forked from OSchip/llvm-project
3535 lines
130 KiB
C++
3535 lines
130 KiB
C++
//===--- VTableBuilder.cpp - C++ vtable layout builder --------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This contains code dealing with generation of the layout of virtual tables.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/AST/VTableBuilder.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/CXXInheritance.h"
|
|
#include "clang/AST/RecordLayout.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/Support/Format.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <cstdio>
|
|
|
|
using namespace clang;
|
|
|
|
#define DUMP_OVERRIDERS 0
|
|
|
|
namespace {
|
|
|
|
/// BaseOffset - Represents an offset from a derived class to a direct or
|
|
/// indirect base class.
|
|
struct BaseOffset {
|
|
/// DerivedClass - The derived class.
|
|
const CXXRecordDecl *DerivedClass;
|
|
|
|
/// VirtualBase - If the path from the derived class to the base class
|
|
/// involves virtual base classes, this holds the declaration of the last
|
|
/// virtual base in this path (i.e. closest to the base class).
|
|
const CXXRecordDecl *VirtualBase;
|
|
|
|
/// NonVirtualOffset - The offset from the derived class to the base class.
|
|
/// (Or the offset from the virtual base class to the base class, if the
|
|
/// path from the derived class to the base class involves a virtual base
|
|
/// class.
|
|
CharUnits NonVirtualOffset;
|
|
|
|
BaseOffset() : DerivedClass(0), VirtualBase(0),
|
|
NonVirtualOffset(CharUnits::Zero()) { }
|
|
BaseOffset(const CXXRecordDecl *DerivedClass,
|
|
const CXXRecordDecl *VirtualBase, CharUnits NonVirtualOffset)
|
|
: DerivedClass(DerivedClass), VirtualBase(VirtualBase),
|
|
NonVirtualOffset(NonVirtualOffset) { }
|
|
|
|
bool isEmpty() const { return NonVirtualOffset.isZero() && !VirtualBase; }
|
|
};
|
|
|
|
/// FinalOverriders - Contains the final overrider member functions for all
|
|
/// member functions in the base subobjects of a class.
|
|
class FinalOverriders {
|
|
public:
|
|
/// OverriderInfo - Information about a final overrider.
|
|
struct OverriderInfo {
|
|
/// Method - The method decl of the overrider.
|
|
const CXXMethodDecl *Method;
|
|
|
|
/// Offset - the base offset of the overrider's parent in the layout class.
|
|
CharUnits Offset;
|
|
|
|
OverriderInfo() : Method(0), Offset(CharUnits::Zero()) { }
|
|
};
|
|
|
|
private:
|
|
/// MostDerivedClass - The most derived class for which the final overriders
|
|
/// are stored.
|
|
const CXXRecordDecl *MostDerivedClass;
|
|
|
|
/// MostDerivedClassOffset - If we're building final overriders for a
|
|
/// construction vtable, this holds the offset from the layout class to the
|
|
/// most derived class.
|
|
const CharUnits MostDerivedClassOffset;
|
|
|
|
/// LayoutClass - The class we're using for layout information. Will be
|
|
/// different than the most derived class if the final overriders are for a
|
|
/// construction vtable.
|
|
const CXXRecordDecl *LayoutClass;
|
|
|
|
ASTContext &Context;
|
|
|
|
/// MostDerivedClassLayout - the AST record layout of the most derived class.
|
|
const ASTRecordLayout &MostDerivedClassLayout;
|
|
|
|
/// MethodBaseOffsetPairTy - Uniquely identifies a member function
|
|
/// in a base subobject.
|
|
typedef std::pair<const CXXMethodDecl *, CharUnits> MethodBaseOffsetPairTy;
|
|
|
|
typedef llvm::DenseMap<MethodBaseOffsetPairTy,
|
|
OverriderInfo> OverridersMapTy;
|
|
|
|
/// OverridersMap - The final overriders for all virtual member functions of
|
|
/// all the base subobjects of the most derived class.
|
|
OverridersMapTy OverridersMap;
|
|
|
|
/// SubobjectsToOffsetsMapTy - A mapping from a base subobject (represented
|
|
/// as a record decl and a subobject number) and its offsets in the most
|
|
/// derived class as well as the layout class.
|
|
typedef llvm::DenseMap<std::pair<const CXXRecordDecl *, unsigned>,
|
|
CharUnits> SubobjectOffsetMapTy;
|
|
|
|
typedef llvm::DenseMap<const CXXRecordDecl *, unsigned> SubobjectCountMapTy;
|
|
|
|
/// ComputeBaseOffsets - Compute the offsets for all base subobjects of the
|
|
/// given base.
|
|
void ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
|
|
CharUnits OffsetInLayoutClass,
|
|
SubobjectOffsetMapTy &SubobjectOffsets,
|
|
SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
|
|
SubobjectCountMapTy &SubobjectCounts);
|
|
|
|
typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
|
|
|
|
/// dump - dump the final overriders for a base subobject, and all its direct
|
|
/// and indirect base subobjects.
|
|
void dump(raw_ostream &Out, BaseSubobject Base,
|
|
VisitedVirtualBasesSetTy& VisitedVirtualBases);
|
|
|
|
public:
|
|
FinalOverriders(const CXXRecordDecl *MostDerivedClass,
|
|
CharUnits MostDerivedClassOffset,
|
|
const CXXRecordDecl *LayoutClass);
|
|
|
|
/// getOverrider - Get the final overrider for the given method declaration in
|
|
/// the subobject with the given base offset.
|
|
OverriderInfo getOverrider(const CXXMethodDecl *MD,
|
|
CharUnits BaseOffset) const {
|
|
assert(OverridersMap.count(std::make_pair(MD, BaseOffset)) &&
|
|
"Did not find overrider!");
|
|
|
|
return OverridersMap.lookup(std::make_pair(MD, BaseOffset));
|
|
}
|
|
|
|
/// dump - dump the final overriders.
|
|
void dump() {
|
|
VisitedVirtualBasesSetTy VisitedVirtualBases;
|
|
dump(llvm::errs(), BaseSubobject(MostDerivedClass, CharUnits::Zero()),
|
|
VisitedVirtualBases);
|
|
}
|
|
|
|
};
|
|
|
|
FinalOverriders::FinalOverriders(const CXXRecordDecl *MostDerivedClass,
|
|
CharUnits MostDerivedClassOffset,
|
|
const CXXRecordDecl *LayoutClass)
|
|
: MostDerivedClass(MostDerivedClass),
|
|
MostDerivedClassOffset(MostDerivedClassOffset), LayoutClass(LayoutClass),
|
|
Context(MostDerivedClass->getASTContext()),
|
|
MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)) {
|
|
|
|
// Compute base offsets.
|
|
SubobjectOffsetMapTy SubobjectOffsets;
|
|
SubobjectOffsetMapTy SubobjectLayoutClassOffsets;
|
|
SubobjectCountMapTy SubobjectCounts;
|
|
ComputeBaseOffsets(BaseSubobject(MostDerivedClass, CharUnits::Zero()),
|
|
/*IsVirtual=*/false,
|
|
MostDerivedClassOffset,
|
|
SubobjectOffsets, SubobjectLayoutClassOffsets,
|
|
SubobjectCounts);
|
|
|
|
// Get the final overriders.
|
|
CXXFinalOverriderMap FinalOverriders;
|
|
MostDerivedClass->getFinalOverriders(FinalOverriders);
|
|
|
|
for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
|
|
E = FinalOverriders.end(); I != E; ++I) {
|
|
const CXXMethodDecl *MD = I->first;
|
|
const OverridingMethods& Methods = I->second;
|
|
|
|
for (OverridingMethods::const_iterator I = Methods.begin(),
|
|
E = Methods.end(); I != E; ++I) {
|
|
unsigned SubobjectNumber = I->first;
|
|
assert(SubobjectOffsets.count(std::make_pair(MD->getParent(),
|
|
SubobjectNumber)) &&
|
|
"Did not find subobject offset!");
|
|
|
|
CharUnits BaseOffset = SubobjectOffsets[std::make_pair(MD->getParent(),
|
|
SubobjectNumber)];
|
|
|
|
assert(I->second.size() == 1 && "Final overrider is not unique!");
|
|
const UniqueVirtualMethod &Method = I->second.front();
|
|
|
|
const CXXRecordDecl *OverriderRD = Method.Method->getParent();
|
|
assert(SubobjectLayoutClassOffsets.count(
|
|
std::make_pair(OverriderRD, Method.Subobject))
|
|
&& "Did not find subobject offset!");
|
|
CharUnits OverriderOffset =
|
|
SubobjectLayoutClassOffsets[std::make_pair(OverriderRD,
|
|
Method.Subobject)];
|
|
|
|
OverriderInfo& Overrider = OverridersMap[std::make_pair(MD, BaseOffset)];
|
|
assert(!Overrider.Method && "Overrider should not exist yet!");
|
|
|
|
Overrider.Offset = OverriderOffset;
|
|
Overrider.Method = Method.Method;
|
|
}
|
|
}
|
|
|
|
#if DUMP_OVERRIDERS
|
|
// And dump them (for now).
|
|
dump();
|
|
#endif
|
|
}
|
|
|
|
static BaseOffset ComputeBaseOffset(ASTContext &Context,
|
|
const CXXRecordDecl *DerivedRD,
|
|
const CXXBasePath &Path) {
|
|
CharUnits NonVirtualOffset = CharUnits::Zero();
|
|
|
|
unsigned NonVirtualStart = 0;
|
|
const CXXRecordDecl *VirtualBase = 0;
|
|
|
|
// First, look for the virtual base class.
|
|
for (int I = Path.size(), E = 0; I != E; --I) {
|
|
const CXXBasePathElement &Element = Path[I - 1];
|
|
|
|
if (Element.Base->isVirtual()) {
|
|
NonVirtualStart = I;
|
|
QualType VBaseType = Element.Base->getType();
|
|
VirtualBase = VBaseType->getAsCXXRecordDecl();
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Now compute the non-virtual offset.
|
|
for (unsigned I = NonVirtualStart, E = Path.size(); I != E; ++I) {
|
|
const CXXBasePathElement &Element = Path[I];
|
|
|
|
// Check the base class offset.
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(Element.Class);
|
|
|
|
const CXXRecordDecl *Base = Element.Base->getType()->getAsCXXRecordDecl();
|
|
|
|
NonVirtualOffset += Layout.getBaseClassOffset(Base);
|
|
}
|
|
|
|
// FIXME: This should probably use CharUnits or something. Maybe we should
|
|
// even change the base offsets in ASTRecordLayout to be specified in
|
|
// CharUnits.
|
|
return BaseOffset(DerivedRD, VirtualBase, NonVirtualOffset);
|
|
|
|
}
|
|
|
|
static BaseOffset ComputeBaseOffset(ASTContext &Context,
|
|
const CXXRecordDecl *BaseRD,
|
|
const CXXRecordDecl *DerivedRD) {
|
|
CXXBasePaths Paths(/*FindAmbiguities=*/false,
|
|
/*RecordPaths=*/true, /*DetectVirtual=*/false);
|
|
|
|
if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
|
|
llvm_unreachable("Class must be derived from the passed in base class!");
|
|
|
|
return ComputeBaseOffset(Context, DerivedRD, Paths.front());
|
|
}
|
|
|
|
static BaseOffset
|
|
ComputeReturnAdjustmentBaseOffset(ASTContext &Context,
|
|
const CXXMethodDecl *DerivedMD,
|
|
const CXXMethodDecl *BaseMD) {
|
|
const FunctionType *BaseFT = BaseMD->getType()->getAs<FunctionType>();
|
|
const FunctionType *DerivedFT = DerivedMD->getType()->getAs<FunctionType>();
|
|
|
|
// Canonicalize the return types.
|
|
CanQualType CanDerivedReturnType =
|
|
Context.getCanonicalType(DerivedFT->getReturnType());
|
|
CanQualType CanBaseReturnType =
|
|
Context.getCanonicalType(BaseFT->getReturnType());
|
|
|
|
assert(CanDerivedReturnType->getTypeClass() ==
|
|
CanBaseReturnType->getTypeClass() &&
|
|
"Types must have same type class!");
|
|
|
|
if (CanDerivedReturnType == CanBaseReturnType) {
|
|
// No adjustment needed.
|
|
return BaseOffset();
|
|
}
|
|
|
|
if (isa<ReferenceType>(CanDerivedReturnType)) {
|
|
CanDerivedReturnType =
|
|
CanDerivedReturnType->getAs<ReferenceType>()->getPointeeType();
|
|
CanBaseReturnType =
|
|
CanBaseReturnType->getAs<ReferenceType>()->getPointeeType();
|
|
} else if (isa<PointerType>(CanDerivedReturnType)) {
|
|
CanDerivedReturnType =
|
|
CanDerivedReturnType->getAs<PointerType>()->getPointeeType();
|
|
CanBaseReturnType =
|
|
CanBaseReturnType->getAs<PointerType>()->getPointeeType();
|
|
} else {
|
|
llvm_unreachable("Unexpected return type!");
|
|
}
|
|
|
|
// We need to compare unqualified types here; consider
|
|
// const T *Base::foo();
|
|
// T *Derived::foo();
|
|
if (CanDerivedReturnType.getUnqualifiedType() ==
|
|
CanBaseReturnType.getUnqualifiedType()) {
|
|
// No adjustment needed.
|
|
return BaseOffset();
|
|
}
|
|
|
|
const CXXRecordDecl *DerivedRD =
|
|
cast<CXXRecordDecl>(cast<RecordType>(CanDerivedReturnType)->getDecl());
|
|
|
|
const CXXRecordDecl *BaseRD =
|
|
cast<CXXRecordDecl>(cast<RecordType>(CanBaseReturnType)->getDecl());
|
|
|
|
return ComputeBaseOffset(Context, BaseRD, DerivedRD);
|
|
}
|
|
|
|
void
|
|
FinalOverriders::ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
|
|
CharUnits OffsetInLayoutClass,
|
|
SubobjectOffsetMapTy &SubobjectOffsets,
|
|
SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
|
|
SubobjectCountMapTy &SubobjectCounts) {
|
|
const CXXRecordDecl *RD = Base.getBase();
|
|
|
|
unsigned SubobjectNumber = 0;
|
|
if (!IsVirtual)
|
|
SubobjectNumber = ++SubobjectCounts[RD];
|
|
|
|
// Set up the subobject to offset mapping.
|
|
assert(!SubobjectOffsets.count(std::make_pair(RD, SubobjectNumber))
|
|
&& "Subobject offset already exists!");
|
|
assert(!SubobjectLayoutClassOffsets.count(std::make_pair(RD, SubobjectNumber))
|
|
&& "Subobject offset already exists!");
|
|
|
|
SubobjectOffsets[std::make_pair(RD, SubobjectNumber)] = Base.getBaseOffset();
|
|
SubobjectLayoutClassOffsets[std::make_pair(RD, SubobjectNumber)] =
|
|
OffsetInLayoutClass;
|
|
|
|
// Traverse our bases.
|
|
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
|
|
E = RD->bases_end(); I != E; ++I) {
|
|
const CXXRecordDecl *BaseDecl = I->getType()->getAsCXXRecordDecl();
|
|
|
|
CharUnits BaseOffset;
|
|
CharUnits BaseOffsetInLayoutClass;
|
|
if (I->isVirtual()) {
|
|
// Check if we've visited this virtual base before.
|
|
if (SubobjectOffsets.count(std::make_pair(BaseDecl, 0)))
|
|
continue;
|
|
|
|
const ASTRecordLayout &LayoutClassLayout =
|
|
Context.getASTRecordLayout(LayoutClass);
|
|
|
|
BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
|
|
BaseOffsetInLayoutClass =
|
|
LayoutClassLayout.getVBaseClassOffset(BaseDecl);
|
|
} else {
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
CharUnits Offset = Layout.getBaseClassOffset(BaseDecl);
|
|
|
|
BaseOffset = Base.getBaseOffset() + Offset;
|
|
BaseOffsetInLayoutClass = OffsetInLayoutClass + Offset;
|
|
}
|
|
|
|
ComputeBaseOffsets(BaseSubobject(BaseDecl, BaseOffset),
|
|
I->isVirtual(), BaseOffsetInLayoutClass,
|
|
SubobjectOffsets, SubobjectLayoutClassOffsets,
|
|
SubobjectCounts);
|
|
}
|
|
}
|
|
|
|
void FinalOverriders::dump(raw_ostream &Out, BaseSubobject Base,
|
|
VisitedVirtualBasesSetTy &VisitedVirtualBases) {
|
|
const CXXRecordDecl *RD = Base.getBase();
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
|
|
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
|
|
E = RD->bases_end(); I != E; ++I) {
|
|
const CXXRecordDecl *BaseDecl = I->getType()->getAsCXXRecordDecl();
|
|
|
|
// Ignore bases that don't have any virtual member functions.
|
|
if (!BaseDecl->isPolymorphic())
|
|
continue;
|
|
|
|
CharUnits BaseOffset;
|
|
if (I->isVirtual()) {
|
|
if (!VisitedVirtualBases.insert(BaseDecl)) {
|
|
// We've visited this base before.
|
|
continue;
|
|
}
|
|
|
|
BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
|
|
} else {
|
|
BaseOffset = Layout.getBaseClassOffset(BaseDecl) + Base.getBaseOffset();
|
|
}
|
|
|
|
dump(Out, BaseSubobject(BaseDecl, BaseOffset), VisitedVirtualBases);
|
|
}
|
|
|
|
Out << "Final overriders for (";
|
|
RD->printQualifiedName(Out);
|
|
Out << ", ";
|
|
Out << Base.getBaseOffset().getQuantity() << ")\n";
|
|
|
|
// Now dump the overriders for this base subobject.
|
|
for (CXXRecordDecl::method_iterator I = RD->method_begin(),
|
|
E = RD->method_end(); I != E; ++I) {
|
|
const CXXMethodDecl *MD = *I;
|
|
|
|
if (!MD->isVirtual())
|
|
continue;
|
|
|
|
OverriderInfo Overrider = getOverrider(MD, Base.getBaseOffset());
|
|
|
|
Out << " ";
|
|
MD->printQualifiedName(Out);
|
|
Out << " - (";
|
|
Overrider.Method->printQualifiedName(Out);
|
|
Out << ", " << Overrider.Offset.getQuantity() << ')';
|
|
|
|
BaseOffset Offset;
|
|
if (!Overrider.Method->isPure())
|
|
Offset = ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
|
|
|
|
if (!Offset.isEmpty()) {
|
|
Out << " [ret-adj: ";
|
|
if (Offset.VirtualBase) {
|
|
Offset.VirtualBase->printQualifiedName(Out);
|
|
Out << " vbase, ";
|
|
}
|
|
|
|
Out << Offset.NonVirtualOffset.getQuantity() << " nv]";
|
|
}
|
|
|
|
Out << "\n";
|
|
}
|
|
}
|
|
|
|
/// VCallOffsetMap - Keeps track of vcall offsets when building a vtable.
|
|
struct VCallOffsetMap {
|
|
|
|
typedef std::pair<const CXXMethodDecl *, CharUnits> MethodAndOffsetPairTy;
|
|
|
|
/// Offsets - Keeps track of methods and their offsets.
|
|
// FIXME: This should be a real map and not a vector.
|
|
SmallVector<MethodAndOffsetPairTy, 16> Offsets;
|
|
|
|
/// MethodsCanShareVCallOffset - Returns whether two virtual member functions
|
|
/// can share the same vcall offset.
