for (unsigned I = 0, N = Overridden.size(); I != N; ++I) {
assert(Overridden[I] && "zero module ID for override");
LE.write<uint32_t>(Overridden[I]);
}
}
}
void EmitData(raw_ostream& Out, IdentifierInfo* II,
IdentID ID, unsigned) {
using namespace llvm::support;
endian::Writer<little> LE(Out);
MacroDirective *Macro = nullptr;
if (!isInterestingIdentifier(II, Macro)) {
LE.write<uint32_t>(ID << 1);
return;
}
LE.write<uint32_t>((ID << 1) | 0x01);
uint32_t Bits = (uint32_t)II->getObjCOrBuiltinID();
assert((Bits & 0xffff) == Bits && "ObjCOrBuiltinID too big for ASTReader.");
LE.write<uint16_t>(Bits);
Bits = 0;
bool HadMacroDefinition = hadMacroDefinition(II, Macro);
Bits = (Bits << 1) | unsigned(HadMacroDefinition);
Bits = (Bits << 1) | unsigned(IsModule);
Bits = (Bits << 1) | unsigned(II->isExtensionToken());
Bits = (Bits << 1) | unsigned(II->isPoisoned());
Bits = (Bits << 1) | unsigned(II->hasRevertedTokenIDToIdentifier());
Bits = (Bits << 1) | unsigned(II->isCPlusPlusOperatorKeyword());
LE.write<uint16_t>(Bits);
if (HadMacroDefinition) {
LE.write<uint32_t>(Writer.getMacroDirectivesOffset(II));
if (IsModule) {
// Write the IDs of macros coming from different submodules.
MacroState State;
SmallVector<SubmoduleID, 16> Scratch;
for (MacroDirective *MD = getFirstPublicSubmoduleMacro(Macro, State);
MD; MD = getNextPublicSubmoduleMacro(MD, State)) {
if (DefMacroDirective *DefMD = dyn_cast<DefMacroDirective>(MD)) {
// FIXME: If this macro directive was created by #pragma pop_macros,
// or if it was created implicitly by resolving conflicting macros,
// it may be for a different submodule from the one in the MacroInfo
// object. If so, we should write out its owning ModuleID.
MacroID InfoID = Writer.getMacroID(DefMD->getInfo());
assert(InfoID);
LE.write<uint32_t>(InfoID << 1);
} else {
auto *UndefMD = cast<UndefMacroDirective>(MD);
SubmoduleID Mod = UndefMD->isImported()
? UndefMD->getOwningModuleID()
: getSubmoduleID(UndefMD);
LE.write<uint32_t>((Mod << 1) | 1);
}
emitMacroOverrides(Out, getOverriddenSubmodules(MD, Scratch));
}
LE.write<uint32_t>(0xdeadbeef);
}
}
// Emit the declaration IDs in reverse order, because the
// IdentifierResolver provides the declarations as they would be
// visible (e.g., the function "stat" would come before the struct
// "stat"), but the ASTReader adds declarations to the end of the list
// (so we need to see the struct "status" before the function "status").
// Only emit declarations that aren't from a chained PCH, though.
SmallVector<Decl *, 16> Decls(IdResolver.begin(II),
IdResolver.end());
for (SmallVectorImpl<Decl *>::reverse_iterator D = Decls.rbegin(),
DEnd = Decls.rend();
D != DEnd; ++D)
LE.write<uint32_t>(Writer.getDeclID(getMostRecentLocalDecl(*D)));
}
/// \brief Returns the most recent local decl or the given decl if there are
/// no local ones. The given decl is assumed to be the most recent one.
Decl *getMostRecentLocalDecl(Decl *Orig) {
// The only way a "from AST file" decl would be more recent from a local one
// is if it came from a module.
if (!PP.getLangOpts().Modules)
return Orig;
// Look for a local in the decl chain.
for (Decl *D = Orig; D; D = D->getPreviousDecl()) {
if (!D->isFromASTFile())
return D;
// If we come up a decl from a (chained-)PCH stop since we won't find a
// local one.
if (D->getOwningModuleID() == 0)
break;
}
return Orig;
}
};
} // end anonymous namespace
/// \brief Write the identifier table into the AST file.
///
/// The identifier table consists of a blob containing string data
/// (the actual identifiers themselves) and a separate "offsets" index
/// that maps identifier IDs to locations within the blob.
void ASTWriter::WriteIdentifierTable(Preprocessor &PP,
IdentifierResolver &IdResolver,
bool IsModule) {
using namespace llvm;
// Create and write out the blob that contains the identifier
// strings.
{
llvm::OnDiskChainedHashTableGenerator<ASTIdentifierTableTrait> Generator;
ASTIdentifierTableTrait Trait(*this, PP, IdResolver, IsModule);
// Look for any identifiers that were named while processing the
// headers, but are otherwise not needed. We add these to the hash
// table to enable checking of the predefines buffer in the case
// where the user adds new macro definitions when building the AST
// file.
for (IdentifierTable::iterator ID = PP.getIdentifierTable().begin(),
IDEnd = PP.getIdentifierTable().end();
ID != IDEnd; ++ID)
getIdentifierRef(ID->second);
// Create the on-disk hash table representation. We only store offsets
// for identifiers that appear here for the first time.
IdentifierOffsets.resize(NextIdentID - FirstIdentID);
for (llvm::DenseMap<const IdentifierInfo *, IdentID>::iterator
ID = IdentifierIDs.begin(), IDEnd = IdentifierIDs.end();
ID != IDEnd; ++ID) {
assert(ID->first && "NULL identifier in identifier table");
if (!Chain || !ID->first->isFromAST() ||
ID->first->hasChangedSinceDeserialization())
Generator.insert(const_cast<IdentifierInfo *>(ID->first), ID->second,
Trait);
}
// Create the on-disk hash table in a buffer.
SmallString<4096> IdentifierTable;
uint32_t BucketOffset;
{
using namespace llvm::support;
ASTIdentifierTableTrait Trait(*this, PP, IdResolver, IsModule);
llvm::raw_svector_ostream Out(IdentifierTable);
// Make sure that no bucket is at offset 0
endian::Writer<little>(Out).write<uint32_t>(0);
BucketOffset = Generator.Emit(Out, Trait);
}
// Create a blob abbreviation
BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(IDENTIFIER_TABLE));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
unsigned IDTableAbbrev = Stream.EmitAbbrev(Abbrev);
// Write the identifier table
RecordData Record;
Record.push_back(IDENTIFIER_TABLE);
Record.push_back(BucketOffset);
Stream.EmitRecordWithBlob(IDTableAbbrev, Record, IdentifierTable.str());
}
// Write the offsets table for identifier IDs.
BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(IDENTIFIER_OFFSET));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // # of identifiers
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // first ID
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
unsigned IdentifierOffsetAbbrev = Stream.EmitAbbrev(Abbrev);
#ifndef NDEBUG
for (unsigned I = 0, N = IdentifierOffsets.size(); I != N; ++I)
assert(IdentifierOffsets[I] && "Missing identifier offset?");
#endif
RecordData Record;
Record.push_back(IDENTIFIER_OFFSET);
Record.push_back(IdentifierOffsets.size());
Record.push_back(FirstIdentID - NUM_PREDEF_IDENT_IDS);
Stream.EmitRecordWithBlob(IdentifierOffsetAbbrev, Record,
data(IdentifierOffsets));
}
//===----------------------------------------------------------------------===//
// DeclContext's Name Lookup Table Serialization
//===----------------------------------------------------------------------===//
/// Determine the declaration that should be put into the name lookup table to
/// represent the given declaration in this module. This is usually D itself,
/// but if D was imported and merged into a local declaration, we want the most
/// recent local declaration instead. The chosen declaration will be the most
/// recent declaration in any module that imports this one.
static NamedDecl *getDeclForLocalLookup(NamedDecl *D) {
if (!D->isFromASTFile())
return D;
if (Decl *Redecl = D->getPreviousDecl()) {
// For Redeclarable decls, a prior declaration might be local.
for (; Redecl; Redecl = Redecl->getPreviousDecl())
if (!Redecl->isFromASTFile())
return cast<NamedDecl>(Redecl);
} else if (Decl *First = D->getCanonicalDecl()) {
// For Mergeable decls, the first decl might be local.
if (!First->isFromASTFile())
return cast<NamedDecl>(First);
}
// All declarations are imported. Our most recent declaration will also be
// the most recent one in anyone who imports us.
return D;
}
namespace {
// Trait used for the on-disk hash table used in the method pool.
class ASTDeclContextNameLookupTrait {
ASTWriter &Writer;
public:
typedef DeclarationName key_type;
typedef key_type key_type_ref;
typedef DeclContext::lookup_result data_type;
typedef const data_type& data_type_ref;
typedef unsigned hash_value_type;
typedef unsigned offset_type;
explicit ASTDeclContextNameLookupTrait(ASTWriter &Writer) : Writer(Writer) { }
hash_value_type ComputeHash(DeclarationName Name) {
llvm::FoldingSetNodeID ID;
ID.AddInteger(Name.getNameKind());
switch (Name.getNameKind()) {
case DeclarationName::Identifier:
ID.AddString(Name.getAsIdentifierInfo()->getName());
break;
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
ID.AddInteger(serialization::ComputeHash(Name.getObjCSelector()));
break;
case DeclarationName::CXXConstructorName:
case DeclarationName::CXXDestructorName:
case DeclarationName::CXXConversionFunctionName:
break;
case DeclarationName::CXXOperatorName:
ID.AddInteger(Name.getCXXOverloadedOperator());
break;
case DeclarationName::CXXLiteralOperatorName:
ID.AddString(Name.getCXXLiteralIdentifier()->getName());
case DeclarationName::CXXUsingDirective:
break;
}
return ID.ComputeHash();
}
std::pair<unsigned,unsigned>
EmitKeyDataLength(raw_ostream& Out, DeclarationName Name,
data_type_ref Lookup) {
using namespace llvm::support;
endian::Writer<little> LE(Out);
unsigned KeyLen = 1;
switch (Name.getNameKind()) {
case DeclarationName::Identifier:
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
case DeclarationName::CXXLiteralOperatorName:
KeyLen += 4;
break;
case DeclarationName::CXXOperatorName:
KeyLen += 1;
break;
case DeclarationName::CXXConstructorName:
case DeclarationName::CXXDestructorName:
case DeclarationName::CXXConversionFunctionName:
case DeclarationName::CXXUsingDirective:
break;
}
LE.write<uint16_t>(KeyLen);
// 2 bytes for num of decls and 4 for each DeclID.
unsigned DataLen = 2 + 4 * Lookup.size();
LE.write<uint16_t>(DataLen);
return std::make_pair(KeyLen, DataLen);
}
void EmitKey(raw_ostream& Out, DeclarationName Name, unsigned) {
using namespace llvm::support;
endian::Writer<little> LE(Out);
LE.write<uint8_t>(Name.getNameKind());
switch (Name.getNameKind()) {
case DeclarationName::Identifier:
LE.write<uint32_t>(Writer.getIdentifierRef(Name.getAsIdentifierInfo()));
return;
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
LE.write<uint32_t>(Writer.getSelectorRef(Name.getObjCSelector()));
return;
case DeclarationName::CXXOperatorName:
assert(Name.getCXXOverloadedOperator() < NUM_OVERLOADED_OPERATORS &&
"Invalid operator?");
LE.write<uint8_t>(Name.getCXXOverloadedOperator());
return;
case DeclarationName::CXXLiteralOperatorName:
LE.write<uint32_t>(Writer.getIdentifierRef(Name.getCXXLiteralIdentifier()));
return;
case DeclarationName::CXXConstructorName:
case DeclarationName::CXXDestructorName:
case DeclarationName::CXXConversionFunctionName:
case DeclarationName::CXXUsingDirective:
return;
}
llvm_unreachable("Invalid name kind?");
}
void EmitData(raw_ostream& Out, key_type_ref,
data_type Lookup, unsigned DataLen) {
using namespace llvm::support;
endian::Writer<little> LE(Out);
uint64_t Start = Out.tell(); (void)Start;
LE.write<uint16_t>(Lookup.size());
for (DeclContext::lookup_iterator I = Lookup.begin(), E = Lookup.end();
I != E; ++I)
LE.write<uint32_t>(Writer.GetDeclRef(getDeclForLocalLookup(*I)));
assert(Out.tell() - Start == DataLen && "Data length is wrong");
}
};
} // end anonymous namespace
template<typename Visitor>
static void visitLocalLookupResults(const DeclContext *ConstDC,
bool NeedToReconcileExternalVisibleStorage,
Visitor AddLookupResult) {
// FIXME: We need to build the lookups table, which is logically const.
