llvm-project/clang/lib/CodeGen/CGBuiltin.cpp

8938 lines
371 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Builtin calls as LLVM code.
//
//===----------------------------------------------------------------------===//
#include "CGCXXABI.h"
#include "CGObjCRuntime.h"
#include "CGOpenCLRuntime.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "TargetInfo.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/Analysis/Analyses/OSLog.h"
#include "clang/Basic/TargetBuiltins.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/CodeGen/CGFunctionInfo.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/MDBuilder.h"
#include <sstream>
using namespace clang;
using namespace CodeGen;
using namespace llvm;
static
int64_t clamp(int64_t Value, int64_t Low, int64_t High) {
return std::min(High, std::max(Low, Value));
}
/// getBuiltinLibFunction - Given a builtin id for a function like
/// "__builtin_fabsf", return a Function* for "fabsf".
llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
unsigned BuiltinID) {
assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
// Get the name, skip over the __builtin_ prefix (if necessary).
StringRef Name;
GlobalDecl D(FD);
// If the builtin has been declared explicitly with an assembler label,
// use the mangled name. This differs from the plain label on platforms
// that prefix labels.
if (FD->hasAttr<AsmLabelAttr>())
Name = getMangledName(D);
else
Name = Context.BuiltinInfo.getName(BuiltinID) + 10;
llvm::FunctionType *Ty =
cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
}
/// Emit the conversions required to turn the given value into an
/// integer of the given size.
static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
QualType T, llvm::IntegerType *IntType) {
V = CGF.EmitToMemory(V, T);
if (V->getType()->isPointerTy())
return CGF.Builder.CreatePtrToInt(V, IntType);
assert(V->getType() == IntType);
return V;
}
static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
QualType T, llvm::Type *ResultType) {
V = CGF.EmitFromMemory(V, T);
if (ResultType->isPointerTy())
return CGF.Builder.CreateIntToPtr(V, ResultType);
assert(V->getType() == ResultType);
return V;
}
/// Utility to insert an atomic instruction based on Instrinsic::ID
/// and the expression node.
static Value *MakeBinaryAtomicValue(CodeGenFunction &CGF,
llvm::AtomicRMWInst::BinOp Kind,
const CallExpr *E) {
QualType T = E->getType();
assert(E->getArg(0)->getType()->isPointerType());
assert(CGF.getContext().hasSameUnqualifiedType(T,
E->getArg(0)->getType()->getPointeeType()));
assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
llvm::IntegerType *IntType =
llvm::IntegerType::get(CGF.getLLVMContext(),
CGF.getContext().getTypeSize(T));
llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
llvm::Value *Args[2];
Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
Args[1] = CGF.EmitScalarExpr(E->getArg(1));
llvm::Type *ValueType = Args[1]->getType();
Args[1] = EmitToInt(CGF, Args[1], T, IntType);
llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent);
return EmitFromInt(CGF, Result, T, ValueType);
}
static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) {
Value *Val = CGF.EmitScalarExpr(E->getArg(0));
Value *Address = CGF.EmitScalarExpr(E->getArg(1));
// Convert the type of the pointer to a pointer to the stored type.
Val = CGF.EmitToMemory(Val, E->getArg(0)->getType());
Value *BC = CGF.Builder.CreateBitCast(
Address, llvm::PointerType::getUnqual(Val->getType()), "cast");
LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType());
LV.setNontemporal(true);
CGF.EmitStoreOfScalar(Val, LV, false);
return nullptr;
}
static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) {
Value *Address = CGF.EmitScalarExpr(E->getArg(0));
LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType());
LV.setNontemporal(true);
return CGF.EmitLoadOfScalar(LV, E->getExprLoc());
}
static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
llvm::AtomicRMWInst::BinOp Kind,
const CallExpr *E) {
return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E));
}
/// Utility to insert an atomic instruction based Instrinsic::ID and
/// the expression node, where the return value is the result of the
/// operation.
static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
llvm::AtomicRMWInst::BinOp Kind,
const CallExpr *E,
Instruction::BinaryOps Op,
bool Invert = false) {
QualType T = E->getType();
assert(E->getArg(0)->getType()->isPointerType());
assert(CGF.getContext().hasSameUnqualifiedType(T,
E->getArg(0)->getType()->getPointeeType()));
assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
llvm::IntegerType *IntType =
llvm::IntegerType::get(CGF.getLLVMContext(),
CGF.getContext().getTypeSize(T));
llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
llvm::Value *Args[2];
Args[1] = CGF.EmitScalarExpr(E->getArg(1));
llvm::Type *ValueType = Args[1]->getType();
Args[1] = EmitToInt(CGF, Args[1], T, IntType);
Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent);
Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
if (Invert)
Result = CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
llvm::ConstantInt::get(IntType, -1));
Result = EmitFromInt(CGF, Result, T, ValueType);
return RValue::get(Result);
}
/// @brief Utility to insert an atomic cmpxchg instruction.
///
/// @param CGF The current codegen function.
/// @param E Builtin call expression to convert to cmpxchg.
/// arg0 - address to operate on
/// arg1 - value to compare with
/// arg2 - new value
/// @param ReturnBool Specifies whether to return success flag of
/// cmpxchg result or the old value.
///
/// @returns result of cmpxchg, according to ReturnBool
static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E,
bool ReturnBool) {
QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType();
llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
llvm::IntegerType *IntType = llvm::IntegerType::get(
CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
Value *Args[3];
Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
Args[1] = CGF.EmitScalarExpr(E->getArg(1));
llvm::Type *ValueType = Args[1]->getType();
Args[1] = EmitToInt(CGF, Args[1], T, IntType);
Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
Value *Pair = CGF.Builder.CreateAtomicCmpXchg(
Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent,
llvm::AtomicOrdering::SequentiallyConsistent);
if (ReturnBool)
// Extract boolean success flag and zext it to int.
return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1),
CGF.ConvertType(E->getType()));
else
// Extract old value and emit it using the same type as compare value.
return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T,
ValueType);
}
// Emit a simple mangled intrinsic that has 1 argument and a return type
// matching the argument type.
static Value *emitUnaryBuiltin(CodeGenFunction &CGF,
const CallExpr *E,
unsigned IntrinsicID) {
llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
return CGF.Builder.CreateCall(F, Src0);
}
// Emit an intrinsic that has 2 operands of the same type as its result.
static Value *emitBinaryBuiltin(CodeGenFunction &CGF,
const CallExpr *E,
unsigned IntrinsicID) {
llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
return CGF.Builder.CreateCall(F, { Src0, Src1 });
}
// Emit an intrinsic that has 3 operands of the same type as its result.
static Value *emitTernaryBuiltin(CodeGenFunction &CGF,
const CallExpr *E,
unsigned IntrinsicID) {
llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
}
// Emit an intrinsic that has 1 float or double operand, and 1 integer.
static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
const CallExpr *E,
unsigned IntrinsicID) {
llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
return CGF.Builder.CreateCall(F, {Src0, Src1});
}
/// EmitFAbs - Emit a call to @llvm.fabs().
static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
Value *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
Call->setDoesNotAccessMemory();
return Call;
}
/// Emit the computation of the sign bit for a floating point value. Returns
/// the i1 sign bit value.
static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) {
LLVMContext &C = CGF.CGM.getLLVMContext();
llvm::Type *Ty = V->getType();
int Width = Ty->getPrimitiveSizeInBits();
llvm::Type *IntTy = llvm::IntegerType::get(C, Width);
V = CGF.Builder.CreateBitCast(V, IntTy);
if (Ty->isPPC_FP128Ty()) {
// We want the sign bit of the higher-order double. The bitcast we just
// did works as if the double-double was stored to memory and then
// read as an i128. The "store" will put the higher-order double in the
// lower address in both little- and big-Endian modes, but the "load"
// will treat those bits as a different part of the i128: the low bits in
// little-Endian, the high bits in big-Endian. Therefore, on big-Endian
// we need to shift the high bits down to the low before truncating.
Width >>= 1;
if (CGF.getTarget().isBigEndian()) {
Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width);
V = CGF.Builder.CreateLShr(V, ShiftCst);
}
// We are truncating value in order to extract the higher-order
// double, which we will be using to extract the sign from.
IntTy = llvm::IntegerType::get(C, Width);
V = CGF.Builder.CreateTrunc(V, IntTy);
}
Value *Zero = llvm::Constant::getNullValue(IntTy);
return CGF.Builder.CreateICmpSLT(V, Zero);
}
static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD,
const CallExpr *E, llvm::Constant *calleeValue) {
CGCallee callee = CGCallee::forDirect(calleeValue, FD);
return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot());
}
/// \brief Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
/// depending on IntrinsicID.
///
/// \arg CGF The current codegen function.
/// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
/// \arg X The first argument to the llvm.*.with.overflow.*.
/// \arg Y The second argument to the llvm.*.with.overflow.*.
/// \arg Carry The carry returned by the llvm.*.with.overflow.*.
/// \returns The result (i.e. sum/product) returned by the intrinsic.
static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
const llvm::Intrinsic::ID IntrinsicID,
llvm::Value *X, llvm::Value *Y,
llvm::Value *&Carry) {
// Make sure we have integers of the same width.
assert(X->getType() == Y->getType() &&
"Arguments must be the same type. (Did you forget to make sure both "
"arguments have the same integer width?)");
llvm::Value *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y});
Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
return CGF.Builder.CreateExtractValue(Tmp, 0);
}
static Value *emitRangedBuiltin(CodeGenFunction &CGF,
unsigned IntrinsicID,
int low, int high) {
llvm::MDBuilder MDHelper(CGF.getLLVMContext());
llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high));
Value *F = CGF.CGM.getIntrinsic(IntrinsicID, {});
llvm::Instruction *Call = CGF.Builder.CreateCall(F);
Call->setMetadata(llvm::LLVMContext::MD_range, RNode);
return Call;
}
namespace {
struct WidthAndSignedness {
unsigned Width;
bool Signed;
};
}
static WidthAndSignedness
getIntegerWidthAndSignedness(const clang::ASTContext &context,
const clang::QualType Type) {
assert(Type->isIntegerType() && "Given type is not an integer.");
unsigned Width = Type->isBooleanType() ? 1 : context.getTypeInfo(Type).Width;
bool Signed = Type->isSignedIntegerType();
return {Width, Signed};
}
// Given one or more integer types, this function produces an integer type that
// encompasses them: any value in one of the given types could be expressed in
// the encompassing type.
static struct WidthAndSignedness
EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
assert(Types.size() > 0 && "Empty list of types.");
// If any of the given types is signed, we must return a signed type.
bool Signed = false;
for (const auto &Type : Types) {
Signed |= Type.Signed;
}
// The encompassing type must have a width greater than or equal to the width
// of the specified types. Aditionally, if the encompassing type is signed,
// its width must be strictly greater than the width of any unsigned types
// given.
unsigned Width = 0;
for (const auto &Type : Types) {
unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
if (Width < MinWidth) {
Width = MinWidth;
}
}
return {Width, Signed};
}
Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) {
llvm::Type *DestType = Int8PtrTy;
if (ArgValue->getType() != DestType)
ArgValue =
Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data());
Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend;
return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue);
}
/// Checks if using the result of __builtin_object_size(p, @p From) in place of
/// __builtin_object_size(p, @p To) is correct
static bool areBOSTypesCompatible(int From, int To) {
// Note: Our __builtin_object_size implementation currently treats Type=0 and
// Type=2 identically. Encoding this implementation detail here may make
// improving __builtin_object_size difficult in the future, so it's omitted.
return From == To || (From == 0 && To == 1) || (From == 3 && To == 2);
}
static llvm::Value *
getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) {
return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true);
}
llvm::Value *
CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
llvm::IntegerType *ResType) {
uint64_t ObjectSize;
if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type))
return emitBuiltinObjectSize(E, Type, ResType);
return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true);
}
/// Returns a Value corresponding to the size of the given expression.