|
|
static bool MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
|
|
const CXXMethodDecl *RHS);
|
|
|
|
public:
|
|
/// AddVCallOffset - Adds a vcall offset to the map. Returns true if the
|
|
/// add was successful, or false if there was already a member function with
|
|
/// the same signature in the map.
|
|
bool AddVCallOffset(const CXXMethodDecl *MD, CharUnits OffsetOffset);
|
|
|
|
/// getVCallOffsetOffset - Returns the vcall offset offset (relative to the
|
|
/// vtable address point) for the given virtual member function.
|
|
CharUnits getVCallOffsetOffset(const CXXMethodDecl *MD);
|
|
|
|
// empty - Return whether the offset map is empty or not.
|
|
bool empty() const { return Offsets.empty(); }
|
|
};
|
|
|
|
static bool HasSameVirtualSignature(const CXXMethodDecl *LHS,
|
|
const CXXMethodDecl *RHS) {
|
|
const FunctionProtoType *LT =
|
|
cast<FunctionProtoType>(LHS->getType().getCanonicalType());
|
|
const FunctionProtoType *RT =
|
|
cast<FunctionProtoType>(RHS->getType().getCanonicalType());
|
|
|
|
// Fast-path matches in the canonical types.
|
|
if (LT == RT) return true;
|
|
|
|
// Force the signatures to match. We can't rely on the overrides
|
|
// list here because there isn't necessarily an inheritance
|
|
// relationship between the two methods.
|
|
if (LT->getTypeQuals() != RT->getTypeQuals() ||
|
|
LT->getNumParams() != RT->getNumParams())
|
|
return false;
|
|
for (unsigned I = 0, E = LT->getNumParams(); I != E; ++I)
|
|
if (LT->getParamType(I) != RT->getParamType(I))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool VCallOffsetMap::MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
|
|
const CXXMethodDecl *RHS) {
|
|
assert(LHS->isVirtual() && "LHS must be virtual!");
|
|
assert(RHS->isVirtual() && "LHS must be virtual!");
|
|
|
|
// A destructor can share a vcall offset with another destructor.
|
|
if (isa<CXXDestructorDecl>(LHS))
|
|
return isa<CXXDestructorDecl>(RHS);
|
|
|
|
// FIXME: We need to check more things here.
|
|
|
|
// The methods must have the same name.
|
|
DeclarationName LHSName = LHS->getDeclName();
|
|
DeclarationName RHSName = RHS->getDeclName();
|
|
if (LHSName != RHSName)
|
|
return false;
|
|
|
|
// And the same signatures.
|
|
return HasSameVirtualSignature(LHS, RHS);
|
|
}
|
|
|
|
bool VCallOffsetMap::AddVCallOffset(const CXXMethodDecl *MD,
|
|
CharUnits OffsetOffset) {
|
|
// Check if we can reuse an offset.
|
|
for (unsigned I = 0, E = Offsets.size(); I != E; ++I) {
|
|
if (MethodsCanShareVCallOffset(Offsets[I].first, MD))
|
|
return false;
|
|
}
|
|
|
|
// Add the offset.
|
|
Offsets.push_back(MethodAndOffsetPairTy(MD, OffsetOffset));
|
|
return true;
|
|
}
|
|
|
|
CharUnits VCallOffsetMap::getVCallOffsetOffset(const CXXMethodDecl *MD) {
|
|
// Look for an offset.
|
|
for (unsigned I = 0, E = Offsets.size(); I != E; ++I) {
|
|
if (MethodsCanShareVCallOffset(Offsets[I].first, MD))
|
|
return Offsets[I].second;
|
|
}
|
|
|
|
llvm_unreachable("Should always find a vcall offset offset!");
|
|
}
|
|
|
|
/// VCallAndVBaseOffsetBuilder - Class for building vcall and vbase offsets.
|
|
class VCallAndVBaseOffsetBuilder {
|
|
public:
|
|
typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
|
|
VBaseOffsetOffsetsMapTy;
|
|
|
|
private:
|
|
/// MostDerivedClass - The most derived class for which we're building vcall
|
|
/// and vbase offsets.
|
|
const CXXRecordDecl *MostDerivedClass;
|
|
|
|
/// LayoutClass - The class we're using for layout information. Will be
|
|
/// different than the most derived class if we're building a construction
|
|
/// vtable.
|
|
const CXXRecordDecl *LayoutClass;
|
|
|
|
/// Context - The ASTContext which we will use for layout information.
|
|
ASTContext &Context;
|
|
|
|
/// Components - vcall and vbase offset components
|
|
typedef SmallVector<VTableComponent, 64> VTableComponentVectorTy;
|
|
VTableComponentVectorTy Components;
|
|
|
|
/// VisitedVirtualBases - Visited virtual bases.
|
|
llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
|
|
|
|
/// VCallOffsets - Keeps track of vcall offsets.
|
|
VCallOffsetMap VCallOffsets;
|
|
|
|
|
|
/// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets,
|
|
/// relative to the address point.
|
|
VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
|
|
|
|
/// FinalOverriders - The final overriders of the most derived class.
|
|
/// (Can be null when we're not building a vtable of the most derived class).
|
|
const FinalOverriders *Overriders;
|
|
|
|
/// AddVCallAndVBaseOffsets - Add vcall offsets and vbase offsets for the
|
|
/// given base subobject.
|
|
void AddVCallAndVBaseOffsets(BaseSubobject Base, bool BaseIsVirtual,
|
|
CharUnits RealBaseOffset);
|
|
|
|
/// AddVCallOffsets - Add vcall offsets for the given base subobject.
|
|
void AddVCallOffsets(BaseSubobject Base, CharUnits VBaseOffset);
|
|
|
|
/// AddVBaseOffsets - Add vbase offsets for the given class.
|
|
void AddVBaseOffsets(const CXXRecordDecl *Base,
|
|
CharUnits OffsetInLayoutClass);
|
|
|
|
/// getCurrentOffsetOffset - Get the current vcall or vbase offset offset in
|
|
/// chars, relative to the vtable address point.
|
|
CharUnits getCurrentOffsetOffset() const;
|
|
|
|
public:
|
|
VCallAndVBaseOffsetBuilder(const CXXRecordDecl *MostDerivedClass,
|
|
const CXXRecordDecl *LayoutClass,
|
|
const FinalOverriders *Overriders,
|
|
BaseSubobject Base, bool BaseIsVirtual,
|
|
CharUnits OffsetInLayoutClass)
|
|
: MostDerivedClass(MostDerivedClass), LayoutClass(LayoutClass),
|
|
Context(MostDerivedClass->getASTContext()), Overriders(Overriders) {
|
|
|
|
// Add vcall and vbase offsets.
|
|
AddVCallAndVBaseOffsets(Base, BaseIsVirtual, OffsetInLayoutClass);
|
|
}
|
|
|
|
/// Methods for iterating over the components.
|
|
typedef VTableComponentVectorTy::const_reverse_iterator const_iterator;
|
|
const_iterator components_begin() const { return Components.rbegin(); }
|
|
const_iterator components_end() const { return Components.rend(); }
|
|
|
|
const VCallOffsetMap &getVCallOffsets() const { return VCallOffsets; }
|
|
const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
|
|
return VBaseOffsetOffsets;
|
|
}
|
|
};
|
|
|
|
void
|
|
VCallAndVBaseOffsetBuilder::AddVCallAndVBaseOffsets(BaseSubobject Base,
|
|
bool BaseIsVirtual,
|
|
CharUnits RealBaseOffset) {
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base.getBase());
|
|
|
|
// Itanium C++ ABI 2.5.2:
|
|
// ..in classes sharing a virtual table with a primary base class, the vcall
|
|
// and vbase offsets added by the derived class all come before the vcall
|
|
// and vbase offsets required by the base class, so that the latter may be
|
|
// laid out as required by the base class without regard to additions from
|
|
// the derived class(es).
|
|
|
|
// (Since we're emitting the vcall and vbase offsets in reverse order, we'll
|
|
// emit them for the primary base first).
|
|
if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
|
|
bool PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
|
|
|
|
CharUnits PrimaryBaseOffset;
|
|
|
|
// Get the base offset of the primary base.
|
|
if (PrimaryBaseIsVirtual) {
|
|
assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
|
|
"Primary vbase should have a zero offset!");
|
|
|
|
const ASTRecordLayout &MostDerivedClassLayout =
|
|
Context.getASTRecordLayout(MostDerivedClass);
|
|
|
|
PrimaryBaseOffset =
|
|
MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
|
|
} else {
|
|
assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
|
|
"Primary base should have a zero offset!");
|
|
|
|
PrimaryBaseOffset = Base.getBaseOffset();
|
|
}
|
|
|
|
AddVCallAndVBaseOffsets(
|
|
BaseSubobject(PrimaryBase,PrimaryBaseOffset),
|
|
PrimaryBaseIsVirtual, RealBaseOffset);
|
|
}
|
|
|
|
AddVBaseOffsets(Base.getBase(), RealBaseOffset);
|
|
|
|
// We only want to add vcall offsets for virtual bases.
|
|
if (BaseIsVirtual)
|
|
AddVCallOffsets(Base, RealBaseOffset);
|
|
}
|
|
|
|
CharUnits VCallAndVBaseOffsetBuilder::getCurrentOffsetOffset() const {
|
|
// OffsetIndex is the index of this vcall or vbase offset, relative to the
|
|
// vtable address point. (We subtract 3 to account for the information just
|
|
// above the address point, the RTTI info, the offset to top, and the
|
|
// vcall offset itself).
|
|
int64_t OffsetIndex = -(int64_t)(3 + Components.size());
|
|
|
|
CharUnits PointerWidth =
|
|
Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
|
|
CharUnits OffsetOffset = PointerWidth * OffsetIndex;
|
|
return OffsetOffset;
|
|
}
|
|
|
|
void VCallAndVBaseOffsetBuilder::AddVCallOffsets(BaseSubobject Base,
|
|
CharUnits VBaseOffset) {
|
|
const CXXRecordDecl *RD = Base.getBase();
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
|
|
const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
|
|
|
|
// Handle the primary base first.
|
|
// We only want to add vcall offsets if the base is non-virtual; a virtual
|
|
// primary base will have its vcall and vbase offsets emitted already.
|
|
if (PrimaryBase && !Layout.isPrimaryBaseVirtual()) {
|
|
// Get the base offset of the primary base.
|
|
assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
|
|
"Primary base should have a zero offset!");
|
|
|
|
AddVCallOffsets(BaseSubobject(PrimaryBase, Base.getBaseOffset()),
|
|
VBaseOffset);
|
|
}
|
|
|
|
// Add the vcall offsets.
|
|
for (CXXRecordDecl::method_iterator I = RD->method_begin(),
|
|
E = RD->method_end(); I != E; ++I) {
|
|
const CXXMethodDecl *MD = *I;
|
|
|
|
if (!MD->isVirtual())
|
|
continue;
|
|
|
|
CharUnits OffsetOffset = getCurrentOffsetOffset();
|
|
|
|
// Don't add a vcall offset if we already have one for this member function
|
|
// signature.
|
|
if (!VCallOffsets.AddVCallOffset(MD, OffsetOffset))
|
|
continue;
|
|
|
|
CharUnits Offset = CharUnits::Zero();
|
|
|
|
if (Overriders) {
|
|
// Get the final overrider.
|
|
FinalOverriders::OverriderInfo Overrider =
|
|
Overriders->getOverrider(MD, Base.getBaseOffset());
|
|
|
|
/// The vcall offset is the offset from the virtual base to the object
|
|
/// where the function was overridden.
|
|
Offset = Overrider.Offset - VBaseOffset;
|
|
}
|
|
|
|
Components.push_back(
|
|
VTableComponent::MakeVCallOffset(Offset));
|
|
}
|
|
|
|
// And iterate over all non-virtual bases (ignoring the primary base).
|
|
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
|
|
E = RD->bases_end(); I != E; ++I) {
|
|
|
|
if (I->isVirtual())
|
|
continue;
|
|
|
|
const CXXRecordDecl *BaseDecl = I->getType()->getAsCXXRecordDecl();
|
|
if (BaseDecl == PrimaryBase)
|
|
continue;
|
|
|
|
// Get the base offset of this base.
|
|
CharUnits BaseOffset = Base.getBaseOffset() +
|
|
Layout.getBaseClassOffset(BaseDecl);
|
|
|
|
AddVCallOffsets(BaseSubobject(BaseDecl, BaseOffset),
|
|
VBaseOffset);
|
|
}
|
|
}
|
|
|
|
void
|
|
VCallAndVBaseOffsetBuilder::AddVBaseOffsets(const CXXRecordDecl *RD,
|
|
CharUnits OffsetInLayoutClass) {
|
|
const ASTRecordLayout &LayoutClassLayout =
|
|
Context.getASTRecordLayout(LayoutClass);
|
|
|
|
// Add vbase offsets.
|
|
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
|
|
E = RD->bases_end(); I != E; ++I) {
|
|
const CXXRecordDecl *BaseDecl = I->getType()->getAsCXXRecordDecl();
|
|
|
|
// Check if this is a virtual base that we haven't visited before.
|
|
if (I->isVirtual() && VisitedVirtualBases.insert(BaseDecl)) {
|
|
CharUnits Offset =
|
|
LayoutClassLayout.getVBaseClassOffset(BaseDecl) - OffsetInLayoutClass;
|
|
|
|
// Add the vbase offset offset.
|
|
assert(!VBaseOffsetOffsets.count(BaseDecl) &&
|
|
"vbase offset offset already exists!");
|
|
|
|
CharUnits VBaseOffsetOffset = getCurrentOffsetOffset();
|
|
VBaseOffsetOffsets.insert(
|
|
std::make_pair(BaseDecl, VBaseOffsetOffset));
|
|
|
|
Components.push_back(
|
|
VTableComponent::MakeVBaseOffset(Offset));
|
|
}
|
|
|
|
// Check the base class looking for more vbase offsets.
|
|
AddVBaseOffsets(BaseDecl, OffsetInLayoutClass);
|
|
}
|
|
}
|
|
|
|
/// ItaniumVTableBuilder - Class for building vtable layout information.
|
|
class ItaniumVTableBuilder {
|
|
public:
|
|
/// PrimaryBasesSetVectorTy - A set vector of direct and indirect
|
|
/// primary bases.
|
|
typedef llvm::SmallSetVector<const CXXRecordDecl *, 8>
|
|
PrimaryBasesSetVectorTy;
|
|
|
|
typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
|
|
VBaseOffsetOffsetsMapTy;
|
|
|
|
typedef llvm::DenseMap<BaseSubobject, uint64_t>
|
|
AddressPointsMapTy;
|
|
|
|
typedef llvm::DenseMap<GlobalDecl, int64_t> MethodVTableIndicesTy;
|
|
|
|
private:
|
|
/// VTables - Global vtable information.
|
|
ItaniumVTableContext &VTables;
|
|
|
|
/// MostDerivedClass - The most derived class for which we're building this
|
|
/// vtable.
|
|
const CXXRecordDecl *MostDerivedClass;
|
|
|
|
/// MostDerivedClassOffset - If we're building a construction vtable, this
|
|
/// holds the offset from the layout class to the most derived class.
|
|
const CharUnits MostDerivedClassOffset;
|
|
|
|
/// MostDerivedClassIsVirtual - Whether the most derived class is a virtual
|
|
/// base. (This only makes sense when building a construction vtable).
|
|
bool MostDerivedClassIsVirtual;
|
|
|
|
/// LayoutClass - The class we're using for layout information. Will be
|
|
/// different than the most derived class if we're building a construction
|
|
/// vtable.
|
|
const CXXRecordDecl *LayoutClass;
|
|
|
|
/// Context - The ASTContext which we will use for layout information.
|
|
ASTContext &Context;
|
|
|
|
/// FinalOverriders - The final overriders of the most derived class.
|
|
const FinalOverriders Overriders;
|
|
|
|
/// VCallOffsetsForVBases - Keeps track of vcall offsets for the virtual
|
|
/// bases in this vtable.
|
|
llvm::DenseMap<const CXXRecordDecl *, VCallOffsetMap> VCallOffsetsForVBases;
|
|
|
|
/// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets for
|
|
/// the most derived class.
|
|
VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
|
|
|
|
/// Components - The components of the vtable being built.
|
|
SmallVector<VTableComponent, 64> Components;
|
|
|
|
/// AddressPoints - Address points for the vtable being built.
|
|
AddressPointsMapTy AddressPoints;
|
|
|
|
/// MethodInfo - Contains information about a method in a vtable.
|
|
/// (Used for computing 'this' pointer adjustment thunks.
|
|
struct MethodInfo {
|
|
/// BaseOffset - The base offset of this method.
|
|
const CharUnits BaseOffset;
|
|
|
|
/// BaseOffsetInLayoutClass - The base offset in the layout class of this
|
|
/// method.
|
|
const CharUnits BaseOffsetInLayoutClass;
|
|
|
|
/// VTableIndex - The index in the vtable that this method has.
|
|
/// (For destructors, this is the index of the complete destructor).
|
|
const uint64_t VTableIndex;
|
|
|
|
MethodInfo(CharUnits BaseOffset, CharUnits BaseOffsetInLayoutClass,
|
|
uint64_t VTableIndex)
|
|
: BaseOffset(BaseOffset),
|
|
BaseOffsetInLayoutClass(BaseOffsetInLayoutClass),
|
|
VTableIndex(VTableIndex) { }
|
|
|
|
MethodInfo()
|
|
: BaseOffset(CharUnits::Zero()),
|
|
BaseOffsetInLayoutClass(CharUnits::Zero()),
|
|
VTableIndex(0) { }
|
|
};
|
|
|
|
typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
|
|
|
|
/// MethodInfoMap - The information for all methods in the vtable we're
|
|
/// currently building.
|
|
MethodInfoMapTy MethodInfoMap;
|
|
|
|
/// MethodVTableIndices - Contains the index (relative to the vtable address
|
|
/// point) where the function pointer for a virtual function is stored.
|
|
MethodVTableIndicesTy MethodVTableIndices;
|
|
|
|
typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
|
|
|
|
/// VTableThunks - The thunks by vtable index in the vtable currently being
|
|
/// built.
|
|
VTableThunksMapTy VTableThunks;
|
|
|
|
typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
|
|
typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
|
|
|
|
/// Thunks - A map that contains all the thunks needed for all methods in the
|
|
/// most derived class for which the vtable is currently being built.
|
|
ThunksMapTy Thunks;
|
|
|
|
/// AddThunk - Add a thunk for the given method.
|
|
void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk);
|
|
|
|
/// ComputeThisAdjustments - Compute the 'this' pointer adjustments for the
|
|
/// part of the vtable we're currently building.
|
|
void ComputeThisAdjustments();
|
|
|
|
typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
|
|
|
|
/// PrimaryVirtualBases - All known virtual bases who are a primary base of
|
|
/// some other base.
|
|
VisitedVirtualBasesSetTy PrimaryVirtualBases;
|
|
|
|
/// ComputeReturnAdjustment - Compute the return adjustment given a return
|
|
/// adjustment base offset.
|
|
ReturnAdjustment ComputeReturnAdjustment(BaseOffset Offset);
|
|
|
|
/// ComputeThisAdjustmentBaseOffset - Compute the base offset for adjusting
|
|
/// the 'this' pointer from the base subobject to the derived subobject.