DeclContext *DC = const_cast<DeclContext*>(ConstDC);
assert(DC == DC->getPrimaryContext() && "only primary DC has lookup table");
SmallVector<DeclarationName, 16> ExternalNames;
for (auto &Lookup : *DC->buildLookup()) {
if (Lookup.second.hasExternalDecls() ||
NeedToReconcileExternalVisibleStorage) {
// We don't know for sure what declarations are found by this name,
// because the external source might have a different set from the set
// that are in the lookup map, and we can't update it now without
// risking invalidating our lookup iterator. So add it to a queue to
// deal with later.
ExternalNames.push_back(Lookup.first);
continue;
}
AddLookupResult(Lookup.first, Lookup.second.getLookupResult());
}
// Add the names we needed to defer. Note, this shouldn't add any new decls
// to the list we need to serialize: any new declarations we find here should
// be imported from an external source.
// FIXME: What if the external source isn't an ASTReader?
for (const auto &Name : ExternalNames)
AddLookupResult(Name, DC->lookup(Name));
}
void ASTWriter::AddUpdatedDeclContext(const DeclContext *DC) {
if (UpdatedDeclContexts.insert(DC).second && WritingAST) {
// Ensure we emit all the visible declarations.
visitLocalLookupResults(DC, DC->NeedToReconcileExternalVisibleStorage,
[&](DeclarationName Name,
DeclContext::lookup_const_result Result) {
for (auto *Decl : Result)
GetDeclRef(getDeclForLocalLookup(Decl));
});
}
}
uint32_t
ASTWriter::GenerateNameLookupTable(const DeclContext *DC,
llvm::SmallVectorImpl<char> &LookupTable) {
assert(!DC->LookupPtr.getInt() && "must call buildLookups first");
llvm::OnDiskChainedHashTableGenerator<ASTDeclContextNameLookupTrait>
Generator;
ASTDeclContextNameLookupTrait Trait(*this);
// Create the on-disk hash table representation.
DeclarationName ConstructorName;
DeclarationName ConversionName;
SmallVector<NamedDecl *, 8> ConstructorDecls;
SmallVector<NamedDecl *, 4> ConversionDecls;
visitLocalLookupResults(DC, DC->NeedToReconcileExternalVisibleStorage,
[&](DeclarationName Name,
DeclContext::lookup_result Result) {
if (Result.empty())
return;
// Different DeclarationName values of certain kinds are mapped to
// identical serialized keys, because we don't want to use type
// identifiers in the keys (since type ids are local to the module).
switch (Name.getNameKind()) {
case DeclarationName::CXXConstructorName:
// There may be different CXXConstructorName DeclarationName values
// in a DeclContext because a UsingDecl that inherits constructors
// has the DeclarationName of the inherited constructors.
if (!ConstructorName)
ConstructorName = Name;
ConstructorDecls.append(Result.begin(), Result.end());
return;
case DeclarationName::CXXConversionFunctionName:
if (!ConversionName)
ConversionName = Name;
ConversionDecls.append(Result.begin(), Result.end());
return;
default:
break;
}
Generator.insert(Name, Result, Trait);
});
// Add the constructors.
if (!ConstructorDecls.empty()) {
Generator.insert(ConstructorName,
DeclContext::lookup_result(ConstructorDecls.begin(),
ConstructorDecls.end()),
Trait);
}
// Add the conversion functions.
if (!ConversionDecls.empty()) {
Generator.insert(ConversionName,
DeclContext::lookup_result(ConversionDecls.begin(),
ConversionDecls.end()),
Trait);
}
// Create the on-disk hash table in a buffer.
llvm::raw_svector_ostream Out(LookupTable);
// Make sure that no bucket is at offset 0
using namespace llvm::support;
endian::Writer<little>(Out).write<uint32_t>(0);
return Generator.Emit(Out, Trait);
}
/// \brief Write the block containing all of the declaration IDs
/// visible from the given DeclContext.
///
/// \returns the offset of the DECL_CONTEXT_VISIBLE block within the
/// bitstream, or 0 if no block was written.
uint64_t ASTWriter::WriteDeclContextVisibleBlock(ASTContext &Context,
DeclContext *DC) {
if (DC->getPrimaryContext() != DC)
return 0;
// Since there is no name lookup into functions or methods, don't bother to
// build a visible-declarations table for these entities.
if (DC->isFunctionOrMethod())
return 0;
// If not in C++, we perform name lookup for the translation unit via the
// IdentifierInfo chains, don't bother to build a visible-declarations table.
if (DC->isTranslationUnit() && !Context.getLangOpts().CPlusPlus)
return 0;
// Serialize the contents of the mapping used for lookup. Note that,
// although we have two very different code paths, the serialized
// representation is the same for both cases: a declaration name,
// followed by a size, followed by references to the visible
// declarations that have that name.
uint64_t Offset = Stream.GetCurrentBitNo();
StoredDeclsMap *Map = DC->buildLookup();
if (!Map || Map->empty())
return 0;
// Create the on-disk hash table in a buffer.
SmallString<4096> LookupTable;
uint32_t BucketOffset = GenerateNameLookupTable(DC, LookupTable);
// Write the lookup table
RecordData Record;
Record.push_back(DECL_CONTEXT_VISIBLE);
Record.push_back(BucketOffset);
Stream.EmitRecordWithBlob(DeclContextVisibleLookupAbbrev, Record,
LookupTable.str());
++NumVisibleDeclContexts;
return Offset;
}
/// \brief Write an UPDATE_VISIBLE block for the given context.
///
/// UPDATE_VISIBLE blocks contain the declarations that are added to an existing
/// DeclContext in a dependent AST file. As such, they only exist for the TU
/// (in C++), for namespaces, and for classes with forward-declared unscoped
/// enumeration members (in C++11).
void ASTWriter::WriteDeclContextVisibleUpdate(const DeclContext *DC) {
StoredDeclsMap *Map = DC->getLookupPtr();
if (!Map || Map->empty())
return;
// Create the on-disk hash table in a buffer.
SmallString<4096> LookupTable;
uint32_t BucketOffset = GenerateNameLookupTable(DC, LookupTable);
// Write the lookup table
RecordData Record;
Record.push_back(UPDATE_VISIBLE);
Record.push_back(getDeclID(cast<Decl>(DC)));
Record.push_back(BucketOffset);
Stream.EmitRecordWithBlob(UpdateVisibleAbbrev, Record, LookupTable.str());
}
/// \brief Write an FP_PRAGMA_OPTIONS block for the given FPOptions.
void ASTWriter::WriteFPPragmaOptions(const FPOptions &Opts) {
RecordData Record;
Record.push_back(Opts.fp_contract);
Stream.EmitRecord(FP_PRAGMA_OPTIONS, Record);
}
/// \brief Write an OPENCL_EXTENSIONS block for the given OpenCLOptions.
void ASTWriter::WriteOpenCLExtensions(Sema &SemaRef) {
if (!SemaRef.Context.getLangOpts().OpenCL)
return;
const OpenCLOptions &Opts = SemaRef.getOpenCLOptions();
RecordData Record;
#define OPENCLEXT(nm) Record.push_back(Opts.nm);
#include "clang/Basic/OpenCLExtensions.def"
Stream.EmitRecord(OPENCL_EXTENSIONS, Record);
}
void ASTWriter::WriteRedeclarations() {
RecordData LocalRedeclChains;
SmallVector<serialization::LocalRedeclarationsInfo, 2> LocalRedeclsMap;
for (unsigned I = 0, N = Redeclarations.size(); I != N; ++I) {
Decl *First = Redeclarations[I];
assert(First->isFirstDecl() && "Not the first declaration?");
Decl *MostRecent = First->getMostRecentDecl();
// If we only have a single declaration, there is no point in storing
// a redeclaration chain.
if (First == MostRecent)
continue;
unsigned Offset = LocalRedeclChains.size();
unsigned Size = 0;
LocalRedeclChains.push_back(0); // Placeholder for the size.
// Collect the set of local redeclarations of this declaration.
for (Decl *Prev = MostRecent; Prev != First;
Prev = Prev->getPreviousDecl()) {
if (!Prev->isFromASTFile()) {
AddDeclRef(Prev, LocalRedeclChains);
++Size;
}
}
if (!First->isFromASTFile() && Chain) {
Decl *FirstFromAST = MostRecent;
for (Decl *Prev = MostRecent; Prev; Prev = Prev->getPreviousDecl()) {
if (Prev->isFromASTFile())
FirstFromAST = Prev;
}
// FIXME: Do we need to do this for the first declaration from each
// redeclaration chain that was merged into this one?
Chain->MergedDecls[FirstFromAST].push_back(getDeclID(First));
}
LocalRedeclChains[Offset] = Size;
// Reverse the set of local redeclarations, so that we store them in
// order (since we found them in reverse order).
std::reverse(LocalRedeclChains.end() - Size, LocalRedeclChains.end());
// Add the mapping from the first ID from the AST to the set of local
// declarations.
LocalRedeclarationsInfo Info = { getDeclID(First), Offset };
LocalRedeclsMap.push_back(Info);
assert(N == Redeclarations.size() &&
"Deserialized a declaration we shouldn't have");
}
if (LocalRedeclChains.empty())
return;
// Sort the local redeclarations map by the first declaration ID,
// since the reader will be performing binary searches on this information.
llvm::array_pod_sort(LocalRedeclsMap.begin(), LocalRedeclsMap.end());
// Emit the local redeclarations map.
using namespace llvm;
llvm::BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(LOCAL_REDECLARATIONS_MAP));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of entries
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
unsigned AbbrevID = Stream.EmitAbbrev(Abbrev);
RecordData Record;
Record.push_back(LOCAL_REDECLARATIONS_MAP);
Record.push_back(LocalRedeclsMap.size());
Stream.EmitRecordWithBlob(AbbrevID, Record,
reinterpret_cast<char*>(LocalRedeclsMap.data()),
LocalRedeclsMap.size() * sizeof(LocalRedeclarationsInfo));
// Emit the redeclaration chains.
Stream.EmitRecord(LOCAL_REDECLARATIONS, LocalRedeclChains);
}
void ASTWriter::WriteObjCCategories() {
SmallVector<ObjCCategoriesInfo, 2> CategoriesMap;
RecordData Categories;
for (unsigned I = 0, N = ObjCClassesWithCategories.size(); I != N; ++I) {
unsigned Size = 0;
unsigned StartIndex = Categories.size();
ObjCInterfaceDecl *Class = ObjCClassesWithCategories[I];
// Allocate space for the size.
Categories.push_back(0);
// Add the categories.
for (ObjCInterfaceDecl::known_categories_iterator
Cat = Class->known_categories_begin(),
CatEnd = Class->known_categories_end();
Cat != CatEnd; ++Cat, ++Size) {
assert(getDeclID(*Cat) != 0 && "Bogus category");
AddDeclRef(*Cat, Categories);
}
// Update the size.
Categories[StartIndex] = Size;
// Record this interface -> category map.
ObjCCategoriesInfo CatInfo = { getDeclID(Class), StartIndex };
CategoriesMap.push_back(CatInfo);
}
// Sort the categories map by the definition ID, since the reader will be
// performing binary searches on this information.
llvm::array_pod_sort(CategoriesMap.begin(), CategoriesMap.end());
// Emit the categories map.
using namespace llvm;
llvm::BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(OBJC_CATEGORIES_MAP));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of entries
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
unsigned AbbrevID = Stream.EmitAbbrev(Abbrev);
RecordData Record;
Record.push_back(OBJC_CATEGORIES_MAP);
Record.push_back(CategoriesMap.size());
Stream.EmitRecordWithBlob(AbbrevID, Record,
reinterpret_cast<char*>(CategoriesMap.data()),
CategoriesMap.size() * sizeof(ObjCCategoriesInfo));
// Emit the category lists.