/// This Value may be either of the following:
/// - A llvm::Argument (if E is a param with the pass_object_size attribute on
/// it)
/// - A call to the @llvm.objectsize intrinsic
llvm::Value *
CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type,
llvm::IntegerType *ResType) {
// We need to reference an argument if the pointer is a parameter with the
// pass_object_size attribute.
if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
auto *Param = dyn_cast<ParmVarDecl>(D->getDecl());
auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>();
if (Param != nullptr && PS != nullptr &&
areBOSTypesCompatible(PS->getType(), Type)) {
auto Iter = SizeArguments.find(Param);
assert(Iter != SizeArguments.end());
const ImplicitParamDecl *D = Iter->second;
auto DIter = LocalDeclMap.find(D);
assert(DIter != LocalDeclMap.end());
return EmitLoadOfScalar(DIter->second, /*volatile=*/false,
getContext().getSizeType(), E->getLocStart());
}
}
// LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't
// evaluate E for side-effects. In either case, we shouldn't lower to
// @llvm.objectsize.
if (Type == 3 || E->HasSideEffects(getContext()))
return getDefaultBuiltinObjectSizeResult(Type, ResType);
// LLVM only supports 0 and 2, make sure that we pass along that
// as a boolean.
auto *CI = ConstantInt::get(Builder.getInt1Ty(), (Type & 2) >> 1);
// FIXME: Get right address space.
llvm::Type *Tys[] = {ResType, Builder.getInt8PtrTy(0)};
Value *F = CGM.getIntrinsic(Intrinsic::objectsize, Tys);
return Builder.CreateCall(F, {EmitScalarExpr(E), CI});
}
// Many of MSVC builtins are on both x64 and ARM; to avoid repeating code, we
// handle them here.
enum class CodeGenFunction::MSVCIntrin {
_BitScanForward,
_BitScanReverse,
_InterlockedAnd,
_InterlockedDecrement,
_InterlockedExchange,
_InterlockedExchangeAdd,
_InterlockedExchangeSub,
_InterlockedIncrement,
_InterlockedOr,
_InterlockedXor,
};
Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,
const CallExpr *E) {
switch (BuiltinID) {
case MSVCIntrin::_BitScanForward:
case MSVCIntrin::_BitScanReverse: {
Value *ArgValue = EmitScalarExpr(E->getArg(1));
llvm::Type *ArgType = ArgValue->getType();
llvm::Type *IndexType =
EmitScalarExpr(E->getArg(0))->getType()->getPointerElementType();
llvm::Type *ResultType = ConvertType(E->getType());
Value *ArgZero = llvm::Constant::getNullValue(ArgType);
Value *ResZero = llvm::Constant::getNullValue(ResultType);
Value *ResOne = llvm::ConstantInt::get(ResultType, 1);
BasicBlock *Begin = Builder.GetInsertBlock();
BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn);
Builder.SetInsertPoint(End);
PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result");
Builder.SetInsertPoint(Begin);
Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero);
BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn);
Builder.CreateCondBr(IsZero, End, NotZero);
Result->addIncoming(ResZero, Begin);
Builder.SetInsertPoint(NotZero);
Address IndexAddress = EmitPointerWithAlignment(E->getArg(0));
if (BuiltinID == MSVCIntrin::_BitScanForward) {
Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
Builder.CreateStore(ZeroCount, IndexAddress, false);
} else {
unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1);
Value *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount);
Builder.CreateStore(Index, IndexAddress, false);
}
Builder.CreateBr(End);
Result->addIncoming(ResOne, NotZero);
Builder.SetInsertPoint(End);
return Result;
}
case MSVCIntrin::_InterlockedAnd:
return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E);
case MSVCIntrin::_InterlockedExchange:
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E);
case MSVCIntrin::_InterlockedExchangeAdd:
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E);
case MSVCIntrin::_InterlockedExchangeSub:
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E);
case MSVCIntrin::_InterlockedOr:
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E);
case MSVCIntrin::_InterlockedXor:
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E);
case MSVCIntrin::_InterlockedDecrement: {
llvm::Type *IntTy = ConvertType(E->getType());
AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
AtomicRMWInst::Sub,
EmitScalarExpr(E->getArg(0)),
ConstantInt::get(IntTy, 1),
llvm::AtomicOrdering::SequentiallyConsistent);
return Builder.CreateSub(RMWI, ConstantInt::get(IntTy, 1));
}
case MSVCIntrin::_InterlockedIncrement: {
llvm::Type *IntTy = ConvertType(E->getType());
AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
AtomicRMWInst::Add,
EmitScalarExpr(E->getArg(0)),
ConstantInt::get(IntTy, 1),
llvm::AtomicOrdering::SequentiallyConsistent);
return Builder.CreateAdd(RMWI, ConstantInt::get(IntTy, 1));
}
}
llvm_unreachable("Incorrect MSVC intrinsic!");
}
namespace {
// ARC cleanup for __builtin_os_log_format
struct CallObjCArcUse final : EHScopeStack::Cleanup {
CallObjCArcUse(llvm::Value *object) : object(object) {}
llvm::Value *object;
void Emit(CodeGenFunction &CGF, Flags flags) override {
CGF.EmitARCIntrinsicUse(object);
}
};
}
RValue CodeGenFunction::EmitBuiltinExpr(const FunctionDecl *FD,
unsigned BuiltinID, const CallExpr *E,
ReturnValueSlot ReturnValue) {
// See if we can constant fold this builtin. If so, don't emit it at all.
Expr::EvalResult Result;
if (E->EvaluateAsRValue(Result, CGM.getContext()) &&
!Result.hasSideEffects()) {
if (Result.Val.isInt())
return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
Result.Val.getInt()));
if (Result.Val.isFloat())
return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
Result.Val.getFloat()));
}
switch (BuiltinID) {
default: break; // Handle intrinsics and libm functions below.
case Builtin::BI__builtin___CFStringMakeConstantString:
case Builtin::BI__builtin___NSStringMakeConstantString:
return RValue::get(CGM.EmitConstantExpr(E, E->getType(), nullptr));
case Builtin::BI__builtin_stdarg_start:
case Builtin::BI__builtin_va_start:
case Builtin::BI__va_start:
case Builtin::BI__builtin_va_end:
return RValue::get(
EmitVAStartEnd(BuiltinID == Builtin::BI__va_start
? EmitScalarExpr(E->getArg(0))
: EmitVAListRef(E->getArg(0)).getPointer(),
BuiltinID != Builtin::BI__builtin_va_end));
case Builtin::BI__builtin_va_copy: {
Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer();
Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer();
llvm::Type *Type = Int8PtrTy;
DstPtr = Builder.CreateBitCast(DstPtr, Type);
SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy),
{DstPtr, SrcPtr}));
}
case Builtin::BI__builtin_abs:
case Builtin::BI__builtin_labs:
case Builtin::BI__builtin_llabs: {
Value *ArgValue = EmitScalarExpr(E->getArg(0));
Value *NegOp = Builder.CreateNeg(ArgValue, "neg");
Value *CmpResult =
Builder.CreateICmpSGE(ArgValue,
llvm::Constant::getNullValue(ArgValue->getType()),
"abscond");
Value *Result =
Builder.CreateSelect(CmpResult, ArgValue, NegOp, "abs");
return RValue::get(Result);
}
case Builtin::BI__builtin_fabs:
case Builtin::BI__builtin_fabsf:
case Builtin::BI__builtin_fabsl: {
return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs));
}
case Builtin::BI__builtin_fmod:
case Builtin::BI__builtin_fmodf:
case Builtin::BI__builtin_fmodl: {
Value *Arg1 = EmitScalarExpr(E->getArg(0));
Value *Arg2 = EmitScalarExpr(E->getArg(1));
Value *Result = Builder.CreateFRem(Arg1, Arg2, "fmod");
return RValue::get(Result);
}
case Builtin::BI__builtin_copysign:
case Builtin::BI__builtin_copysignf:
case Builtin::BI__builtin_copysignl: {
return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign));
}
case Builtin::BI__builtin_ceil:
case Builtin::BI__builtin_ceilf:
case Builtin::BI__builtin_ceill: {
return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::ceil));
}
case Builtin::BI__builtin_floor:
case Builtin::BI__builtin_floorf:
case Builtin::BI__builtin_floorl: {
return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::floor));
}
case Builtin::BI__builtin_trunc:
case Builtin::BI__builtin_truncf:
case Builtin::BI__builtin_truncl: {
return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::trunc));
}
case Builtin::BI__builtin_rint:
case Builtin::BI__builtin_rintf:
case Builtin::BI__builtin_rintl: {
return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::rint));
}
case Builtin::BI__builtin_nearbyint:
case Builtin::BI__builtin_nearbyintf:
case Builtin::BI__builtin_nearbyintl: {
return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::nearbyint));
}
case Builtin::BI__builtin_round:
case Builtin::BI__builtin_roundf:
case Builtin::BI__builtin_roundl: {
return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::round));
}
case Builtin::BI__builtin_fmin:
case Builtin::BI__builtin_fminf:
case Builtin::BI__builtin_fminl: {
return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::minnum));
}
case Builtin::BI__builtin_fmax:
case Builtin::BI__builtin_fmaxf:
case Builtin::BI__builtin_fmaxl: {
return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::maxnum));
}
case Builtin::BI__builtin_conj:
case Builtin::BI__builtin_conjf:
case Builtin::BI__builtin_conjl: {
ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
Value *Real = ComplexVal.first;
Value *Imag = ComplexVal.second;
Value *Zero =
Imag->getType()->isFPOrFPVectorTy()
? llvm::ConstantFP::getZeroValueForNegation(Imag->getType())
: llvm::Constant::getNullValue(Imag->getType());
Imag = Builder.CreateFSub(Zero, Imag, "sub");
return RValue::getComplex(std::make_pair(Real, Imag));
}
case Builtin::BI__builtin_creal:
case Builtin::BI__builtin_crealf:
case Builtin::BI__builtin_creall:
case Builtin::BIcreal:
case Builtin::BIcrealf:
case Builtin::BIcreall: {
ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
return RValue::get(ComplexVal.first);
}
case Builtin::BI__builtin_cimag:
case Builtin::BI__builtin_cimagf:
case Builtin::BI__builtin_cimagl:
case Builtin::BIcimag:
case Builtin::BIcimagf:
case Builtin::BIcimagl: {
ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
return RValue::get(ComplexVal.second);
}
case Builtin::BI__builtin_ctzs:
case Builtin::BI__builtin_ctz:
case Builtin::BI__builtin_ctzl:
case Builtin::BI__builtin_ctzll: {
Value *ArgValue = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = ArgValue->getType();
Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
llvm::Type *ResultType = ConvertType(E->getType());
Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
if (Result->getType() != ResultType)
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
"cast");
return RValue::get(Result);
}
case Builtin::BI__builtin_clzs:
case Builtin::BI__builtin_clz:
case Builtin::BI__builtin_clzl:
case Builtin::BI__builtin_clzll: {
Value *ArgValue = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = ArgValue->getType();
Value *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
llvm::Type *ResultType = ConvertType(E->getType());
Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
if (Result->getType() != ResultType)
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
"cast");
return RValue::get(Result);
}
case Builtin::BI__builtin_ffs:
case Builtin::BI__builtin_ffsl:
case Builtin::BI__builtin_ffsll: {
// ffs(x) -> x ? cttz(x) + 1 : 0
Value *ArgValue = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = ArgValue->getType();
Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
llvm::Type *ResultType = ConvertType(E->getType());
Value *Tmp =
Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}),
llvm::ConstantInt::get(ArgType, 1));
Value *Zero = llvm::Constant::getNullValue(ArgType);
Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
if (Result->getType() != ResultType)
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
"cast");
return RValue::get(Result);
}
case Builtin::BI__builtin_parity:
case Builtin::BI__builtin_parityl:
case Builtin::BI__builtin_parityll: {
// parity(x) -> ctpop(x) & 1
Value *ArgValue = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = ArgValue->getType();
Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
llvm::Type *ResultType = ConvertType(E->getType());
Value *Tmp = Builder.CreateCall(F, ArgValue);
Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
if (Result->getType() != ResultType)
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
"cast");
return RValue::get(Result);
}
case Builtin::BI__popcnt16:
case Builtin::BI__popcnt:
case Builtin::BI__popcnt64:
case Builtin::BI__builtin_popcount:
case Builtin::BI__builtin_popcountl:
case Builtin::BI__builtin_popcountll: {
Value *ArgValue = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = ArgValue->getType();
Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
llvm::Type *ResultType = ConvertType(E->getType());
Value *Result = Builder.CreateCall(F, ArgValue);
if (Result->getType() != ResultType)
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
"cast");
return RValue::get(Result);
}
case Builtin::BI_rotr8:
case Builtin::BI_rotr16:
case Builtin::BI_rotr:
case Builtin::BI_lrotr:
case Builtin::BI_rotr64: {
Value *Val = EmitScalarExpr(E->getArg(0));
Value *Shift = EmitScalarExpr(E->getArg(1));
llvm::Type *ArgType = Val->getType();
Shift = Builder.CreateIntCast(Shift, ArgType, false);
unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
Value *ArgTypeSize = llvm::ConstantInt::get(ArgType, ArgWidth);
Value *ArgZero = llvm::Constant::getNullValue(ArgType);
Value *Mask = llvm::ConstantInt::get(ArgType, ArgWidth - 1);
Shift = Builder.CreateAnd(Shift, Mask);
Value *LeftShift = Builder.CreateSub(ArgTypeSize, Shift);
Value *RightShifted = Builder.CreateLShr(Val, Shift);
Value *LeftShifted = Builder.CreateShl(Val, LeftShift);
Value *Rotated = Builder.CreateOr(LeftShifted, RightShifted);
Value *ShiftIsZero = Builder.CreateICmpEQ(Shift, ArgZero);
Value *Result = Builder.CreateSelect(ShiftIsZero, Val, Rotated);
return RValue::get(Result);
}
case Builtin::BI_rotl8:
case Builtin::BI_rotl16:
case Builtin::BI_rotl:
case Builtin::BI_lrotl:
case Builtin::BI_rotl64: {
Value *Val = EmitScalarExpr(E->getArg(0));
Value *Shift = EmitScalarExpr(E->getArg(1));
llvm::Type *ArgType = Val->getType();
Shift = Builder.CreateIntCast(Shift, ArgType, false);
unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
Value *ArgTypeSize = llvm::ConstantInt::get(ArgType, ArgWidth);
Value *ArgZero = llvm::Constant::getNullValue(ArgType);
Value *Mask = llvm::ConstantInt::get(ArgType, ArgWidth - 1);
Shift = Builder.CreateAnd(Shift, Mask);
Value *RightShift = Builder.CreateSub(ArgTypeSize, Shift);
Value *LeftShifted = Builder.CreateShl(Val, Shift);
Value *RightShifted = Builder.CreateLShr(Val, RightShift);
Value *Rotated = Builder.CreateOr(LeftShifted, RightShifted);
Value *ShiftIsZero = Builder.CreateICmpEQ(Shift, ArgZero);
Value *Result = Builder.CreateSelect(ShiftIsZero, Val, Rotated);
return RValue::get(Result);
}
case Builtin::BI__builtin_unpredictable: {
// Always return the argument of __builtin_unpredictable. LLVM does not
// handle this builtin. Metadata for this builtin should be added directly
// to instructions such as branches or switches that use it.
return RValue::get(EmitScalarExpr(E->getArg(0)));
}
case Builtin::BI__builtin_expect: {
Value *ArgValue = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = ArgValue->getType();
Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
// Don't generate llvm.expect on -O0 as the backend won't use it for
// anything.
// Note, we still IRGen ExpectedValue because it could have side-effects.
if (CGM.getCodeGenOpts().OptimizationLevel == 0)
return RValue::get(ArgValue);
Value *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
Value *Result =
Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval");
return RValue::get(Result);
}
case Builtin::BI__builtin_assume_aligned: {
Value *PtrValue = EmitScalarExpr(E->getArg(0));
Value *OffsetValue =
(E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
unsigned Alignment = (unsigned) AlignmentCI->getZExtValue();
EmitAlignmentAssumption(PtrValue, Alignment, OffsetValue);
return RValue::get(PtrValue);
}
case Builtin::BI__assume:
case Builtin::BI__builtin_assume: {
if (E->getArg(0)->HasSideEffects(getContext()))
return RValue::get(nullptr);
Value *ArgValue = EmitScalarExpr(E->getArg(0));
Value *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
return RValue::get(Builder.CreateCall(FnAssume, ArgValue));
}
case Builtin::BI__builtin_bswap16:
case Builtin::BI__builtin_bswap32:
case Builtin::BI__builtin_bswap64: {
return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap));
}
case Builtin::BI__builtin_bitreverse8:
case Builtin::BI__builtin_bitreverse16:
case Builtin::BI__builtin_bitreverse32:
case Builtin::BI__builtin_bitreverse64: {
return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse));
}
case Builtin::BI__builtin_object_size: {
unsigned Type =
E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue();
auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType()));
// We pass this builtin onto the optimizer so that it can figure out the
// object size in more complex cases.
return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType));
}
case Builtin::BI__builtin_prefetch: {
Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
// FIXME: Technically these constants should of type 'int', yes?
RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
llvm::ConstantInt::get(Int32Ty, 0);
Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
llvm::ConstantInt::get(Int32Ty, 3);
Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data}));
}
case Builtin::BI__builtin_readcyclecounter: {
Value *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
return RValue::get(Builder.CreateCall(F));
}
case Builtin::BI__builtin___clear_cache: {
Value *Begin = EmitScalarExpr(E->getArg(0));
Value *End = EmitScalarExpr(E->getArg(1));
Value *F = CGM.getIntrinsic(Intrinsic::clear_cache);
return RValue::get(Builder.CreateCall(F, {Begin, End}));
}
case Builtin::BI__builtin_trap:
return RValue::get(EmitTrapCall(Intrinsic::trap));
case Builtin::BI__debugbreak:
return RValue::get(EmitTrapCall(Intrinsic::debugtrap));
case Builtin::BI__builtin_unreachable: {
if (SanOpts.has(SanitizerKind::Unreachable)) {
SanitizerScope SanScope(this);
EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
SanitizerKind::Unreachable),
SanitizerHandler::BuiltinUnreachable,
EmitCheckSourceLocation(E->getExprLoc()), None);
} else
Builder.CreateUnreachable();
// We do need to preserve an insertion point.
EmitBlock(createBasicBlock("unreachable.cont"));
return RValue::get(nullptr);
}
case Builtin::BI__builtin_powi:
case Builtin::BI__builtin_powif:
case Builtin::BI__builtin_powil: {
Value *Base = EmitScalarExpr(E->getArg(0));
Value *Exponent = EmitScalarExpr(E->getArg(1));
llvm::Type *ArgType = Base->getType();
Value *F = CGM.getIntrinsic(Intrinsic::powi, ArgType);
return RValue::get(Builder.CreateCall(F, {Base, Exponent}));
}
case Builtin::BI__builtin_isgreater:
case Builtin::BI__builtin_isgreaterequal:
case Builtin::BI__builtin_isless:
case Builtin::BI__builtin_islessequal:
case Builtin::BI__builtin_islessgreater:
case Builtin::BI__builtin_isunordered: {
// Ordered comparisons: we know the arguments to these are matching scalar
// floating point values.
Value *LHS = EmitScalarExpr(E->getArg(0));
Value *RHS = EmitScalarExpr(E->getArg(1));
switch (BuiltinID) {
default: llvm_unreachable("Unknown ordered comparison");
case Builtin::BI__builtin_isgreater:
LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
break;
case Builtin::BI__builtin_isgreaterequal:
LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
break;
case Builtin::BI__builtin_isless:
LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
break;
case Builtin::BI__builtin_islessequal:
LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
break;
case Builtin::BI__builtin_islessgreater:
LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
break;
case Builtin::BI__builtin_isunordered:
LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
break;
}
// ZExt bool to int type.
return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
}
case Builtin::BI__builtin_isnan: {
Value *V = EmitScalarExpr(E->getArg(0));
V = Builder.CreateFCmpUNO(V, V, "cmp");
return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
}
case Builtin::BIfinite:
case Builtin::BI__finite:
case Builtin::BIfinitef:
case Builtin::BI__finitef:
case Builtin::BIfinitel:
case Builtin::BI__finitel:
case Builtin::BI__builtin_isinf:
case Builtin::BI__builtin_isfinite: {
// isinf(x) --> fabs(x) == infinity
// isfinite(x) --> fabs(x) != infinity
// x != NaN via the ordered compare in either case.