|
|
BaseOffset ComputeThisAdjustmentBaseOffset(BaseSubobject Base,
|
|
BaseSubobject Derived) const;
|
|
|
|
/// ComputeThisAdjustment - Compute the 'this' pointer adjustment for the
|
|
/// given virtual member function, its offset in the layout class and its
|
|
/// final overrider.
|
|
ThisAdjustment
|
|
ComputeThisAdjustment(const CXXMethodDecl *MD,
|
|
CharUnits BaseOffsetInLayoutClass,
|
|
FinalOverriders::OverriderInfo Overrider);
|
|
|
|
/// AddMethod - Add a single virtual member function to the vtable
|
|
/// components vector.
|
|
void AddMethod(const CXXMethodDecl *MD, ReturnAdjustment ReturnAdjustment);
|
|
|
|
/// IsOverriderUsed - Returns whether the overrider will ever be used in this
|
|
/// part of the vtable.
|
|
///
|
|
/// Itanium C++ ABI 2.5.2:
|
|
///
|
|
/// struct A { virtual void f(); };
|
|
/// struct B : virtual public A { int i; };
|
|
/// struct C : virtual public A { int j; };
|
|
/// struct D : public B, public C {};
|
|
///
|
|
/// When B and C are declared, A is a primary base in each case, so although
|
|
/// vcall offsets are allocated in the A-in-B and A-in-C vtables, no this
|
|
/// adjustment is required and no thunk is generated. However, inside D
|
|
/// objects, A is no longer a primary base of C, so if we allowed calls to
|
|
/// C::f() to use the copy of A's vtable in the C subobject, we would need
|
|
/// to adjust this from C* to B::A*, which would require a third-party
|
|
/// thunk. Since we require that a call to C::f() first convert to A*,
|
|
/// C-in-D's copy of A's vtable is never referenced, so this is not
|
|
/// necessary.
|
|
bool IsOverriderUsed(const CXXMethodDecl *Overrider,
|
|
CharUnits BaseOffsetInLayoutClass,
|
|
const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
|
|
CharUnits FirstBaseOffsetInLayoutClass) const;
|
|
|
|
|
|
/// AddMethods - Add the methods of this base subobject and all its
|
|
/// primary bases to the vtable components vector.
|
|
void AddMethods(BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
|
|
const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
|
|
CharUnits FirstBaseOffsetInLayoutClass,
|
|
PrimaryBasesSetVectorTy &PrimaryBases);
|
|
|
|
// LayoutVTable - Layout the vtable for the given base class, including its
|
|
// secondary vtables and any vtables for virtual bases.
|
|
void LayoutVTable();
|
|
|
|
/// LayoutPrimaryAndSecondaryVTables - Layout the primary vtable for the
|
|
/// given base subobject, as well as all its secondary vtables.
|
|
///
|
|
/// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
|
|
/// or a direct or indirect base of a virtual base.
|
|
///
|
|
/// \param BaseIsVirtualInLayoutClass - Whether the base subobject is virtual
|
|
/// in the layout class.
|
|
void LayoutPrimaryAndSecondaryVTables(BaseSubobject Base,
|
|
bool BaseIsMorallyVirtual,
|
|
bool BaseIsVirtualInLayoutClass,
|
|
CharUnits OffsetInLayoutClass);
|
|
|
|
/// LayoutSecondaryVTables - Layout the secondary vtables for the given base
|
|
/// subobject.
|
|
///
|
|
/// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
|
|
/// or a direct or indirect base of a virtual base.
|
|
void LayoutSecondaryVTables(BaseSubobject Base, bool BaseIsMorallyVirtual,
|
|
CharUnits OffsetInLayoutClass);
|
|
|
|
/// DeterminePrimaryVirtualBases - Determine the primary virtual bases in this
|
|
/// class hierarchy.
|
|
void DeterminePrimaryVirtualBases(const CXXRecordDecl *RD,
|
|
CharUnits OffsetInLayoutClass,
|
|
VisitedVirtualBasesSetTy &VBases);
|
|
|
|
/// LayoutVTablesForVirtualBases - Layout vtables for all virtual bases of the
|
|
/// given base (excluding any primary bases).
|
|
void LayoutVTablesForVirtualBases(const CXXRecordDecl *RD,
|
|
VisitedVirtualBasesSetTy &VBases);
|
|
|
|
/// isBuildingConstructionVTable - Return whether this vtable builder is
|
|
/// building a construction vtable.
|
|
bool isBuildingConstructorVTable() const {
|
|
return MostDerivedClass != LayoutClass;
|
|
}
|
|
|
|
public:
|
|
ItaniumVTableBuilder(ItaniumVTableContext &VTables,
|
|
const CXXRecordDecl *MostDerivedClass,
|
|
CharUnits MostDerivedClassOffset,
|
|
bool MostDerivedClassIsVirtual,
|
|
const CXXRecordDecl *LayoutClass)
|
|
: VTables(VTables), MostDerivedClass(MostDerivedClass),
|
|
MostDerivedClassOffset(MostDerivedClassOffset),
|
|
MostDerivedClassIsVirtual(MostDerivedClassIsVirtual),
|
|
LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()),
|
|
Overriders(MostDerivedClass, MostDerivedClassOffset, LayoutClass) {
|
|
assert(!Context.getTargetInfo().getCXXABI().isMicrosoft());
|
|
|
|
LayoutVTable();
|
|
|
|
if (Context.getLangOpts().DumpVTableLayouts)
|
|
dumpLayout(llvm::outs());
|
|
}
|
|
|
|
uint64_t getNumThunks() const {
|
|
return Thunks.size();
|
|
}
|
|
|
|
ThunksMapTy::const_iterator thunks_begin() const {
|
|
return Thunks.begin();
|
|
}
|
|
|
|
ThunksMapTy::const_iterator thunks_end() const {
|
|
return Thunks.end();
|
|
}
|
|
|
|
const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
|
|
return VBaseOffsetOffsets;
|
|
}
|
|
|
|
const AddressPointsMapTy &getAddressPoints() const {
|
|
return AddressPoints;
|
|
}
|
|
|
|
MethodVTableIndicesTy::const_iterator vtable_indices_begin() const {
|
|
return MethodVTableIndices.begin();
|
|
}
|
|
|
|
MethodVTableIndicesTy::const_iterator vtable_indices_end() const {
|
|
return MethodVTableIndices.end();
|
|
}
|
|
|
|
/// getNumVTableComponents - Return the number of components in the vtable
|
|
/// currently built.
|
|
uint64_t getNumVTableComponents() const {
|
|
return Components.size();
|
|
}
|
|
|
|
const VTableComponent *vtable_component_begin() const {
|
|
return Components.begin();
|
|
}
|
|
|
|
const VTableComponent *vtable_component_end() const {
|
|
return Components.end();
|
|
}
|
|
|
|
AddressPointsMapTy::const_iterator address_points_begin() const {
|
|
return AddressPoints.begin();
|
|
}
|
|
|
|
AddressPointsMapTy::const_iterator address_points_end() const {
|
|
return AddressPoints.end();
|
|
}
|
|
|
|
VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
|
|
return VTableThunks.begin();
|
|
}
|
|
|
|
VTableThunksMapTy::const_iterator vtable_thunks_end() const {
|
|
return VTableThunks.end();
|
|
}
|
|
|
|
/// dumpLayout - Dump the vtable layout.
|
|
void dumpLayout(raw_ostream&);
|
|
};
|
|
|
|
void ItaniumVTableBuilder::AddThunk(const CXXMethodDecl *MD,
|
|
const ThunkInfo &Thunk) {
|
|
assert(!isBuildingConstructorVTable() &&
|
|
"Can't add thunks for construction vtable");
|
|
|
|
SmallVectorImpl<ThunkInfo> &ThunksVector = Thunks[MD];
|
|
|
|
// Check if we have this thunk already.
|
|
if (std::find(ThunksVector.begin(), ThunksVector.end(), Thunk) !=
|
|
ThunksVector.end())
|
|
return;
|
|
|
|
ThunksVector.push_back(Thunk);
|
|
}
|
|
|
|
typedef llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverriddenMethodsSetTy;
|
|
|
|
/// Visit all the methods overridden by the given method recursively,
|
|
/// in a depth-first pre-order. The Visitor's visitor method returns a bool
|
|
/// indicating whether to continue the recursion for the given overridden
|
|
/// method (i.e. returning false stops the iteration).
|
|
template <class VisitorTy>
|
|
static void
|
|
visitAllOverriddenMethods(const CXXMethodDecl *MD, VisitorTy &Visitor) {
|
|
assert(MD->isVirtual() && "Method is not virtual!");
|
|
|
|
for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
|
|
E = MD->end_overridden_methods(); I != E; ++I) {
|
|
const CXXMethodDecl *OverriddenMD = *I;
|
|
if (!Visitor.visit(OverriddenMD))
|
|
continue;
|
|
visitAllOverriddenMethods(OverriddenMD, Visitor);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
struct OverriddenMethodsCollector {
|
|
OverriddenMethodsSetTy *Methods;
|
|
|
|
bool visit(const CXXMethodDecl *MD) {
|
|
// Don't recurse on this method if we've already collected it.
|
|
return Methods->insert(MD);
|
|
}
|
|
};
|
|
}
|
|
|
|
/// ComputeAllOverriddenMethods - Given a method decl, will return a set of all
|
|
/// the overridden methods that the function decl overrides.
|
|
static void
|
|
ComputeAllOverriddenMethods(const CXXMethodDecl *MD,
|
|
OverriddenMethodsSetTy& OverriddenMethods) {
|
|
OverriddenMethodsCollector Collector = { &OverriddenMethods };
|
|
visitAllOverriddenMethods(MD, Collector);
|
|
}
|
|
|
|
void ItaniumVTableBuilder::ComputeThisAdjustments() {
|
|
// Now go through the method info map and see if any of the methods need
|
|
// 'this' pointer adjustments.
|
|
for (MethodInfoMapTy::const_iterator I = MethodInfoMap.begin(),
|
|
E = MethodInfoMap.end(); I != E; ++I) {
|
|
const CXXMethodDecl *MD = I->first;
|
|
const MethodInfo &MethodInfo = I->second;
|
|
|
|
// Ignore adjustments for unused function pointers.
|
|
uint64_t VTableIndex = MethodInfo.VTableIndex;
|
|
if (Components[VTableIndex].getKind() ==
|
|
VTableComponent::CK_UnusedFunctionPointer)
|
|
continue;
|
|
|
|
// Get the final overrider for this method.
|
|
FinalOverriders::OverriderInfo Overrider =
|
|
Overriders.getOverrider(MD, MethodInfo.BaseOffset);
|
|
|
|
// Check if we need an adjustment at all.
|
|
if (MethodInfo.BaseOffsetInLayoutClass == Overrider.Offset) {
|
|
// When a return thunk is needed by a derived class that overrides a
|
|
// virtual base, gcc uses a virtual 'this' adjustment as well.
|
|
// While the thunk itself might be needed by vtables in subclasses or
|
|
// in construction vtables, there doesn't seem to be a reason for using
|
|
// the thunk in this vtable. Still, we do so to match gcc.
|
|
if (VTableThunks.lookup(VTableIndex).Return.isEmpty())
|
|
continue;
|
|
}
|
|
|
|
ThisAdjustment ThisAdjustment =
|
|
ComputeThisAdjustment(MD, MethodInfo.BaseOffsetInLayoutClass, Overrider);
|
|
|
|
if (ThisAdjustment.isEmpty())
|
|
continue;
|
|
|
|
// Add it.
|
|
VTableThunks[VTableIndex].This = ThisAdjustment;
|
|
|
|
if (isa<CXXDestructorDecl>(MD)) {
|
|
// Add an adjustment for the deleting destructor as well.
|
|
VTableThunks[VTableIndex + 1].This = ThisAdjustment;
|
|
}
|
|
}
|
|
|
|
/// Clear the method info map.
|
|
MethodInfoMap.clear();
|
|
|
|
if (isBuildingConstructorVTable()) {
|
|
// We don't need to store thunk information for construction vtables.
|
|
return;
|
|
}
|
|
|
|
for (VTableThunksMapTy::const_iterator I = VTableThunks.begin(),
|
|
E = VTableThunks.end(); I != E; ++I) {
|
|
const VTableComponent &Component = Components[I->first];
|
|
const ThunkInfo &Thunk = I->second;
|
|
const CXXMethodDecl *MD;
|
|
|
|
switch (Component.getKind()) {
|
|
default:
|
|
llvm_unreachable("Unexpected vtable component kind!");
|
|
case VTableComponent::CK_FunctionPointer:
|
|
MD = Component.getFunctionDecl();
|
|
break;
|
|
case VTableComponent::CK_CompleteDtorPointer:
|
|
MD = Component.getDestructorDecl();
|
|
break;
|
|
case VTableComponent::CK_DeletingDtorPointer:
|
|
// We've already added the thunk when we saw the complete dtor pointer.
|
|
continue;
|
|
}
|
|
|
|
if (MD->getParent() == MostDerivedClass)
|
|
AddThunk(MD, Thunk);
|
|
}
|
|
}
|
|
|
|
ReturnAdjustment
|
|
ItaniumVTableBuilder::ComputeReturnAdjustment(BaseOffset Offset) {
|
|
ReturnAdjustment Adjustment;
|
|
|
|
if (!Offset.isEmpty()) {
|
|
if (Offset.VirtualBase) {
|
|
// Get the virtual base offset offset.
|
|
if (Offset.DerivedClass == MostDerivedClass) {
|
|
// We can get the offset offset directly from our map.
|
|
Adjustment.Virtual.Itanium.VBaseOffsetOffset =
|
|
VBaseOffsetOffsets.lookup(Offset.VirtualBase).getQuantity();
|
|
} else {
|
|
Adjustment.Virtual.Itanium.VBaseOffsetOffset =
|
|
VTables.getVirtualBaseOffsetOffset(Offset.DerivedClass,
|
|
Offset.VirtualBase).getQuantity();
|
|
}
|
|
}
|
|
|
|
Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
|
|
}
|
|
|
|
return Adjustment;
|
|
}
|
|
|
|
BaseOffset ItaniumVTableBuilder::ComputeThisAdjustmentBaseOffset(
|
|
BaseSubobject Base, BaseSubobject Derived) const {
|
|
const CXXRecordDecl *BaseRD = Base.getBase();
|
|
const CXXRecordDecl *DerivedRD = Derived.getBase();
|
|
|
|
CXXBasePaths Paths(/*FindAmbiguities=*/true,
|
|
/*RecordPaths=*/true, /*DetectVirtual=*/true);
|
|
|
|
if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
|
|
llvm_unreachable("Class must be derived from the passed in base class!");
|
|
|
|
// We have to go through all the paths, and see which one leads us to the
|
|
// right base subobject.
|
|
for (CXXBasePaths::const_paths_iterator I = Paths.begin(), E = Paths.end();
|
|
I != E; ++I) {
|
|
BaseOffset Offset = ComputeBaseOffset(Context, DerivedRD, *I);
|
|
|
|
CharUnits OffsetToBaseSubobject = Offset.NonVirtualOffset;
|
|
|
|
if (Offset.VirtualBase) {
|
|
// If we have a virtual base class, the non-virtual offset is relative
|
|
// to the virtual base class offset.
|
|
const ASTRecordLayout &LayoutClassLayout =
|
|
Context.getASTRecordLayout(LayoutClass);
|
|
|
|
/// Get the virtual base offset, relative to the most derived class
|
|
/// layout.
|
|
OffsetToBaseSubobject +=
|
|
LayoutClassLayout.getVBaseClassOffset(Offset.VirtualBase);
|
|
} else {
|
|
// Otherwise, the non-virtual offset is relative to the derived class
|
|
// offset.
|
|
OffsetToBaseSubobject += Derived.getBaseOffset();
|
|
}
|
|
|
|
// Check if this path gives us the right base subobject.
|
|
if (OffsetToBaseSubobject == Base.getBaseOffset()) {
|
|
// Since we're going from the base class _to_ the derived class, we'll
|
|
// invert the non-virtual offset here.
|
|
Offset.NonVirtualOffset = -Offset.NonVirtualOffset;
|
|
return Offset;
|
|
}
|
|
}
|
|
|
|
return BaseOffset();
|
|
}
|
|
|
|
ThisAdjustment ItaniumVTableBuilder::ComputeThisAdjustment(
|
|
const CXXMethodDecl *MD, CharUnits BaseOffsetInLayoutClass,
|
|
FinalOverriders::OverriderInfo Overrider) {
|
|
// Ignore adjustments for pure virtual member functions.
|
|
if (Overrider.Method->isPure())
|
|
return ThisAdjustment();
|
|
|
|
BaseSubobject OverriddenBaseSubobject(MD->getParent(),
|
|
BaseOffsetInLayoutClass);
|
|
|
|
BaseSubobject OverriderBaseSubobject(Overrider.Method->getParent(),
|
|
Overrider.Offset);
|
|
|
|
// Compute the adjustment offset.
|
|
BaseOffset Offset = ComputeThisAdjustmentBaseOffset(OverriddenBaseSubobject,
|
|
OverriderBaseSubobject);
|
|
if (Offset.isEmpty())
|
|
return ThisAdjustment();
|
|
|
|
ThisAdjustment Adjustment;
|
|
|
|
if (Offset.VirtualBase) {
|
|
// Get the vcall offset map for this virtual base.
|
|
VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Offset.VirtualBase];
|
|
|
|
if (VCallOffsets.empty()) {
|
|
// We don't have vcall offsets for this virtual base, go ahead and
|
|
// build them.
|
|
VCallAndVBaseOffsetBuilder Builder(MostDerivedClass, MostDerivedClass,
|
|
/*FinalOverriders=*/0,
|
|
BaseSubobject(Offset.VirtualBase,
|
|
CharUnits::Zero()),
|
|
/*BaseIsVirtual=*/true,
|
|
/*OffsetInLayoutClass=*/
|
|
CharUnits::Zero());
|
|
|
|
VCallOffsets = Builder.getVCallOffsets();
|
|
}
|
|
|
|
Adjustment.Virtual.Itanium.VCallOffsetOffset =
|
|
VCallOffsets.getVCallOffsetOffset(MD).getQuantity();
|
|
}
|
|
|
|
// Set the non-virtual part of the adjustment.
|
|
Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
|
|
|
|
return Adjustment;
|
|
}
|
|
|
|
void ItaniumVTableBuilder::AddMethod(const CXXMethodDecl *MD,
|
|
ReturnAdjustment ReturnAdjustment) {
|
|
if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
|
|
assert(ReturnAdjustment.isEmpty() &&
|
|
"Destructor can't have return adjustment!");
|
|
|
|
// Add both the complete destructor and the deleting destructor.
|
|
Components.push_back(VTableComponent::MakeCompleteDtor(DD));
|
|
Components.push_back(VTableComponent::MakeDeletingDtor(DD));
|
|
} else {
|
|
// Add the return adjustment if necessary.
|
|
if (!ReturnAdjustment.isEmpty())
|
|
VTableThunks[Components.size()].Return = ReturnAdjustment;
|
|
|
|
// Add the function.
|
|
Components.push_back(VTableComponent::MakeFunction(MD));
|
|
}
|
|
}
|
|
|
|
/// OverridesIndirectMethodInBase - Return whether the given member function
|
|
/// overrides any methods in the set of given bases.
|
|
/// Unlike OverridesMethodInBase, this checks "overriders of overriders".
