forked from OSchip/llvm-project
356 lines
15 KiB
C++
356 lines
15 KiB
C++
//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by Chris Lattner and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements type-related semantic analysis.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Sema.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/Parse/DeclSpec.h"
|
|
#include "clang/Basic/LangOptions.h"
|
|
using namespace clang;
|
|
|
|
/// ConvertDeclSpecToType - Convert the specified declspec to the appropriate
|
|
/// type object. This returns null on error.
|
|
static QualType ConvertDeclSpecToType(const DeclSpec &DS, ASTContext &Ctx) {
|
|
// FIXME: Should move the logic from DeclSpec::Finish to here for validity
|
|
// checking.
|
|
|
|
switch (DS.getTypeSpecType()) {
|
|
default: return QualType(); // FIXME: Handle unimp cases!
|
|
case DeclSpec::TST_void: return Ctx.VoidTy;
|
|
case DeclSpec::TST_char:
|
|
if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
|
|
return Ctx.CharTy;
|
|
else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
|
|
return Ctx.SignedCharTy;
|
|
else {
|
|
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
|
|
"Unknown TSS value");
|
|
return Ctx.UnsignedCharTy;
|
|
}
|
|
case DeclSpec::TST_unspecified: // Unspecific typespec defaults to int.
|
|
case DeclSpec::TST_int: {
|
|
QualType Result;
|
|
if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
|
|
switch (DS.getTypeSpecWidth()) {
|
|
case DeclSpec::TSW_unspecified: Result = Ctx.IntTy; break;
|
|
case DeclSpec::TSW_short: Result = Ctx.ShortTy; break;
|
|
case DeclSpec::TSW_long: Result = Ctx.LongTy; break;
|
|
case DeclSpec::TSW_longlong: Result = Ctx.LongLongTy; break;
|
|
}
|
|
} else {
|
|
switch (DS.getTypeSpecWidth()) {
|
|
case DeclSpec::TSW_unspecified: Result = Ctx.UnsignedIntTy; break;
|
|
case DeclSpec::TSW_short: Result = Ctx.UnsignedShortTy; break;
|
|
case DeclSpec::TSW_long: Result = Ctx.UnsignedLongTy; break;
|
|
case DeclSpec::TSW_longlong: Result = Ctx.UnsignedLongLongTy; break;
|
|
}
|
|
}
|
|
// Handle complex integer types.
|
|
if (DS.getTypeSpecComplex() == DeclSpec::TSC_unspecified)
|
|
return Result;
|
|
assert(DS.getTypeSpecComplex() == DeclSpec::TSC_complex &&
|
|
"FIXME: imaginary types not supported yet!");
|
|
return Ctx.getComplexType(Result);
|
|
}
|
|
case DeclSpec::TST_float:
|
|
if (DS.getTypeSpecComplex() == DeclSpec::TSC_unspecified)
|
|
return Ctx.FloatTy;
|
|
assert(DS.getTypeSpecComplex() == DeclSpec::TSC_complex &&
|
|
"FIXME: imaginary types not supported yet!");
|
|
return Ctx.getComplexType(Ctx.FloatTy);
|
|
|
|
case DeclSpec::TST_double: {
|
|
bool isLong = DS.getTypeSpecWidth() == DeclSpec::TSW_long;
|
|
QualType T = isLong ? Ctx.LongDoubleTy : Ctx.DoubleTy;
|
|
if (DS.getTypeSpecComplex() == DeclSpec::TSC_unspecified)
|
|
return T;
|
|
assert(DS.getTypeSpecComplex() == DeclSpec::TSC_complex &&
|
|
"FIXME: imaginary types not supported yet!");
|
|
return Ctx.getComplexType(T);
|
|
}
|
|
case DeclSpec::TST_bool: // _Bool or bool
|
|
return Ctx.BoolTy;
|
|
case DeclSpec::TST_decimal32: // _Decimal32
|
|
case DeclSpec::TST_decimal64: // _Decimal64
|
|
case DeclSpec::TST_decimal128: // _Decimal128
|
|
assert(0 && "FIXME: GNU decimal extensions not supported yet!");
|
|
case DeclSpec::TST_enum:
|
|
case DeclSpec::TST_union:
|
|
case DeclSpec::TST_struct: {
|
|
Decl *D = static_cast<Decl *>(DS.getTypeRep());
|
|
assert(D && "Didn't get a decl for a enum/union/struct?");
|
|
assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
|
|
DS.getTypeSpecSign() == 0 &&
|
|
"Can't handle qualifiers on typedef names yet!");
|
|
// TypeQuals handled by caller.
