llvm-project/clang/lib/StaticAnalyzer/Checkers/CallAndMessageChecker.cpp

351 lines
12 KiB
C++

//===--- CallAndMessageChecker.cpp ------------------------------*- C++ -*--==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This defines CallAndMessageChecker, a builtin checker that checks for various
// errors of call and objc message expressions.
//
//===----------------------------------------------------------------------===//
#include "ExprEngineInternalChecks.h"
#include "clang/AST/ParentMap.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/StaticAnalyzer/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/PathSensitive/CheckerVisitor.h"
using namespace clang;
using namespace ento;
namespace {
class CallAndMessageChecker
: public CheckerVisitor<CallAndMessageChecker> {
BugType *BT_call_null;
BugType *BT_call_undef;
BugType *BT_call_arg;
BugType *BT_msg_undef;
BugType *BT_msg_arg;
BugType *BT_msg_ret;
public:
CallAndMessageChecker() :
BT_call_null(0), BT_call_undef(0), BT_call_arg(0),
BT_msg_undef(0), BT_msg_arg(0), BT_msg_ret(0) {}
static void *getTag() {
static int x = 0;
return &x;
}
void PreVisitCallExpr(CheckerContext &C, const CallExpr *CE);
void PreVisitObjCMessageExpr(CheckerContext &C, const ObjCMessageExpr *ME);
bool evalNilReceiver(CheckerContext &C, const ObjCMessageExpr *ME);
private:
bool PreVisitProcessArg(CheckerContext &C, const Expr *Ex,
const char *BT_desc, BugType *&BT);
void EmitBadCall(BugType *BT, CheckerContext &C, const CallExpr *CE);
void emitNilReceiverBug(CheckerContext &C, const ObjCMessageExpr *ME,
ExplodedNode *N);
void HandleNilReceiver(CheckerContext &C, const GRState *state,
const ObjCMessageExpr *ME);
void LazyInit_BT(const char *desc, BugType *&BT) {
if (!BT)
BT = new BuiltinBug(desc);
}
};
} // end anonymous namespace
void ento::RegisterCallAndMessageChecker(ExprEngine &Eng) {
Eng.registerCheck(new CallAndMessageChecker());
}
void CallAndMessageChecker::EmitBadCall(BugType *BT, CheckerContext &C,
const CallExpr *CE) {
ExplodedNode *N = C.generateSink();
if (!N)
return;
EnhancedBugReport *R = new EnhancedBugReport(*BT, BT->getName(), N);
R->addVisitorCreator(bugreporter::registerTrackNullOrUndefValue,
bugreporter::GetCalleeExpr(N));
C.EmitReport(R);
}
bool CallAndMessageChecker::PreVisitProcessArg(CheckerContext &C,
const Expr *Ex,
const char *BT_desc,
BugType *&BT) {
const SVal &V = C.getState()->getSVal(Ex);
if (V.isUndef()) {
if (ExplodedNode *N = C.generateSink()) {
LazyInit_BT(BT_desc, BT);
// Generate a report for this bug.