|
|
/// For example, if we have:
|
|
///
|
|
/// struct A { virtual void f(); }
|
|
/// struct B : A { virtual void f(); }
|
|
/// struct C : B { virtual void f(); }
|
|
///
|
|
/// OverridesIndirectMethodInBase will return true if given C::f as the method
|
|
/// and { A } as the set of bases.
|
|
static bool OverridesIndirectMethodInBases(
|
|
const CXXMethodDecl *MD,
|
|
ItaniumVTableBuilder::PrimaryBasesSetVectorTy &Bases) {
|
|
if (Bases.count(MD->getParent()))
|
|
return true;
|
|
|
|
for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
|
|
E = MD->end_overridden_methods(); I != E; ++I) {
|
|
const CXXMethodDecl *OverriddenMD = *I;
|
|
|
|
// Check "indirect overriders".
|
|
if (OverridesIndirectMethodInBases(OverriddenMD, Bases))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ItaniumVTableBuilder::IsOverriderUsed(
|
|
const CXXMethodDecl *Overrider, CharUnits BaseOffsetInLayoutClass,
|
|
const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
|
|
CharUnits FirstBaseOffsetInLayoutClass) const {
|
|
// If the base and the first base in the primary base chain have the same
|
|
// offsets, then this overrider will be used.
|
|
if (BaseOffsetInLayoutClass == FirstBaseOffsetInLayoutClass)
|
|
return true;
|
|
|
|
// We know now that Base (or a direct or indirect base of it) is a primary
|
|
// base in part of the class hierarchy, but not a primary base in the most
|
|
// derived class.
|
|
|
|
// If the overrider is the first base in the primary base chain, we know
|
|
// that the overrider will be used.
|
|
if (Overrider->getParent() == FirstBaseInPrimaryBaseChain)
|
|
return true;
|
|
|
|
ItaniumVTableBuilder::PrimaryBasesSetVectorTy PrimaryBases;
|
|
|
|
const CXXRecordDecl *RD = FirstBaseInPrimaryBaseChain;
|
|
PrimaryBases.insert(RD);
|
|
|
|
// Now traverse the base chain, starting with the first base, until we find
|
|
// the base that is no longer a primary base.
|
|
while (true) {
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
|
|
|
|
if (!PrimaryBase)
|
|
break;
|
|
|
|
if (Layout.isPrimaryBaseVirtual()) {
|
|
assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
|
|
"Primary base should always be at offset 0!");
|
|
|
|
const ASTRecordLayout &LayoutClassLayout =
|
|
Context.getASTRecordLayout(LayoutClass);
|
|
|
|
// Now check if this is the primary base that is not a primary base in the
|
|
// most derived class.
|
|
if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
|
|
FirstBaseOffsetInLayoutClass) {
|
|
// We found it, stop walking the chain.
|
|
break;
|
|
}
|
|
} else {
|
|
assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
|
|
"Primary base should always be at offset 0!");
|
|
}
|
|
|
|
if (!PrimaryBases.insert(PrimaryBase))
|
|
llvm_unreachable("Found a duplicate primary base!");
|
|
|
|
RD = PrimaryBase;
|
|
}
|
|
|
|
// If the final overrider is an override of one of the primary bases,
|
|
// then we know that it will be used.
|
|
return OverridesIndirectMethodInBases(Overrider, PrimaryBases);
|
|
}
|
|
|
|
typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> BasesSetVectorTy;
|
|
|
|
/// FindNearestOverriddenMethod - Given a method, returns the overridden method
|
|
/// from the nearest base. Returns null if no method was found.
|
|
/// The Bases are expected to be sorted in a base-to-derived order.
|
|
static const CXXMethodDecl *
|
|
FindNearestOverriddenMethod(const CXXMethodDecl *MD,
|
|
BasesSetVectorTy &Bases) {
|
|
OverriddenMethodsSetTy OverriddenMethods;
|
|
ComputeAllOverriddenMethods(MD, OverriddenMethods);
|
|
|
|
for (int I = Bases.size(), E = 0; I != E; --I) {
|
|
const CXXRecordDecl *PrimaryBase = Bases[I - 1];
|
|
|
|
// Now check the overridden methods.
|
|
for (OverriddenMethodsSetTy::const_iterator I = OverriddenMethods.begin(),
|
|
E = OverriddenMethods.end(); I != E; ++I) {
|
|
const CXXMethodDecl *OverriddenMD = *I;
|
|
|
|
// We found our overridden method.
|
|
if (OverriddenMD->getParent() == PrimaryBase)
|
|
return OverriddenMD;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void ItaniumVTableBuilder::AddMethods(
|
|
BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
|
|
const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
|
|
CharUnits FirstBaseOffsetInLayoutClass,
|
|
PrimaryBasesSetVectorTy &PrimaryBases) {
|
|
// Itanium C++ ABI 2.5.2:
|
|
// The order of the virtual function pointers in a virtual table is the
|
|
// order of declaration of the corresponding member functions in the class.
|
|
//
|
|
// There is an entry for any virtual function declared in a class,
|
|
// whether it is a new function or overrides a base class function,
|
|
// unless it overrides a function from the primary base, and conversion
|
|
// between their return types does not require an adjustment.
|
|
|
|
const CXXRecordDecl *RD = Base.getBase();
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
|
|
if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
|
|
CharUnits PrimaryBaseOffset;
|
|
CharUnits PrimaryBaseOffsetInLayoutClass;
|
|
if (Layout.isPrimaryBaseVirtual()) {
|
|
assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
|
|
"Primary vbase should have a zero offset!");
|
|
|
|
const ASTRecordLayout &MostDerivedClassLayout =
|
|
Context.getASTRecordLayout(MostDerivedClass);
|
|
|
|
PrimaryBaseOffset =
|
|
MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
|
|
|
|
const ASTRecordLayout &LayoutClassLayout =
|
|
Context.getASTRecordLayout(LayoutClass);
|
|
|
|
PrimaryBaseOffsetInLayoutClass =
|
|
LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
|
|
} else {
|
|
assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
|
|
"Primary base should have a zero offset!");
|
|
|
|
PrimaryBaseOffset = Base.getBaseOffset();
|
|
PrimaryBaseOffsetInLayoutClass = BaseOffsetInLayoutClass;
|
|
}
|
|
|
|
AddMethods(BaseSubobject(PrimaryBase, PrimaryBaseOffset),
|
|
PrimaryBaseOffsetInLayoutClass, FirstBaseInPrimaryBaseChain,
|
|
FirstBaseOffsetInLayoutClass, PrimaryBases);
|
|
|
|
if (!PrimaryBases.insert(PrimaryBase))
|
|
llvm_unreachable("Found a duplicate primary base!");
|
|
}
|
|
|
|
const CXXDestructorDecl *ImplicitVirtualDtor = 0;
|
|
|
|
typedef llvm::SmallVector<const CXXMethodDecl *, 8> NewVirtualFunctionsTy;
|
|
NewVirtualFunctionsTy NewVirtualFunctions;
|
|
|
|
// Now go through all virtual member functions and add them.
|
|
for (CXXRecordDecl::method_iterator I = RD->method_begin(),
|
|
E = RD->method_end(); I != E; ++I) {
|
|
const CXXMethodDecl *MD = *I;
|
|
|
|
if (!MD->isVirtual())
|
|
continue;
|
|
|
|
// Get the final overrider.
|
|
FinalOverriders::OverriderInfo Overrider =
|
|
Overriders.getOverrider(MD, Base.getBaseOffset());
|
|
|
|
// Check if this virtual member function overrides a method in a primary
|
|
// base. If this is the case, and the return type doesn't require adjustment
|
|
// then we can just use the member function from the primary base.
|
|
if (const CXXMethodDecl *OverriddenMD =
|
|
FindNearestOverriddenMethod(MD, PrimaryBases)) {
|
|
if (ComputeReturnAdjustmentBaseOffset(Context, MD,
|
|
OverriddenMD).isEmpty()) {
|
|
// Replace the method info of the overridden method with our own
|
|
// method.
|
|
assert(MethodInfoMap.count(OverriddenMD) &&
|
|
"Did not find the overridden method!");
|
|
MethodInfo &OverriddenMethodInfo = MethodInfoMap[OverriddenMD];
|
|
|
|
MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
|
|
OverriddenMethodInfo.VTableIndex);
|
|
|
|
assert(!MethodInfoMap.count(MD) &&
|
|
"Should not have method info for this method yet!");
|
|
|
|
MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
|
|
MethodInfoMap.erase(OverriddenMD);
|
|
|
|
// If the overridden method exists in a virtual base class or a direct
|
|
// or indirect base class of a virtual base class, we need to emit a
|
|
// thunk if we ever have a class hierarchy where the base class is not
|
|
// a primary base in the complete object.
|
|
if (!isBuildingConstructorVTable() && OverriddenMD != MD) {
|
|
// Compute the this adjustment.
|
|
ThisAdjustment ThisAdjustment =
|
|
ComputeThisAdjustment(OverriddenMD, BaseOffsetInLayoutClass,
|
|
Overrider);
|
|
|
|
if (ThisAdjustment.Virtual.Itanium.VCallOffsetOffset &&
|
|
Overrider.Method->getParent() == MostDerivedClass) {
|
|
|
|
// There's no return adjustment from OverriddenMD and MD,
|
|
// but that doesn't mean there isn't one between MD and
|
|
// the final overrider.
|
|
BaseOffset ReturnAdjustmentOffset =
|
|
ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
|
|
ReturnAdjustment ReturnAdjustment =
|
|
ComputeReturnAdjustment(ReturnAdjustmentOffset);
|
|
|
|
// This is a virtual thunk for the most derived class, add it.
|
|
AddThunk(Overrider.Method,
|
|
ThunkInfo(ThisAdjustment, ReturnAdjustment));
|
|
}
|
|
}
|
|
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
|
|
if (MD->isImplicit()) {
|
|
// Itanium C++ ABI 2.5.2:
|
|
// If a class has an implicitly-defined virtual destructor,
|
|
// its entries come after the declared virtual function pointers.
|
|
|
|
assert(!ImplicitVirtualDtor &&
|
|
"Did already see an implicit virtual dtor!");
|
|
ImplicitVirtualDtor = DD;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
NewVirtualFunctions.push_back(MD);
|
|
}
|
|
|
|
if (ImplicitVirtualDtor)
|
|
NewVirtualFunctions.push_back(ImplicitVirtualDtor);
|
|
|
|
for (NewVirtualFunctionsTy::const_iterator I = NewVirtualFunctions.begin(),
|
|
E = NewVirtualFunctions.end(); I != E; ++I) {
|
|
const CXXMethodDecl *MD = *I;
|
|
|
|
// Get the final overrider.
|
|
FinalOverriders::OverriderInfo Overrider =
|
|
Overriders.getOverrider(MD, Base.getBaseOffset());
|
|
|
|
// Insert the method info for this method.
|
|
MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
|
|
Components.size());
|
|
|
|
assert(!MethodInfoMap.count(MD) &&
|
|
"Should not have method info for this method yet!");
|
|
MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
|
|
|
|
// Check if this overrider is going to be used.
|
|
const CXXMethodDecl *OverriderMD = Overrider.Method;
|
|
if (!IsOverriderUsed(OverriderMD, BaseOffsetInLayoutClass,
|
|
FirstBaseInPrimaryBaseChain,
|
|
FirstBaseOffsetInLayoutClass)) {
|
|
Components.push_back(VTableComponent::MakeUnusedFunction(OverriderMD));
|
|
continue;
|
|
}
|
|
|
|
// Check if this overrider needs a return adjustment.
|
|
// We don't want to do this for pure virtual member functions.
|
|
BaseOffset ReturnAdjustmentOffset;
|
|
if (!OverriderMD->isPure()) {
|
|
ReturnAdjustmentOffset =
|
|
ComputeReturnAdjustmentBaseOffset(Context, OverriderMD, MD);
|
|
}
|
|
|
|
ReturnAdjustment ReturnAdjustment =
|
|
ComputeReturnAdjustment(ReturnAdjustmentOffset);
|
|
|
|
AddMethod(Overrider.Method, ReturnAdjustment);
|
|
}
|
|
}
|
|
|
|
void ItaniumVTableBuilder::LayoutVTable() {
|
|
LayoutPrimaryAndSecondaryVTables(BaseSubobject(MostDerivedClass,
|
|
CharUnits::Zero()),
|
|
/*BaseIsMorallyVirtual=*/false,
|
|
MostDerivedClassIsVirtual,
|
|
MostDerivedClassOffset);
|
|
|
|
VisitedVirtualBasesSetTy VBases;
|
|
|
|
// Determine the primary virtual bases.
|
|
DeterminePrimaryVirtualBases(MostDerivedClass, MostDerivedClassOffset,
|
|
VBases);
|
|
VBases.clear();
|
|
|
|
LayoutVTablesForVirtualBases(MostDerivedClass, VBases);
|
|
|
|
// -fapple-kext adds an extra entry at end of vtbl.
|
|
bool IsAppleKext = Context.getLangOpts().AppleKext;
|
|
if (IsAppleKext)
|
|
Components.push_back(VTableComponent::MakeVCallOffset(CharUnits::Zero()));
|
|
}
|
|
|
|
void ItaniumVTableBuilder::LayoutPrimaryAndSecondaryVTables(
|
|
BaseSubobject Base, bool BaseIsMorallyVirtual,
|
|
bool BaseIsVirtualInLayoutClass, CharUnits OffsetInLayoutClass) {
|
|
assert(Base.getBase()->isDynamicClass() && "class does not have a vtable!");
|
|
|
|
// Add vcall and vbase offsets for this vtable.
|
|
VCallAndVBaseOffsetBuilder Builder(MostDerivedClass, LayoutClass, &Overriders,
|
|
Base, BaseIsVirtualInLayoutClass,
|
|
OffsetInLayoutClass);
|
|
Components.append(Builder.components_begin(), Builder.components_end());
|
|
|
|
// Check if we need to add these vcall offsets.
|
|
if (BaseIsVirtualInLayoutClass && !Builder.getVCallOffsets().empty()) {
|
|
VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Base.getBase()];
|
|
|
|
if (VCallOffsets.empty())
|
|
VCallOffsets = Builder.getVCallOffsets();
|
|
}
|
|
|
|
// If we're laying out the most derived class we want to keep track of the
|
|
// virtual base class offset offsets.
|
|
if (Base.getBase() == MostDerivedClass)
|
|
VBaseOffsetOffsets = Builder.getVBaseOffsetOffsets();
|
|
|
|
// Add the offset to top.
|
|
CharUnits OffsetToTop = MostDerivedClassOffset - OffsetInLayoutClass;
|
|
Components.push_back(VTableComponent::MakeOffsetToTop(OffsetToTop));
|
|
|
|
// Next, add the RTTI.
|
|
Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));
|
|
|
|
uint64_t AddressPoint = Components.size();
|
|
|
|
// Now go through all virtual member functions and add them.
|
|
PrimaryBasesSetVectorTy PrimaryBases;
|
|
AddMethods(Base, OffsetInLayoutClass,
|
|
Base.getBase(), OffsetInLayoutClass,
|
|
PrimaryBases);
|
|
|
|
const CXXRecordDecl *RD = Base.getBase();
|
|
if (RD == MostDerivedClass) {
|
|
assert(MethodVTableIndices.empty());
|
|
for (MethodInfoMapTy::const_iterator I = MethodInfoMap.begin(),
|
|
E = MethodInfoMap.end(); I != E; ++I) {
|
|
const CXXMethodDecl *MD = I->first;
|
|
const MethodInfo &MI = I->second;
|
|
if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
|
|
MethodVTableIndices[GlobalDecl(DD, Dtor_Complete)]
|
|
= MI.VTableIndex - AddressPoint;
|
|
MethodVTableIndices[GlobalDecl(DD, Dtor_Deleting)]
|
|
= MI.VTableIndex + 1 - AddressPoint;
|
|
} else {
|
|
MethodVTableIndices[MD] = MI.VTableIndex - AddressPoint;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compute 'this' pointer adjustments.
|
|
ComputeThisAdjustments();
|
|
|
|
// Add all address points.
|
|
while (true) {
|
|
AddressPoints.insert(std::make_pair(
|
|
BaseSubobject(RD, OffsetInLayoutClass),
|
|
AddressPoint));
|
|
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
|
|
|
|
if (!PrimaryBase)
|
|
break;
|
|
|
|
if (Layout.isPrimaryBaseVirtual()) {
|
|
// Check if this virtual primary base is a primary base in the layout
|
|
// class. If it's not, we don't want to add it.
|
|
const ASTRecordLayout &LayoutClassLayout =
|
|
Context.getASTRecordLayout(LayoutClass);
|
|
|
|
if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
|
|
OffsetInLayoutClass) {
|
|
// We don't want to add this class (or any of its primary bases).
|
|
break;
|
|
}
|
|
}
|
|
|
|
RD = PrimaryBase;
|
|
}
|
|
|
|
// Layout secondary vtables.
|
|
LayoutSecondaryVTables(Base, BaseIsMorallyVirtual, OffsetInLayoutClass);
|
|
}
|
|
|
|
void
|
|
ItaniumVTableBuilder::LayoutSecondaryVTables(BaseSubobject Base,
|
|
bool BaseIsMorallyVirtual,
|
|
CharUnits OffsetInLayoutClass) {
|
|
// Itanium C++ ABI 2.5.2:
|
|
// Following the primary virtual table of a derived class are secondary
|
|
// virtual tables for each of its proper base classes, except any primary
|
|
// base(s) with which it shares its primary virtual table.
|
|
|
|
const CXXRecordDecl *RD = Base.getBase();
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
|
|
|
|
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
|
|
E = RD->bases_end(); I != E; ++I) {
|
|
// Ignore virtual bases, we'll emit them later.
|
|
if (I->isVirtual())
|
|
continue;
|
|
|
|
const CXXRecordDecl *BaseDecl = I->getType()->getAsCXXRecordDecl();
|
|
|
|
// Ignore bases that don't have a vtable.
|
|
if (!BaseDecl->isDynamicClass())
|
|
continue;
|
|
|
|
if (isBuildingConstructorVTable()) {
|
|
// Itanium C++ ABI 2.6.4:
|
|
// Some of the base class subobjects may not need construction virtual
|
|
// tables, which will therefore not be present in the construction
|
|
// virtual table group, even though the subobject virtual tables are
|
|
// present in the main virtual table group for the complete object.
|
|
if (!BaseIsMorallyVirtual && !BaseDecl->getNumVBases())
|
|
continue;
|
|
}
|
|
|
|
// Get the base offset of this base.
|
|
CharUnits RelativeBaseOffset = Layout.getBaseClassOffset(BaseDecl);
|
|
CharUnits BaseOffset = Base.getBaseOffset() + RelativeBaseOffset;
|
|
|
|
CharUnits BaseOffsetInLayoutClass =
|
|
OffsetInLayoutClass + RelativeBaseOffset;
|
|
|
|
// Don't emit a secondary vtable for a primary base. We might however want
|
|
// to emit secondary vtables for other bases of this base.
|
|
if (BaseDecl == PrimaryBase) {
|
|
LayoutSecondaryVTables(BaseSubobject(BaseDecl, BaseOffset),
|
|
BaseIsMorallyVirtual, BaseOffsetInLayoutClass);
|
|
continue;
|
|
}
|
|
|
|
// Layout the primary vtable (and any secondary vtables) for this base.