|
|
return Ctx.getTagDeclType(cast<TagDecl>(D));
|
|
}
|
|
case DeclSpec::TST_typedef: {
|
|
Decl *D = static_cast<Decl *>(DS.getTypeRep());
|
|
assert(D && "Didn't get a decl for a typedef?");
|
|
assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
|
|
DS.getTypeSpecSign() == 0 &&
|
|
"Can't handle qualifiers on typedef names yet!");
|
|
// FIXME: Adding a TST_objcInterface clause doesn't seem ideal, so
|
|
// we have this "hack" for now...
|
|
if (ObjcInterfaceDecl *ObjcIntDecl = dyn_cast<ObjcInterfaceDecl>(D)) {
|
|
if (DS.getProtocolQualifiers() == 0)
|
|
return Ctx.getObjcInterfaceType(ObjcIntDecl);
|
|
|
|
Action::DeclTy **PPDecl = &(*DS.getProtocolQualifiers())[0];
|
|
return Ctx.getObjcQualifiedInterfaceType(ObjcIntDecl,
|
|
reinterpret_cast<ObjcProtocolDecl**>(PPDecl),
|
|
DS.NumProtocolQualifiers());
|
|
}
|
|
// TypeQuals handled by caller.
|
|
return Ctx.getTypedefType(cast<TypedefDecl>(D));
|
|
}
|
|
case DeclSpec::TST_typeofType: {
|
|
QualType T = QualType::getFromOpaquePtr(DS.getTypeRep());
|
|
assert(!T.isNull() && "Didn't get a type for typeof?");
|
|
// TypeQuals handled by caller.
|
|
return Ctx.getTypeOfType(T);
|
|
}
|
|
case DeclSpec::TST_typeofExpr: {
|
|
Expr *E = static_cast<Expr *>(DS.getTypeRep());
|
|
assert(E && "Didn't get an expression for typeof?");
|
|
// TypeQuals handled by caller.
|
|
return Ctx.getTypeOfExpr(E);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// GetTypeForDeclarator - Convert the type for the specified declarator to Type
|
|
/// instances.
|
|
QualType Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
|
|
// long long is a C99 feature.
|
|
if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
|
|
D.getDeclSpec().getTypeSpecWidth() == DeclSpec::TSW_longlong)
|
|
Diag(D.getDeclSpec().getTypeSpecWidthLoc(), diag::ext_longlong);
|
|
|
|
QualType T = ConvertDeclSpecToType(D.getDeclSpec(), Context);
|
|
|
|
// Apply const/volatile/restrict qualifiers to T.
|
|
T = T.getQualifiedType(D.getDeclSpec().getTypeQualifiers());
|
|
|
|
// Walk the DeclTypeInfo, building the recursive type as we go. DeclTypeInfos
|
|
// are ordered from the identifier out, which is opposite of what we want :).
|
|
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
|
|
const DeclaratorChunk &DeclType = D.getTypeObject(e-i-1);
|
|
switch (DeclType.Kind) {
|
|
default: assert(0 && "Unknown decltype!");
|
|
case DeclaratorChunk::Pointer:
|
|
if (T->isReferenceType()) {
|
|
// C++ 8.3.2p4: There shall be no ... pointers to references ...
|
|
Diag(D.getIdentifierLoc(), diag::err_illegal_decl_pointer_to_reference,
|
|
D.getIdentifier()->getName());
|
|
D.setInvalidType(true);
|
|
T = Context.IntTy;
|
|
}
|
|
|
|
// Apply the pointer typequals to the pointer object.
|
|
T = Context.getPointerType(T).getQualifiedType(DeclType.Ptr.TypeQuals);
|
|
break;
|
|
case DeclaratorChunk::Reference:
|
|
if (const ReferenceType *RT = T->getAsReferenceType()) {
|
|
// C++ 8.3.2p4: There shall be no references to references ...