Stream.EmitRecord(OBJC_CATEGORIES, Categories);
}
void ASTWriter::WriteMergedDecls() {
if (!Chain || Chain->MergedDecls.empty())
return;
RecordData Record;
for (ASTReader::MergedDeclsMap::iterator I = Chain->MergedDecls.begin(),
IEnd = Chain->MergedDecls.end();
I != IEnd; ++I) {
DeclID CanonID = I->first->isFromASTFile()? I->first->getGlobalID()
: GetDeclRef(I->first);
assert(CanonID && "Merged declaration not known?");
Record.push_back(CanonID);
Record.push_back(I->second.size());
Record.append(I->second.begin(), I->second.end());
}
Stream.EmitRecord(MERGED_DECLARATIONS, Record);
}
void ASTWriter::WriteLateParsedTemplates(Sema &SemaRef) {
Sema::LateParsedTemplateMapT &LPTMap = SemaRef.LateParsedTemplateMap;
if (LPTMap.empty())
return;
RecordData Record;
for (Sema::LateParsedTemplateMapT::iterator It = LPTMap.begin(),
ItEnd = LPTMap.end();
It != ItEnd; ++It) {
LateParsedTemplate *LPT = It->second;
AddDeclRef(It->first, Record);
AddDeclRef(LPT->D, Record);
Record.push_back(LPT->Toks.size());
for (CachedTokens::iterator TokIt = LPT->Toks.begin(),
TokEnd = LPT->Toks.end();
TokIt != TokEnd; ++TokIt) {
AddToken(*TokIt, Record);
}
}
Stream.EmitRecord(LATE_PARSED_TEMPLATE, Record);
}
/// \brief Write the state of 'pragma clang optimize' at the end of the module.
void ASTWriter::WriteOptimizePragmaOptions(Sema &SemaRef) {
RecordData Record;
SourceLocation PragmaLoc = SemaRef.getOptimizeOffPragmaLocation();
AddSourceLocation(PragmaLoc, Record);
Stream.EmitRecord(OPTIMIZE_PRAGMA_OPTIONS, Record);
}
//===----------------------------------------------------------------------===//
// General Serialization Routines
//===----------------------------------------------------------------------===//
/// \brief Write a record containing the given attributes.
void ASTWriter::WriteAttributes(ArrayRef<const Attr*> Attrs,
RecordDataImpl &Record) {
Record.push_back(Attrs.size());
for (ArrayRef<const Attr *>::iterator i = Attrs.begin(),
e = Attrs.end(); i != e; ++i){
const Attr *A = *i;
Record.push_back(A->getKind()); // FIXME: stable encoding, target attrs
AddSourceRange(A->getRange(), Record);
#include "clang/Serialization/AttrPCHWrite.inc"
}
}
void ASTWriter::AddToken(const Token &Tok, RecordDataImpl &Record) {
AddSourceLocation(Tok.getLocation(), Record);
Record.push_back(Tok.getLength());
// FIXME: When reading literal tokens, reconstruct the literal pointer
// if it is needed.
AddIdentifierRef(Tok.getIdentifierInfo(), Record);
// FIXME: Should translate token kind to a stable encoding.
Record.push_back(Tok.getKind());
// FIXME: Should translate token flags to a stable encoding.
Record.push_back(Tok.getFlags());
}
void ASTWriter::AddString(StringRef Str, RecordDataImpl &Record) {
Record.push_back(Str.size());
Record.insert(Record.end(), Str.begin(), Str.end());
}
bool ASTWriter::PreparePathForOutput(SmallVectorImpl<char> &Path) {
assert(Context && "should have context when outputting path");
bool Changed =
cleanPathForOutput(Context->getSourceManager().getFileManager(), Path);
// Remove a prefix to make the path relative, if relevant.
const char *PathBegin = Path.data();
const char *PathPtr =
adjustFilenameForRelocatableAST(PathBegin, BaseDirectory);
if (PathPtr != PathBegin) {
Path.erase(Path.begin(), Path.begin() + (PathPtr - PathBegin));
Changed = true;
}
return Changed;
}
void ASTWriter::AddPath(StringRef Path, RecordDataImpl &Record) {
SmallString<128> FilePath(Path);
PreparePathForOutput(FilePath);
AddString(FilePath, Record);
}
void ASTWriter::EmitRecordWithPath(unsigned Abbrev, RecordDataImpl &Record,
StringRef Path) {
SmallString<128> FilePath(Path);
PreparePathForOutput(FilePath);
Stream.EmitRecordWithBlob(Abbrev, Record, FilePath);
}
void ASTWriter::AddVersionTuple(const VersionTuple &Version,
RecordDataImpl &Record) {
Record.push_back(Version.getMajor());
if (Optional<unsigned> Minor = Version.getMinor())
Record.push_back(*Minor + 1);
else
Record.push_back(0);
if (Optional<unsigned> Subminor = Version.getSubminor())
Record.push_back(*Subminor + 1);
else
Record.push_back(0);
}
/// \brief Note that the identifier II occurs at the given offset
/// within the identifier table.
void ASTWriter::SetIdentifierOffset(const IdentifierInfo *II, uint32_t Offset) {
IdentID ID = IdentifierIDs[II];
// Only store offsets new to this AST file. Other identifier names are looked
// up earlier in the chain and thus don't need an offset.
if (ID >= FirstIdentID)
IdentifierOffsets[ID - FirstIdentID] = Offset;
}
/// \brief Note that the selector Sel occurs at the given offset
/// within the method pool/selector table.
void ASTWriter::SetSelectorOffset(Selector Sel, uint32_t Offset) {
unsigned ID = SelectorIDs[Sel];
assert(ID && "Unknown selector");
// Don't record offsets for selectors that are also available in a different
// file.
if (ID < FirstSelectorID)
return;
SelectorOffsets[ID - FirstSelectorID] = Offset;
}
ASTWriter::ASTWriter(llvm::BitstreamWriter &Stream)
: Stream(Stream), Context(nullptr), PP(nullptr), Chain(nullptr),
WritingModule(nullptr), WritingAST(false),
DoneWritingDeclsAndTypes(false), ASTHasCompilerErrors(false),
FirstDeclID(NUM_PREDEF_DECL_IDS), NextDeclID(FirstDeclID),
FirstTypeID(NUM_PREDEF_TYPE_IDS), NextTypeID(FirstTypeID),
FirstIdentID(NUM_PREDEF_IDENT_IDS), NextIdentID(FirstIdentID),
FirstMacroID(NUM_PREDEF_MACRO_IDS), NextMacroID(FirstMacroID),
FirstSubmoduleID(NUM_PREDEF_SUBMODULE_IDS),
NextSubmoduleID(FirstSubmoduleID),
FirstSelectorID(NUM_PREDEF_SELECTOR_IDS), NextSelectorID(FirstSelectorID),
CollectedStmts(&StmtsToEmit), NumStatements(0), NumMacros(0),
NumLexicalDeclContexts(0), NumVisibleDeclContexts(0),
NextCXXBaseSpecifiersID(1), TypeExtQualAbbrev(0),
TypeFunctionProtoAbbrev(0), DeclParmVarAbbrev(0),
DeclContextLexicalAbbrev(0), DeclContextVisibleLookupAbbrev(0),
UpdateVisibleAbbrev(0), DeclRecordAbbrev(0), DeclTypedefAbbrev(0),
DeclVarAbbrev(0), DeclFieldAbbrev(0), DeclEnumAbbrev(0),
DeclObjCIvarAbbrev(0), DeclCXXMethodAbbrev(0), DeclRefExprAbbrev(0),
CharacterLiteralAbbrev(0), IntegerLiteralAbbrev(0),
ExprImplicitCastAbbrev(0) {}
ASTWriter::~ASTWriter() {
llvm::DeleteContainerSeconds(FileDeclIDs);
}
void ASTWriter::WriteAST(Sema &SemaRef,
const std::string &OutputFile,
Module *WritingModule, StringRef isysroot,
bool hasErrors) {
WritingAST = true;
ASTHasCompilerErrors = hasErrors;
// Emit the file header.
Stream.Emit((unsigned)'C', 8);
Stream.Emit((unsigned)'P', 8);
Stream.Emit((unsigned)'C', 8);
Stream.Emit((unsigned)'H', 8);
WriteBlockInfoBlock();
Context = &SemaRef.Context;
PP = &SemaRef.PP;
this->WritingModule = WritingModule;
WriteASTCore(SemaRef, isysroot, OutputFile, WritingModule);
Context = nullptr;
PP = nullptr;
this->WritingModule = nullptr;
this->BaseDirectory.clear();
WritingAST = false;
}
template<typename Vector>
static void AddLazyVectorDecls(ASTWriter &Writer, Vector &Vec,
ASTWriter::RecordData &Record) {
for (typename Vector::iterator I = Vec.begin(nullptr, true), E = Vec.end();
I != E; ++I) {
Writer.AddDeclRef(*I, Record);
}
}
void ASTWriter::WriteASTCore(Sema &SemaRef,
StringRef isysroot,
const std::string &OutputFile,
Module *WritingModule) {
using namespace llvm;
bool isModule = WritingModule != nullptr;
// Make sure that the AST reader knows to finalize itself.
if (Chain)
Chain->finalizeForWriting();
ASTContext &Context = SemaRef.Context;
Preprocessor &PP = SemaRef.PP;
// Set up predefined declaration IDs.
DeclIDs[Context.getTranslationUnitDecl()] = PREDEF_DECL_TRANSLATION_UNIT_ID;
if (Context.ObjCIdDecl)
DeclIDs[Context.ObjCIdDecl] = PREDEF_DECL_OBJC_ID_ID;
if (Context.ObjCSelDecl)
DeclIDs[Context.ObjCSelDecl] = PREDEF_DECL_OBJC_SEL_ID;
if (Context.ObjCClassDecl)
DeclIDs[Context.ObjCClassDecl] = PREDEF_DECL_OBJC_CLASS_ID;
if (Context.ObjCProtocolClassDecl)
DeclIDs[Context.ObjCProtocolClassDecl] = PREDEF_DECL_OBJC_PROTOCOL_ID;
if (Context.Int128Decl)
DeclIDs[Context.Int128Decl] = PREDEF_DECL_INT_128_ID;
if (Context.UInt128Decl)
DeclIDs[Context.UInt128Decl] = PREDEF_DECL_UNSIGNED_INT_128_ID;
if (Context.ObjCInstanceTypeDecl)
DeclIDs[Context.ObjCInstanceTypeDecl] = PREDEF_DECL_OBJC_INSTANCETYPE_ID;
if (Context.BuiltinVaListDecl)
DeclIDs[Context.getBuiltinVaListDecl()] = PREDEF_DECL_BUILTIN_VA_LIST_ID;
if (!Chain) {
// Make sure that we emit IdentifierInfos (and any attached
// declarations) for builtins. We don't need to do this when we're
// emitting chained PCH files, because all of the builtins will be
// in the original PCH file.
// FIXME: Modules won't like this at all.
IdentifierTable &Table = PP.getIdentifierTable();
SmallVector<const char *, 32> BuiltinNames;
if (!Context.getLangOpts().NoBuiltin) {
Context.BuiltinInfo.GetBuiltinNames(BuiltinNames);
}
for (unsigned I = 0, N = BuiltinNames.size(); I != N; ++I)
getIdentifierRef(&Table.get(BuiltinNames[I]));
}
// If there are any out-of-date identifiers, bring them up to date.
if (ExternalPreprocessorSource *ExtSource = PP.getExternalSource()) {
// Find out-of-date identifiers.
SmallVector<IdentifierInfo *, 4> OutOfDate;
for (IdentifierTable::iterator ID = PP.getIdentifierTable().begin(),
IDEnd = PP.getIdentifierTable().end();
ID != IDEnd; ++ID) {
if (ID->second->isOutOfDate())
OutOfDate.push_back(ID->second);
}
// Update the out-of-date identifiers.
for (unsigned I = 0, N = OutOfDate.size(); I != N; ++I) {
ExtSource->updateOutOfDateIdentifier(*OutOfDate[I]);
}
}
// If we saw any DeclContext updates before we started writing the AST file,
// make sure all visible decls in those DeclContexts are written out.
if (!UpdatedDeclContexts.empty()) {
auto OldUpdatedDeclContexts = std::move(UpdatedDeclContexts);
UpdatedDeclContexts.clear();
for (auto *DC : OldUpdatedDeclContexts)
AddUpdatedDeclContext(DC);
}
// Build a record containing all of the tentative definitions in this file, in
// TentativeDefinitions order. Generally, this record will be empty for
// headers.
RecordData TentativeDefinitions;
AddLazyVectorDecls(*this, SemaRef.TentativeDefinitions, TentativeDefinitions);
// Build a record containing all of the file scoped decls in this file.
RecordData UnusedFileScopedDecls;
if (!isModule)
AddLazyVectorDecls(*this, SemaRef.UnusedFileScopedDecls,
UnusedFileScopedDecls);
// Build a record containing all of the delegating constructors we still need
// to resolve.
RecordData DelegatingCtorDecls;
if (!isModule)
AddLazyVectorDecls(*this, SemaRef.DelegatingCtorDecls, DelegatingCtorDecls);
// Write the set of weak, undeclared identifiers. We always write the
// entire table, since later PCH files in a PCH chain are only interested in
// the results at the end of the chain.
RecordData WeakUndeclaredIdentifiers;
if (!SemaRef.WeakUndeclaredIdentifiers.empty()) {
for (llvm::DenseMap<IdentifierInfo*,WeakInfo>::iterator
I = SemaRef.WeakUndeclaredIdentifiers.begin(),
E = SemaRef.WeakUndeclaredIdentifiers.end(); I != E; ++I) {
AddIdentifierRef(I->first, WeakUndeclaredIdentifiers);
AddIdentifierRef(I->second.getAlias(), WeakUndeclaredIdentifiers);
AddSourceLocation(I->second.getLocation(), WeakUndeclaredIdentifiers);
WeakUndeclaredIdentifiers.push_back(I->second.getUsed());
}
}
// Build a record containing all of the locally-scoped extern "C"
// declarations in this header file. Generally, this record will be
// empty.