Value *V = EmitScalarExpr(E->getArg(0));
Value *Fabs = EmitFAbs(*this, V);
Constant *Infinity = ConstantFP::getInfinity(V->getType());
CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf)
? CmpInst::FCMP_OEQ
: CmpInst::FCMP_ONE;
Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf");
return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType())));
}
case Builtin::BI__builtin_isinf_sign: {
// isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
Value *Arg = EmitScalarExpr(E->getArg(0));
Value *AbsArg = EmitFAbs(*this, Arg);
Value *IsInf = Builder.CreateFCmpOEQ(
AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf");
Value *IsNeg = EmitSignBit(*this, Arg);
llvm::Type *IntTy = ConvertType(E->getType());
Value *Zero = Constant::getNullValue(IntTy);
Value *One = ConstantInt::get(IntTy, 1);
Value *NegativeOne = ConstantInt::get(IntTy, -1);
Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One);
Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero);
return RValue::get(Result);
}
case Builtin::BI__builtin_isnormal: {
// isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
Value *V = EmitScalarExpr(E->getArg(0));
Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
Value *Abs = EmitFAbs(*this, V);
Value *IsLessThanInf =
Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
APFloat Smallest = APFloat::getSmallestNormalized(
getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
Value *IsNormal =
Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
"isnormal");
V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
V = Builder.CreateAnd(V, IsNormal, "and");
return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
}
case Builtin::BI__builtin_fpclassify: {
Value *V = EmitScalarExpr(E->getArg(5));
llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
// Create Result
BasicBlock *Begin = Builder.GetInsertBlock();
BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
Builder.SetInsertPoint(End);
PHINode *Result =
Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
"fpclassify_result");
// if (V==0) return FP_ZERO
Builder.SetInsertPoint(Begin);
Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
"iszero");
Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
Builder.CreateCondBr(IsZero, End, NotZero);
Result->addIncoming(ZeroLiteral, Begin);
// if (V != V) return FP_NAN
Builder.SetInsertPoint(NotZero);
Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
Value *NanLiteral = EmitScalarExpr(E->getArg(0));
BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
Builder.CreateCondBr(IsNan, End, NotNan);
Result->addIncoming(NanLiteral, NotZero);
// if (fabs(V) == infinity) return FP_INFINITY
Builder.SetInsertPoint(NotNan);
Value *VAbs = EmitFAbs(*this, V);
Value *IsInf =
Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
"isinf");
Value *InfLiteral = EmitScalarExpr(E->getArg(1));
BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
Builder.CreateCondBr(IsInf, End, NotInf);
Result->addIncoming(InfLiteral, NotNan);
// if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
Builder.SetInsertPoint(NotInf);
APFloat Smallest = APFloat::getSmallestNormalized(
getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
Value *IsNormal =
Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
"isnormal");
Value *NormalResult =
Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
EmitScalarExpr(E->getArg(3)));
Builder.CreateBr(End);
Result->addIncoming(NormalResult, NotInf);
// return Result
Builder.SetInsertPoint(End);
return RValue::get(Result);
}
case Builtin::BIalloca:
case Builtin::BI_alloca:
case Builtin::BI__builtin_alloca: {
Value *Size = EmitScalarExpr(E->getArg(0));
const TargetInfo &TI = getContext().getTargetInfo();
// The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__.
unsigned SuitableAlignmentInBytes =
CGM.getContext()
.toCharUnitsFromBits(TI.getSuitableAlign())
.getQuantity();
AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
AI->setAlignment(SuitableAlignmentInBytes);
return RValue::get(AI);
}
case Builtin::BI__builtin_alloca_with_align: {
Value *Size = EmitScalarExpr(E->getArg(0));
Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1));
auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue);
unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue();
unsigned AlignmentInBytes =
CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getQuantity();
AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
AI->setAlignment(AlignmentInBytes);
return RValue::get(AI);
}
case Builtin::BIbzero:
case Builtin::BI__builtin_bzero: {
Address Dest = EmitPointerWithAlignment(E->getArg(0));
Value *SizeVal = EmitScalarExpr(E->getArg(1));
EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
E->getArg(0)->getExprLoc(), FD, 0);
Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false);
return RValue::get(Dest.getPointer());
}
case Builtin::BImemcpy:
case Builtin::BI__builtin_memcpy: {
Address Dest = EmitPointerWithAlignment(E->getArg(0));
Address Src = EmitPointerWithAlignment(E->getArg(1));
Value *SizeVal = EmitScalarExpr(E->getArg(2));
EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
E->getArg(0)->getExprLoc(), FD, 0);
EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
E->getArg(1)->getExprLoc(), FD, 1);
Builder.CreateMemCpy(Dest, Src, SizeVal, false);
return RValue::get(Dest.getPointer());
}
case Builtin::BI__builtin_char_memchr:
BuiltinID = Builtin::BI__builtin_memchr;
break;
case Builtin::BI__builtin___memcpy_chk: {
// fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
llvm::APSInt Size, DstSize;
if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
!E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
break;
if (Size.ugt(DstSize))
break;
Address Dest = EmitPointerWithAlignment(E->getArg(0));
Address Src = EmitPointerWithAlignment(E->getArg(1));
Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
Builder.CreateMemCpy(Dest, Src, SizeVal, false);
return RValue::get(Dest.getPointer());
}
case Builtin::BI__builtin_objc_memmove_collectable: {
Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
Address SrcAddr = EmitPointerWithAlignment(E->getArg(1));
Value *SizeVal = EmitScalarExpr(E->getArg(2));
CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
DestAddr, SrcAddr, SizeVal);
return RValue::get(DestAddr.getPointer());
}
case Builtin::BI__builtin___memmove_chk: {
// fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
llvm::APSInt Size, DstSize;
if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
!E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
break;
if (Size.ugt(DstSize))
break;
Address Dest = EmitPointerWithAlignment(E->getArg(0));
Address Src = EmitPointerWithAlignment(E->getArg(1));
Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
Builder.CreateMemMove(Dest, Src, SizeVal, false);
return RValue::get(Dest.getPointer());
}
case Builtin::BImemmove:
case Builtin::BI__builtin_memmove: {
Address Dest = EmitPointerWithAlignment(E->getArg(0));
Address Src = EmitPointerWithAlignment(E->getArg(1));
Value *SizeVal = EmitScalarExpr(E->getArg(2));
EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
E->getArg(0)->getExprLoc(), FD, 0);
EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
E->getArg(1)->getExprLoc(), FD, 1);
Builder.CreateMemMove(Dest, Src, SizeVal, false);
return RValue::get(Dest.getPointer());
}
case Builtin::BImemset:
case Builtin::BI__builtin_memset: {
Address Dest = EmitPointerWithAlignment(E->getArg(0));
Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
Builder.getInt8Ty());
Value *SizeVal = EmitScalarExpr(E->getArg(2));
EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
E->getArg(0)->getExprLoc(), FD, 0);
Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
return RValue::get(Dest.getPointer());
}
case Builtin::BI__builtin___memset_chk: {
// fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
llvm::APSInt Size, DstSize;
if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
!E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
break;
if (Size.ugt(DstSize))
break;
Address Dest = EmitPointerWithAlignment(E->getArg(0));
Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
Builder.getInt8Ty());
Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
return RValue::get(Dest.getPointer());
}
case Builtin::BI__builtin_dwarf_cfa: {
// The offset in bytes from the first argument to the CFA.
//
// Why on earth is this in the frontend? Is there any reason at
// all that the backend can't reasonably determine this while
// lowering llvm.eh.dwarf.cfa()?
//
// TODO: If there's a satisfactory reason, add a target hook for
// this instead of hard-coding 0, which is correct for most targets.
int32_t Offset = 0;
Value *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
return RValue::get(Builder.CreateCall(F,
llvm::ConstantInt::get(Int32Ty, Offset)));
}
case Builtin::BI__builtin_return_address: {
Value *Depth =
CGM.EmitConstantExpr(E->getArg(0), getContext().UnsignedIntTy, this);
Value *F = CGM.getIntrinsic(Intrinsic::returnaddress);
return RValue::get(Builder.CreateCall(F, Depth));
}
case Builtin::BI_ReturnAddress: {
Value *F = CGM.getIntrinsic(Intrinsic::returnaddress);
return RValue::get(Builder.CreateCall(F, Builder.getInt32(0)));
}
case Builtin::BI__builtin_frame_address: {
Value *Depth =
CGM.EmitConstantExpr(E->getArg(0), getContext().UnsignedIntTy, this);
Value *F = CGM.getIntrinsic(Intrinsic::frameaddress);
return RValue::get(Builder.CreateCall(F, Depth));
}
case Builtin::BI__builtin_extract_return_addr: {
Value *Address = EmitScalarExpr(E->getArg(0));
Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
return RValue::get(Result);
}
case Builtin::BI__builtin_frob_return_addr: {
Value *Address = EmitScalarExpr(E->getArg(0));
Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
return RValue::get(Result);
}
case Builtin::BI__builtin_dwarf_sp_column: {
llvm::IntegerType *Ty
= cast<llvm::IntegerType>(ConvertType(E->getType()));
int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
if (Column == -1) {
CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
return RValue::get(llvm::UndefValue::get(Ty));
}
return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
}
case Builtin::BI__builtin_init_dwarf_reg_size_table: {
Value *Address = EmitScalarExpr(E->getArg(0));
if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
}
case Builtin::BI__builtin_eh_return: {
Value *Int = EmitScalarExpr(E->getArg(0));
Value *Ptr = EmitScalarExpr(E->getArg(1));
llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
"LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
Value *F = CGM.getIntrinsic(IntTy->getBitWidth() == 32
? Intrinsic::eh_return_i32
: Intrinsic::eh_return_i64);
Builder.CreateCall(F, {Int, Ptr});
Builder.CreateUnreachable();
// We do need to preserve an insertion point.
EmitBlock(createBasicBlock("builtin_eh_return.cont"));
return RValue::get(nullptr);
}
case Builtin::BI__builtin_unwind_init: {
Value *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
return RValue::get(Builder.CreateCall(F));
}
case Builtin::BI__builtin_extend_pointer: {
// Extends a pointer to the size of an _Unwind_Word, which is
// uint64_t on all platforms. Generally this gets poked into a
// register and eventually used as an address, so if the
// addressing registers are wider than pointers and the platform
// doesn't implicitly ignore high-order bits when doing
// addressing, we need to make sure we zext / sext based on
// the platform's expectations.
//
// See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
// Cast the pointer to intptr_t.
Value *Ptr = EmitScalarExpr(E->getArg(0));
Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
// If that's 64 bits, we're done.
if (IntPtrTy->getBitWidth() == 64)
return RValue::get(Result);
// Otherwise, ask the codegen data what to do.
if (getTargetHooks().extendPointerWithSExt())
return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
else
return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
}
case Builtin::BI__builtin_setjmp: {
// Buffer is a void**.
Address Buf = EmitPointerWithAlignment(E->getArg(0));
// Store the frame pointer to the setjmp buffer.
Value *FrameAddr =
Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
ConstantInt::get(Int32Ty, 0));
Builder.CreateStore(FrameAddr, Buf);
// Store the stack pointer to the setjmp buffer.
Value *StackAddr =
Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
Address StackSaveSlot =
Builder.CreateConstInBoundsGEP(Buf, 2, getPointerSize());
Builder.CreateStore(StackAddr, StackSaveSlot);
// Call LLVM's EH setjmp, which is lightweight.
Value *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
return RValue::get(Builder.CreateCall(F, Buf.getPointer()));
}
case Builtin::BI__builtin_longjmp: {
Value *Buf = EmitScalarExpr(E->getArg(0));
Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
// Call LLVM's EH longjmp, which is lightweight.
Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
// longjmp doesn't return; mark this as unreachable.
Builder.CreateUnreachable();
// We do need to preserve an insertion point.