EnhancedBugReport *R = new EnhancedBugReport(*BT, BT->getName(), N);
R->addRange(Ex->getSourceRange());
R->addVisitorCreator(bugreporter::registerTrackNullOrUndefValue, Ex);
C.EmitReport(R);
}
return true;
}
if (const nonloc::LazyCompoundVal *LV =
dyn_cast<nonloc::LazyCompoundVal>(&V)) {
class FindUninitializedField {
public:
llvm::SmallVector<const FieldDecl *, 10> FieldChain;
private:
ASTContext &C;
StoreManager &StoreMgr;
MemRegionManager &MrMgr;
Store store;
public:
FindUninitializedField(ASTContext &c, StoreManager &storeMgr,
MemRegionManager &mrMgr, Store s)
: C(c), StoreMgr(storeMgr), MrMgr(mrMgr), store(s) {}
bool Find(const TypedRegion *R) {
QualType T = R->getValueType();
if (const RecordType *RT = T->getAsStructureType()) {
const RecordDecl *RD = RT->getDecl()->getDefinition();
assert(RD && "Referred record has no definition");
for (RecordDecl::field_iterator I =
RD->field_begin(), E = RD->field_end(); I!=E; ++I) {
const FieldRegion *FR = MrMgr.getFieldRegion(*I, R);
FieldChain.push_back(*I);
T = (*I)->getType();
if (T->getAsStructureType()) {
if (Find(FR))
return true;
}
else {
const SVal &V = StoreMgr.Retrieve(store, loc::MemRegionVal(FR));
if (V.isUndef())
return true;
}
FieldChain.pop_back();
}
}
return false;
}
};
const LazyCompoundValData *D = LV->getCVData();
FindUninitializedField F(C.getASTContext(),
C.getState()->getStateManager().getStoreManager(),
C.getSValBuilder().getRegionManager(),
D->getStore());
if (F.Find(D->getRegion())) {
if (ExplodedNode *N = C.generateSink()) {
LazyInit_BT(BT_desc, BT);
llvm::SmallString<512> Str;
llvm::raw_svector_ostream os(Str);
os << "Passed-by-value struct argument contains uninitialized data";
if (F.FieldChain.size() == 1)
os << " (e.g., field: '" << F.FieldChain[0] << "')";
else {
os << " (e.g., via the field chain: '";
bool first = true;
for (llvm::SmallVectorImpl<const FieldDecl *>::iterator
DI = F.FieldChain.begin(), DE = F.FieldChain.end(); DI!=DE;++DI){
if (first)
first = false;
else
os << '.';
os << *DI;
}
os << "')";
}
// Generate a report for this bug.
EnhancedBugReport *R = new EnhancedBugReport(*BT, os.str(), N);
R->addRange(Ex->getSourceRange());
// FIXME: enhance track back for uninitialized value for arbitrary
// memregions
C.EmitReport(R);
}
return true;
}
}
return false;
}
void CallAndMessageChecker::PreVisitCallExpr(CheckerContext &C,
const CallExpr *CE){
const Expr *Callee = CE->getCallee()->IgnoreParens();
SVal L = C.getState()->getSVal(Callee);
if (L.isUndef()) {
if (!BT_call_undef)
BT_call_undef =
new BuiltinBug("Called function pointer is an uninitalized pointer value");
EmitBadCall(BT_call_undef, C, CE);
return;
}
if (isa<loc::ConcreteInt>(L)) {
if (!BT_call_null)
BT_call_null =
new BuiltinBug("Called function pointer is null (null dereference)");
EmitBadCall(BT_call_null, C, CE);
}
for (CallExpr::const_arg_iterator I = CE->arg_begin(), E = CE->arg_end();
I != E; ++I)
if (PreVisitProcessArg(C, *I,
"Function call argument is an uninitialized value",
BT_call_arg))
return;
}
void CallAndMessageChecker::PreVisitObjCMessageExpr(CheckerContext &C,
const ObjCMessageExpr *ME) {
const GRState *state = C.getState();
// FIXME: Handle 'super'?
if (const Expr *receiver = ME->getInstanceReceiver())
if (state->getSVal(receiver).isUndef()) {
if (ExplodedNode *N = C.generateSink()) {
if (!BT_msg_undef)
BT_msg_undef =
new BuiltinBug("Receiver in message expression is an uninitialized value");
EnhancedBugReport *R =
new EnhancedBugReport(*BT_msg_undef, BT_msg_undef->getName(), N);
R->addRange(receiver->getSourceRange());
R->addVisitorCreator(bugreporter::registerTrackNullOrUndefValue,
receiver);
C.EmitReport(R);
}
return;
}
// Check for any arguments that are uninitialized/undefined.
for (ObjCMessageExpr::const_arg_iterator I = ME->arg_begin(),
E = ME->arg_end(); I != E; ++I)
if (PreVisitProcessArg(C, *I,
"Argument in message expression "
"is an uninitialized value", BT_msg_arg))
return;
}
bool CallAndMessageChecker::evalNilReceiver(CheckerContext &C,
const ObjCMessageExpr *ME) {
HandleNilReceiver(C, C.getState(), ME);
return true; // Nil receiver is not handled elsewhere.