RecordData LocallyScopedExternCDecls;
// FIXME: This is filling in the AST file in densemap order which is
// nondeterminstic!
for (llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
TD = SemaRef.LocallyScopedExternCDecls.begin(),
TDEnd = SemaRef.LocallyScopedExternCDecls.end();
TD != TDEnd; ++TD) {
if (!TD->second->isFromASTFile())
AddDeclRef(TD->second, LocallyScopedExternCDecls);
}
// Build a record containing all of the ext_vector declarations.
RecordData ExtVectorDecls;
AddLazyVectorDecls(*this, SemaRef.ExtVectorDecls, ExtVectorDecls);
// Build a record containing all of the VTable uses information.
RecordData VTableUses;
if (!SemaRef.VTableUses.empty()) {
for (unsigned I = 0, N = SemaRef.VTableUses.size(); I != N; ++I) {
AddDeclRef(SemaRef.VTableUses[I].first, VTableUses);
AddSourceLocation(SemaRef.VTableUses[I].second, VTableUses);
VTableUses.push_back(SemaRef.VTablesUsed[SemaRef.VTableUses[I].first]);
}
}
// Build a record containing all of the UnusedLocalTypedefNameCandidates.
RecordData UnusedLocalTypedefNameCandidates;
for (const TypedefNameDecl *TD : SemaRef.UnusedLocalTypedefNameCandidates)
AddDeclRef(TD, UnusedLocalTypedefNameCandidates);
// Build a record containing all of dynamic classes declarations.
RecordData DynamicClasses;
AddLazyVectorDecls(*this, SemaRef.DynamicClasses, DynamicClasses);
// Build a record containing all of pending implicit instantiations.
RecordData PendingInstantiations;
for (std::deque<Sema::PendingImplicitInstantiation>::iterator
I = SemaRef.PendingInstantiations.begin(),
N = SemaRef.PendingInstantiations.end(); I != N; ++I) {
AddDeclRef(I->first, PendingInstantiations);
AddSourceLocation(I->second, PendingInstantiations);
}
assert(SemaRef.PendingLocalImplicitInstantiations.empty() &&
"There are local ones at end of translation unit!");
// Build a record containing some declaration references.
RecordData SemaDeclRefs;
if (SemaRef.StdNamespace || SemaRef.StdBadAlloc) {
AddDeclRef(SemaRef.getStdNamespace(), SemaDeclRefs);
AddDeclRef(SemaRef.getStdBadAlloc(), SemaDeclRefs);
}
RecordData CUDASpecialDeclRefs;
if (Context.getcudaConfigureCallDecl()) {
AddDeclRef(Context.getcudaConfigureCallDecl(), CUDASpecialDeclRefs);
}
// Build a record containing all of the known namespaces.
RecordData KnownNamespaces;
for (llvm::MapVector<NamespaceDecl*, bool>::iterator
I = SemaRef.KnownNamespaces.begin(),
IEnd = SemaRef.KnownNamespaces.end();
I != IEnd; ++I) {
if (!I->second)
AddDeclRef(I->first, KnownNamespaces);
}
// Build a record of all used, undefined objects that require definitions.
RecordData UndefinedButUsed;
SmallVector<std::pair<NamedDecl *, SourceLocation>, 16> Undefined;
SemaRef.getUndefinedButUsed(Undefined);
for (SmallVectorImpl<std::pair<NamedDecl *, SourceLocation> >::iterator
I = Undefined.begin(), E = Undefined.end(); I != E; ++I) {
AddDeclRef(I->first, UndefinedButUsed);
AddSourceLocation(I->second, UndefinedButUsed);
}
// Write the control block
WriteControlBlock(PP, Context, isysroot, OutputFile);
// Write the remaining AST contents.
RecordData Record;
Stream.EnterSubblock(AST_BLOCK_ID, 5);
// This is so that older clang versions, before the introduction
// of the control block, can read and reject the newer PCH format.
Record.clear();
Record.push_back(VERSION_MAJOR);
Stream.EmitRecord(METADATA_OLD_FORMAT, Record);
// Create a lexical update block containing all of the declarations in the
// translation unit that do not come from other AST files.
const TranslationUnitDecl *TU = Context.getTranslationUnitDecl();
SmallVector<KindDeclIDPair, 64> NewGlobalDecls;
for (const auto *I : TU->noload_decls()) {
if (!I->isFromASTFile())
NewGlobalDecls.push_back(std::make_pair(I->getKind(), GetDeclRef(I)));
}
llvm::BitCodeAbbrev *Abv = new llvm::BitCodeAbbrev();
Abv->Add(llvm::BitCodeAbbrevOp(TU_UPDATE_LEXICAL));
Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::Blob));
unsigned TuUpdateLexicalAbbrev = Stream.EmitAbbrev(Abv);
Record.clear();
Record.push_back(TU_UPDATE_LEXICAL);
Stream.EmitRecordWithBlob(TuUpdateLexicalAbbrev, Record,
data(NewGlobalDecls));
// And a visible updates block for the translation unit.
Abv = new llvm::BitCodeAbbrev();
Abv->Add(llvm::BitCodeAbbrevOp(UPDATE_VISIBLE));
Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::VBR, 6));
Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::Fixed, 32));
Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::Blob));
UpdateVisibleAbbrev = Stream.EmitAbbrev(Abv);
WriteDeclContextVisibleUpdate(TU);
// If the translation unit has an anonymous namespace, and we don't already
// have an update block for it, write it as an update block.
// FIXME: Why do we not do this if there's already an update block?
if (NamespaceDecl *NS = TU->getAnonymousNamespace()) {
ASTWriter::UpdateRecord &Record = DeclUpdates[TU];
if (Record.empty())
Record.push_back(DeclUpdate(UPD_CXX_ADDED_ANONYMOUS_NAMESPACE, NS));
}
// Add update records for all mangling numbers and static local numbers.
// These aren't really update records, but this is a convenient way of
// tagging this rare extra data onto the declarations.
for (const auto &Number : Context.MangleNumbers)
if (!Number.first->isFromASTFile())
DeclUpdates[Number.first].push_back(DeclUpdate(UPD_MANGLING_NUMBER,
Number.second));
for (const auto &Number : Context.StaticLocalNumbers)
if (!Number.first->isFromASTFile())
DeclUpdates[Number.first].push_back(DeclUpdate(UPD_STATIC_LOCAL_NUMBER,
Number.second));
// Make sure visible decls, added to DeclContexts previously loaded from
// an AST file, are registered for serialization.
for (SmallVectorImpl<const Decl *>::iterator
I = UpdatingVisibleDecls.begin(),
E = UpdatingVisibleDecls.end(); I != E; ++I) {
GetDeclRef(*I);
}
// Make sure all decls associated with an identifier are registered for
// serialization.
for (IdentifierTable::iterator ID = PP.getIdentifierTable().begin(),
IDEnd = PP.getIdentifierTable().end();
ID != IDEnd; ++ID) {
const IdentifierInfo *II = ID->second;
if (!Chain || !II->isFromAST() || II->hasChangedSinceDeserialization()) {
for (IdentifierResolver::iterator D = SemaRef.IdResolver.begin(II),
DEnd = SemaRef.IdResolver.end();
D != DEnd; ++D) {
GetDeclRef(*D);
}
}
}
// Form the record of special types.
RecordData SpecialTypes;
AddTypeRef(Context.getRawCFConstantStringType(), SpecialTypes);
AddTypeRef(Context.getFILEType(), SpecialTypes);
AddTypeRef(Context.getjmp_bufType(), SpecialTypes);
AddTypeRef(Context.getsigjmp_bufType(), SpecialTypes);
AddTypeRef(Context.ObjCIdRedefinitionType, SpecialTypes);
AddTypeRef(Context.ObjCClassRedefinitionType, SpecialTypes);
AddTypeRef(Context.ObjCSelRedefinitionType, SpecialTypes);
AddTypeRef(Context.getucontext_tType(), SpecialTypes);
if (Chain) {
// Write the mapping information describing our module dependencies and how
// each of those modules were mapped into our own offset/ID space, so that
// the reader can build the appropriate mapping to its own offset/ID space.
// The map consists solely of a blob with the following format:
// *(module-name-len:i16 module-name:len*i8
// source-location-offset:i32
// identifier-id:i32
// preprocessed-entity-id:i32
// macro-definition-id:i32
// submodule-id:i32
// selector-id:i32
// declaration-id:i32
// c++-base-specifiers-id:i32
// type-id:i32)
//
llvm::BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(MODULE_OFFSET_MAP));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
unsigned ModuleOffsetMapAbbrev = Stream.EmitAbbrev(Abbrev);
SmallString<2048> Buffer;
{
llvm::raw_svector_ostream Out(Buffer);
for (ModuleFile *M : Chain->ModuleMgr) {
using namespace llvm::support;
endian::Writer<little> LE(Out);
StringRef FileName = M->FileName;
LE.write<uint16_t>(FileName.size());
Out.write(FileName.data(), FileName.size());
// Note: if a base ID was uint max, it would not be possible to load
// another module after it or have more than one entity inside it.
uint32_t None = std::numeric_limits<uint32_t>::max();
auto writeBaseIDOrNone = [&](uint32_t BaseID, bool ShouldWrite) {
assert(BaseID < std::numeric_limits<uint32_t>::max() && "base id too high");
if (ShouldWrite)
LE.write<uint32_t>(BaseID);
else
LE.write<uint32_t>(None);
};
// These values should be unique within a chain, since they will be read
// as keys into ContinuousRangeMaps.
writeBaseIDOrNone(M->SLocEntryBaseOffset, M->LocalNumSLocEntries);
writeBaseIDOrNone(M->BaseIdentifierID, M->LocalNumIdentifiers);
writeBaseIDOrNone(M->BaseMacroID, M->LocalNumMacros);
writeBaseIDOrNone(M->BasePreprocessedEntityID,
M->NumPreprocessedEntities);
writeBaseIDOrNone(M->BaseSubmoduleID, M->LocalNumSubmodules);
writeBaseIDOrNone(M->BaseSelectorID, M->LocalNumSelectors);
writeBaseIDOrNone(M->BaseDeclID, M->LocalNumDecls);
writeBaseIDOrNone(M->BaseTypeIndex, M->LocalNumTypes);
}
}
Record.clear();
Record.push_back(MODULE_OFFSET_MAP);
Stream.EmitRecordWithBlob(ModuleOffsetMapAbbrev, Record,
Buffer.data(), Buffer.size());
}
RecordData DeclUpdatesOffsetsRecord;
// Keep writing types, declarations, and declaration update records
// until we've emitted all of them.
Stream.EnterSubblock(DECLTYPES_BLOCK_ID, /*bits for abbreviations*/5);
WriteTypeAbbrevs();
WriteDeclAbbrevs();
for (DeclsToRewriteTy::iterator I = DeclsToRewrite.begin(),
E = DeclsToRewrite.end();
I != E; ++I)
DeclTypesToEmit.push(const_cast<Decl*>(*I));
do {
WriteDeclUpdatesBlocks(DeclUpdatesOffsetsRecord);
while (!DeclTypesToEmit.empty()) {
DeclOrType DOT = DeclTypesToEmit.front();
DeclTypesToEmit.pop();
if (DOT.isType())
WriteType(DOT.getType());
else
WriteDecl(Context, DOT.getDecl());
}
} while (!DeclUpdates.empty());
Stream.ExitBlock();
DoneWritingDeclsAndTypes = true;
// These things can only be done once we've written out decls and types.