EmitBlock(createBasicBlock("longjmp.cont"));
return RValue::get(nullptr);
}
case Builtin::BI__sync_fetch_and_add:
case Builtin::BI__sync_fetch_and_sub:
case Builtin::BI__sync_fetch_and_or:
case Builtin::BI__sync_fetch_and_and:
case Builtin::BI__sync_fetch_and_xor:
case Builtin::BI__sync_fetch_and_nand:
case Builtin::BI__sync_add_and_fetch:
case Builtin::BI__sync_sub_and_fetch:
case Builtin::BI__sync_and_and_fetch:
case Builtin::BI__sync_or_and_fetch:
case Builtin::BI__sync_xor_and_fetch:
case Builtin::BI__sync_nand_and_fetch:
case Builtin::BI__sync_val_compare_and_swap:
case Builtin::BI__sync_bool_compare_and_swap:
case Builtin::BI__sync_lock_test_and_set:
case Builtin::BI__sync_lock_release:
case Builtin::BI__sync_swap:
llvm_unreachable("Shouldn't make it through sema");
case Builtin::BI__sync_fetch_and_add_1:
case Builtin::BI__sync_fetch_and_add_2:
case Builtin::BI__sync_fetch_and_add_4:
case Builtin::BI__sync_fetch_and_add_8:
case Builtin::BI__sync_fetch_and_add_16:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
case Builtin::BI__sync_fetch_and_sub_1:
case Builtin::BI__sync_fetch_and_sub_2:
case Builtin::BI__sync_fetch_and_sub_4:
case Builtin::BI__sync_fetch_and_sub_8:
case Builtin::BI__sync_fetch_and_sub_16:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
case Builtin::BI__sync_fetch_and_or_1:
case Builtin::BI__sync_fetch_and_or_2:
case Builtin::BI__sync_fetch_and_or_4:
case Builtin::BI__sync_fetch_and_or_8:
case Builtin::BI__sync_fetch_and_or_16:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
case Builtin::BI__sync_fetch_and_and_1:
case Builtin::BI__sync_fetch_and_and_2:
case Builtin::BI__sync_fetch_and_and_4:
case Builtin::BI__sync_fetch_and_and_8:
case Builtin::BI__sync_fetch_and_and_16:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
case Builtin::BI__sync_fetch_and_xor_1:
case Builtin::BI__sync_fetch_and_xor_2:
case Builtin::BI__sync_fetch_and_xor_4:
case Builtin::BI__sync_fetch_and_xor_8:
case Builtin::BI__sync_fetch_and_xor_16:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
case Builtin::BI__sync_fetch_and_nand_1:
case Builtin::BI__sync_fetch_and_nand_2:
case Builtin::BI__sync_fetch_and_nand_4:
case Builtin::BI__sync_fetch_and_nand_8:
case Builtin::BI__sync_fetch_and_nand_16:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
// Clang extensions: not overloaded yet.
case Builtin::BI__sync_fetch_and_min:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
case Builtin::BI__sync_fetch_and_max:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
case Builtin::BI__sync_fetch_and_umin:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
case Builtin::BI__sync_fetch_and_umax:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
case Builtin::BI__sync_add_and_fetch_1:
case Builtin::BI__sync_add_and_fetch_2:
case Builtin::BI__sync_add_and_fetch_4:
case Builtin::BI__sync_add_and_fetch_8:
case Builtin::BI__sync_add_and_fetch_16:
return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
llvm::Instruction::Add);
case Builtin::BI__sync_sub_and_fetch_1:
case Builtin::BI__sync_sub_and_fetch_2:
case Builtin::BI__sync_sub_and_fetch_4:
case Builtin::BI__sync_sub_and_fetch_8:
case Builtin::BI__sync_sub_and_fetch_16:
return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
llvm::Instruction::Sub);
case Builtin::BI__sync_and_and_fetch_1:
case Builtin::BI__sync_and_and_fetch_2:
case Builtin::BI__sync_and_and_fetch_4:
case Builtin::BI__sync_and_and_fetch_8:
case Builtin::BI__sync_and_and_fetch_16:
return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
llvm::Instruction::And);
case Builtin::BI__sync_or_and_fetch_1:
case Builtin::BI__sync_or_and_fetch_2:
case Builtin::BI__sync_or_and_fetch_4:
case Builtin::BI__sync_or_and_fetch_8:
case Builtin::BI__sync_or_and_fetch_16:
return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
llvm::Instruction::Or);
case Builtin::BI__sync_xor_and_fetch_1:
case Builtin::BI__sync_xor_and_fetch_2:
case Builtin::BI__sync_xor_and_fetch_4:
case Builtin::BI__sync_xor_and_fetch_8:
case Builtin::BI__sync_xor_and_fetch_16:
return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
llvm::Instruction::Xor);
case Builtin::BI__sync_nand_and_fetch_1:
case Builtin::BI__sync_nand_and_fetch_2:
case Builtin::BI__sync_nand_and_fetch_4:
case Builtin::BI__sync_nand_and_fetch_8:
case Builtin::BI__sync_nand_and_fetch_16:
return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
llvm::Instruction::And, true);
case Builtin::BI__sync_val_compare_and_swap_1:
case Builtin::BI__sync_val_compare_and_swap_2:
case Builtin::BI__sync_val_compare_and_swap_4:
case Builtin::BI__sync_val_compare_and_swap_8:
case Builtin::BI__sync_val_compare_and_swap_16:
return RValue::get(MakeAtomicCmpXchgValue(*this, E, false));
case Builtin::BI__sync_bool_compare_and_swap_1:
case Builtin::BI__sync_bool_compare_and_swap_2:
case Builtin::BI__sync_bool_compare_and_swap_4:
case Builtin::BI__sync_bool_compare_and_swap_8:
case Builtin::BI__sync_bool_compare_and_swap_16:
return RValue::get(MakeAtomicCmpXchgValue(*this, E, true));
case Builtin::BI__sync_swap_1:
case Builtin::BI__sync_swap_2:
case Builtin::BI__sync_swap_4:
case Builtin::BI__sync_swap_8:
case Builtin::BI__sync_swap_16:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
case Builtin::BI__sync_lock_test_and_set_1:
case Builtin::BI__sync_lock_test_and_set_2:
case Builtin::BI__sync_lock_test_and_set_4:
case Builtin::BI__sync_lock_test_and_set_8:
case Builtin::BI__sync_lock_test_and_set_16:
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
case Builtin::BI__sync_lock_release_1:
case Builtin::BI__sync_lock_release_2:
case Builtin::BI__sync_lock_release_4:
case Builtin::BI__sync_lock_release_8:
case Builtin::BI__sync_lock_release_16: {
Value *Ptr = EmitScalarExpr(E->getArg(0));
QualType ElTy = E->getArg(0)->getType()->getPointeeType();
CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
StoreSize.getQuantity() * 8);
Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
llvm::StoreInst *Store =
Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr,
StoreSize);
Store->setAtomic(llvm::AtomicOrdering::Release);
return RValue::get(nullptr);
}
case Builtin::BI__sync_synchronize: {
// We assume this is supposed to correspond to a C++0x-style
// sequentially-consistent fence (i.e. this is only usable for
// synchonization, not device I/O or anything like that). This intrinsic
// is really badly designed in the sense that in theory, there isn't
// any way to safely use it... but in practice, it mostly works
// to use it with non-atomic loads and stores to get acquire/release
// semantics.
Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent);
return RValue::get(nullptr);
}
case Builtin::BI__builtin_nontemporal_load:
return RValue::get(EmitNontemporalLoad(*this, E));
case Builtin::BI__builtin_nontemporal_store:
return RValue::get(EmitNontemporalStore(*this, E));
case Builtin::BI__c11_atomic_is_lock_free:
case Builtin::BI__atomic_is_lock_free: {
// Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
// __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
// _Atomic(T) is always properly-aligned.
const char *LibCallName = "__atomic_is_lock_free";
CallArgList Args;
Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
getContext().getSizeType());
if (BuiltinID == Builtin::BI__atomic_is_lock_free)
Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
getContext().VoidPtrTy);
else
Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
getContext().VoidPtrTy);
const CGFunctionInfo &FuncInfo =
CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args);
llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
return EmitCall(FuncInfo, CGCallee::forDirect(Func),
ReturnValueSlot(), Args);
}
case Builtin::BI__atomic_test_and_set: {
// Look at the argument type to determine whether this is a volatile
// operation. The parameter type is always volatile.
QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
bool Volatile =
PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
Value *Ptr = EmitScalarExpr(E->getArg(0));
unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
Value *NewVal = Builder.getInt8(1);
Value *Order = EmitScalarExpr(E->getArg(1));
if (isa<llvm::ConstantInt>(Order)) {
int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
AtomicRMWInst *Result = nullptr;
switch (ord) {
case 0: // memory_order_relaxed
default: // invalid order
Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
llvm::AtomicOrdering::Monotonic);
break;
case 1: // memory_order_consume
case 2: // memory_order_acquire
Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
llvm::AtomicOrdering::Acquire);
break;
case 3: // memory_order_release
Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
llvm::AtomicOrdering::Release);
break;
case 4: // memory_order_acq_rel
Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
llvm::AtomicOrdering::AcquireRelease);
break;
case 5: // memory_order_seq_cst
Result = Builder.CreateAtomicRMW(
llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
llvm::AtomicOrdering::SequentiallyConsistent);
break;
}
Result->setVolatile(Volatile);
return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
}
llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
llvm::BasicBlock *BBs[5] = {
createBasicBlock("monotonic", CurFn),
createBasicBlock("acquire", CurFn),
createBasicBlock("release", CurFn),
createBasicBlock("acqrel", CurFn),
createBasicBlock("seqcst", CurFn)
};
llvm::AtomicOrdering Orders[5] = {
llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire,
llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease,
llvm::AtomicOrdering::SequentiallyConsistent};
Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
Builder.SetInsertPoint(ContBB);
PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
for (unsigned i = 0; i < 5; ++i) {
Builder.SetInsertPoint(BBs[i]);
AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
Ptr, NewVal, Orders[i]);
RMW->setVolatile(Volatile);
Result->addIncoming(RMW, BBs[i]);
Builder.CreateBr(ContBB);
}
SI->addCase(Builder.getInt32(0), BBs[0]);
SI->addCase(Builder.getInt32(1), BBs[1]);
SI->addCase(Builder.getInt32(2), BBs[1]);
SI->addCase(Builder.getInt32(3), BBs[2]);
SI->addCase(Builder.getInt32(4), BBs[3]);
SI->addCase(Builder.getInt32(5), BBs[4]);
Builder.SetInsertPoint(ContBB);
return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
}
case Builtin::BI__atomic_clear: {
QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
bool Volatile =
PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
Address Ptr = EmitPointerWithAlignment(E->getArg(0));
unsigned AddrSpace = Ptr.getPointer()->getType()->getPointerAddressSpace();
Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
Value *NewVal = Builder.getInt8(0);
Value *Order = EmitScalarExpr(E->getArg(1));
if (isa<llvm::ConstantInt>(Order)) {
int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
switch (ord) {
case 0: // memory_order_relaxed
default: // invalid order
Store->setOrdering(llvm::AtomicOrdering::Monotonic);
break;
case 3: // memory_order_release
Store->setOrdering(llvm::AtomicOrdering::Release);
break;
case 5: // memory_order_seq_cst
Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent);
break;
}
return RValue::get(nullptr);
}
llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
llvm::BasicBlock *BBs[3] = {
createBasicBlock("monotonic", CurFn),
createBasicBlock("release", CurFn),
createBasicBlock("seqcst", CurFn)
};
llvm::AtomicOrdering Orders[3] = {
llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release,
llvm::AtomicOrdering::SequentiallyConsistent};
Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
for (unsigned i = 0; i < 3; ++i) {
Builder.SetInsertPoint(BBs[i]);
StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
Store->setOrdering(Orders[i]);
Builder.CreateBr(ContBB);
}
SI->addCase(Builder.getInt32(0), BBs[0]);
SI->addCase(Builder.getInt32(3), BBs[1]);
SI->addCase(Builder.getInt32(5), BBs[2]);
Builder.SetInsertPoint(ContBB);
return RValue::get(nullptr);
}
case Builtin::BI__atomic_thread_fence:
case Builtin::BI__atomic_signal_fence:
case Builtin::BI__c11_atomic_thread_fence:
case Builtin::BI__c11_atomic_signal_fence: {
llvm::SynchronizationScope Scope;
if (BuiltinID == Builtin::BI__atomic_signal_fence ||
BuiltinID == Builtin::BI__c11_atomic_signal_fence)
Scope = llvm::SingleThread;
else
Scope = llvm::CrossThread;
Value *Order = EmitScalarExpr(E->getArg(0));
if (isa<llvm::ConstantInt>(Order)) {
int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
switch (ord) {
case 0: // memory_order_relaxed
default: // invalid order
break;
case 1: // memory_order_consume
case 2: // memory_order_acquire
Builder.CreateFence(llvm::AtomicOrdering::Acquire, Scope);
break;
case 3: // memory_order_release
Builder.CreateFence(llvm::AtomicOrdering::Release, Scope);
break;
case 4: // memory_order_acq_rel
Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, Scope);
break;
case 5: // memory_order_seq_cst
Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
Scope);
break;
}
return RValue::get(nullptr);
}
llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
AcquireBB = createBasicBlock("acquire", CurFn);
ReleaseBB = createBasicBlock("release", CurFn);
AcqRelBB = createBasicBlock("acqrel", CurFn);
SeqCstBB = createBasicBlock("seqcst", CurFn);
llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
Builder.SetInsertPoint(AcquireBB);
Builder.CreateFence(llvm::AtomicOrdering::Acquire, Scope);
Builder.CreateBr(ContBB);
SI->addCase(Builder.getInt32(1), AcquireBB);
SI->addCase(Builder.getInt32(2), AcquireBB);
Builder.SetInsertPoint(ReleaseBB);
Builder.CreateFence(llvm::AtomicOrdering::Release, Scope);
Builder.CreateBr(ContBB);
SI->addCase(Builder.getInt32(3), ReleaseBB);
Builder.SetInsertPoint(AcqRelBB);
Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, Scope);
Builder.CreateBr(ContBB);
SI->addCase(Builder.getInt32(4), AcqRelBB);
Builder.SetInsertPoint(SeqCstBB);
Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, Scope);
Builder.CreateBr(ContBB);
SI->addCase(Builder.getInt32(5), SeqCstBB);
Builder.SetInsertPoint(ContBB);
return RValue::get(nullptr);
}
// Library functions with special handling.