|
|
LayoutPrimaryAndSecondaryVTables(
|
|
BaseSubobject(BaseDecl, BaseOffset),
|
|
BaseIsMorallyVirtual,
|
|
/*BaseIsVirtualInLayoutClass=*/false,
|
|
BaseOffsetInLayoutClass);
|
|
}
|
|
}
|
|
|
|
void ItaniumVTableBuilder::DeterminePrimaryVirtualBases(
|
|
const CXXRecordDecl *RD, CharUnits OffsetInLayoutClass,
|
|
VisitedVirtualBasesSetTy &VBases) {
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
|
|
// Check if this base has a primary base.
|
|
if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
|
|
|
|
// Check if it's virtual.
|
|
if (Layout.isPrimaryBaseVirtual()) {
|
|
bool IsPrimaryVirtualBase = true;
|
|
|
|
if (isBuildingConstructorVTable()) {
|
|
// Check if the base is actually a primary base in the class we use for
|
|
// layout.
|
|
const ASTRecordLayout &LayoutClassLayout =
|
|
Context.getASTRecordLayout(LayoutClass);
|
|
|
|
CharUnits PrimaryBaseOffsetInLayoutClass =
|
|
LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
|
|
|
|
// We know that the base is not a primary base in the layout class if
|
|
// the base offsets are different.
|
|
if (PrimaryBaseOffsetInLayoutClass != OffsetInLayoutClass)
|
|
IsPrimaryVirtualBase = false;
|
|
}
|
|
|
|
if (IsPrimaryVirtualBase)
|
|
PrimaryVirtualBases.insert(PrimaryBase);
|
|
}
|
|
}
|
|
|
|
// Traverse bases, looking for more primary virtual bases.
|
|
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
|
|
E = RD->bases_end(); I != E; ++I) {
|
|
const CXXRecordDecl *BaseDecl = I->getType()->getAsCXXRecordDecl();
|
|
|
|
CharUnits BaseOffsetInLayoutClass;
|
|
|
|
if (I->isVirtual()) {
|
|
if (!VBases.insert(BaseDecl))
|
|
continue;
|
|
|
|
const ASTRecordLayout &LayoutClassLayout =
|
|
Context.getASTRecordLayout(LayoutClass);
|
|
|
|
BaseOffsetInLayoutClass =
|
|
LayoutClassLayout.getVBaseClassOffset(BaseDecl);
|
|
} else {
|
|
BaseOffsetInLayoutClass =
|
|
OffsetInLayoutClass + Layout.getBaseClassOffset(BaseDecl);
|
|
}
|
|
|
|
DeterminePrimaryVirtualBases(BaseDecl, BaseOffsetInLayoutClass, VBases);
|
|
}
|
|
}
|
|
|
|
void ItaniumVTableBuilder::LayoutVTablesForVirtualBases(
|
|
const CXXRecordDecl *RD, VisitedVirtualBasesSetTy &VBases) {
|
|
// Itanium C++ ABI 2.5.2:
|
|
// Then come the virtual base virtual tables, also in inheritance graph
|
|
// order, and again excluding primary bases (which share virtual tables with
|
|
// the classes for which they are primary).
|
|
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
|
|
E = RD->bases_end(); I != E; ++I) {
|
|
const CXXRecordDecl *BaseDecl = I->getType()->getAsCXXRecordDecl();
|
|
|
|
// Check if this base needs a vtable. (If it's virtual, not a primary base
|
|
// of some other class, and we haven't visited it before).
|
|
if (I->isVirtual() && BaseDecl->isDynamicClass() &&
|
|
!PrimaryVirtualBases.count(BaseDecl) && VBases.insert(BaseDecl)) {
|
|
const ASTRecordLayout &MostDerivedClassLayout =
|
|
Context.getASTRecordLayout(MostDerivedClass);
|
|
CharUnits BaseOffset =
|
|
MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
|
|
|
|
const ASTRecordLayout &LayoutClassLayout =
|
|
Context.getASTRecordLayout(LayoutClass);
|
|
CharUnits BaseOffsetInLayoutClass =
|
|
LayoutClassLayout.getVBaseClassOffset(BaseDecl);
|
|
|
|
LayoutPrimaryAndSecondaryVTables(
|
|
BaseSubobject(BaseDecl, BaseOffset),
|
|
/*BaseIsMorallyVirtual=*/true,
|
|
/*BaseIsVirtualInLayoutClass=*/true,
|
|
BaseOffsetInLayoutClass);
|
|
}
|
|
|
|
// We only need to check the base for virtual base vtables if it actually
|
|
// has virtual bases.
|
|
if (BaseDecl->getNumVBases())
|
|
LayoutVTablesForVirtualBases(BaseDecl, VBases);
|
|
}
|
|
}
|
|
|
|
/// dumpLayout - Dump the vtable layout.
|
|
void ItaniumVTableBuilder::dumpLayout(raw_ostream &Out) {
|
|
// FIXME: write more tests that actually use the dumpLayout output to prevent
|
|
// ItaniumVTableBuilder regressions.
|
|
|
|
if (isBuildingConstructorVTable()) {
|
|
Out << "Construction vtable for ('";
|
|
MostDerivedClass->printQualifiedName(Out);
|
|
Out << "', ";
|
|
Out << MostDerivedClassOffset.getQuantity() << ") in '";
|
|
LayoutClass->printQualifiedName(Out);
|
|
} else {
|
|
Out << "Vtable for '";
|
|
MostDerivedClass->printQualifiedName(Out);
|
|
}
|
|
Out << "' (" << Components.size() << " entries).\n";
|
|
|
|
// Iterate through the address points and insert them into a new map where
|
|
// they are keyed by the index and not the base object.
|
|
// Since an address point can be shared by multiple subobjects, we use an
|
|
// STL multimap.
|
|
std::multimap<uint64_t, BaseSubobject> AddressPointsByIndex;
|
|
for (AddressPointsMapTy::const_iterator I = AddressPoints.begin(),
|
|
E = AddressPoints.end(); I != E; ++I) {
|
|
const BaseSubobject& Base = I->first;
|
|
uint64_t Index = I->second;
|
|
|
|
AddressPointsByIndex.insert(std::make_pair(Index, Base));
|
|
}
|
|
|
|
for (unsigned I = 0, E = Components.size(); I != E; ++I) {
|
|
uint64_t Index = I;
|
|
|
|
Out << llvm::format("%4d | ", I);
|
|
|
|
const VTableComponent &Component = Components[I];
|
|
|
|
// Dump the component.
|
|
switch (Component.getKind()) {
|
|
|
|
case VTableComponent::CK_VCallOffset:
|
|
Out << "vcall_offset ("
|
|
<< Component.getVCallOffset().getQuantity()
|
|
<< ")";
|
|
break;
|
|
|
|
case VTableComponent::CK_VBaseOffset:
|
|
Out << "vbase_offset ("
|
|
<< Component.getVBaseOffset().getQuantity()
|
|
<< ")";
|
|
break;
|
|
|
|
case VTableComponent::CK_OffsetToTop:
|
|
Out << "offset_to_top ("
|
|
<< Component.getOffsetToTop().getQuantity()
|
|
<< ")";
|
|
break;
|
|
|
|
case VTableComponent::CK_RTTI:
|
|
Component.getRTTIDecl()->printQualifiedName(Out);
|
|
Out << " RTTI";
|
|
break;
|
|
|
|
case VTableComponent::CK_FunctionPointer: {
|
|
const CXXMethodDecl *MD = Component.getFunctionDecl();
|
|
|
|
std::string Str =
|
|
PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
|
|
MD);
|
|
Out << Str;
|
|
if (MD->isPure())
|
|
Out << " [pure]";
|
|
|
|
if (MD->isDeleted())
|
|
Out << " [deleted]";
|
|
|
|
ThunkInfo Thunk = VTableThunks.lookup(I);
|
|
if (!Thunk.isEmpty()) {
|
|
// If this function pointer has a return adjustment, dump it.
|
|
if (!Thunk.Return.isEmpty()) {
|
|
Out << "\n [return adjustment: ";
|
|
Out << Thunk.Return.NonVirtual << " non-virtual";
|
|
|
|
if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
|
|
Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
|
|
Out << " vbase offset offset";
|
|
}
|
|
|
|
Out << ']';
|
|
}
|
|
|
|
// If this function pointer has a 'this' pointer adjustment, dump it.
|
|
if (!Thunk.This.isEmpty()) {
|
|
Out << "\n [this adjustment: ";
|
|
Out << Thunk.This.NonVirtual << " non-virtual";
|
|
|
|
if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
|
|
Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
|
|
Out << " vcall offset offset";
|
|
}
|
|
|
|
Out << ']';
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case VTableComponent::CK_CompleteDtorPointer:
|
|
case VTableComponent::CK_DeletingDtorPointer: {
|
|
bool IsComplete =
|
|
Component.getKind() == VTableComponent::CK_CompleteDtorPointer;
|
|
|
|
const CXXDestructorDecl *DD = Component.getDestructorDecl();
|
|
|
|
DD->printQualifiedName(Out);
|
|
if (IsComplete)
|
|
Out << "() [complete]";
|
|
else
|
|
Out << "() [deleting]";
|
|
|
|
if (DD->isPure())
|
|
Out << " [pure]";
|
|
|
|
ThunkInfo Thunk = VTableThunks.lookup(I);
|
|
if (!Thunk.isEmpty()) {
|
|
// If this destructor has a 'this' pointer adjustment, dump it.
|
|
if (!Thunk.This.isEmpty()) {
|
|
Out << "\n [this adjustment: ";
|
|
Out << Thunk.This.NonVirtual << " non-virtual";
|
|
|
|
if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
|
|
Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
|
|
Out << " vcall offset offset";
|
|
}
|
|
|
|
Out << ']';
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case VTableComponent::CK_UnusedFunctionPointer: {
|
|
const CXXMethodDecl *MD = Component.getUnusedFunctionDecl();
|
|
|
|
std::string Str =
|
|
PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
|
|
MD);
|
|
Out << "[unused] " << Str;
|
|
if (MD->isPure())
|
|
Out << " [pure]";
|
|
}
|
|
|
|
}
|
|
|
|
Out << '\n';
|
|
|
|
// Dump the next address point.
|
|
uint64_t NextIndex = Index + 1;
|
|
if (AddressPointsByIndex.count(NextIndex)) {
|
|
if (AddressPointsByIndex.count(NextIndex) == 1) {
|
|
const BaseSubobject &Base =
|
|
AddressPointsByIndex.find(NextIndex)->second;
|
|
|
|
Out << " -- (";
|
|
Base.getBase()->printQualifiedName(Out);
|
|
Out << ", " << Base.getBaseOffset().getQuantity();
|
|
Out << ") vtable address --\n";
|
|
} else {
|
|
CharUnits BaseOffset =
|
|
AddressPointsByIndex.lower_bound(NextIndex)->second.getBaseOffset();
|
|
|
|
// We store the class names in a set to get a stable order.
|
|
std::set<std::string> ClassNames;
|
|
for (std::multimap<uint64_t, BaseSubobject>::const_iterator I =
|
|
AddressPointsByIndex.lower_bound(NextIndex), E =
|
|
AddressPointsByIndex.upper_bound(NextIndex); I != E; ++I) {
|
|
assert(I->second.getBaseOffset() == BaseOffset &&
|
|
"Invalid base offset!");
|
|
const CXXRecordDecl *RD = I->second.getBase();
|
|
ClassNames.insert(RD->getQualifiedNameAsString());
|
|
}
|
|
|
|
for (std::set<std::string>::const_iterator I = ClassNames.begin(),
|
|
E = ClassNames.end(); I != E; ++I) {
|
|
Out << " -- (" << *I;
|
|
Out << ", " << BaseOffset.getQuantity() << ") vtable address --\n";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Out << '\n';
|
|
|
|
if (isBuildingConstructorVTable())
|
|
return;
|
|
|
|
if (MostDerivedClass->getNumVBases()) {
|
|
// We store the virtual base class names and their offsets in a map to get
|
|
// a stable order.
|
|
|
|
std::map<std::string, CharUnits> ClassNamesAndOffsets;
|
|
for (VBaseOffsetOffsetsMapTy::const_iterator I = VBaseOffsetOffsets.begin(),
|
|
E = VBaseOffsetOffsets.end(); I != E; ++I) {
|
|
std::string ClassName = I->first->getQualifiedNameAsString();
|
|
CharUnits OffsetOffset = I->second;
|
|
ClassNamesAndOffsets.insert(
|
|
std::make_pair(ClassName, OffsetOffset));
|
|
}
|
|
|
|
Out << "Virtual base offset offsets for '";
|
|
MostDerivedClass->printQualifiedName(Out);
|
|
Out << "' (";
|
|
Out << ClassNamesAndOffsets.size();
|
|
Out << (ClassNamesAndOffsets.size() == 1 ? " entry" : " entries") << ").\n";
|
|
|
|
for (std::map<std::string, CharUnits>::const_iterator I =
|
|
ClassNamesAndOffsets.begin(), E = ClassNamesAndOffsets.end();
|
|
I != E; ++I)
|
|
Out << " " << I->first << " | " << I->second.getQuantity() << '\n';
|
|
|
|
Out << "\n";
|
|
}
|
|
|
|
if (!Thunks.empty()) {
|
|
// We store the method names in a map to get a stable order.
|
|
std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
|
|
|
|
for (ThunksMapTy::const_iterator I = Thunks.begin(), E = Thunks.end();
|
|
I != E; ++I) {
|
|
const CXXMethodDecl *MD = I->first;
|
|
std::string MethodName =
|
|
PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
|
|
MD);
|
|
|
|
MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
|
|
}
|
|
|
|
for (std::map<std::string, const CXXMethodDecl *>::const_iterator I =
|
|
MethodNamesAndDecls.begin(), E = MethodNamesAndDecls.end();
|
|
I != E; ++I) {
|
|
const std::string &MethodName = I->first;
|
|
const CXXMethodDecl *MD = I->second;
|
|
|
|
ThunkInfoVectorTy ThunksVector = Thunks[MD];
|
|
std::sort(ThunksVector.begin(), ThunksVector.end(),
|
|
[](const ThunkInfo &LHS, const ThunkInfo &RHS) {
|
|
assert(LHS.Method == 0 && RHS.Method == 0);
|
|
return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return);
|
|
});
|
|
|
|
Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
|
|
Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
|
|
|
|
for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
|
|
const ThunkInfo &Thunk = ThunksVector[I];
|
|
|
|
Out << llvm::format("%4d | ", I);
|
|
|
|
// If this function pointer has a return pointer adjustment, dump it.
|
|
if (!Thunk.Return.isEmpty()) {
|
|
Out << "return adjustment: " << Thunk.Return.NonVirtual;
|
|
Out << " non-virtual";
|
|
if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
|
|
Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
|
|
Out << " vbase offset offset";
|
|
}
|
|
|
|
if (!Thunk.This.isEmpty())
|
|
Out << "\n ";
|
|
}
|
|
|
|
// If this function pointer has a 'this' pointer adjustment, dump it.
|
|
if (!Thunk.This.isEmpty()) {
|
|
Out << "this adjustment: ";
|
|
Out << Thunk.This.NonVirtual << " non-virtual";
|
|
|
|
if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
|
|
Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
|
|
Out << " vcall offset offset";
|
|
}
|
|
}
|
|
|
|
Out << '\n';
|
|
}
|
|
|
|
Out << '\n';
|
|
}
|
|
}
|
|
|
|
// Compute the vtable indices for all the member functions.
|
|
// Store them in a map keyed by the index so we'll get a sorted table.
|
|
std::map<uint64_t, std::string> IndicesMap;
|
|
|
|
for (CXXRecordDecl::method_iterator i = MostDerivedClass->method_begin(),
|
|
e = MostDerivedClass->method_end(); i != e; ++i) {
|
|
const CXXMethodDecl *MD = *i;
|
|
|
|
// We only want virtual member functions.
|
|
if (!MD->isVirtual())
|
|
continue;
|
|
|
|
std::string MethodName =
|
|
PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
|
|
MD);
|
|
|
|
if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
|
|
GlobalDecl GD(DD, Dtor_Complete);
|
|
assert(MethodVTableIndices.count(GD));
|
|
uint64_t VTableIndex = MethodVTableIndices[GD];
|
|
IndicesMap[VTableIndex] = MethodName + " [complete]";
|
|
IndicesMap[VTableIndex + 1] = MethodName + " [deleting]";
|
|
} else {
|
|
assert(MethodVTableIndices.count(MD));
|
|
IndicesMap[MethodVTableIndices[MD]] = MethodName;
|
|
}
|
|
}
|
|
|
|
// Print the vtable indices for all the member functions.
|
|
if (!IndicesMap.empty()) {
|
|
Out << "VTable indices for '";
|
|
MostDerivedClass->printQualifiedName(Out);
|
|
Out << "' (" << IndicesMap.size() << " entries).\n";
|
|
|
|
for (std::map<uint64_t, std::string>::const_iterator I = IndicesMap.begin(),
|
|
E = IndicesMap.end(); I != E; ++I) {
|
|
uint64_t VTableIndex = I->first;
|
|
const std::string &MethodName = I->second;
|
|
|
|
Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName
|
|
<< '\n';
|
|
}
|
|
}
|
|
|
|
Out << '\n';
|
|
}
|
|
}
|
|
|
|
VTableLayout::VTableLayout(uint64_t NumVTableComponents,
|
|
const VTableComponent *VTableComponents,
|
|
uint64_t NumVTableThunks,
|
|
const VTableThunkTy *VTableThunks,
|
|
const AddressPointsMapTy &AddressPoints,
|
|
bool IsMicrosoftABI)
|
|
: NumVTableComponents(NumVTableComponents),
|
|
VTableComponents(new VTableComponent[NumVTableComponents]),
|
|
NumVTableThunks(NumVTableThunks),
|
|
VTableThunks(new VTableThunkTy[NumVTableThunks]),
|
|
AddressPoints(AddressPoints),
|
|
IsMicrosoftABI(IsMicrosoftABI) {
|
|
std::copy(VTableComponents, VTableComponents+NumVTableComponents,
|
|
this->VTableComponents.get());
|
|
std::copy(VTableThunks, VTableThunks+NumVTableThunks,
|
|
this->VTableThunks.get());
|
|
std::sort(this->VTableThunks.get(),
|
|
this->VTableThunks.get() + NumVTableThunks,
|
|
[](const VTableLayout::VTableThunkTy &LHS,
|
|
const VTableLayout::VTableThunkTy &RHS) {
|
|
assert((LHS.first != RHS.first || LHS.second == RHS.second) &&
|
|
"Different thunks should have unique indices!");
|
|
return LHS.first < RHS.first;
|
|
});
|
|
}
|
|
|
|
VTableLayout::~VTableLayout() { }
|
|
|
|
ItaniumVTableContext::ItaniumVTableContext(ASTContext &Context)
|
|
: VTableContextBase(/*MS=*/false) {}
|
|
|
|
ItaniumVTableContext::~ItaniumVTableContext() {
|
|
llvm::DeleteContainerSeconds(VTableLayouts);
|
|
}
|
|
|
|
uint64_t ItaniumVTableContext::getMethodVTableIndex(GlobalDecl GD) {
|
|
MethodVTableIndicesTy::iterator I = MethodVTableIndices.find(GD);
|
|
if (I != MethodVTableIndices.end())
|
|
return I->second;
|
|
|
|
const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
|
|
|
|
computeVTableRelatedInformation(RD);
|
|
|
|
I = MethodVTableIndices.find(GD);
|
|
assert(I != MethodVTableIndices.end() && "Did not find index!");
|
|
return I->second;
|
|
}
|
|
|
|
CharUnits
|
|
ItaniumVTableContext::getVirtualBaseOffsetOffset(const CXXRecordDecl *RD,
|
|
const CXXRecordDecl *VBase) {
|
|
ClassPairTy ClassPair(RD, VBase);
|
|
|
|
VirtualBaseClassOffsetOffsetsMapTy::iterator I =
|
|
VirtualBaseClassOffsetOffsets.find(ClassPair);
|
|
if (I != VirtualBaseClassOffsetOffsets.end())
|
|
return I->second;
|
|
|
|
VCallAndVBaseOffsetBuilder Builder(RD, RD, /*FinalOverriders=*/0,
|
|
BaseSubobject(RD, CharUnits::Zero()),
|
|
/*BaseIsVirtual=*/false,
|
|
/*OffsetInLayoutClass=*/CharUnits::Zero());
|
|
|
|
for (VCallAndVBaseOffsetBuilder::VBaseOffsetOffsetsMapTy::const_iterator I =
|
|
Builder.getVBaseOffsetOffsets().begin(),
|
|
E = Builder.getVBaseOffsetOffsets().end(); I != E; ++I) {
|
|
// Insert all types.