WriteTypeDeclOffsets();
if (!DeclUpdatesOffsetsRecord.empty())
Stream.EmitRecord(DECL_UPDATE_OFFSETS, DeclUpdatesOffsetsRecord);
WriteCXXBaseSpecifiersOffsets();
WriteFileDeclIDsMap();
WriteSourceManagerBlock(Context.getSourceManager(), PP);
WriteComments();
WritePreprocessor(PP, isModule);
WriteHeaderSearch(PP.getHeaderSearchInfo());
WriteSelectors(SemaRef);
WriteReferencedSelectorsPool(SemaRef);
WriteIdentifierTable(PP, SemaRef.IdResolver, isModule);
WriteFPPragmaOptions(SemaRef.getFPOptions());
WriteOpenCLExtensions(SemaRef);
WritePragmaDiagnosticMappings(Context.getDiagnostics(), isModule);
// If we're emitting a module, write out the submodule information.
if (WritingModule)
WriteSubmodules(WritingModule);
Stream.EmitRecord(SPECIAL_TYPES, SpecialTypes);
// Write the record containing external, unnamed definitions.
if (!EagerlyDeserializedDecls.empty())
Stream.EmitRecord(EAGERLY_DESERIALIZED_DECLS, EagerlyDeserializedDecls);
// Write the record containing tentative definitions.
if (!TentativeDefinitions.empty())
Stream.EmitRecord(TENTATIVE_DEFINITIONS, TentativeDefinitions);
// Write the record containing unused file scoped decls.
if (!UnusedFileScopedDecls.empty())
Stream.EmitRecord(UNUSED_FILESCOPED_DECLS, UnusedFileScopedDecls);
// Write the record containing weak undeclared identifiers.
if (!WeakUndeclaredIdentifiers.empty())
Stream.EmitRecord(WEAK_UNDECLARED_IDENTIFIERS,
WeakUndeclaredIdentifiers);
// Write the record containing locally-scoped extern "C" definitions.
if (!LocallyScopedExternCDecls.empty())
Stream.EmitRecord(LOCALLY_SCOPED_EXTERN_C_DECLS,
LocallyScopedExternCDecls);
// Write the record containing ext_vector type names.
if (!ExtVectorDecls.empty())
Stream.EmitRecord(EXT_VECTOR_DECLS, ExtVectorDecls);
// Write the record containing VTable uses information.
if (!VTableUses.empty())
Stream.EmitRecord(VTABLE_USES, VTableUses);
// Write the record containing dynamic classes declarations.
if (!DynamicClasses.empty())
Stream.EmitRecord(DYNAMIC_CLASSES, DynamicClasses);
// Write the record containing potentially unused local typedefs.
if (!UnusedLocalTypedefNameCandidates.empty())
Stream.EmitRecord(UNUSED_LOCAL_TYPEDEF_NAME_CANDIDATES,
UnusedLocalTypedefNameCandidates);
// Write the record containing pending implicit instantiations.
if (!PendingInstantiations.empty())
Stream.EmitRecord(PENDING_IMPLICIT_INSTANTIATIONS, PendingInstantiations);
// Write the record containing declaration references of Sema.
if (!SemaDeclRefs.empty())
Stream.EmitRecord(SEMA_DECL_REFS, SemaDeclRefs);
// Write the record containing CUDA-specific declaration references.
if (!CUDASpecialDeclRefs.empty())
Stream.EmitRecord(CUDA_SPECIAL_DECL_REFS, CUDASpecialDeclRefs);
// Write the delegating constructors.
if (!DelegatingCtorDecls.empty())
Stream.EmitRecord(DELEGATING_CTORS, DelegatingCtorDecls);
// Write the known namespaces.
if (!KnownNamespaces.empty())
Stream.EmitRecord(KNOWN_NAMESPACES, KnownNamespaces);
// Write the undefined internal functions and variables, and inline functions.
if (!UndefinedButUsed.empty())
Stream.EmitRecord(UNDEFINED_BUT_USED, UndefinedButUsed);
// Write the visible updates to DeclContexts.
for (auto *DC : UpdatedDeclContexts)
WriteDeclContextVisibleUpdate(DC);
if (!WritingModule) {
// Write the submodules that were imported, if any.
struct ModuleInfo {
uint64_t ID;
Module *M;
ModuleInfo(uint64_t ID, Module *M) : ID(ID), M(M) {}
};
llvm::SmallVector<ModuleInfo, 64> Imports;
for (const auto *I : Context.local_imports()) {
assert(SubmoduleIDs.find(I->getImportedModule()) != SubmoduleIDs.end());
Imports.push_back(ModuleInfo(SubmoduleIDs[I->getImportedModule()],
I->getImportedModule()));
}
if (!Imports.empty()) {
auto Cmp = [](const ModuleInfo &A, const ModuleInfo &B) {
return A.ID < B.ID;
};
auto Eq = [](const ModuleInfo &A, const ModuleInfo &B) {
return A.ID == B.ID;
};
// Sort and deduplicate module IDs.
std::sort(Imports.begin(), Imports.end(), Cmp);
Imports.erase(std::unique(Imports.begin(), Imports.end(), Eq),
Imports.end());
RecordData ImportedModules;
for (const auto &Import : Imports) {
ImportedModules.push_back(Import.ID);
// FIXME: If the module has macros imported then later has declarations
// imported, this location won't be the right one as a location for the
// declaration imports.
AddSourceLocation(Import.M->MacroVisibilityLoc, ImportedModules);
}
Stream.EmitRecord(IMPORTED_MODULES, ImportedModules);
}
}
WriteDeclReplacementsBlock();
WriteRedeclarations();
WriteMergedDecls();
WriteObjCCategories();
WriteLateParsedTemplates(SemaRef);
if(!WritingModule)
WriteOptimizePragmaOptions(SemaRef);
// Some simple statistics
Record.clear();
Record.push_back(NumStatements);
Record.push_back(NumMacros);
Record.push_back(NumLexicalDeclContexts);
Record.push_back(NumVisibleDeclContexts);
Stream.EmitRecord(STATISTICS, Record);
Stream.ExitBlock();
}
void ASTWriter::WriteDeclUpdatesBlocks(RecordDataImpl &OffsetsRecord) {
if (DeclUpdates.empty())
return;
DeclUpdateMap LocalUpdates;
LocalUpdates.swap(DeclUpdates);
for (auto &DeclUpdate : LocalUpdates) {
const Decl *D = DeclUpdate.first;
if (isRewritten(D))
continue; // The decl will be written completely,no need to store updates.
bool HasUpdatedBody = false;
RecordData Record;
for (auto &Update : DeclUpdate.second) {
DeclUpdateKind Kind = (DeclUpdateKind)Update.getKind();
Record.push_back(Kind);
switch (Kind) {
case UPD_CXX_ADDED_IMPLICIT_MEMBER:
case UPD_CXX_ADDED_TEMPLATE_SPECIALIZATION:
case UPD_CXX_ADDED_ANONYMOUS_NAMESPACE:
assert(Update.getDecl() && "no decl to add?");
Record.push_back(GetDeclRef(Update.getDecl()));
break;
case UPD_CXX_ADDED_FUNCTION_DEFINITION:
// An updated body is emitted last, so that the reader doesn't need
// to skip over the lazy body to reach statements for other records.
Record.pop_back();
HasUpdatedBody = true;
break;
case UPD_CXX_INSTANTIATED_STATIC_DATA_MEMBER:
AddSourceLocation(Update.getLoc(), Record);
break;
case UPD_CXX_INSTANTIATED_CLASS_DEFINITION: {
auto *RD = cast<CXXRecordDecl>(D);
AddUpdatedDeclContext(RD->getPrimaryContext());
AddCXXDefinitionData(RD, Record);
Record.push_back(WriteDeclContextLexicalBlock(
*Context, const_cast<CXXRecordDecl *>(RD)));
// This state is sometimes updated by template instantiation, when we
// switch from the specialization referring to the template declaration
// to it referring to the template definition.
if (auto *MSInfo = RD->getMemberSpecializationInfo()) {
Record.push_back(MSInfo->getTemplateSpecializationKind());
AddSourceLocation(MSInfo->getPointOfInstantiation(), Record);
} else {
auto *Spec = cast<ClassTemplateSpecializationDecl>(RD);
Record.push_back(Spec->getTemplateSpecializationKind());
AddSourceLocation(Spec->getPointOfInstantiation(), Record);
// The instantiation might have been resolved to a partial
// specialization. If so, record which one.
auto From = Spec->getInstantiatedFrom();
if (auto PartialSpec =
From.dyn_cast<ClassTemplatePartialSpecializationDecl*>()) {
Record.push_back(true);
AddDeclRef(PartialSpec, Record);
AddTemplateArgumentList(&Spec->getTemplateInstantiationArgs(),
Record);
} else {
Record.push_back(false);
}
}
Record.push_back(RD->getTagKind());
AddSourceLocation(RD->getLocation(), Record);
AddSourceLocation(RD->getLocStart(), Record);
AddSourceLocation(RD->getRBraceLoc(), Record);
// Instantiation may change attributes; write them all out afresh.
Record.push_back(D->hasAttrs());
if (Record.back())
WriteAttributes(llvm::makeArrayRef(D->getAttrs().begin(),
D->getAttrs().size()), Record);
// FIXME: Ensure we don't get here for explicit instantiations.
break;
}
case UPD_CXX_RESOLVED_EXCEPTION_SPEC:
addExceptionSpec(
*this,
cast<FunctionDecl>(D)->getType()->castAs<FunctionProtoType>(),
Record);
break;
case UPD_CXX_DEDUCED_RETURN_TYPE:
Record.push_back(GetOrCreateTypeID(Update.getType()));
break;
case UPD_DECL_MARKED_USED:
break;
case UPD_MANGLING_NUMBER:
case UPD_STATIC_LOCAL_NUMBER:
Record.push_back(Update.getNumber());
break;
case UPD_DECL_MARKED_OPENMP_THREADPRIVATE:
AddSourceRange(D->getAttr<OMPThreadPrivateDeclAttr>()->getRange(),
Record);
break;
}
}
if (HasUpdatedBody) {
const FunctionDecl *Def = cast<FunctionDecl>(D);
Record.push_back(UPD_CXX_ADDED_FUNCTION_DEFINITION);
Record.push_back(Def->isInlined());
AddSourceLocation(Def->getInnerLocStart(), Record);
AddFunctionDefinition(Def, Record);
if (auto *DD = dyn_cast<CXXDestructorDecl>(Def))
Record.push_back(GetDeclRef(DD->getOperatorDelete()));
}
OffsetsRecord.push_back(GetDeclRef(D));
OffsetsRecord.push_back(Stream.GetCurrentBitNo());
Stream.EmitRecord(DECL_UPDATES, Record);
// Flush any statements that were written as part of this update record.
FlushStmts();
// Flush C++ base specifiers, if there are any.
FlushCXXBaseSpecifiers();
}
}
void ASTWriter::WriteDeclReplacementsBlock() {
if (ReplacedDecls.empty())
return;
RecordData Record;
for (SmallVectorImpl<ReplacedDeclInfo>::iterator
I = ReplacedDecls.begin(), E = ReplacedDecls.end(); I != E; ++I) {
Record.push_back(I->ID);
Record.push_back(I->Offset);
Record.push_back(I->Loc);
}
Stream.EmitRecord(DECL_REPLACEMENTS, Record);
}
void ASTWriter::AddSourceLocation(SourceLocation Loc, RecordDataImpl &Record) {
Record.push_back(Loc.getRawEncoding());
}
void ASTWriter::AddSourceRange(SourceRange Range, RecordDataImpl &Record) {
AddSourceLocation(Range.getBegin(), Record);
AddSourceLocation(Range.getEnd(), Record);
}
void ASTWriter::AddAPInt(const llvm::APInt &Value, RecordDataImpl &Record) {
Record.push_back(Value.getBitWidth());
const uint64_t *Words = Value.getRawData();
Record.append(Words, Words + Value.getNumWords());
}
void ASTWriter::AddAPSInt(const llvm::APSInt &Value, RecordDataImpl &Record) {
Record.push_back(Value.isUnsigned());
AddAPInt(Value, Record);
}
void ASTWriter::AddAPFloat(const llvm::APFloat &Value, RecordDataImpl &Record) {
AddAPInt(Value.bitcastToAPInt(), Record);
}
void ASTWriter::AddIdentifierRef(const IdentifierInfo *II, RecordDataImpl &Record) {
Record.push_back(getIdentifierRef(II));
}
IdentID ASTWriter::getIdentifierRef(const IdentifierInfo *II) {
if (!II)
return 0;
IdentID &ID = IdentifierIDs[II];
if (ID == 0)
ID = NextIdentID++;
return ID;
}
MacroID ASTWriter::getMacroRef(MacroInfo *MI, const IdentifierInfo *Name) {
// Don't emit builtin macros like __LINE__ to the AST file unless they
// have been redefined by the header (in which case they are not
// isBuiltinMacro).
if (!MI || MI->isBuiltinMacro())
return 0;
MacroID &ID = MacroIDs[MI];
if (ID == 0) {
ID = NextMacroID++;
MacroInfoToEmitData Info = { Name, MI, ID };
MacroInfosToEmit.push_back(Info);
}
return ID;
}
MacroID ASTWriter::getMacroID(MacroInfo *MI) {
if (!MI || MI->isBuiltinMacro())
return 0;
assert(MacroIDs.find(MI) != MacroIDs.end() && "Macro not emitted!");
return MacroIDs[MI];
}
uint64_t ASTWriter::getMacroDirectivesOffset(const IdentifierInfo *Name) {
assert(IdentMacroDirectivesOffsetMap[Name] && "not set!");
return IdentMacroDirectivesOffsetMap[Name];
}
void ASTWriter::AddSelectorRef(const Selector SelRef, RecordDataImpl &Record) {
Record.push_back(getSelectorRef(SelRef));
}
SelectorID ASTWriter::getSelectorRef(Selector Sel) {
if (Sel.getAsOpaquePtr() == nullptr) {
return 0;
}
SelectorID SID = SelectorIDs[Sel];
if (SID == 0 && Chain) {
// This might trigger a ReadSelector callback, which will set the ID for
// this selector.