case Builtin::BIsqrt:
case Builtin::BIsqrtf:
case Builtin::BIsqrtl: {
// Transform a call to sqrt* into a @llvm.sqrt.* intrinsic call, but only
// in finite- or unsafe-math mode (the intrinsic has different semantics
// for handling negative numbers compared to the library function, so
// -fmath-errno=0 is not enough).
if (!FD->hasAttr<ConstAttr>())
break;
if (!(CGM.getCodeGenOpts().UnsafeFPMath ||
CGM.getCodeGenOpts().NoNaNsFPMath))
break;
Value *Arg0 = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = Arg0->getType();
Value *F = CGM.getIntrinsic(Intrinsic::sqrt, ArgType);
return RValue::get(Builder.CreateCall(F, Arg0));
}
case Builtin::BI__builtin_pow:
case Builtin::BI__builtin_powf:
case Builtin::BI__builtin_powl:
case Builtin::BIpow:
case Builtin::BIpowf:
case Builtin::BIpowl: {
// Transform a call to pow* into a @llvm.pow.* intrinsic call.
if (!FD->hasAttr<ConstAttr>())
break;
Value *Base = EmitScalarExpr(E->getArg(0));
Value *Exponent = EmitScalarExpr(E->getArg(1));
llvm::Type *ArgType = Base->getType();
Value *F = CGM.getIntrinsic(Intrinsic::pow, ArgType);
return RValue::get(Builder.CreateCall(F, {Base, Exponent}));
}
case Builtin::BIfma:
case Builtin::BIfmaf:
case Builtin::BIfmal:
case Builtin::BI__builtin_fma:
case Builtin::BI__builtin_fmaf:
case Builtin::BI__builtin_fmal: {
// Rewrite fma to intrinsic.
Value *FirstArg = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = FirstArg->getType();
Value *F = CGM.getIntrinsic(Intrinsic::fma, ArgType);
return RValue::get(
Builder.CreateCall(F, {FirstArg, EmitScalarExpr(E->getArg(1)),
EmitScalarExpr(E->getArg(2))}));
}
case Builtin::BI__builtin_signbit:
case Builtin::BI__builtin_signbitf:
case Builtin::BI__builtin_signbitl: {
return RValue::get(
Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))),
ConvertType(E->getType())));
}
case Builtin::BI__builtin_annotation: {
llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
AnnVal->getType());
// Get the annotation string, go through casts. Sema requires this to be a
// non-wide string literal, potentially casted, so the cast<> is safe.
const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
return RValue::get(EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc()));
}
case Builtin::BI__builtin_addcb:
case Builtin::BI__builtin_addcs:
case Builtin::BI__builtin_addc:
case Builtin::BI__builtin_addcl:
case Builtin::BI__builtin_addcll:
case Builtin::BI__builtin_subcb:
case Builtin::BI__builtin_subcs:
case Builtin::BI__builtin_subc:
case Builtin::BI__builtin_subcl:
case Builtin::BI__builtin_subcll: {
// We translate all of these builtins from expressions of the form:
// int x = ..., y = ..., carryin = ..., carryout, result;
// result = __builtin_addc(x, y, carryin, &carryout);
//
// to LLVM IR of the form:
//
// %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
// %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
// %carry1 = extractvalue {i32, i1} %tmp1, 1
// %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
// i32 %carryin)
// %result = extractvalue {i32, i1} %tmp2, 0
// %carry2 = extractvalue {i32, i1} %tmp2, 1
// %tmp3 = or i1 %carry1, %carry2
// %tmp4 = zext i1 %tmp3 to i32
// store i32 %tmp4, i32* %carryout
// Scalarize our inputs.
llvm::Value *X = EmitScalarExpr(E->getArg(0));
llvm::Value *Y = EmitScalarExpr(E->getArg(1));
llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3));
// Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
llvm::Intrinsic::ID IntrinsicId;
switch (BuiltinID) {
default: llvm_unreachable("Unknown multiprecision builtin id.");
case Builtin::BI__builtin_addcb:
case Builtin::BI__builtin_addcs:
case Builtin::BI__builtin_addc:
case Builtin::BI__builtin_addcl:
case Builtin::BI__builtin_addcll:
IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
break;
case Builtin::BI__builtin_subcb:
case Builtin::BI__builtin_subcs:
case Builtin::BI__builtin_subc:
case Builtin::BI__builtin_subcl:
case Builtin::BI__builtin_subcll:
IntrinsicId = llvm::Intrinsic::usub_with_overflow;
break;
}
// Construct our resulting LLVM IR expression.
llvm::Value *Carry1;
llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
X, Y, Carry1);
llvm::Value *Carry2;
llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
Sum1, Carryin, Carry2);
llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
X->getType());
Builder.CreateStore(CarryOut, CarryOutPtr);
return RValue::get(Sum2);
}
case Builtin::BI__builtin_add_overflow:
case Builtin::BI__builtin_sub_overflow:
case Builtin::BI__builtin_mul_overflow: {
const clang::Expr *LeftArg = E->getArg(0);
const clang::Expr *RightArg = E->getArg(1);
const clang::Expr *ResultArg = E->getArg(2);
clang::QualType ResultQTy =
ResultArg->getType()->castAs<PointerType>()->getPointeeType();
WidthAndSignedness LeftInfo =
getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType());
WidthAndSignedness RightInfo =
getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType());
WidthAndSignedness ResultInfo =
getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy);
WidthAndSignedness EncompassingInfo =
EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo});
llvm::Type *EncompassingLLVMTy =
llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width);
llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy);
llvm::Intrinsic::ID IntrinsicId;
switch (BuiltinID) {
default:
llvm_unreachable("Unknown overflow builtin id.");
case Builtin::BI__builtin_add_overflow:
IntrinsicId = EncompassingInfo.Signed
? llvm::Intrinsic::sadd_with_overflow
: llvm::Intrinsic::uadd_with_overflow;
break;
case Builtin::BI__builtin_sub_overflow:
IntrinsicId = EncompassingInfo.Signed
? llvm::Intrinsic::ssub_with_overflow
: llvm::Intrinsic::usub_with_overflow;
break;
case Builtin::BI__builtin_mul_overflow:
IntrinsicId = EncompassingInfo.Signed
? llvm::Intrinsic::smul_with_overflow
: llvm::Intrinsic::umul_with_overflow;
break;
}
llvm::Value *Left = EmitScalarExpr(LeftArg);
llvm::Value *Right = EmitScalarExpr(RightArg);
Address ResultPtr = EmitPointerWithAlignment(ResultArg);
// Extend each operand to the encompassing type.
Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed);
Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed);
// Perform the operation on the extended values.
llvm::Value *Overflow, *Result;
Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow);
if (EncompassingInfo.Width > ResultInfo.Width) {
// The encompassing type is wider than the result type, so we need to
// truncate it.
llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy);
// To see if the truncation caused an overflow, we will extend
// the result and then compare it to the original result.
llvm::Value *ResultTruncExt = Builder.CreateIntCast(
ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed);
llvm::Value *TruncationOverflow =
Builder.CreateICmpNE(Result, ResultTruncExt);
Overflow = Builder.CreateOr(Overflow, TruncationOverflow);
Result = ResultTrunc;
}
// Finally, store the result using the pointer.
bool isVolatile =
ResultArg->getType()->getPointeeType().isVolatileQualified();
Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile);
return RValue::get(Overflow);
}
case Builtin::BI__builtin_uadd_overflow:
case Builtin::BI__builtin_uaddl_overflow:
case Builtin::BI__builtin_uaddll_overflow:
case Builtin::BI__builtin_usub_overflow:
case Builtin::BI__builtin_usubl_overflow:
case Builtin::BI__builtin_usubll_overflow:
case Builtin::BI__builtin_umul_overflow:
case Builtin::BI__builtin_umull_overflow:
case Builtin::BI__builtin_umulll_overflow:
case Builtin::BI__builtin_sadd_overflow:
case Builtin::BI__builtin_saddl_overflow:
case Builtin::BI__builtin_saddll_overflow:
case Builtin::BI__builtin_ssub_overflow:
case Builtin::BI__builtin_ssubl_overflow:
case Builtin::BI__builtin_ssubll_overflow:
case Builtin::BI__builtin_smul_overflow:
case Builtin::BI__builtin_smull_overflow:
case Builtin::BI__builtin_smulll_overflow: {
// We translate all of these builtins directly to the relevant llvm IR node.