|
|
Diag(D.getIdentifierLoc(),
|
|
diag::err_illegal_decl_reference_to_reference,
|
|
D.getIdentifier()->getName());
|
|
D.setInvalidType(true);
|
|
T = RT->getReferenceeType();
|
|
}
|
|
|
|
T = Context.getReferenceType(T);
|
|
break;
|
|
case DeclaratorChunk::Array: {
|
|
const DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
|
|
Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
|
|
ArrayType::ArraySizeModifier ASM;
|
|
if (ATI.isStar)
|
|
ASM = ArrayType::Star;
|
|
else if (ATI.hasStatic)
|
|
ASM = ArrayType::Static;
|
|
else
|
|
ASM = ArrayType::Normal;
|
|
|
|
// C99 6.7.5.2p1: If the element type is an incomplete or function type,
|
|
// reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
|
|
if (T->isIncompleteType()) {
|
|
Diag(D.getIdentifierLoc(), diag::err_illegal_decl_array_incomplete_type,
|
|
T.getAsString());
|
|
T = Context.IntTy;
|
|
D.setInvalidType(true);
|
|
} else if (T->isFunctionType()) {
|
|
Diag(D.getIdentifierLoc(), diag::err_illegal_decl_array_of_functions,
|
|
D.getIdentifier()->getName());
|
|
T = Context.getPointerType(T);
|
|
D.setInvalidType(true);
|
|
} else if (const ReferenceType *RT = T->getAsReferenceType()) {
|
|
// C++ 8.3.2p4: There shall be no ... arrays of references ...
|
|
Diag(D.getIdentifierLoc(), diag::err_illegal_decl_array_of_references,
|
|
D.getIdentifier()->getName());
|
|
T = RT->getReferenceeType();
|
|
D.setInvalidType(true);
|
|
} else if (const RecordType *EltTy = T->getAsRecordType()) {
|
|
// If the element type is a struct or union that contains a variadic
|
|
// array, reject it: C99 6.7.2.1p2.
|
|
if (EltTy->getDecl()->hasFlexibleArrayMember()) {
|
|
Diag(DeclType.Loc, diag::err_flexible_array_in_array,
|
|
T.getAsString());
|
|
T = Context.IntTy;
|
|
D.setInvalidType(true);
|
|
}
|
|
}
|
|
// C99 6.7.5.2p1: The size expression shall have integer type.
|
|
if (ArraySize && !ArraySize->getType()->isIntegerType()) {
|
|
Diag(ArraySize->getLocStart(), diag::err_array_size_non_int,
|
|
ArraySize->getType().getAsString(), ArraySize->getSourceRange());
|
|
D.setInvalidType(true);
|
|
}
|
|
llvm::APSInt ConstVal(32);
|
|
// If no expression was provided, we consider it a VLA.
|
|
if (!ArraySize || !ArraySize->isIntegerConstantExpr(ConstVal, Context))
|
|
T = Context.getVariableArrayType(T, ArraySize, ASM, ATI.TypeQuals);
|
|
else {
|
|
// C99 6.7.5.2p1: If the expression is a constant expression, it shall
|
|
// have a value greater than zero.
|
|
if (ConstVal.isSigned()) {
|
|
if (ConstVal.isNegative()) {
|
|
Diag(ArraySize->getLocStart(),
|
|
diag::err_typecheck_negative_array_size,
|
|
ArraySize->getSourceRange());
|
|
D.setInvalidType(true);
|
|
} else if (ConstVal == 0) {
|
|
// GCC accepts zero sized static arrays.
|
|
Diag(ArraySize->getLocStart(), diag::ext_typecheck_zero_array_size,
|
|
ArraySize->getSourceRange());
|
|
}
|
|
}
|
|
T = Context.getConstantArrayType(T, ConstVal, ASM, ATI.TypeQuals);
|
|
}
|
|
// If this is not C99, extwarn about VLA's and C99 array size modifiers.
|
|
if (!getLangOptions().C99 &&
|
|
(ASM != ArrayType::Normal ||
|
|
(ArraySize && !ArraySize->isIntegerConstantExpr(Context))))
|
|
Diag(D.getIdentifierLoc(), diag::ext_vla);
|
|
break;
|
|
}
|
|
case DeclaratorChunk::Function:
|
|
// If the function declarator has a prototype (i.e. it is not () and
|
|
// does not have a K&R-style identifier list), then the arguments are part
|
|
// of the type, otherwise the argument list is ().
|
|
const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
|
|
if (!FTI.hasPrototype) {
|
|
// Simple void foo(), where the incoming T is the result type.
|
|
T = Context.getFunctionTypeNoProto(T);
|
|
|
|
// C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function definition.