Chain->LoadSelector(Sel);
SID = SelectorIDs[Sel];
}
if (SID == 0) {
SID = NextSelectorID++;
SelectorIDs[Sel] = SID;
}
return SID;
}
void ASTWriter::AddCXXTemporary(const CXXTemporary *Temp, RecordDataImpl &Record) {
AddDeclRef(Temp->getDestructor(), Record);
}
void ASTWriter::AddCXXBaseSpecifiersRef(CXXBaseSpecifier const *Bases,
CXXBaseSpecifier const *BasesEnd,
RecordDataImpl &Record) {
assert(Bases != BasesEnd && "Empty base-specifier sets are not recorded");
CXXBaseSpecifiersToWrite.push_back(
QueuedCXXBaseSpecifiers(NextCXXBaseSpecifiersID,
Bases, BasesEnd));
Record.push_back(NextCXXBaseSpecifiersID++);
}
void ASTWriter::AddTemplateArgumentLocInfo(TemplateArgument::ArgKind Kind,
const TemplateArgumentLocInfo &Arg,
RecordDataImpl &Record) {
switch (Kind) {
case TemplateArgument::Expression:
AddStmt(Arg.getAsExpr());
break;
case TemplateArgument::Type:
AddTypeSourceInfo(Arg.getAsTypeSourceInfo(), Record);
break;
case TemplateArgument::Template:
AddNestedNameSpecifierLoc(Arg.getTemplateQualifierLoc(), Record);
AddSourceLocation(Arg.getTemplateNameLoc(), Record);
break;
case TemplateArgument::TemplateExpansion:
AddNestedNameSpecifierLoc(Arg.getTemplateQualifierLoc(), Record);
AddSourceLocation(Arg.getTemplateNameLoc(), Record);
AddSourceLocation(Arg.getTemplateEllipsisLoc(), Record);
break;
case TemplateArgument::Null:
case TemplateArgument::Integral:
case TemplateArgument::Declaration:
case TemplateArgument::NullPtr:
case TemplateArgument::Pack:
// FIXME: Is this right?
break;
}
}
void ASTWriter::AddTemplateArgumentLoc(const TemplateArgumentLoc &Arg,
RecordDataImpl &Record) {
AddTemplateArgument(Arg.getArgument(), Record);
if (Arg.getArgument().getKind() == TemplateArgument::Expression) {
bool InfoHasSameExpr
= Arg.getArgument().getAsExpr() == Arg.getLocInfo().getAsExpr();
Record.push_back(InfoHasSameExpr);
if (InfoHasSameExpr)
return; // Avoid storing the same expr twice.
}
AddTemplateArgumentLocInfo(Arg.getArgument().getKind(), Arg.getLocInfo(),
Record);
}
void ASTWriter::AddTypeSourceInfo(TypeSourceInfo *TInfo,
RecordDataImpl &Record) {
if (!TInfo) {
AddTypeRef(QualType(), Record);
return;
}
AddTypeLoc(TInfo->getTypeLoc(), Record);
}
void ASTWriter::AddTypeLoc(TypeLoc TL, RecordDataImpl &Record) {
AddTypeRef(TL.getType(), Record);
TypeLocWriter TLW(*this, Record);
for (; !TL.isNull(); TL = TL.getNextTypeLoc())
TLW.Visit(TL);
}
void ASTWriter::AddTypeRef(QualType T, RecordDataImpl &Record) {
Record.push_back(GetOrCreateTypeID(T));
}
TypeID ASTWriter::GetOrCreateTypeID( QualType T) {
assert(Context);
return MakeTypeID(*Context, T,
std::bind1st(std::mem_fun(&ASTWriter::GetOrCreateTypeIdx), this));
}
TypeID ASTWriter::getTypeID(QualType T) const {
assert(Context);
return MakeTypeID(*Context, T,
std::bind1st(std::mem_fun(&ASTWriter::getTypeIdx), this));
}
TypeIdx ASTWriter::GetOrCreateTypeIdx(QualType T) {
if (T.isNull())
return TypeIdx();
assert(!T.getLocalFastQualifiers());
TypeIdx &Idx = TypeIdxs[T];
if (Idx.getIndex() == 0) {
if (DoneWritingDeclsAndTypes) {
assert(0 && "New type seen after serializing all the types to emit!");
return TypeIdx();
}
// We haven't seen this type before. Assign it a new ID and put it
// into the queue of types to emit.
Idx = TypeIdx(NextTypeID++);
DeclTypesToEmit.push(T);
}
return Idx;
}
TypeIdx ASTWriter::getTypeIdx(QualType T) const {
if (T.isNull())
return TypeIdx();
assert(!T.getLocalFastQualifiers());
TypeIdxMap::const_iterator I = TypeIdxs.find(T);
assert(I != TypeIdxs.end() && "Type not emitted!");
return I->second;
}
void ASTWriter::AddDeclRef(const Decl *D, RecordDataImpl &Record) {
Record.push_back(GetDeclRef(D));
}
DeclID ASTWriter::GetDeclRef(const Decl *D) {
assert(WritingAST && "Cannot request a declaration ID before AST writing");
if (!D) {
return 0;
}
// If D comes from an AST file, its declaration ID is already known and
// fixed.
if (D->isFromASTFile())
return D->getGlobalID();
assert(!(reinterpret_cast<uintptr_t>(D) & 0x01) && "Invalid decl pointer");
DeclID &ID = DeclIDs[D];
if (ID == 0) {
if (DoneWritingDeclsAndTypes) {
assert(0 && "New decl seen after serializing all the decls to emit!");
return 0;
}
// We haven't seen this declaration before. Give it a new ID and
// enqueue it in the list of declarations to emit.
ID = NextDeclID++;
DeclTypesToEmit.push(const_cast<Decl *>(D));
}
return ID;
}
DeclID ASTWriter::getDeclID(const Decl *D) {
if (!D)
return 0;
// If D comes from an AST file, its declaration ID is already known and
// fixed.
if (D->isFromASTFile())
return D->getGlobalID();
assert(DeclIDs.find(D) != DeclIDs.end() && "Declaration not emitted!");
return DeclIDs[D];
}
void ASTWriter::associateDeclWithFile(const Decl *D, DeclID ID) {
assert(ID);
assert(D);
SourceLocation Loc = D->getLocation();
if (Loc.isInvalid())
return;
// We only keep track of the file-level declarations of each file.
if (!D->getLexicalDeclContext()->isFileContext())
return;
// FIXME: ParmVarDecls that are part of a function type of a parameter of
// a function/objc method, should not have TU as lexical context.
if (isa<ParmVarDecl>(D))
return;
SourceManager &SM = Context->getSourceManager();
SourceLocation FileLoc = SM.getFileLoc(Loc);
assert(SM.isLocalSourceLocation(FileLoc));
FileID FID;
unsigned Offset;
std::tie(FID, Offset) = SM.getDecomposedLoc(FileLoc);
if (FID.isInvalid())
return;
assert(SM.getSLocEntry(FID).isFile());
DeclIDInFileInfo *&Info = FileDeclIDs[FID];
if (!Info)
Info = new DeclIDInFileInfo();
std::pair<unsigned, serialization::DeclID> LocDecl(Offset, ID);
LocDeclIDsTy &Decls = Info->DeclIDs;
if (Decls.empty() || Decls.back().first <= Offset) {
Decls.push_back(LocDecl);
return;
}
LocDeclIDsTy::iterator I =
std::upper_bound(Decls.begin(), Decls.end(), LocDecl, llvm::less_first());
Decls.insert(I, LocDecl);
}
void ASTWriter::AddDeclarationName(DeclarationName Name, RecordDataImpl &Record) {
// FIXME: Emit a stable enum for NameKind. 0 = Identifier etc.
Record.push_back(Name.getNameKind());
switch (Name.getNameKind()) {
case DeclarationName::Identifier:
AddIdentifierRef(Name.getAsIdentifierInfo(), Record);
break;
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
AddSelectorRef(Name.getObjCSelector(), Record);
break;
case DeclarationName::CXXConstructorName:
case DeclarationName::CXXDestructorName:
case DeclarationName::CXXConversionFunctionName:
AddTypeRef(Name.getCXXNameType(), Record);
break;
case DeclarationName::CXXOperatorName:
Record.push_back(Name.getCXXOverloadedOperator());
break;
case DeclarationName::CXXLiteralOperatorName:
AddIdentifierRef(Name.getCXXLiteralIdentifier(), Record);
break;
case DeclarationName::CXXUsingDirective:
// No extra data to emit
break;
}
}
unsigned ASTWriter::getAnonymousDeclarationNumber(const NamedDecl *D) {
assert(needsAnonymousDeclarationNumber(D) &&
"expected an anonymous declaration");
// Number the anonymous declarations within this context, if we've not
// already done so.
auto It = AnonymousDeclarationNumbers.find(D);
if (It == AnonymousDeclarationNumbers.end()) {
unsigned Index = 0;
for (Decl *LexicalD : D->getLexicalDeclContext()->decls()) {
auto *ND = dyn_cast<NamedDecl>(LexicalD);
if (!ND || !needsAnonymousDeclarationNumber(ND))
continue;
AnonymousDeclarationNumbers[ND] = Index++;
}
It = AnonymousDeclarationNumbers.find(D);
assert(It != AnonymousDeclarationNumbers.end() &&
"declaration not found within its lexical context");
}
return It->second;
}
void ASTWriter::AddDeclarationNameLoc(const DeclarationNameLoc &DNLoc,
DeclarationName Name, RecordDataImpl &Record) {
switch (Name.getNameKind()) {
case DeclarationName::CXXConstructorName:
case DeclarationName::CXXDestructorName:
case DeclarationName::CXXConversionFunctionName:
AddTypeSourceInfo(DNLoc.NamedType.TInfo, Record);
break;
case DeclarationName::CXXOperatorName:
AddSourceLocation(
SourceLocation::getFromRawEncoding(DNLoc.CXXOperatorName.BeginOpNameLoc),
Record);
AddSourceLocation(
SourceLocation::getFromRawEncoding(DNLoc.CXXOperatorName.EndOpNameLoc),
Record);
break;
case DeclarationName::CXXLiteralOperatorName:
AddSourceLocation(
SourceLocation::getFromRawEncoding(DNLoc.CXXLiteralOperatorName.OpNameLoc),
Record);
break;
case DeclarationName::Identifier:
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
case DeclarationName::CXXUsingDirective:
break;
}
}
void ASTWriter::AddDeclarationNameInfo(const DeclarationNameInfo &NameInfo,
RecordDataImpl &Record) {
AddDeclarationName(NameInfo.getName(), Record);
AddSourceLocation(NameInfo.getLoc(), Record);
AddDeclarationNameLoc(NameInfo.getInfo(), NameInfo.getName(), Record);
}
void ASTWriter::AddQualifierInfo(const QualifierInfo &Info,
RecordDataImpl &Record) {
AddNestedNameSpecifierLoc(Info.QualifierLoc, Record);
Record.push_back(Info.NumTemplParamLists);
for (unsigned i=0, e=Info.NumTemplParamLists; i != e; ++i)
AddTemplateParameterList(Info.TemplParamLists[i], Record);
}
void ASTWriter::AddNestedNameSpecifier(NestedNameSpecifier *NNS,
RecordDataImpl &Record) {
// Nested name specifiers usually aren't too long. I think that 8 would
// typically accommodate the vast majority.
SmallVector<NestedNameSpecifier *, 8> NestedNames;
// Push each of the NNS's onto a stack for serialization in reverse order.
while (NNS) {
NestedNames.push_back(NNS);
NNS = NNS->getPrefix();
}
Record.push_back(NestedNames.size());
while(!NestedNames.empty()) {
NNS = NestedNames.pop_back_val();
NestedNameSpecifier::SpecifierKind Kind = NNS->getKind();
Record.push_back(Kind);
switch (Kind) {
case NestedNameSpecifier::Identifier:
AddIdentifierRef(NNS->getAsIdentifier(), Record);
break;
case NestedNameSpecifier::Namespace:
AddDeclRef(NNS->getAsNamespace(), Record);
break;
case NestedNameSpecifier::NamespaceAlias:
AddDeclRef(NNS->getAsNamespaceAlias(), Record);
break;
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate:
AddTypeRef(QualType(NNS->getAsType(), 0), Record);
Record.push_back(Kind == NestedNameSpecifier::TypeSpecWithTemplate);
break;
case NestedNameSpecifier::Global:
// Don't need to write an associated value.
break;
case NestedNameSpecifier::Super:
AddDeclRef(NNS->getAsRecordDecl(), Record);
break;
}
}
}
void ASTWriter::AddNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS,
RecordDataImpl &Record) {
// Nested name specifiers usually aren't too long. I think that 8 would
// typically accommodate the vast majority.