}
void CallAndMessageChecker::emitNilReceiverBug(CheckerContext &C,
const ObjCMessageExpr *ME,
ExplodedNode *N) {
if (!BT_msg_ret)
BT_msg_ret =
new BuiltinBug("Receiver in message expression is "
"'nil' and returns a garbage value");
llvm::SmallString<200> buf;
llvm::raw_svector_ostream os(buf);
os << "The receiver of message '" << ME->getSelector().getAsString()
<< "' is nil and returns a value of type '"
<< ME->getType().getAsString() << "' that will be garbage";
EnhancedBugReport *report = new EnhancedBugReport(*BT_msg_ret, os.str(), N);
if (const Expr *receiver = ME->getInstanceReceiver()) {
report->addRange(receiver->getSourceRange());
report->addVisitorCreator(bugreporter::registerTrackNullOrUndefValue,
receiver);
}
C.EmitReport(report);
}
static bool supportsNilWithFloatRet(const llvm::Triple &triple) {
return triple.getVendor() == llvm::Triple::Apple &&
(triple.getDarwinMajorNumber() >= 9 ||
triple.getArch() == llvm::Triple::arm ||
triple.getArch() == llvm::Triple::thumb);
}
void CallAndMessageChecker::HandleNilReceiver(CheckerContext &C,
const GRState *state,
const ObjCMessageExpr *ME) {
// Check the return type of the message expression. A message to nil will
// return different values depending on the return type and the architecture.
QualType RetTy = ME->getType();
ASTContext &Ctx = C.getASTContext();
CanQualType CanRetTy = Ctx.getCanonicalType(RetTy);
if (CanRetTy->isStructureOrClassType()) {
// FIXME: At some point we shouldn't rely on isConsumedExpr(), but instead
// have the "use of undefined value" be smarter about where the
// undefined value came from.
if (C.getPredecessor()->getParentMap().isConsumedExpr(ME)) {
if (ExplodedNode* N = C.generateSink(state))
emitNilReceiverBug(C, ME, N);
return;
}
// The result is not consumed by a surrounding expression. Just propagate
// the current state.
C.addTransition(state);
return;
}
// Other cases: check if the return type is smaller than void*.
if (CanRetTy != Ctx.VoidTy &&
C.getPredecessor()->getParentMap().isConsumedExpr(ME)) {
// Compute: sizeof(void *) and sizeof(return type)
const uint64_t voidPtrSize = Ctx.getTypeSize(Ctx.VoidPtrTy);
const uint64_t returnTypeSize = Ctx.getTypeSize(CanRetTy);
if (voidPtrSize < returnTypeSize &&
!(supportsNilWithFloatRet(Ctx.Target.getTriple()) &&
(Ctx.FloatTy == CanRetTy ||
Ctx.DoubleTy == CanRetTy ||
Ctx.LongDoubleTy == CanRetTy ||
Ctx.LongLongTy == CanRetTy ||
Ctx.UnsignedLongLongTy == CanRetTy))) {
if (ExplodedNode* N = C.generateSink(state))
emitNilReceiverBug(C, ME, N);
return;
}
// Handle the safe cases where the return value is 0 if the
// receiver is nil.
//
// FIXME: For now take the conservative approach that we only
// return null values if we *know* that the receiver is nil.
// This is because we can have surprises like:
//
// ... = [[NSScreens screens] objectAtIndex:0];
//
// What can happen is that [... screens] could return nil, but
// it most likely isn't nil. We should assume the semantics
// of this case unless we have *a lot* more knowledge.
//
SVal V = C.getSValBuilder().makeZeroVal(ME->getType());
C.generateNode(state->BindExpr(ME, V));
return;
}
C.addTransition(state);
}