|
|
if (FTI.NumArgs != 0)
|
|
Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
|
|
|
|
} else {
|
|
// Otherwise, we have a function with an argument list that is
|
|
// potentially variadic.
|
|
llvm::SmallVector<QualType, 16> ArgTys;
|
|
|
|
for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
|
|
QualType ArgTy = QualType::getFromOpaquePtr(FTI.ArgInfo[i].TypeInfo);
|
|
assert(!ArgTy.isNull() && "Couldn't parse type?");
|
|
//
|
|
// Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
|
|
// This matches the conversion that is done in
|
|
// Sema::ParseParamDeclarator(). Without this conversion, the
|
|
// argument type in the function prototype *will not* match the
|
|
// type in ParmVarDecl (which makes the code generator unhappy).
|
|
//
|
|
// FIXME: We still apparently need the conversion in
|
|
// Sema::ParseParamDeclarator(). This doesn't make any sense, since
|
|
// it should be driving off the type being created here.
|
|
//
|
|
// FIXME: If a source translation tool needs to see the original type,
|
|
// then we need to consider storing both types somewhere...
|
|
//
|
|
if (const ArrayType *AT = ArgTy->getAsArrayType())
|
|
ArgTy = Context.getPointerType(AT->getElementType());
|
|
else if (ArgTy->isFunctionType())
|
|
ArgTy = Context.getPointerType(ArgTy);
|
|
// Look for 'void'. void is allowed only as a single argument to a
|
|
// function with no other parameters (C99 6.7.5.3p10). We record
|
|
// int(void) as a FunctionTypeProto with an empty argument list.
|
|
else if (ArgTy->isVoidType()) {
|
|
// If this is something like 'float(int, void)', reject it. 'void'
|
|
// is an incomplete type (C99 6.2.5p19) and function decls cannot
|
|
// have arguments of incomplete type.
|
|
if (FTI.NumArgs != 1 || FTI.isVariadic) {
|
|
Diag(DeclType.Loc, diag::err_void_only_param);
|
|
ArgTy = Context.IntTy;
|
|
FTI.ArgInfo[i].TypeInfo = ArgTy.getAsOpaquePtr();
|
|
} else if (FTI.ArgInfo[i].Ident) {
|
|
// Reject, but continue to parse 'int(void abc)'.
|
|
Diag(FTI.ArgInfo[i].IdentLoc,
|
|
diag::err_param_with_void_type);
|
|
ArgTy = Context.IntTy;
|
|
FTI.ArgInfo[i].TypeInfo = ArgTy.getAsOpaquePtr();
|
|
} else {
|
|
// Reject, but continue to parse 'float(const void)'.
|
|
if (ArgTy.getQualifiers())
|
|
Diag(DeclType.Loc, diag::err_void_param_qualified);
|
|
|
|
// Do not add 'void' to the ArgTys list.
|
|
break;
|
|
}
|
|
}
|
|
|
|
ArgTys.push_back(ArgTy);
|
|
}
|
|
T = Context.getFunctionType(T, &ArgTys[0], ArgTys.size(),
|
|
FTI.isVariadic);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
return T;
|
|
}
|
|
|
|
Sema::TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
|
|
// C99 6.7.6: Type names have no identifier. This is already validated by
|
|
// the parser.
|
|
assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
|
|
|
|
QualType T = GetTypeForDeclarator(D, S);
|
|
|
|
assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
|
|
|
|
// In this context, we *do not* check D.getInvalidType(). If the declarator
|
|
// type was invalid, GetTypeForDeclarator() still returns a "valid" type,
|
|
// though it will not reflect the user specified type.
|
|
return T.getAsOpaquePtr();
|
|
}
|
|
|
|
// Called from Parser::ParseParenDeclarator().
|
|
Sema::TypeResult Sema::ActOnParamDeclaratorType(Scope *S, Declarator &D) {
|
|
// Note: parameters have identifiers, but we don't care about them here, we
|
|
// just want the type converted.
|
|
QualType T = GetTypeForDeclarator(D, S);
|
|
|
|
assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
|
|
|
|
// In this context, we *do not* check D.getInvalidType(). If the declarator
|
|
// type was invalid, GetTypeForDeclarator() still returns a "valid" type,
|
|
// though it will not reflect the user specified type.
|
|
return T.getAsOpaquePtr();
|
|
}
|