|
|
ClassPairTy ClassPair(RD, I->first);
|
|
|
|
VirtualBaseClassOffsetOffsets.insert(
|
|
std::make_pair(ClassPair, I->second));
|
|
}
|
|
|
|
I = VirtualBaseClassOffsetOffsets.find(ClassPair);
|
|
assert(I != VirtualBaseClassOffsetOffsets.end() && "Did not find index!");
|
|
|
|
return I->second;
|
|
}
|
|
|
|
static VTableLayout *CreateVTableLayout(const ItaniumVTableBuilder &Builder) {
|
|
SmallVector<VTableLayout::VTableThunkTy, 1>
|
|
VTableThunks(Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
|
|
|
|
return new VTableLayout(Builder.getNumVTableComponents(),
|
|
Builder.vtable_component_begin(),
|
|
VTableThunks.size(),
|
|
VTableThunks.data(),
|
|
Builder.getAddressPoints(),
|
|
/*IsMicrosoftABI=*/false);
|
|
}
|
|
|
|
void
|
|
ItaniumVTableContext::computeVTableRelatedInformation(const CXXRecordDecl *RD) {
|
|
const VTableLayout *&Entry = VTableLayouts[RD];
|
|
|
|
// Check if we've computed this information before.
|
|
if (Entry)
|
|
return;
|
|
|
|
ItaniumVTableBuilder Builder(*this, RD, CharUnits::Zero(),
|
|
/*MostDerivedClassIsVirtual=*/0, RD);
|
|
Entry = CreateVTableLayout(Builder);
|
|
|
|
MethodVTableIndices.insert(Builder.vtable_indices_begin(),
|
|
Builder.vtable_indices_end());
|
|
|
|
// Add the known thunks.
|
|
Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
|
|
|
|
// If we don't have the vbase information for this class, insert it.
|
|
// getVirtualBaseOffsetOffset will compute it separately without computing
|
|
// the rest of the vtable related information.
|
|
if (!RD->getNumVBases())
|
|
return;
|
|
|
|
const CXXRecordDecl *VBase =
|
|
RD->vbases_begin()->getType()->getAsCXXRecordDecl();
|
|
|
|
if (VirtualBaseClassOffsetOffsets.count(std::make_pair(RD, VBase)))
|
|
return;
|
|
|
|
for (ItaniumVTableBuilder::VBaseOffsetOffsetsMapTy::const_iterator
|
|
I = Builder.getVBaseOffsetOffsets().begin(),
|
|
E = Builder.getVBaseOffsetOffsets().end();
|
|
I != E; ++I) {
|
|
// Insert all types.
|
|
ClassPairTy ClassPair(RD, I->first);
|
|
|
|
VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I->second));
|
|
}
|
|
}
|
|
|
|
VTableLayout *ItaniumVTableContext::createConstructionVTableLayout(
|
|
const CXXRecordDecl *MostDerivedClass, CharUnits MostDerivedClassOffset,
|
|
bool MostDerivedClassIsVirtual, const CXXRecordDecl *LayoutClass) {
|
|
ItaniumVTableBuilder Builder(*this, MostDerivedClass, MostDerivedClassOffset,
|
|
MostDerivedClassIsVirtual, LayoutClass);
|
|
return CreateVTableLayout(Builder);
|
|
}
|
|
|
|
namespace {
|
|
|
|
// Vtables in the Microsoft ABI are different from the Itanium ABI.
|
|
//
|
|
// The main differences are:
|
|
// 1. Separate vftable and vbtable.
|
|
//
|
|
// 2. Each subobject with a vfptr gets its own vftable rather than an address
|
|
// point in a single vtable shared between all the subobjects.
|
|
// Each vftable is represented by a separate section and virtual calls
|
|
// must be done using the vftable which has a slot for the function to be
|
|
// called.
|
|
//
|
|
// 3. Virtual method definitions expect their 'this' parameter to point to the
|
|
// first vfptr whose table provides a compatible overridden method. In many
|
|
// cases, this permits the original vf-table entry to directly call
|
|
// the method instead of passing through a thunk.
|
|
//
|
|
// A compatible overridden method is one which does not have a non-trivial
|
|
// covariant-return adjustment.
|
|
//
|
|
// The first vfptr is the one with the lowest offset in the complete-object
|
|
// layout of the defining class, and the method definition will subtract
|
|
// that constant offset from the parameter value to get the real 'this'
|
|
// value. Therefore, if the offset isn't really constant (e.g. if a virtual
|
|
// function defined in a virtual base is overridden in a more derived
|
|
// virtual base and these bases have a reverse order in the complete
|
|
// object), the vf-table may require a this-adjustment thunk.
|
|
//
|
|
// 4. vftables do not contain new entries for overrides that merely require
|
|
// this-adjustment. Together with #3, this keeps vf-tables smaller and
|
|
// eliminates the need for this-adjustment thunks in many cases, at the cost
|
|
// of often requiring redundant work to adjust the "this" pointer.
|
|
//
|
|
// 5. Instead of VTT and constructor vtables, vbtables and vtordisps are used.
|
|
// Vtordisps are emitted into the class layout if a class has
|
|
// a) a user-defined ctor/dtor
|
|
// and
|
|
// b) a method overriding a method in a virtual base.
|
|
|
|
class VFTableBuilder {
|
|
public:
|
|
typedef MicrosoftVTableContext::MethodVFTableLocation MethodVFTableLocation;
|
|
|
|
typedef llvm::DenseMap<GlobalDecl, MethodVFTableLocation>
|
|
MethodVFTableLocationsTy;
|
|
|
|
private:
|
|
/// VTables - Global vtable information.
|
|
MicrosoftVTableContext &VTables;
|
|
|
|
/// Context - The ASTContext which we will use for layout information.
|
|
ASTContext &Context;
|
|
|
|
/// MostDerivedClass - The most derived class for which we're building this
|
|
/// vtable.
|
|
const CXXRecordDecl *MostDerivedClass;
|
|
|
|
const ASTRecordLayout &MostDerivedClassLayout;
|
|
|
|
const VPtrInfo &WhichVFPtr;
|
|
|
|
/// FinalOverriders - The final overriders of the most derived class.
|
|
const FinalOverriders Overriders;
|
|
|
|
/// Components - The components of the vftable being built.
|
|
SmallVector<VTableComponent, 64> Components;
|
|
|
|
MethodVFTableLocationsTy MethodVFTableLocations;
|
|
|
|
/// MethodInfo - Contains information about a method in a vtable.
|
|
/// (Used for computing 'this' pointer adjustment thunks.
|
|
struct MethodInfo {
|
|
/// VBTableIndex - The nonzero index in the vbtable that
|
|
/// this method's base has, or zero.
|
|
const uint64_t VBTableIndex;
|
|
|
|
/// VFTableIndex - The index in the vftable that this method has.
|
|
const uint64_t VFTableIndex;
|
|
|
|
/// Shadowed - Indicates if this vftable slot is shadowed by
|
|
/// a slot for a covariant-return override. If so, it shouldn't be printed
|
|
/// or used for vcalls in the most derived class.
|
|
bool Shadowed;
|
|
|
|
MethodInfo(uint64_t VBTableIndex, uint64_t VFTableIndex)
|
|
: VBTableIndex(VBTableIndex), VFTableIndex(VFTableIndex),
|
|
Shadowed(false) {}
|
|
|
|
MethodInfo() : VBTableIndex(0), VFTableIndex(0), Shadowed(false) {}
|
|
};
|
|
|
|
typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
|
|
|
|
/// MethodInfoMap - The information for all methods in the vftable we're
|
|
/// currently building.
|
|
MethodInfoMapTy MethodInfoMap;
|
|
|
|
typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
|
|
|
|
/// VTableThunks - The thunks by vftable index in the vftable currently being
|
|
/// built.
|
|
VTableThunksMapTy VTableThunks;
|
|
|
|
typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
|
|
typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
|
|
|
|
/// Thunks - A map that contains all the thunks needed for all methods in the
|
|
/// most derived class for which the vftable is currently being built.
|
|
ThunksMapTy Thunks;
|
|
|
|
/// AddThunk - Add a thunk for the given method.
|
|
void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk) {
|
|
SmallVector<ThunkInfo, 1> &ThunksVector = Thunks[MD];
|
|
|
|
// Check if we have this thunk already.
|
|
if (std::find(ThunksVector.begin(), ThunksVector.end(), Thunk) !=
|
|
ThunksVector.end())
|
|
return;
|
|
|
|
ThunksVector.push_back(Thunk);
|
|
}
|
|
|
|
/// ComputeThisOffset - Returns the 'this' argument offset for the given
|
|
/// method, relative to the beginning of the MostDerivedClass.
|
|
CharUnits ComputeThisOffset(FinalOverriders::OverriderInfo Overrider);
|
|
|
|
void CalculateVtordispAdjustment(FinalOverriders::OverriderInfo Overrider,
|
|
CharUnits ThisOffset, ThisAdjustment &TA);
|
|
|
|
/// AddMethod - Add a single virtual member function to the vftable
|
|
/// components vector.
|
|
void AddMethod(const CXXMethodDecl *MD, ThunkInfo TI) {
|
|
if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
|
|
assert(TI.Return.isEmpty() &&
|
|
"Destructor can't have return adjustment!");
|
|
Components.push_back(VTableComponent::MakeDeletingDtor(DD));
|
|
} else {
|
|
if (!TI.isEmpty())
|
|
VTableThunks[Components.size()] = TI;
|
|
Components.push_back(VTableComponent::MakeFunction(MD));
|
|
}
|
|
}
|
|
|
|
bool NeedsReturnAdjustingThunk(const CXXMethodDecl *MD);
|
|
|
|
/// AddMethods - Add the methods of this base subobject and the relevant
|
|
/// subbases to the vftable we're currently laying out.
|
|
void AddMethods(BaseSubobject Base, unsigned BaseDepth,
|
|
const CXXRecordDecl *LastVBase,
|
|
BasesSetVectorTy &VisitedBases);
|
|
|
|
void CheckBadVirtualInheritanceHierarchy() {
|
|
// We fail at this-adjustment for virtual methods inherited from
|
|
// non-virtual bases that overrides a method in a virtual base.
|
|
if (Context.getLangOpts().DumpVTableLayouts)
|
|
return;
|
|
for (CXXRecordDecl::base_class_const_iterator BI =
|
|
MostDerivedClass->bases_begin(), BE = MostDerivedClass->bases_end();
|
|
BI != BE; ++BI) {
|
|
const CXXRecordDecl *Base = BI->getType()->getAsCXXRecordDecl();
|
|
if (BI->isVirtual())
|
|
continue;
|
|
for (CXXRecordDecl::method_iterator I = Base->method_begin(),
|
|
E = Base->method_end(); I != E; ++I) {
|
|
const CXXMethodDecl *Method = *I;
|
|
if (!Method->isVirtual())
|
|
continue;
|
|
if (isa<CXXDestructorDecl>(Method))
|
|
continue;
|
|
OverriddenMethodsSetTy OverriddenMethods;
|
|
ComputeAllOverriddenMethods(Method, OverriddenMethods);
|
|
for (OverriddenMethodsSetTy::const_iterator I =
|
|
OverriddenMethods.begin(),
|
|
E = OverriddenMethods.end(); I != E; ++I) {
|
|
const CXXMethodDecl *Overridden = *I;
|
|
if (Base->isVirtuallyDerivedFrom(Overridden->getParent())) {
|
|
ErrorUnsupported("classes with non-virtual base "
|
|
"classes that override methods in virtual bases",
|
|
BI->getLocStart());
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void LayoutVFTable() {
|
|
// FIXME: add support for RTTI when we have proper LLVM support for symbols
|
|
// pointing to the middle of a section.
|
|
|
|
CheckBadVirtualInheritanceHierarchy();
|
|
|
|
BasesSetVectorTy VisitedBases;
|
|
AddMethods(BaseSubobject(MostDerivedClass, CharUnits::Zero()), 0, 0,
|
|
VisitedBases);
|
|
|
|
assert(MethodVFTableLocations.empty());
|
|
for (MethodInfoMapTy::const_iterator I = MethodInfoMap.begin(),
|
|
E = MethodInfoMap.end(); I != E; ++I) {
|
|
const CXXMethodDecl *MD = I->first;
|
|
const MethodInfo &MI = I->second;
|
|
// Skip the methods that the MostDerivedClass didn't override
|
|
// and the entries shadowed by return adjusting thunks.
|
|
if (MD->getParent() != MostDerivedClass || MI.Shadowed)
|
|
continue;
|
|
MethodVFTableLocation Loc(MI.VBTableIndex, WhichVFPtr.getVBaseWithVPtr(),
|
|
WhichVFPtr.NonVirtualOffset, MI.VFTableIndex);
|
|
if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
|
|
MethodVFTableLocations[GlobalDecl(DD, Dtor_Deleting)] = Loc;
|
|
} else {
|
|
MethodVFTableLocations[MD] = Loc;
|
|
}
|
|
}
|
|
}
|
|
|
|
void ErrorUnsupported(StringRef Feature, SourceLocation Location) {
|
|
clang::DiagnosticsEngine &Diags = Context.getDiagnostics();
|
|
unsigned DiagID = Diags.getCustomDiagID(
|
|
DiagnosticsEngine::Error, "v-table layout for %0 is not supported yet");
|
|
Diags.Report(Context.getFullLoc(Location), DiagID) << Feature;
|
|
}
|
|
|
|
public:
|
|
VFTableBuilder(MicrosoftVTableContext &VTables,
|
|
const CXXRecordDecl *MostDerivedClass, const VPtrInfo *Which)
|
|
: VTables(VTables),
|
|
Context(MostDerivedClass->getASTContext()),
|
|
MostDerivedClass(MostDerivedClass),
|
|
MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)),
|
|
WhichVFPtr(*Which),
|
|
Overriders(MostDerivedClass, CharUnits(), MostDerivedClass) {
|
|
LayoutVFTable();
|
|
|
|
if (Context.getLangOpts().DumpVTableLayouts)
|
|
dumpLayout(llvm::outs());
|
|
}
|
|
|
|
uint64_t getNumThunks() const { return Thunks.size(); }
|
|
|
|
ThunksMapTy::const_iterator thunks_begin() const { return Thunks.begin(); }
|
|
|
|
ThunksMapTy::const_iterator thunks_end() const { return Thunks.end(); }
|
|
|
|
MethodVFTableLocationsTy::const_iterator vtable_indices_begin() const {
|
|
return MethodVFTableLocations.begin();
|
|
}
|
|
|
|
MethodVFTableLocationsTy::const_iterator vtable_indices_end() const {
|
|
return MethodVFTableLocations.end();
|
|
}
|
|
|
|
uint64_t getNumVTableComponents() const { return Components.size(); }
|
|
|
|
const VTableComponent *vtable_component_begin() const {
|
|
return Components.begin();
|
|
}
|
|
|
|
const VTableComponent *vtable_component_end() const {
|
|
return Components.end();
|
|
}
|
|
|
|
VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
|
|
return VTableThunks.begin();
|
|
}
|
|
|
|
VTableThunksMapTy::const_iterator vtable_thunks_end() const {
|
|
return VTableThunks.end();
|
|
}
|
|
|
|
void dumpLayout(raw_ostream &);
|
|
};
|
|
|
|
} // end namespace
|
|
|
|
/// InitialOverriddenDefinitionCollector - Finds the set of least derived bases
|
|
/// that define the given method.
|
|
struct InitialOverriddenDefinitionCollector {
|
|
BasesSetVectorTy Bases;
|
|
OverriddenMethodsSetTy VisitedOverriddenMethods;
|
|
|
|
bool visit(const CXXMethodDecl *OverriddenMD) {
|
|
if (OverriddenMD->size_overridden_methods() == 0)
|
|
Bases.insert(OverriddenMD->getParent());
|
|
// Don't recurse on this method if we've already collected it.
|
|
return VisitedOverriddenMethods.insert(OverriddenMD);
|
|
}
|
|
};
|
|
|
|
static bool BaseInSet(const CXXBaseSpecifier *Specifier,
|
|
CXXBasePath &Path, void *BasesSet) {
|
|
BasesSetVectorTy *Bases = (BasesSetVectorTy *)BasesSet;
|
|
return Bases->count(Specifier->getType()->getAsCXXRecordDecl());
|
|
}
|
|
|
|
CharUnits
|
|
VFTableBuilder::ComputeThisOffset(FinalOverriders::OverriderInfo Overrider) {
|
|
InitialOverriddenDefinitionCollector Collector;
|
|
visitAllOverriddenMethods(Overrider.Method, Collector);
|
|
|
|
CXXBasePaths Paths;
|
|
Overrider.Method->getParent()->lookupInBases(BaseInSet, &Collector.Bases,
|
|
Paths);
|
|
|
|
// This will hold the smallest this offset among overridees of MD.
|
|
// This implies that an offset of a non-virtual base will dominate an offset
|
|
// of a virtual base to potentially reduce the number of thunks required
|
|
// in the derived classes that inherit this method.
|
|
CharUnits Ret;
|
|
bool First = true;
|
|
|
|
for (CXXBasePaths::paths_iterator I = Paths.begin(), E = Paths.end();
|
|
I != E; ++I) {
|
|
const CXXBasePath &Path = (*I);
|
|
CharUnits ThisOffset = Overrider.Offset;
|
|
CharUnits LastVBaseOffset;
|
|
|
|
// For each path from the overrider to the parents of the overridden methods,
|
|
// traverse the path, calculating the this offset in the most derived class.
|
|
for (int J = 0, F = Path.size(); J != F; ++J) {
|
|
const CXXBasePathElement &Element = Path[J];
|
|
QualType CurTy = Element.Base->getType();
|
|
const CXXRecordDecl *PrevRD = Element.Class,
|
|
*CurRD = CurTy->getAsCXXRecordDecl();
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(PrevRD);
|
|
|
|
if (Element.Base->isVirtual()) {
|
|
LastVBaseOffset = MostDerivedClassLayout.getVBaseClassOffset(CurRD);
|
|
if (Overrider.Method->getParent() == PrevRD) {
|
|
// This one's interesting. If the final overrider is in a vbase B of the
|
|
// most derived class and it overrides a method of the B's own vbase A,
|
|
// it uses A* as "this". In its prologue, it can cast A* to B* with
|
|
// a static offset. This offset is used regardless of the actual
|
|
// offset of A from B in the most derived class, requiring an
|
|
// this-adjusting thunk in the vftable if A and B are laid out
|
|
// differently in the most derived class.