SmallVector<NestedNameSpecifierLoc , 8> NestedNames;
// Push each of the nested-name-specifiers's onto a stack for
// serialization in reverse order.
while (NNS) {
NestedNames.push_back(NNS);
NNS = NNS.getPrefix();
}
Record.push_back(NestedNames.size());
while(!NestedNames.empty()) {
NNS = NestedNames.pop_back_val();
NestedNameSpecifier::SpecifierKind Kind
= NNS.getNestedNameSpecifier()->getKind();
Record.push_back(Kind);
switch (Kind) {
case NestedNameSpecifier::Identifier:
AddIdentifierRef(NNS.getNestedNameSpecifier()->getAsIdentifier(), Record);
AddSourceRange(NNS.getLocalSourceRange(), Record);
break;
case NestedNameSpecifier::Namespace:
AddDeclRef(NNS.getNestedNameSpecifier()->getAsNamespace(), Record);
AddSourceRange(NNS.getLocalSourceRange(), Record);
break;
case NestedNameSpecifier::NamespaceAlias:
AddDeclRef(NNS.getNestedNameSpecifier()->getAsNamespaceAlias(), Record);
AddSourceRange(NNS.getLocalSourceRange(), Record);
break;
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate:
Record.push_back(Kind == NestedNameSpecifier::TypeSpecWithTemplate);
AddTypeLoc(NNS.getTypeLoc(), Record);
AddSourceLocation(NNS.getLocalSourceRange().getEnd(), Record);
break;
case NestedNameSpecifier::Global:
AddSourceLocation(NNS.getLocalSourceRange().getEnd(), Record);
break;
case NestedNameSpecifier::Super:
AddDeclRef(NNS.getNestedNameSpecifier()->getAsRecordDecl(), Record);
AddSourceRange(NNS.getLocalSourceRange(), Record);
break;
}
}
}
void ASTWriter::AddTemplateName(TemplateName Name, RecordDataImpl &Record) {
TemplateName::NameKind Kind = Name.getKind();
Record.push_back(Kind);
switch (Kind) {
case TemplateName::Template:
AddDeclRef(Name.getAsTemplateDecl(), Record);
break;
case TemplateName::OverloadedTemplate: {
OverloadedTemplateStorage *OvT = Name.getAsOverloadedTemplate();
Record.push_back(OvT->size());
for (OverloadedTemplateStorage::iterator I = OvT->begin(), E = OvT->end();
I != E; ++I)
AddDeclRef(*I, Record);
break;
}
case TemplateName::QualifiedTemplate: {
QualifiedTemplateName *QualT = Name.getAsQualifiedTemplateName();
AddNestedNameSpecifier(QualT->getQualifier(), Record);
Record.push_back(QualT->hasTemplateKeyword());
AddDeclRef(QualT->getTemplateDecl(), Record);
break;
}
case TemplateName::DependentTemplate: {
DependentTemplateName *DepT = Name.getAsDependentTemplateName();
AddNestedNameSpecifier(DepT->getQualifier(), Record);
Record.push_back(DepT->isIdentifier());
if (DepT->isIdentifier())
AddIdentifierRef(DepT->getIdentifier(), Record);
else
Record.push_back(DepT->getOperator());
break;
}
case TemplateName::SubstTemplateTemplateParm: {
SubstTemplateTemplateParmStorage *subst
= Name.getAsSubstTemplateTemplateParm();
AddDeclRef(subst->getParameter(), Record);
AddTemplateName(subst->getReplacement(), Record);
break;
}
case TemplateName::SubstTemplateTemplateParmPack: {
SubstTemplateTemplateParmPackStorage *SubstPack
= Name.getAsSubstTemplateTemplateParmPack();
AddDeclRef(SubstPack->getParameterPack(), Record);
AddTemplateArgument(SubstPack->getArgumentPack(), Record);
break;
}
}
}
void ASTWriter::AddTemplateArgument(const TemplateArgument &Arg,
RecordDataImpl &Record) {
Record.push_back(Arg.getKind());
switch (Arg.getKind()) {
case TemplateArgument::Null:
break;
case TemplateArgument::Type:
AddTypeRef(Arg.getAsType(), Record);
break;
case TemplateArgument::Declaration:
AddDeclRef(Arg.getAsDecl(), Record);
AddTypeRef(Arg.getParamTypeForDecl(), Record);
break;
case TemplateArgument::NullPtr:
AddTypeRef(Arg.getNullPtrType(), Record);
break;
case TemplateArgument::Integral:
AddAPSInt(Arg.getAsIntegral(), Record);
AddTypeRef(Arg.getIntegralType(), Record);
break;
case TemplateArgument::Template:
AddTemplateName(Arg.getAsTemplateOrTemplatePattern(), Record);
break;
case TemplateArgument::TemplateExpansion:
AddTemplateName(Arg.getAsTemplateOrTemplatePattern(), Record);
if (Optional<unsigned> NumExpansions = Arg.getNumTemplateExpansions())
Record.push_back(*NumExpansions + 1);
else
Record.push_back(0);
break;
case TemplateArgument::Expression:
AddStmt(Arg.getAsExpr());
break;
case TemplateArgument::Pack:
Record.push_back(Arg.pack_size());
for (const auto &P : Arg.pack_elements())
AddTemplateArgument(P, Record);
break;
}
}
void
ASTWriter::AddTemplateParameterList(const TemplateParameterList *TemplateParams,
RecordDataImpl &Record) {
assert(TemplateParams && "No TemplateParams!");
AddSourceLocation(TemplateParams->getTemplateLoc(), Record);
AddSourceLocation(TemplateParams->getLAngleLoc(), Record);
AddSourceLocation(TemplateParams->getRAngleLoc(), Record);
Record.push_back(TemplateParams->size());
for (TemplateParameterList::const_iterator
P = TemplateParams->begin(), PEnd = TemplateParams->end();
P != PEnd; ++P)
AddDeclRef(*P, Record);
}
/// \brief Emit a template argument list.
void
ASTWriter::AddTemplateArgumentList(const TemplateArgumentList *TemplateArgs,
RecordDataImpl &Record) {
assert(TemplateArgs && "No TemplateArgs!");
Record.push_back(TemplateArgs->size());
for (int i=0, e = TemplateArgs->size(); i != e; ++i)
AddTemplateArgument(TemplateArgs->get(i), Record);
}
void
ASTWriter::AddASTTemplateArgumentListInfo
(const ASTTemplateArgumentListInfo *ASTTemplArgList, RecordDataImpl &Record) {
assert(ASTTemplArgList && "No ASTTemplArgList!");
AddSourceLocation(ASTTemplArgList->LAngleLoc, Record);
AddSourceLocation(ASTTemplArgList->RAngleLoc, Record);
Record.push_back(ASTTemplArgList->NumTemplateArgs);
const TemplateArgumentLoc *TemplArgs = ASTTemplArgList->getTemplateArgs();
for (int i=0, e = ASTTemplArgList->NumTemplateArgs; i != e; ++i)
AddTemplateArgumentLoc(TemplArgs[i], Record);
}
void
ASTWriter::AddUnresolvedSet(const ASTUnresolvedSet &Set, RecordDataImpl &Record) {
Record.push_back(Set.size());
for (ASTUnresolvedSet::const_iterator
I = Set.begin(), E = Set.end(); I != E; ++I) {
AddDeclRef(I.getDecl(), Record);
Record.push_back(I.getAccess());
}
}
void ASTWriter::AddCXXBaseSpecifier(const CXXBaseSpecifier &Base,
RecordDataImpl &Record) {
Record.push_back(Base.isVirtual());
Record.push_back(Base.isBaseOfClass());
Record.push_back(Base.getAccessSpecifierAsWritten());
Record.push_back(Base.getInheritConstructors());
AddTypeSourceInfo(Base.getTypeSourceInfo(), Record);
AddSourceRange(Base.getSourceRange(), Record);
AddSourceLocation(Base.isPackExpansion()? Base.getEllipsisLoc()
: SourceLocation(),
Record);
}
void ASTWriter::FlushCXXBaseSpecifiers() {
RecordData Record;
for (unsigned I = 0, N = CXXBaseSpecifiersToWrite.size(); I != N; ++I) {
Record.clear();
// Record the offset of this base-specifier set.
unsigned Index = CXXBaseSpecifiersToWrite[I].ID - 1;
if (Index == CXXBaseSpecifiersOffsets.size())
CXXBaseSpecifiersOffsets.push_back(Stream.GetCurrentBitNo());
else {
if (Index > CXXBaseSpecifiersOffsets.size())
CXXBaseSpecifiersOffsets.resize(Index + 1);
CXXBaseSpecifiersOffsets[Index] = Stream.GetCurrentBitNo();
}
const CXXBaseSpecifier *B = CXXBaseSpecifiersToWrite[I].Bases,
*BEnd = CXXBaseSpecifiersToWrite[I].BasesEnd;
Record.push_back(BEnd - B);
for (; B != BEnd; ++B)
AddCXXBaseSpecifier(*B, Record);
Stream.EmitRecord(serialization::DECL_CXX_BASE_SPECIFIERS, Record);
// Flush any expressions that were written as part of the base specifiers.
FlushStmts();
}
CXXBaseSpecifiersToWrite.clear();
}
void ASTWriter::AddCXXCtorInitializers(
const CXXCtorInitializer * const *CtorInitializers,
unsigned NumCtorInitializers,
RecordDataImpl &Record) {
Record.push_back(NumCtorInitializers);
for (unsigned i=0; i != NumCtorInitializers; ++i) {
const CXXCtorInitializer *Init = CtorInitializers[i];
if (Init->isBaseInitializer()) {
Record.push_back(CTOR_INITIALIZER_BASE);
AddTypeSourceInfo(Init->getTypeSourceInfo(), Record);
Record.push_back(Init->isBaseVirtual());
} else if (Init->isDelegatingInitializer()) {
Record.push_back(CTOR_INITIALIZER_DELEGATING);
AddTypeSourceInfo(Init->getTypeSourceInfo(), Record);
} else if (Init->isMemberInitializer()){
Record.push_back(CTOR_INITIALIZER_MEMBER);
AddDeclRef(Init->getMember(), Record);
} else {
Record.push_back(CTOR_INITIALIZER_INDIRECT_MEMBER);
AddDeclRef(Init->getIndirectMember(), Record);
}
AddSourceLocation(Init->getMemberLocation(), Record);
AddStmt(Init->getInit());
AddSourceLocation(Init->getLParenLoc(), Record);
AddSourceLocation(Init->getRParenLoc(), Record);
Record.push_back(Init->isWritten());
if (Init->isWritten()) {
Record.push_back(Init->getSourceOrder());
} else {
Record.push_back(Init->getNumArrayIndices());
for (unsigned i=0, e=Init->getNumArrayIndices(); i != e; ++i)
AddDeclRef(Init->getArrayIndex(i), Record);
}
}
}
void ASTWriter::AddCXXDefinitionData(const CXXRecordDecl *D, RecordDataImpl &Record) {
auto &Data = D->data();
Record.push_back(Data.IsLambda);
Record.push_back(Data.UserDeclaredConstructor);
Record.push_back(Data.UserDeclaredSpecialMembers);
Record.push_back(Data.Aggregate);
Record.push_back(Data.PlainOldData);
Record.push_back(Data.Empty);
Record.push_back(Data.Polymorphic);
Record.push_back(Data.Abstract);
Record.push_back(Data.IsStandardLayout);
Record.push_back(Data.HasNoNonEmptyBases);
Record.push_back(Data.HasPrivateFields);
Record.push_back(Data.HasProtectedFields);
Record.push_back(Data.HasPublicFields);
Record.push_back(Data.HasMutableFields);
Record.push_back(Data.HasVariantMembers);
Record.push_back(Data.HasOnlyCMembers);
Record.push_back(Data.HasInClassInitializer);
Record.push_back(Data.HasUninitializedReferenceMember);
Record.push_back(Data.NeedOverloadResolutionForMoveConstructor);
Record.push_back(Data.NeedOverloadResolutionForMoveAssignment);
Record.push_back(Data.NeedOverloadResolutionForDestructor);
Record.push_back(Data.DefaultedMoveConstructorIsDeleted);
Record.push_back(Data.DefaultedMoveAssignmentIsDeleted);
Record.push_back(Data.DefaultedDestructorIsDeleted);
Record.push_back(Data.HasTrivialSpecialMembers);
Record.push_back(Data.DeclaredNonTrivialSpecialMembers);
Record.push_back(Data.HasIrrelevantDestructor);
Record.push_back(Data.HasConstexprNonCopyMoveConstructor);
Record.push_back(Data.DefaultedDefaultConstructorIsConstexpr);
Record.push_back(Data.HasConstexprDefaultConstructor);
Record.push_back(Data.HasNonLiteralTypeFieldsOrBases);
Record.push_back(Data.ComputedVisibleConversions);
Record.push_back(Data.UserProvidedDefaultConstructor);
Record.push_back(Data.DeclaredSpecialMembers);
Record.push_back(Data.ImplicitCopyConstructorHasConstParam);
Record.push_back(Data.ImplicitCopyAssignmentHasConstParam);
Record.push_back(Data.HasDeclaredCopyConstructorWithConstParam);
Record.push_back(Data.HasDeclaredCopyAssignmentWithConstParam);
// IsLambda bit is already saved.