|
|
ThisOffset += Layout.getVBaseClassOffset(CurRD);
|
|
} else {
|
|
ThisOffset = LastVBaseOffset;
|
|
}
|
|
} else {
|
|
ThisOffset += Layout.getBaseClassOffset(CurRD);
|
|
}
|
|
}
|
|
|
|
if (isa<CXXDestructorDecl>(Overrider.Method)) {
|
|
if (LastVBaseOffset.isZero()) {
|
|
// If a "Base" class has at least one non-virtual base with a virtual
|
|
// destructor, the "Base" virtual destructor will take the address
|
|
// of the "Base" subobject as the "this" argument.
|
|
ThisOffset = Overrider.Offset;
|
|
} else {
|
|
// A virtual destructor of a virtual base takes the address of the
|
|
// virtual base subobject as the "this" argument.
|
|
ThisOffset = LastVBaseOffset;
|
|
}
|
|
}
|
|
|
|
if (Ret > ThisOffset || First) {
|
|
First = false;
|
|
Ret = ThisOffset;
|
|
}
|
|
}
|
|
|
|
assert(!First && "Method not found in the given subobject?");
|
|
return Ret;
|
|
}
|
|
|
|
void VFTableBuilder::CalculateVtordispAdjustment(
|
|
FinalOverriders::OverriderInfo Overrider, CharUnits ThisOffset,
|
|
ThisAdjustment &TA) {
|
|
const ASTRecordLayout::VBaseOffsetsMapTy &VBaseMap =
|
|
MostDerivedClassLayout.getVBaseOffsetsMap();
|
|
const ASTRecordLayout::VBaseOffsetsMapTy::const_iterator &VBaseMapEntry =
|
|
VBaseMap.find(WhichVFPtr.getVBaseWithVPtr());
|
|
assert(VBaseMapEntry != VBaseMap.end());
|
|
|
|
// Check if we need a vtordisp adjustment at all.
|
|
if (!VBaseMapEntry->second.hasVtorDisp())
|
|
return;
|
|
|
|
CharUnits VFPtrVBaseOffset = VBaseMapEntry->second.VBaseOffset;
|
|
// The implicit vtordisp field is located right before the vbase.
|
|
TA.Virtual.Microsoft.VtordispOffset =
|
|
(VFPtrVBaseOffset - WhichVFPtr.FullOffsetInMDC).getQuantity() - 4;
|
|
|
|
// If the final overrider is defined in either:
|
|
// - the most derived class or its non-virtual base or
|
|
// - the same vbase as the initial declaration,
|
|
// a simple vtordisp thunk will suffice.
|
|
const CXXRecordDecl *OverriderRD = Overrider.Method->getParent();
|
|
if (OverriderRD == MostDerivedClass)
|
|
return;
|
|
|
|
const CXXRecordDecl *OverriderVBase =
|
|
ComputeBaseOffset(Context, OverriderRD, MostDerivedClass).VirtualBase;
|
|
if (!OverriderVBase || OverriderVBase == WhichVFPtr.getVBaseWithVPtr())
|
|
return;
|
|
|
|
// Otherwise, we need to do use the dynamic offset of the final overrider
|
|
// in order to get "this" adjustment right.
|
|
TA.Virtual.Microsoft.VBPtrOffset =
|
|
(VFPtrVBaseOffset + WhichVFPtr.NonVirtualOffset -
|
|
MostDerivedClassLayout.getVBPtrOffset()).getQuantity();
|
|
TA.Virtual.Microsoft.VBOffsetOffset =
|
|
Context.getTypeSizeInChars(Context.IntTy).getQuantity() *
|
|
VTables.getVBTableIndex(MostDerivedClass, OverriderVBase);
|
|
|
|
TA.NonVirtual = (ThisOffset - Overrider.Offset).getQuantity();
|
|
}
|
|
|
|
static void GroupNewVirtualOverloads(
|
|
const CXXRecordDecl *RD,
|
|
SmallVector<const CXXMethodDecl *, 10> &VirtualMethods) {
|
|
// Put the virtual methods into VirtualMethods in the proper order:
|
|
// 1) Group overloads by declaration name. New groups are added to the
|
|
// vftable in the order of their first declarations in this class
|
|
// (including overrides and non-virtual methods).
|
|
// 2) In each group, new overloads appear in the reverse order of declaration.
|
|
typedef SmallVector<const CXXMethodDecl *, 1> MethodGroup;
|
|
SmallVector<MethodGroup, 10> Groups;
|
|
typedef llvm::DenseMap<DeclarationName, unsigned> VisitedGroupIndicesTy;
|
|
VisitedGroupIndicesTy VisitedGroupIndices;
|
|
for (CXXRecordDecl::method_iterator I = RD->method_begin(),
|
|
E = RD->method_end(); I != E; ++I) {
|
|
const CXXMethodDecl *MD = *I;
|
|
|
|
VisitedGroupIndicesTy::iterator J;
|
|
bool Inserted;
|
|
std::tie(J, Inserted) = VisitedGroupIndices.insert(
|
|
std::make_pair(MD->getDeclName(), Groups.size()));
|
|
if (Inserted)
|
|
Groups.push_back(MethodGroup());
|
|
if (I->isVirtual())
|
|
Groups[J->second].push_back(MD);
|
|
}
|
|
|
|
for (unsigned I = 0, E = Groups.size(); I != E; ++I)
|
|
VirtualMethods.append(Groups[I].rbegin(), Groups[I].rend());
|
|
}
|
|
|
|
/// We need a return adjusting thunk for this method if its return type is
|
|
/// not trivially convertible to the return type of any of its overridden
|
|
/// methods.
|
|
bool VFTableBuilder::NeedsReturnAdjustingThunk(const CXXMethodDecl *MD) {
|
|
OverriddenMethodsSetTy OverriddenMethods;
|
|
ComputeAllOverriddenMethods(MD, OverriddenMethods);
|
|
for (OverriddenMethodsSetTy::iterator I = OverriddenMethods.begin(),
|
|
E = OverriddenMethods.end();
|
|
I != E; ++I) {
|
|
const CXXMethodDecl *OverriddenMD = *I;
|
|
BaseOffset Adjustment =
|
|
ComputeReturnAdjustmentBaseOffset(Context, MD, OverriddenMD);
|
|
if (!Adjustment.isEmpty())
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void VFTableBuilder::AddMethods(BaseSubobject Base, unsigned BaseDepth,
|
|
const CXXRecordDecl *LastVBase,
|
|
BasesSetVectorTy &VisitedBases) {
|
|
const CXXRecordDecl *RD = Base.getBase();
|
|
if (!RD->isPolymorphic())
|
|
return;
|
|
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
|
|
// See if this class expands a vftable of the base we look at, which is either
|
|
// the one defined by the vfptr base path or the primary base of the current class.
|
|
const CXXRecordDecl *NextBase = 0, *NextLastVBase = LastVBase;
|
|
CharUnits NextBaseOffset;
|
|
if (BaseDepth < WhichVFPtr.PathToBaseWithVPtr.size()) {
|
|
NextBase = WhichVFPtr.PathToBaseWithVPtr[BaseDepth];
|
|
if (Layout.getVBaseOffsetsMap().count(NextBase)) {
|
|
NextLastVBase = NextBase;
|
|
NextBaseOffset = MostDerivedClassLayout.getVBaseClassOffset(NextBase);
|
|
} else {
|
|
NextBaseOffset =
|
|
Base.getBaseOffset() + Layout.getBaseClassOffset(NextBase);
|
|
}
|
|
} else if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
|
|
assert(!Layout.isPrimaryBaseVirtual() &&
|
|
"No primary virtual bases in this ABI");
|
|
NextBase = PrimaryBase;
|
|
NextBaseOffset = Base.getBaseOffset();
|
|
}
|
|
|
|
if (NextBase) {
|
|
AddMethods(BaseSubobject(NextBase, NextBaseOffset), BaseDepth + 1,
|
|
NextLastVBase, VisitedBases);
|
|
if (!VisitedBases.insert(NextBase))
|
|
llvm_unreachable("Found a duplicate primary base!");
|
|
}
|
|
|
|
SmallVector<const CXXMethodDecl*, 10> VirtualMethods;
|
|
// Put virtual methods in the proper order.
|
|
GroupNewVirtualOverloads(RD, VirtualMethods);
|
|
|
|
// Now go through all virtual member functions and add them to the current
|
|
// vftable. This is done by
|
|
// - replacing overridden methods in their existing slots, as long as they
|
|
// don't require return adjustment; calculating This adjustment if needed.
|
|
// - adding new slots for methods of the current base not present in any
|
|
// sub-bases;
|
|
// - adding new slots for methods that require Return adjustment.
|
|
// We keep track of the methods visited in the sub-bases in MethodInfoMap.
|
|
for (unsigned I = 0, E = VirtualMethods.size(); I != E; ++I) {
|
|
const CXXMethodDecl *MD = VirtualMethods[I];
|
|
|
|
FinalOverriders::OverriderInfo Overrider =
|
|
Overriders.getOverrider(MD, Base.getBaseOffset());
|
|
ThisAdjustment ThisAdjustmentOffset;
|
|
bool ForceThunk = false;
|
|
|
|
// Check if this virtual member function overrides
|
|
// a method in one of the visited bases.
|
|
if (const CXXMethodDecl *OverriddenMD =
|
|
FindNearestOverriddenMethod(MD, VisitedBases)) {
|
|
MethodInfoMapTy::iterator OverriddenMDIterator =
|
|
MethodInfoMap.find(OverriddenMD);
|
|
|
|
// If the overridden method went to a different vftable, skip it.
|
|
if (OverriddenMDIterator == MethodInfoMap.end())
|
|
continue;
|
|
|
|
MethodInfo &OverriddenMethodInfo = OverriddenMDIterator->second;
|
|
|
|
// Create a this-adjusting thunk if needed.
|
|
CharUnits TI = ComputeThisOffset(Overrider);
|
|
if (TI != WhichVFPtr.FullOffsetInMDC) {
|
|
ThisAdjustmentOffset.NonVirtual =
|
|
(TI - WhichVFPtr.FullOffsetInMDC).getQuantity();
|
|
}
|
|
|
|
if (WhichVFPtr.getVBaseWithVPtr())
|
|
CalculateVtordispAdjustment(Overrider, TI, ThisAdjustmentOffset);
|
|
|
|
if (!ThisAdjustmentOffset.isEmpty()) {
|
|
VTableThunks[OverriddenMethodInfo.VFTableIndex].This =
|
|
ThisAdjustmentOffset;
|
|
AddThunk(MD, VTableThunks[OverriddenMethodInfo.VFTableIndex]);
|
|
}
|
|
|
|
if (!NeedsReturnAdjustingThunk(MD)) {
|
|
// No return adjustment needed - just replace the overridden method info
|
|
// with the current info.
|
|
MethodInfo MI(OverriddenMethodInfo.VBTableIndex,
|
|
OverriddenMethodInfo.VFTableIndex);
|
|
MethodInfoMap.erase(OverriddenMDIterator);
|
|
|
|
assert(!MethodInfoMap.count(MD) &&
|
|
"Should not have method info for this method yet!");
|
|
MethodInfoMap.insert(std::make_pair(MD, MI));
|
|
continue;
|
|
}
|
|
|
|
// In case we need a return adjustment, we'll add a new slot for
|
|
// the overrider and put a return-adjusting thunk where the overridden
|
|
// method was in the vftable.
|
|
// For now, just mark the overriden method as shadowed by a new slot.
|
|
OverriddenMethodInfo.Shadowed = true;
|
|
ForceThunk = true;
|
|
|
|
// Also apply this adjustment to the shadowed slots.
|
|
if (!ThisAdjustmentOffset.isEmpty()) {
|
|
// FIXME: this is O(N^2), can be O(N).
|
|
const CXXMethodDecl *SubOverride = OverriddenMD;
|
|
while ((SubOverride =
|
|
FindNearestOverriddenMethod(SubOverride, VisitedBases))) {
|
|
MethodInfoMapTy::iterator SubOverrideIterator =
|
|
MethodInfoMap.find(SubOverride);
|
|
if (SubOverrideIterator == MethodInfoMap.end())
|
|
break;
|
|
MethodInfo &SubOverrideMI = SubOverrideIterator->second;
|
|
assert(SubOverrideMI.Shadowed);
|
|
VTableThunks[SubOverrideMI.VFTableIndex].This =
|
|
ThisAdjustmentOffset;
|
|
AddThunk(MD, VTableThunks[SubOverrideMI.VFTableIndex]);
|
|
}
|
|
}
|
|
} else if (Base.getBaseOffset() != WhichVFPtr.FullOffsetInMDC ||
|
|
MD->size_overridden_methods()) {
|
|
// Skip methods that don't belong to the vftable of the current class,
|
|
// e.g. each method that wasn't seen in any of the visited sub-bases
|
|
// but overrides multiple methods of other sub-bases.
|
|
continue;
|
|
}
|
|
|
|
// If we got here, MD is a method not seen in any of the sub-bases or
|
|
// it requires return adjustment. Insert the method info for this method.
|
|
unsigned VBIndex =
|
|
LastVBase ? VTables.getVBTableIndex(MostDerivedClass, LastVBase) : 0;
|
|
MethodInfo MI(VBIndex, Components.size());
|
|
|
|
assert(!MethodInfoMap.count(MD) &&
|
|
"Should not have method info for this method yet!");
|
|
MethodInfoMap.insert(std::make_pair(MD, MI));
|
|
|
|
const CXXMethodDecl *OverriderMD = Overrider.Method;
|
|
|
|
// Check if this overrider needs a return adjustment.
|
|
// We don't want to do this for pure virtual member functions.
|
|
BaseOffset ReturnAdjustmentOffset;
|
|
ReturnAdjustment ReturnAdjustment;
|
|
if (!OverriderMD->isPure()) {
|
|
ReturnAdjustmentOffset =
|
|
ComputeReturnAdjustmentBaseOffset(Context, OverriderMD, MD);
|
|
}
|
|
if (!ReturnAdjustmentOffset.isEmpty()) {
|
|
ForceThunk = true;
|
|
ReturnAdjustment.NonVirtual =
|
|
ReturnAdjustmentOffset.NonVirtualOffset.getQuantity();
|
|
if (ReturnAdjustmentOffset.VirtualBase) {
|
|
const ASTRecordLayout &DerivedLayout =
|
|
Context.getASTRecordLayout(ReturnAdjustmentOffset.DerivedClass);
|
|
ReturnAdjustment.Virtual.Microsoft.VBPtrOffset =
|
|
DerivedLayout.getVBPtrOffset().getQuantity();
|
|
ReturnAdjustment.Virtual.Microsoft.VBIndex =
|
|
VTables.getVBTableIndex(ReturnAdjustmentOffset.DerivedClass,
|
|
ReturnAdjustmentOffset.VirtualBase);
|
|
}
|
|
}
|
|
|
|
AddMethod(OverriderMD, ThunkInfo(ThisAdjustmentOffset, ReturnAdjustment,
|
|
ForceThunk ? MD : 0));
|
|
}
|
|
}
|
|
|
|
static void PrintBasePath(const VPtrInfo::BasePath &Path, raw_ostream &Out) {
|
|
for (VPtrInfo::BasePath::const_reverse_iterator I = Path.rbegin(),
|
|
E = Path.rend(); I != E; ++I) {
|
|
Out << "'";
|
|
(*I)->printQualifiedName(Out);
|
|
Out << "' in ";
|
|
}
|
|
}
|
|
|
|
static void dumpMicrosoftThunkAdjustment(const ThunkInfo &TI, raw_ostream &Out,
|
|
bool ContinueFirstLine) {
|
|
const ReturnAdjustment &R = TI.Return;
|
|
bool Multiline = false;
|
|
const char *LinePrefix = "\n ";
|
|
if (!R.isEmpty()) {
|
|
if (!ContinueFirstLine)
|
|
Out << LinePrefix;
|
|
Out << "[return adjustment: ";
|
|
if (R.Virtual.Microsoft.VBPtrOffset)
|
|
Out << "vbptr at offset " << R.Virtual.Microsoft.VBPtrOffset << ", ";
|
|
if (R.Virtual.Microsoft.VBIndex)
|
|
Out << "vbase #" << R.Virtual.Microsoft.VBIndex << ", ";
|
|
Out << R.NonVirtual << " non-virtual]";
|
|
Multiline = true;
|
|
}
|
|
|
|
const ThisAdjustment &T = TI.This;
|
|
if (!T.isEmpty()) {
|
|
if (Multiline || !ContinueFirstLine)
|
|
Out << LinePrefix;
|
|
Out << "[this adjustment: ";
|
|
if (!TI.This.Virtual.isEmpty()) {
|
|
assert(T.Virtual.Microsoft.VtordispOffset < 0);
|
|
Out << "vtordisp at " << T.Virtual.Microsoft.VtordispOffset << ", ";
|
|
if (T.Virtual.Microsoft.VBPtrOffset) {
|
|
Out << "vbptr at " << T.Virtual.Microsoft.VBPtrOffset
|
|
<< " to the left, ";
|
|
assert(T.Virtual.Microsoft.VBOffsetOffset > 0);
|
|
Out << LinePrefix << " vboffset at "
|
|
<< T.Virtual.Microsoft.VBOffsetOffset << " in the vbtable, ";
|
|
}
|
|
}
|
|
Out << T.NonVirtual << " non-virtual]";
|
|
}
|
|
}
|
|
|
|
void VFTableBuilder::dumpLayout(raw_ostream &Out) {
|
|
Out << "VFTable for ";
|
|
PrintBasePath(WhichVFPtr.PathToBaseWithVPtr, Out);
|
|
Out << "'";
|
|
MostDerivedClass->printQualifiedName(Out);
|
|
Out << "' (" << Components.size()
|
|
<< (Components.size() == 1 ? " entry" : " entries") << ").\n";
|
|
|
|
for (unsigned I = 0, E = Components.size(); I != E; ++I) {
|
|
Out << llvm::format("%4d | ", I);
|
|
|
|
const VTableComponent &Component = Components[I];
|
|
|
|
// Dump the component.
|
|
switch (Component.getKind()) {
|
|
case VTableComponent::CK_RTTI:
|
|
Component.getRTTIDecl()->printQualifiedName(Out);
|
|
Out << " RTTI";
|
|
break;
|
|
|
|
case VTableComponent::CK_FunctionPointer: {
|
|
const CXXMethodDecl *MD = Component.getFunctionDecl();
|
|
|
|
// FIXME: Figure out how to print the real thunk type, since they can
|
|
// differ in the return type.
|
|
std::string Str = PredefinedExpr::ComputeName(
|
|
PredefinedExpr::PrettyFunctionNoVirtual, MD);
|
|
Out << Str;
|
|
if (MD->isPure())
|
|
Out << " [pure]";
|
|
|
|
if (MD->isDeleted()) {
|
|
ErrorUnsupported("deleted methods", MD->getLocation());
|
|
Out << " [deleted]";
|
|
}
|
|
|
|
ThunkInfo Thunk = VTableThunks.lookup(I);
|
|
if (!Thunk.isEmpty())
|
|
dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);
|
|
|
|
break;
|
|
}
|
|
|
|
case VTableComponent::CK_DeletingDtorPointer: {
|
|
const CXXDestructorDecl *DD = Component.getDestructorDecl();
|
|
|
|
DD->printQualifiedName(Out);
|
|
Out << "() [scalar deleting]";
|
|
|
|
if (DD->isPure())
|
|
Out << " [pure]";
|
|
|
|
ThunkInfo Thunk = VTableThunks.lookup(I);
|
|
if (!Thunk.isEmpty()) {
|
|
assert(Thunk.Return.isEmpty() &&
|
|
"No return adjustment needed for destructors!");
|
|
dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
default:
|
|
DiagnosticsEngine &Diags = Context.getDiagnostics();
|
|
unsigned DiagID = Diags.getCustomDiagID(
|
|
DiagnosticsEngine::Error,
|
|
"Unexpected vftable component type %0 for component number %1");
|
|
Diags.Report(MostDerivedClass->getLocation(), DiagID)
|
|
<< I << Component.getKind();
|
|
}
|
|
|
|
Out << '\n';
|
|
}
|
|
|
|
Out << '\n';
|
|
|
|
if (!Thunks.empty()) {
|
|
// We store the method names in a map to get a stable order.
|
|
std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
|
|
|
|
for (ThunksMapTy::const_iterator I = Thunks.begin(), E = Thunks.end();
|
|
I != E; ++I) {
|
|
const CXXMethodDecl *MD = I->first;
|
|
std::string MethodName = PredefinedExpr::ComputeName(
|
|
PredefinedExpr::PrettyFunctionNoVirtual, MD);
|
|
|
|
MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
|
|
}
|
|
|
|
for (std::map<std::string, const CXXMethodDecl *>::const_iterator
|
|
I = MethodNamesAndDecls.begin(),
|
|
E = MethodNamesAndDecls.end();
|
|
I != E; ++I) {
|
|
const std::string &MethodName = I->first;
|
|
const CXXMethodDecl *MD = I->second;
|
|
|
|
ThunkInfoVectorTy ThunksVector = Thunks[MD];
|
|
std::stable_sort(ThunksVector.begin(), ThunksVector.end(),
|
|
[](const ThunkInfo &LHS, const ThunkInfo &RHS) {
|
|
// Keep different thunks with the same adjustments in the order they
|
|
// were put into the vector.
|
|
return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return);
|
|
});
|
|
|
|
Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
|
|
Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
|
|
|
|
for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
|
|
const ThunkInfo &Thunk = ThunksVector[I];
|
|
|
|
Out << llvm::format("%4d | ", I);
|
|
dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/true);
|
|
Out << '\n';
|
|
}
|
|
|
|
Out << '\n';
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool setsIntersect(const llvm::SmallPtrSet<const CXXRecordDecl *, 4> &A,
|
|
const llvm::ArrayRef<const CXXRecordDecl *> &B) {
|
|
for (llvm::ArrayRef<const CXXRecordDecl *>::iterator I = B.begin(),
|
|
E = B.end();
|
|
I != E; ++I) {
|
|
if (A.count(*I))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool rebucketPaths(VPtrInfoVector &Paths);
|
|
|
|
/// Produces MSVC-compatible vbtable data. The symbols produced by this
|
|
/// algorithm match those produced by MSVC 2012 and newer, which is different
|
|
/// from MSVC 2010.
|
|
///
|
|
/// MSVC 2012 appears to minimize the vbtable names using the following
|
|
/// algorithm. First, walk the class hierarchy in the usual order, depth first,
|
|
/// left to right, to find all of the subobjects which contain a vbptr field.
|
|
/// Visiting each class node yields a list of inheritance paths to vbptrs. Each
|
|
/// record with a vbptr creates an initially empty path.
|
|
///
|
|
/// To combine paths from child nodes, the paths are compared to check for
|
|
/// ambiguity. Paths are "ambiguous" if multiple paths have the same set of
|
|
/// components in the same order. Each group of ambiguous paths is extended by
|
|
/// appending the class of the base from which it came. If the current class
|
|
/// node produced an ambiguous path, its path is extended with the current class.
|
|
/// After extending paths, MSVC again checks for ambiguity, and extends any
|
|
/// ambiguous path which wasn't already extended. Because each node yields an
|
|
/// unambiguous set of paths, MSVC doesn't need to extend any path more than once
|
|
/// to produce an unambiguous set of paths.
|
|
///
|
|
/// TODO: Presumably vftables use the same algorithm.
|
|
void MicrosoftVTableContext::computeVTablePaths(bool ForVBTables,
|
|
const CXXRecordDecl *RD,
|
|
VPtrInfoVector &Paths) {
|
|
assert(Paths.empty());
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
|
|
// Base case: this subobject has its own vptr.
|
|
if (ForVBTables ? Layout.hasOwnVBPtr() : Layout.hasOwnVFPtr())
|
|
Paths.push_back(new VPtrInfo(RD));
|
|
|
|
// Recursive case: get all the vbtables from our bases and remove anything
|
|
// that shares a virtual base.
|
|
llvm::SmallPtrSet<const CXXRecordDecl*, 4> VBasesSeen;
|
|
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
|
|
E = RD->bases_end();
|
|
I != E; ++I) {
|
|
const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
|
|
if (I->isVirtual() && VBasesSeen.count(Base))
|
|
continue;
|
|
|
|
if (!Base->isDynamicClass())
|
|
continue;
|
|
|
|
const VPtrInfoVector &BasePaths =
|
|
ForVBTables ? enumerateVBTables(Base) : getVFPtrOffsets(Base);
|
|
|
|
for (VPtrInfoVector::const_iterator II = BasePaths.begin(),
|
|
EE = BasePaths.end();
|
|
II != EE; ++II) {
|
|
VPtrInfo *BaseInfo = *II;
|
|
|
|
// Don't include the path if it goes through a virtual base that we've
|
|
// already included.
|
|
if (setsIntersect(VBasesSeen, BaseInfo->ContainingVBases))
|
|
continue;
|
|
|
|
// Copy the path and adjust it as necessary.
|
|
VPtrInfo *P = new VPtrInfo(*BaseInfo);
|
|
|
|
// We mangle Base into the path if the path would've been ambiguous and it
|
|
// wasn't already extended with Base.
|
|
if (P->MangledPath.empty() || P->MangledPath.back() != Base)
|
|
P->NextBaseToMangle = Base;
|
|
|
|
// Keep track of the full path.
|
|
// FIXME: Why do we need this?
|
|
P->PathToBaseWithVPtr.insert(P->PathToBaseWithVPtr.begin(), Base);
|
|
|
|
// Keep track of which derived class ultimately uses the vtable, and what
|
|
// the full adjustment is from the MDC to this vtable. The adjustment is
|
|
// captured by an optional vbase and a non-virtual offset.
|
|
if (Base == (ForVBTables ? Layout.getBaseSharingVBPtr()
|
|
: Layout.getPrimaryBase()))
|
|
P->ReusingBase = RD;
|
|
if (I->isVirtual())
|
|
P->ContainingVBases.push_back(Base);
|
|
else if (P->ContainingVBases.empty())
|
|
P->NonVirtualOffset += Layout.getBaseClassOffset(Base);
|
|
|
|
// Update the full offset in the MDC.
|
|
P->FullOffsetInMDC = P->NonVirtualOffset;
|
|
if (const CXXRecordDecl *VB = P->getVBaseWithVPtr())
|
|
P->FullOffsetInMDC += Layout.getVBaseClassOffset(VB);
|
|
|
|
Paths.push_back(P);
|
|
}
|
|
|
|
// After visiting any direct base, we've transitively visited all of its
|
|
// morally virtual bases.
|
|
for (CXXRecordDecl::base_class_const_iterator II = Base->vbases_begin(),
|
|
EE = Base->vbases_end();
|
|
II != EE; ++II)
|
|
VBasesSeen.insert(II->getType()->getAsCXXRecordDecl());
|
|
}
|
|
|
|
// Sort the paths into buckets, and if any of them are ambiguous, extend all
|
|
// paths in ambiguous buckets.
|
|
bool Changed = true;
|
|
while (Changed)
|
|
Changed = rebucketPaths(Paths);
|
|
}
|
|
|
|
static bool pathCompare(const VPtrInfo *LHS, const VPtrInfo *RHS) {
|
|
return LHS->MangledPath < RHS->MangledPath;
|
|
}
|
|
|
|
static bool extendPath(VPtrInfo *P) {
|
|
if (P->NextBaseToMangle) {
|
|
P->MangledPath.push_back(P->NextBaseToMangle);
|
|
P->NextBaseToMangle = 0; // Prevent the path from being extended twice.
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool rebucketPaths(VPtrInfoVector &Paths) {
|
|
// What we're essentially doing here is bucketing together ambiguous paths.
|
|
// Any bucket with more than one path in it gets extended by NextBase, which
|
|
// is usually the direct base of the inherited the vbptr. This code uses a
|
|
// sorted vector to implement a multiset to form the buckets. Note that the
|
|
// ordering is based on pointers, but it doesn't change our output order. The
|
|
// current algorithm is designed to match MSVC 2012's names.
|
|
VPtrInfoVector PathsSorted(Paths);
|
|
std::sort(PathsSorted.begin(), PathsSorted.end(), pathCompare);
|
|
bool Changed = false;
|
|
for (size_t I = 0, E = PathsSorted.size(); I != E;) {
|
|
// Scan forward to find the end of the bucket.
|
|
size_t BucketStart = I;
|
|
do {
|
|
++I;
|
|
} while (I != E && PathsSorted[BucketStart]->MangledPath ==
|
|
PathsSorted[I]->MangledPath);
|
|
|
|
// If this bucket has multiple paths, extend them all.
|
|
if (I - BucketStart > 1) {
|
|
for (size_t II = BucketStart; II != I; ++II)
|
|
Changed |= extendPath(PathsSorted[II]);
|
|
assert(Changed && "no paths were extended to fix ambiguity");
|
|
}
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
MicrosoftVTableContext::~MicrosoftVTableContext() {
|
|
llvm::DeleteContainerSeconds(VFPtrLocations);
|
|
llvm::DeleteContainerSeconds(VFTableLayouts);
|
|
llvm::DeleteContainerSeconds(VBaseInfo);
|
|
}
|
|
|
|
void MicrosoftVTableContext::computeVTableRelatedInformation(
|
|
const CXXRecordDecl *RD) {
|
|
assert(RD->isDynamicClass());
|
|
|
|
// Check if we've computed this information before.
|
|
if (VFPtrLocations.count(RD))
|
|
return;
|
|
|
|
const VTableLayout::AddressPointsMapTy EmptyAddressPointsMap;
|
|
|
|
VPtrInfoVector *VFPtrs = new VPtrInfoVector();
|
|
computeVTablePaths(/*ForVBTables=*/false, RD, *VFPtrs);
|
|
VFPtrLocations[RD] = VFPtrs;
|
|
|
|
MethodVFTableLocationsTy NewMethodLocations;
|
|
for (VPtrInfoVector::iterator I = VFPtrs->begin(), E = VFPtrs->end();
|
|
I != E; ++I) {
|
|
VFTableBuilder Builder(*this, RD, *I);
|
|
|
|
VFTableIdTy id(RD, (*I)->FullOffsetInMDC);
|
|
assert(VFTableLayouts.count(id) == 0);
|
|
SmallVector<VTableLayout::VTableThunkTy, 1> VTableThunks(
|
|
Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
|
|
VFTableLayouts[id] = new VTableLayout(
|
|
Builder.getNumVTableComponents(), Builder.vtable_component_begin(),
|
|
VTableThunks.size(), VTableThunks.data(), EmptyAddressPointsMap, true);
|
|
NewMethodLocations.insert(Builder.vtable_indices_begin(),
|
|
Builder.vtable_indices_end());
|
|
Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
|
|
}
|
|
|
|
MethodVFTableLocations.insert(NewMethodLocations.begin(),
|
|
NewMethodLocations.end());
|
|
if (Context.getLangOpts().DumpVTableLayouts)
|
|
dumpMethodLocations(RD, NewMethodLocations, llvm::outs());
|
|
}
|
|
|
|
void MicrosoftVTableContext::dumpMethodLocations(
|
|
const CXXRecordDecl *RD, const MethodVFTableLocationsTy &NewMethods,
|
|
raw_ostream &Out) {
|
|
// Compute the vtable indices for all the member functions.
|
|
// Store them in a map keyed by the location so we'll get a sorted table.
|
|
std::map<MethodVFTableLocation, std::string> IndicesMap;
|
|
bool HasNonzeroOffset = false;
|
|
|
|
for (MethodVFTableLocationsTy::const_iterator I = NewMethods.begin(),
|
|
E = NewMethods.end(); I != E; ++I) {
|
|
const CXXMethodDecl *MD = cast<const CXXMethodDecl>(I->first.getDecl());
|
|
assert(MD->isVirtual());
|
|
|
|
std::string MethodName = PredefinedExpr::ComputeName(
|
|
PredefinedExpr::PrettyFunctionNoVirtual, MD);
|
|
|
|
if (isa<CXXDestructorDecl>(MD)) {
|
|
IndicesMap[I->second] = MethodName + " [scalar deleting]";
|
|
} else {
|
|
IndicesMap[I->second] = MethodName;
|
|
}
|
|
|
|
if (!I->second.VFPtrOffset.isZero() || I->second.VBTableIndex != 0)
|
|
HasNonzeroOffset = true;
|
|
}
|
|
|
|
// Print the vtable indices for all the member functions.
|
|
if (!IndicesMap.empty()) {
|
|
Out << "VFTable indices for ";
|
|
Out << "'";
|
|
RD->printQualifiedName(Out);
|
|
Out << "' (" << IndicesMap.size()
|
|
<< (IndicesMap.size() == 1 ? " entry" : " entries") << ").\n";
|
|
|
|
CharUnits LastVFPtrOffset = CharUnits::fromQuantity(-1);
|
|
uint64_t LastVBIndex = 0;
|
|
for (std::map<MethodVFTableLocation, std::string>::const_iterator
|
|
I = IndicesMap.begin(),
|
|
E = IndicesMap.end();
|
|
I != E; ++I) {
|
|
CharUnits VFPtrOffset = I->first.VFPtrOffset;
|
|
uint64_t VBIndex = I->first.VBTableIndex;
|
|
if (HasNonzeroOffset &&
|
|
(VFPtrOffset != LastVFPtrOffset || VBIndex != LastVBIndex)) {
|
|
assert(VBIndex > LastVBIndex || VFPtrOffset > LastVFPtrOffset);
|
|
Out << " -- accessible via ";
|
|
if (VBIndex)
|
|
Out << "vbtable index " << VBIndex << ", ";
|
|
Out << "vfptr at offset " << VFPtrOffset.getQuantity() << " --\n";
|
|
LastVFPtrOffset = VFPtrOffset;
|
|
LastVBIndex = VBIndex;
|
|
}
|
|
|
|
uint64_t VTableIndex = I->first.Index;
|
|
const std::string &MethodName = I->second;
|
|
Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName << '\n';
|
|
}
|
|
Out << '\n';
|
|
}
|
|
}
|
|
|
|
const VirtualBaseInfo *MicrosoftVTableContext::computeVBTableRelatedInformation(
|
|
const CXXRecordDecl *RD) {
|
|
VirtualBaseInfo *VBI;
|
|
|
|
{
|
|
// Get or create a VBI for RD. Don't hold a reference to the DenseMap cell,
|
|
// as it may be modified and rehashed under us.
|
|
VirtualBaseInfo *&Entry = VBaseInfo[RD];
|
|
if (Entry)
|
|
return Entry;
|
|
Entry = VBI = new VirtualBaseInfo();
|
|
}
|
|
|
|
computeVTablePaths(/*ForVBTables=*/true, RD, VBI->VBPtrPaths);
|
|
|
|
// First, see if the Derived class shared the vbptr with a non-virtual base.
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
if (const CXXRecordDecl *VBPtrBase = Layout.getBaseSharingVBPtr()) {
|
|
// If the Derived class shares the vbptr with a non-virtual base, the shared
|
|
// virtual bases come first so that the layout is the same.
|
|
const VirtualBaseInfo *BaseInfo =
|
|
computeVBTableRelatedInformation(VBPtrBase);
|
|
VBI->VBTableIndices.insert(BaseInfo->VBTableIndices.begin(),
|
|
BaseInfo->VBTableIndices.end());
|
|
}
|
|
|
|
// New vbases are added to the end of the vbtable.
|
|
// Skip the self entry and vbases visited in the non-virtual base, if any.
|
|
unsigned VBTableIndex = 1 + VBI->VBTableIndices.size();
|
|
for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
|
|
E = RD->vbases_end();
|
|
I != E; ++I) {
|
|
const CXXRecordDecl *CurVBase = I->getType()->getAsCXXRecordDecl();
|
|
if (!VBI->VBTableIndices.count(CurVBase))
|
|
VBI->VBTableIndices[CurVBase] = VBTableIndex++;
|
|
}
|
|
|
|
return VBI;
|
|
}
|
|
|
|
unsigned MicrosoftVTableContext::getVBTableIndex(const CXXRecordDecl *Derived,
|
|
const CXXRecordDecl *VBase) {
|
|
const VirtualBaseInfo *VBInfo = computeVBTableRelatedInformation(Derived);
|
|
assert(VBInfo->VBTableIndices.count(VBase));
|
|
return VBInfo->VBTableIndices.find(VBase)->second;
|
|
}
|
|
|
|
const VPtrInfoVector &
|
|
MicrosoftVTableContext::enumerateVBTables(const CXXRecordDecl *RD) {
|
|
return computeVBTableRelatedInformation(RD)->VBPtrPaths;
|
|
}
|
|
|
|
const VPtrInfoVector &
|
|
MicrosoftVTableContext::getVFPtrOffsets(const CXXRecordDecl *RD) {
|
|
computeVTableRelatedInformation(RD);
|
|
|
|
assert(VFPtrLocations.count(RD) && "Couldn't find vfptr locations");
|
|
return *VFPtrLocations[RD];
|
|
}
|
|
|
|
const VTableLayout &
|
|
MicrosoftVTableContext::getVFTableLayout(const CXXRecordDecl *RD,
|
|
CharUnits VFPtrOffset) {
|
|
computeVTableRelatedInformation(RD);
|
|
|
|
VFTableIdTy id(RD, VFPtrOffset);
|
|
assert(VFTableLayouts.count(id) && "Couldn't find a VFTable at this offset");
|
|
return *VFTableLayouts[id];
|
|
}
|
|
|
|
const MicrosoftVTableContext::MethodVFTableLocation &
|
|
MicrosoftVTableContext::getMethodVFTableLocation(GlobalDecl GD) {
|
|
assert(cast<CXXMethodDecl>(GD.getDecl())->isVirtual() &&
|
|
"Only use this method for virtual methods or dtors");
|
|
if (isa<CXXDestructorDecl>(GD.getDecl()))
|
|
assert(GD.getDtorType() == Dtor_Deleting);
|
|
|
|
MethodVFTableLocationsTy::iterator I = MethodVFTableLocations.find(GD);
|
|
if (I != MethodVFTableLocations.end())
|
|
return I->second;
|
|
|
|
const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
|
|
|
|
computeVTableRelatedInformation(RD);
|
|
|
|
I = MethodVFTableLocations.find(GD);
|
|
assert(I != MethodVFTableLocations.end() && "Did not find index!");
|
|
return I->second;
|
|
}
|