Record.push_back(Data.NumBases);
if (Data.NumBases > 0)
AddCXXBaseSpecifiersRef(Data.getBases(), Data.getBases() + Data.NumBases,
Record);
// FIXME: Make VBases lazily computed when needed to avoid storing them.
Record.push_back(Data.NumVBases);
if (Data.NumVBases > 0)
AddCXXBaseSpecifiersRef(Data.getVBases(), Data.getVBases() + Data.NumVBases,
Record);
AddUnresolvedSet(Data.Conversions.get(*Context), Record);
AddUnresolvedSet(Data.VisibleConversions.get(*Context), Record);
// Data.Definition is the owning decl, no need to write it.
AddDeclRef(D->getFirstFriend(), Record);
// Add lambda-specific data.
if (Data.IsLambda) {
auto &Lambda = D->getLambdaData();
Record.push_back(Lambda.Dependent);
Record.push_back(Lambda.IsGenericLambda);
Record.push_back(Lambda.CaptureDefault);
Record.push_back(Lambda.NumCaptures);
Record.push_back(Lambda.NumExplicitCaptures);
Record.push_back(Lambda.ManglingNumber);
AddDeclRef(Lambda.ContextDecl, Record);
AddTypeSourceInfo(Lambda.MethodTyInfo, Record);
for (unsigned I = 0, N = Lambda.NumCaptures; I != N; ++I) {
const LambdaCapture &Capture = Lambda.Captures[I];
AddSourceLocation(Capture.getLocation(), Record);
Record.push_back(Capture.isImplicit());
Record.push_back(Capture.getCaptureKind());
switch (Capture.getCaptureKind()) {
case LCK_This:
case LCK_VLAType:
break;
case LCK_ByCopy:
case LCK_ByRef:
VarDecl *Var =
Capture.capturesVariable() ? Capture.getCapturedVar() : nullptr;
AddDeclRef(Var, Record);
AddSourceLocation(Capture.isPackExpansion() ? Capture.getEllipsisLoc()
: SourceLocation(),
Record);
break;
}
}
}
}
void ASTWriter::ReaderInitialized(ASTReader *Reader) {
assert(Reader && "Cannot remove chain");
assert((!Chain || Chain == Reader) && "Cannot replace chain");
assert(FirstDeclID == NextDeclID &&
FirstTypeID == NextTypeID &&
FirstIdentID == NextIdentID &&
FirstMacroID == NextMacroID &&
FirstSubmoduleID == NextSubmoduleID &&
FirstSelectorID == NextSelectorID &&
"Setting chain after writing has started.");
Chain = Reader;
FirstDeclID = NUM_PREDEF_DECL_IDS + Chain->getTotalNumDecls();
FirstTypeID = NUM_PREDEF_TYPE_IDS + Chain->getTotalNumTypes();
FirstIdentID = NUM_PREDEF_IDENT_IDS + Chain->getTotalNumIdentifiers();
FirstMacroID = NUM_PREDEF_MACRO_IDS + Chain->getTotalNumMacros();
FirstSubmoduleID = NUM_PREDEF_SUBMODULE_IDS + Chain->getTotalNumSubmodules();
FirstSelectorID = NUM_PREDEF_SELECTOR_IDS + Chain->getTotalNumSelectors();
NextDeclID = FirstDeclID;
NextTypeID = FirstTypeID;
NextIdentID = FirstIdentID;
NextMacroID = FirstMacroID;
NextSelectorID = FirstSelectorID;
NextSubmoduleID = FirstSubmoduleID;
}
void ASTWriter::IdentifierRead(IdentID ID, IdentifierInfo *II) {
// Always keep the highest ID. See \p TypeRead() for more information.
IdentID &StoredID = IdentifierIDs[II];
if (ID > StoredID)
StoredID = ID;
}
void ASTWriter::MacroRead(serialization::MacroID ID, MacroInfo *MI) {
// Always keep the highest ID. See \p TypeRead() for more information.
MacroID &StoredID = MacroIDs[MI];
if (ID > StoredID)
StoredID = ID;
}
void ASTWriter::TypeRead(TypeIdx Idx, QualType T) {
// Always take the highest-numbered type index. This copes with an interesting
// case for chained AST writing where we schedule writing the type and then,
// later, deserialize the type from another AST. In this case, we want to
// keep the higher-numbered entry so that we can properly write it out to
// the AST file.
TypeIdx &StoredIdx = TypeIdxs[T];
if (Idx.getIndex() >= StoredIdx.getIndex())
StoredIdx = Idx;
}
void ASTWriter::SelectorRead(SelectorID ID, Selector S) {
// Always keep the highest ID. See \p TypeRead() for more information.
SelectorID &StoredID = SelectorIDs[S];
if (ID > StoredID)
StoredID = ID;
}
void ASTWriter::MacroDefinitionRead(serialization::PreprocessedEntityID ID,
MacroDefinition *MD) {
assert(MacroDefinitions.find(MD) == MacroDefinitions.end());
MacroDefinitions[MD] = ID;
}
void ASTWriter::ModuleRead(serialization::SubmoduleID ID, Module *Mod) {
assert(SubmoduleIDs.find(Mod) == SubmoduleIDs.end());
SubmoduleIDs[Mod] = ID;
}
void ASTWriter::CompletedTagDefinition(const TagDecl *D) {
assert(D->isCompleteDefinition());
assert(!WritingAST && "Already writing the AST!");
if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
// We are interested when a PCH decl is modified.
if (RD->isFromASTFile()) {
// A forward reference was mutated into a definition. Rewrite it.
// FIXME: This happens during template instantiation, should we
// have created a new definition decl instead ?
assert(isTemplateInstantiation(RD->getTemplateSpecializationKind()) &&
"completed a tag from another module but not by instantiation?");
DeclUpdates[RD].push_back(
DeclUpdate(UPD_CXX_INSTANTIATED_CLASS_DEFINITION));
}
}
}
void ASTWriter::AddedVisibleDecl(const DeclContext *DC, const Decl *D) {
// TU and namespaces are handled elsewhere.
if (isa<TranslationUnitDecl>(DC) || isa<NamespaceDecl>(DC))
return;
if (!(!D->isFromASTFile() && cast<Decl>(DC)->isFromASTFile()))
return; // Not a source decl added to a DeclContext from PCH.
assert(!getDefinitiveDeclContext(DC) && "DeclContext not definitive!");
assert(!WritingAST && "Already writing the AST!");
AddUpdatedDeclContext(DC);
UpdatingVisibleDecls.push_back(D);
}
void ASTWriter::AddedCXXImplicitMember(const CXXRecordDecl *RD, const Decl *D) {
assert(D->isImplicit());
if (!(!D->isFromASTFile() && RD->isFromASTFile()))
return; // Not a source member added to a class from PCH.
if (!isa<CXXMethodDecl>(D))
return; // We are interested in lazily declared implicit methods.
// A decl coming from PCH was modified.
assert(RD->isCompleteDefinition());
assert(!WritingAST && "Already writing the AST!");
DeclUpdates[RD].push_back(DeclUpdate(UPD_CXX_ADDED_IMPLICIT_MEMBER, D));
}
void ASTWriter::AddedCXXTemplateSpecialization(const ClassTemplateDecl *TD,
const ClassTemplateSpecializationDecl *D) {
// The specializations set is kept in the canonical template.
TD = TD->getCanonicalDecl();
if (!(!D->isFromASTFile() && TD->isFromASTFile()))
return; // Not a source specialization added to a template from PCH.
assert(!WritingAST && "Already writing the AST!");
DeclUpdates[TD].push_back(DeclUpdate(UPD_CXX_ADDED_TEMPLATE_SPECIALIZATION,
D));
}
void ASTWriter::AddedCXXTemplateSpecialization(
const VarTemplateDecl *TD, const VarTemplateSpecializationDecl *D) {
// The specializations set is kept in the canonical template.
TD = TD->getCanonicalDecl();
if (!(!D->isFromASTFile() && TD->isFromASTFile()))
return; // Not a source specialization added to a template from PCH.
assert(!WritingAST && "Already writing the AST!");
DeclUpdates[TD].push_back(DeclUpdate(UPD_CXX_ADDED_TEMPLATE_SPECIALIZATION,
D));
}
void ASTWriter::AddedCXXTemplateSpecialization(const FunctionTemplateDecl *TD,
const FunctionDecl *D) {
// The specializations set is kept in the canonical template.
TD = TD->getCanonicalDecl();
if (!(!D->isFromASTFile() && TD->isFromASTFile()))
return; // Not a source specialization added to a template from PCH.
assert(!WritingAST && "Already writing the AST!");
DeclUpdates[TD].push_back(DeclUpdate(UPD_CXX_ADDED_TEMPLATE_SPECIALIZATION,
D));
}
void ASTWriter::ResolvedExceptionSpec(const FunctionDecl *FD) {
assert(!WritingAST && "Already writing the AST!");
FD = FD->getCanonicalDecl();
if (!FD->isFromASTFile())
return; // Not a function declared in PCH and defined outside.
DeclUpdates[FD].push_back(UPD_CXX_RESOLVED_EXCEPTION_SPEC);
}
void ASTWriter::DeducedReturnType(const FunctionDecl *FD, QualType ReturnType) {
assert(!WritingAST && "Already writing the AST!");
FD = FD->getCanonicalDecl();
if (!FD->isFromASTFile())
return; // Not a function declared in PCH and defined outside.
DeclUpdates[FD].push_back(DeclUpdate(UPD_CXX_DEDUCED_RETURN_TYPE, ReturnType));
}
void ASTWriter::CompletedImplicitDefinition(const FunctionDecl *D) {
assert(!WritingAST && "Already writing the AST!");
if (!D->isFromASTFile())
return; // Declaration not imported from PCH.
// Implicit function decl from a PCH was defined.
DeclUpdates[D].push_back(DeclUpdate(UPD_CXX_ADDED_FUNCTION_DEFINITION));
}
void ASTWriter::FunctionDefinitionInstantiated(const FunctionDecl *D) {
assert(!WritingAST && "Already writing the AST!");
if (!D->isFromASTFile())
return;
DeclUpdates[D].push_back(
DeclUpdate(UPD_CXX_ADDED_FUNCTION_DEFINITION));
}
void ASTWriter::StaticDataMemberInstantiated(const VarDecl *D) {
assert(!WritingAST && "Already writing the AST!");
if (!D->isFromASTFile())
return;
// Since the actual instantiation is delayed, this really means that we need
// to update the instantiation location.
DeclUpdates[D].push_back(
DeclUpdate(UPD_CXX_INSTANTIATED_STATIC_DATA_MEMBER,
D->getMemberSpecializationInfo()->getPointOfInstantiation()));
}
void ASTWriter::AddedObjCCategoryToInterface(const ObjCCategoryDecl *CatD,
const ObjCInterfaceDecl *IFD) {
assert(!WritingAST && "Already writing the AST!");
if (!IFD->isFromASTFile())
return; // Declaration not imported from PCH.
assert(IFD->getDefinition() && "Category on a class without a definition?");
ObjCClassesWithCategories.insert(
const_cast<ObjCInterfaceDecl *>(IFD->getDefinition()));
}
void ASTWriter::AddedObjCPropertyInClassExtension(const ObjCPropertyDecl *Prop,
const ObjCPropertyDecl *OrigProp,
const ObjCCategoryDecl *ClassExt) {
const ObjCInterfaceDecl *D = ClassExt->getClassInterface();
if (!D)
return;
assert(!WritingAST && "Already writing the AST!");
if (!D->isFromASTFile())
return; // Declaration not imported from PCH.
RewriteDecl(D);
}
void ASTWriter::DeclarationMarkedUsed(const Decl *D) {
assert(!WritingAST && "Already writing the AST!");
if (!D->isFromASTFile())
return;
DeclUpdates[D].push_back(DeclUpdate(UPD_DECL_MARKED_USED));
}
void ASTWriter::DeclarationMarkedOpenMPThreadPrivate(const Decl *D) {
assert(!WritingAST && "Already writing the AST!");
if (!D->isFromASTFile())
return;
DeclUpdates[D].push_back(DeclUpdate(UPD_DECL_MARKED_OPENMP_THREADPRIVATE));
}