// Scalarize our inputs.
llvm::Value *X = EmitScalarExpr(E->getArg(0));
llvm::Value *Y = EmitScalarExpr(E->getArg(1));
Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2));
// Decide which of the overflow intrinsics we are lowering to:
llvm::Intrinsic::ID IntrinsicId;
switch (BuiltinID) {
default: llvm_unreachable("Unknown overflow builtin id.");
case Builtin::BI__builtin_uadd_overflow:
case Builtin::BI__builtin_uaddl_overflow:
case Builtin::BI__builtin_uaddll_overflow:
IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
break;
case Builtin::BI__builtin_usub_overflow:
case Builtin::BI__builtin_usubl_overflow:
case Builtin::BI__builtin_usubll_overflow:
IntrinsicId = llvm::Intrinsic::usub_with_overflow;
break;
case Builtin::BI__builtin_umul_overflow:
case Builtin::BI__builtin_umull_overflow:
case Builtin::BI__builtin_umulll_overflow:
IntrinsicId = llvm::Intrinsic::umul_with_overflow;
break;
case Builtin::BI__builtin_sadd_overflow:
case Builtin::BI__builtin_saddl_overflow:
case Builtin::BI__builtin_saddll_overflow:
IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
break;
case Builtin::BI__builtin_ssub_overflow:
case Builtin::BI__builtin_ssubl_overflow:
case Builtin::BI__builtin_ssubll_overflow:
IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
break;
case Builtin::BI__builtin_smul_overflow:
case Builtin::BI__builtin_smull_overflow:
case Builtin::BI__builtin_smulll_overflow:
IntrinsicId = llvm::Intrinsic::smul_with_overflow;
break;
}
llvm::Value *Carry;
llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
Builder.CreateStore(Sum, SumOutPtr);
return RValue::get(Carry);
}
case Builtin::BI__builtin_addressof:
return RValue::get(EmitLValue(E->getArg(0)).getPointer());
case Builtin::BI__builtin_operator_new:
return EmitBuiltinNewDeleteCall(FD->getType()->castAs<FunctionProtoType>(),
E->getArg(0), false);
case Builtin::BI__builtin_operator_delete:
return EmitBuiltinNewDeleteCall(FD->getType()->castAs<FunctionProtoType>(),
E->getArg(0), true);
case Builtin::BI__noop:
// __noop always evaluates to an integer literal zero.
return RValue::get(ConstantInt::get(IntTy, 0));
case Builtin::BI__builtin_call_with_static_chain: {
const CallExpr *Call = cast<CallExpr>(E->getArg(0));
const Expr *Chain = E->getArg(1);
return EmitCall(Call->getCallee()->getType(),
EmitCallee(Call->getCallee()), Call, ReturnValue,
EmitScalarExpr(Chain));
}
case Builtin::BI_InterlockedExchange8:
case Builtin::BI_InterlockedExchange16:
case Builtin::BI_InterlockedExchange:
case Builtin::BI_InterlockedExchangePointer:
return RValue::get(
EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E));
case Builtin::BI_InterlockedCompareExchangePointer: {
llvm::Type *RTy;
llvm::IntegerType *IntType =
IntegerType::get(getLLVMContext(),
getContext().getTypeSize(E->getType()));
llvm::Type *IntPtrType = IntType->getPointerTo();
llvm::Value *Destination =
Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType);
llvm::Value *Exchange = EmitScalarExpr(E->getArg(1));
RTy = Exchange->getType();
Exchange = Builder.CreatePtrToInt(Exchange, IntType);
llvm::Value *Comparand =
Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType);
auto Result =
Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
AtomicOrdering::SequentiallyConsistent,
AtomicOrdering::SequentiallyConsistent);
Result->setVolatile(true);
return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result,
0),
RTy));
}
case Builtin::BI_InterlockedCompareExchange8:
case Builtin::BI_InterlockedCompareExchange16:
case Builtin::BI_InterlockedCompareExchange:
case Builtin::BI_InterlockedCompareExchange64: {
AtomicCmpXchgInst *CXI = Builder.CreateAtomicCmpXchg(
EmitScalarExpr(E->getArg(0)),
EmitScalarExpr(E->getArg(2)),
EmitScalarExpr(E->getArg(1)),
AtomicOrdering::SequentiallyConsistent,
AtomicOrdering::SequentiallyConsistent);
CXI->setVolatile(true);
return RValue::get(Builder.CreateExtractValue(CXI, 0));
}
case Builtin::BI_InterlockedIncrement16:
case Builtin::BI_InterlockedIncrement:
return RValue::get(
EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E));
case Builtin::BI_InterlockedDecrement16:
case Builtin::BI_InterlockedDecrement:
return RValue::get(
EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E));
case Builtin::BI_InterlockedAnd8:
case Builtin::BI_InterlockedAnd16:
case Builtin::BI_InterlockedAnd:
return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E));
case Builtin::BI_InterlockedExchangeAdd8:
case Builtin::BI_InterlockedExchangeAdd16:
case Builtin::BI_InterlockedExchangeAdd:
return RValue::get(
EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E));
case Builtin::BI_InterlockedExchangeSub8:
case Builtin::BI_InterlockedExchangeSub16:
case Builtin::BI_InterlockedExchangeSub:
return RValue::get(
EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E));
case Builtin::BI_InterlockedOr8:
case Builtin::BI_InterlockedOr16:
case Builtin::BI_InterlockedOr:
return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E));
case Builtin::BI_InterlockedXor8:
case Builtin::BI_InterlockedXor16:
case Builtin::BI_InterlockedXor:
return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E));
case Builtin::BI__readfsdword: {
llvm::Type *IntTy = ConvertType(E->getType());
Value *IntToPtr =
Builder.CreateIntToPtr(EmitScalarExpr(E->getArg(0)),
llvm::PointerType::get(IntTy, 257));
LoadInst *Load = Builder.CreateAlignedLoad(
IntTy, IntToPtr, getContext().getTypeAlignInChars(E->getType()));
Load->setVolatile(true);
return RValue::get(Load);
}
case Builtin::BI__exception_code:
case Builtin::BI_exception_code:
return RValue::get(EmitSEHExceptionCode());
case Builtin::BI__exception_info:
case Builtin::BI_exception_info:
return RValue::get(EmitSEHExceptionInfo());
case Builtin::BI__abnormal_termination:
case Builtin::BI_abnormal_termination:
return RValue::get(EmitSEHAbnormalTermination());
case Builtin::BI_setjmpex: {
if (getTarget().getTriple().isOSMSVCRT()) {
llvm::Type *ArgTypes[] = {Int8PtrTy, Int8PtrTy};
llvm::AttributeSet ReturnsTwiceAttr =
AttributeSet::get(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
llvm::Attribute::ReturnsTwice);
llvm::Constant *SetJmpEx = CGM.CreateRuntimeFunction(
llvm::FunctionType::get(IntTy, ArgTypes, /*isVarArg=*/false),
"_setjmpex", ReturnsTwiceAttr, /*Local=*/true);
llvm::Value *Buf = Builder.CreateBitOrPointerCast(
EmitScalarExpr(E->getArg(0)), Int8PtrTy);
llvm::Value *FrameAddr =
Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
ConstantInt::get(Int32Ty, 0));
llvm::Value *Args[] = {Buf, FrameAddr};
llvm::CallSite CS = EmitRuntimeCallOrInvoke(SetJmpEx, Args);
CS.setAttributes(ReturnsTwiceAttr);
return RValue::get(CS.getInstruction());
}
break;
}
case Builtin::BI_setjmp: {
if (getTarget().getTriple().isOSMSVCRT()) {
llvm::AttributeSet ReturnsTwiceAttr =
AttributeSet::get(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
llvm::Attribute::ReturnsTwice);
llvm::Value *Buf = Builder.CreateBitOrPointerCast(
EmitScalarExpr(E->getArg(0)), Int8PtrTy);
llvm::CallSite CS;
if (getTarget().getTriple().getArch() == llvm::Triple::x86) {
llvm::Type *ArgTypes[] = {Int8PtrTy, IntTy};
llvm::Constant *SetJmp3 = CGM.CreateRuntimeFunction(
llvm::FunctionType::get(IntTy, ArgTypes, /*isVarArg=*/true),
"_setjmp3", ReturnsTwiceAttr, /*Local=*/true);
llvm::Value *Count = ConstantInt::get(IntTy, 0);
llvm::Value *Args[] = {Buf, Count};
CS = EmitRuntimeCallOrInvoke(SetJmp3, Args);
} else {
llvm::Type *ArgTypes[] = {Int8PtrTy, Int8PtrTy};
llvm::Constant *SetJmp = CGM.CreateRuntimeFunction(
llvm::FunctionType::get(IntTy, ArgTypes, /*isVarArg=*/false),
"_setjmp", ReturnsTwiceAttr, /*Local=*/true);
llvm::Value *FrameAddr =
Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
ConstantInt::get(Int32Ty, 0));
llvm::Value *Args[] = {Buf, FrameAddr};
CS = EmitRuntimeCallOrInvoke(SetJmp, Args);
}
CS.setAttributes(ReturnsTwiceAttr);
return RValue::get(CS.getInstruction());
}
break;
}
case Builtin::BI__GetExceptionInfo: {
if (llvm::GlobalVariable *GV =
CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType()))
return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy));
break;
}
case Builtin::BI__builtin_coro_size: {
auto & Context = getContext();
auto SizeTy = Context.getSizeType();
auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
Value *F = CGM.getIntrinsic(Intrinsic::coro_size, T);
return RValue::get(Builder.CreateCall(F));
}
case Builtin::BI__builtin_coro_id:
return EmitCoroutineIntrinsic(E, Intrinsic::coro_id);
case Builtin::BI__builtin_coro_promise:
return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise);
case Builtin::BI__builtin_coro_resume:
return EmitCoroutineIntrinsic(E, Intrinsic::coro_resume);
case Builtin::BI__builtin_coro_frame:
return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame);
case Builtin::BI__builtin_coro_free:
return EmitCoroutineIntrinsic(E, Intrinsic::coro_free);
case Builtin::BI__builtin_coro_destroy:
return EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy);
case Builtin::BI__builtin_coro_done:
return EmitCoroutineIntrinsic(E, Intrinsic::coro_done);
case Builtin::BI__builtin_coro_alloc:
return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc);
case Builtin::BI__builtin_coro_begin:
return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin);
case Builtin::BI__builtin_coro_end:
return EmitCoroutineIntrinsic(E, Intrinsic::coro_end);
case Builtin::BI__builtin_coro_suspend:
return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend);
case Builtin::BI__builtin_coro_param:
return EmitCoroutineIntrinsic(E, Intrinsic::coro_param);
// OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions
case Builtin::BIread_pipe:
case Builtin::BIwrite_pipe: {
Value *Arg0 = EmitScalarExpr(E->getArg(0)),
*Arg1 = EmitScalarExpr(E->getArg(1));
CGOpenCLRuntime OpenCLRT(CGM);
Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
// Type of the generic packet parameter.
unsigned GenericAS =
getContext().getTargetAddressSpace(LangAS::opencl_generic);
llvm::Type *I8PTy = llvm::PointerType::get(
llvm::Type::getInt8Ty(getLLVMContext()), GenericAS);
// Testing which overloaded version we should generate the call for.
if (2U == E->getNumArgs()) {
const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2"
: "__write_pipe_2";
// Creating a generic function type to be able to call with any builtin or
// user defined type.
llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty};
llvm::FunctionType *FTy = llvm::FunctionType::get(
Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy);
return RValue::get(
Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
{Arg0, BCast, PacketSize, PacketAlign}));
} else {
assert(4 == E->getNumArgs() &&
"Illegal number of parameters to pipe function");
const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4"
: "__write_pipe_4";
llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy,
Int32Ty, Int32Ty};
Value *Arg2 = EmitScalarExpr(E->getArg(2)),
*Arg3 = EmitScalarExpr(E->getArg(3));
llvm::FunctionType *FTy = llvm::FunctionType::get(
Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy);
// We know the third argument is an integer type, but we may need to cast
// it to i32.
if (Arg2->getType() != Int32Ty)
Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty);
return RValue::get(Builder.CreateCall(
CGM.CreateRuntimeFunction(FTy, Name),
{Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign}));
}
}
// OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write
// functions
case Builtin::BIreserve_read_pipe:
case Builtin::BIreserve_write_pipe:
case Builtin::BIwork_group_reserve_read_pipe:
case Builtin::BIwork_group_reserve_write_pipe:
case Builtin::BIsub_group_reserve_read_pipe:
case Builtin::BIsub_group_reserve_write_pipe: {
// Composing the mangled name for the function.
const char *Name;
if (BuiltinID == Builtin::BIreserve_read_pipe)
Name = "__reserve_read_pipe";
else if (BuiltinID == Builtin::BIreserve_write_pipe)
Name = "__reserve_write_pipe";
else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe)
Name = "__work_group_reserve_read_pipe";
else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe)
Name = "__work_group_reserve_write_pipe";
else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe)
Name = "__sub_group_reserve_read_pipe";
else
Name = "__sub_group_reserve_write_pipe";
Value *Arg0 = EmitScalarExpr(E->getArg(0)),
*Arg1 = EmitScalarExpr(E->getArg(1));
llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy);
CGOpenCLRuntime OpenCLRT(CGM);
Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
// Building the generic function prototype.
llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty};
llvm::FunctionType *FTy = llvm::FunctionType::get(
ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
// We know the second argument is an integer type, but we may need to cast
// it to i32.
if (Arg1->getType() != Int32Ty)
Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty);
return RValue::get(
Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
{Arg0, Arg1, PacketSize, PacketAlign}));
}
// OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write
// functions
case Builtin::BIcommit_read_pipe:
case Builtin::BIcommit_write_pipe:
case Builtin::BIwork_group_commit_read_pipe:
case Builtin::BIwork_group_commit_write_pipe:
case Builtin::BIsub_group_commit_read_pipe:
case Builtin::BIsub_group_commit_write_pipe: {
const char *Name;
if (BuiltinID == Builtin::BIcommit_read_pipe)
Name = "__commit_read_pipe";
else if (BuiltinID == Builtin::BIcommit_write_pipe)
Name = "__commit_write_pipe";
else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe)
Name = "__work_group_commit_read_pipe";
else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe)
Name = "__work_group_commit_write_pipe";
else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe)
Name = "__sub_group_commit_read_pipe";
else
Name = "__sub_group_commit_write_pipe";
Value *Arg0 = EmitScalarExpr(E->getArg(0)),
*Arg1 = EmitScalarExpr(E->getArg(1));
CGOpenCLRuntime OpenCLRT(CGM);
Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
// Building the generic function prototype.
llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty};
llvm::FunctionType *FTy =
llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
llvm::ArrayRef<llvm::Type *>(ArgTys), false);
return RValue::get(
Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
{Arg0, Arg1, PacketSize, PacketAlign}));
}
// OpenCL v2.0 s6.13.16.4 Built-in pipe query functions
case Builtin::BIget_pipe_num_packets:
case Builtin::BIget_pipe_max_packets: {
const char *Name;
if (BuiltinID == Builtin::BIget_pipe_num_packets)
Name = "__get_pipe_num_packets";
else
Name = "__get_pipe_max_packets";
// Building the generic function prototype.
Value *Arg0 = EmitScalarExpr(E->getArg(0));
CGOpenCLRuntime OpenCLRT(CGM);
Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty};
llvm::FunctionType *FTy = llvm::FunctionType::get(
Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
return RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
{Arg0, PacketSize, PacketAlign}));
}
// OpenCL v2.0 s6.13.9 - Address space qualifier functions.
case Builtin::BIto_global:
case Builtin::BIto_local:
case Builtin::BIto_private: {
auto Arg0 = EmitScalarExpr(E->getArg(0));
auto NewArgT = llvm::PointerType::get(Int8Ty,
CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
auto NewRetT = llvm::PointerType::get(Int8Ty,
CGM.getContext().getTargetAddressSpace(
E->getType()->getPointeeType().getAddressSpace()));
auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false);
llvm::Value *NewArg;
if (Arg0->getType()->getPointerAddressSpace() !=
NewArgT->getPointerAddressSpace())
NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT);
else
NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT);
auto NewName = std::string("__") + E->getDirectCallee()->getName().str();
auto NewCall =
Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg});
return RValue::get(Builder.CreateBitOrPointerCast(NewCall,
ConvertType(E->getType())));
}
// OpenCL v2.0, s6.13.17 - Enqueue kernel function.
// It contains four different overload formats specified in Table 6.13.17.1.
case Builtin::BIenqueue_kernel: {
StringRef Name; // Generated function call name
unsigned NumArgs = E->getNumArgs();
llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy);
llvm::Type *RangeTy = ConvertType(getContext().OCLNDRangeTy);
llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
getContext().getTargetAddressSpace(LangAS::opencl_generic));
llvm::Value *Queue = EmitScalarExpr(E->getArg(0));
llvm::Value *Flags = EmitScalarExpr(E->getArg(1));
llvm::Value *Range = EmitScalarExpr(E->getArg(2));
if (NumArgs == 4) {
// The most basic form of the call with parameters:
// queue_t, kernel_enqueue_flags_t, ndrange_t, block(void)
Name = "__enqueue_kernel_basic";
llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy};
llvm::FunctionType *FTy = llvm::FunctionType::get(
Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys, 4), false);
llvm::Value *Block = Builder.CreatePointerCast(
EmitScalarExpr(E->getArg(3)), GenericVoidPtrTy);
return RValue::get(Builder.CreateCall(
CGM.CreateRuntimeFunction(FTy, Name), {Queue, Flags, Range, Block}));
}
assert(NumArgs >= 5 && "Invalid enqueue_kernel signature");
// Could have events and/or vaargs.
if (E->getArg(3)->getType()->isBlockPointerType()) {
// No events passed, but has variadic arguments.
Name = "__enqueue_kernel_vaargs";
llvm::Value *Block = Builder.CreatePointerCast(
EmitScalarExpr(E->getArg(3)), GenericVoidPtrTy);
// Create a vector of the arguments, as well as a constant value to
// express to the runtime the number of variadic arguments.
std::vector<llvm::Value *> Args = {Queue, Flags, Range, Block,
ConstantInt::get(IntTy, NumArgs - 4)};
std::vector<llvm::Type *> ArgTys = {QueueTy, IntTy, RangeTy,
GenericVoidPtrTy, IntTy};
// Each of the following arguments specifies the size of the corresponding
// argument passed to the enqueued block.
for (unsigned I = 4/*Position of the first size arg*/; I < NumArgs; ++I)
Args.push_back(
Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy));
llvm::FunctionType *FTy = llvm::FunctionType::get(
Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), true);
return RValue::get(
Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
llvm::ArrayRef<llvm::Value *>(Args)));
}
// Any calls now have event arguments passed.
if (NumArgs >= 7) {
llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy);
llvm::Type *EventPtrTy = EventTy->getPointerTo(
CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
llvm::Value *NumEvents =
Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty);
llvm::Value *EventList =
E->getArg(4)->getType()->isArrayType()
? EmitArrayToPointerDecay(E->getArg(4)).getPointer()
: EmitScalarExpr(E->getArg(4));
llvm::Value *ClkEvent = EmitScalarExpr(E->getArg(5));
// Convert to generic address space.
EventList = Builder.CreatePointerCast(EventList, EventPtrTy);
ClkEvent = Builder.CreatePointerCast(ClkEvent, EventPtrTy);
llvm::Value *Block = Builder.CreatePointerCast(
EmitScalarExpr(E->getArg(6)), GenericVoidPtrTy);
std::vector<llvm::Type *> ArgTys = {
QueueTy, Int32Ty, RangeTy, Int32Ty,
EventPtrTy, EventPtrTy, GenericVoidPtrTy};
std::vector<llvm::Value *> Args = {Queue, Flags, Range, NumEvents,
EventList, ClkEvent, Block};
if (NumArgs == 7) {
// Has events but no variadics.
Name = "__enqueue_kernel_basic_events";
llvm::FunctionType *FTy = llvm::FunctionType::get(
Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
return RValue::get(
Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
llvm::ArrayRef<llvm::Value *>(Args)));
}
// Has event info and variadics
// Pass the number of variadics to the runtime function too.
Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7));
ArgTys.push_back(Int32Ty);
Name = "__enqueue_kernel_events_vaargs";
// Each of the following arguments specifies the size of the corresponding
// argument passed to the enqueued block.
for (unsigned I = 7/*Position of the first size arg*/; I < NumArgs; ++I)
Args.push_back(
Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy));
llvm::FunctionType *FTy = llvm::FunctionType::get(
Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), true);
return RValue::get(
Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
llvm::ArrayRef<llvm::Value *>(Args)));
}
}
// OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block
// parameter.
case Builtin::BIget_kernel_work_group_size: {
llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
getContext().getTargetAddressSpace(LangAS::opencl_generic));
Value *Arg = EmitScalarExpr(E->getArg(0));
Arg = Builder.CreatePointerCast(Arg, GenericVoidPtrTy);
return RValue::get(Builder.CreateCall(
CGM.CreateRuntimeFunction(
llvm::FunctionType::get(IntTy, GenericVoidPtrTy, false),
"__get_kernel_work_group_size_impl"),
Arg));
}
case Builtin::BIget_kernel_preferred_work_group_size_multiple: {
llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
getContext().getTargetAddressSpace(LangAS::opencl_generic));
Value *Arg = EmitScalarExpr(E->getArg(0));
Arg = Builder.CreatePointerCast(Arg, GenericVoidPtrTy);
return RValue::get(Builder.CreateCall(
CGM.CreateRuntimeFunction(
llvm::FunctionType::get(IntTy, GenericVoidPtrTy, false),
"__get_kernel_preferred_work_group_multiple_impl"),
Arg));
}
case Builtin::BIprintf:
if (getTarget().getTriple().isNVPTX())
return EmitNVPTXDevicePrintfCallExpr(E, ReturnValue);
break;
case Builtin::BI__builtin_canonicalize:
case Builtin::BI__builtin_canonicalizef:
case Builtin::BI__builtin_canonicalizel:
return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize));
case Builtin::BI__builtin_thread_pointer: {
if (!getContext().getTargetInfo().isTLSSupported())
CGM.ErrorUnsupported(E, "__builtin_thread_pointer");
// Fall through - it's already mapped to the intrinsic by GCCBuiltin.
break;
}
case Builtin::BI__builtin_os_log_format: {
assert(E->getNumArgs() >= 2 &&
"__builtin_os_log_format takes at least 2 arguments");
analyze_os_log::OSLogBufferLayout Layout;
analyze_os_log::computeOSLogBufferLayout(CGM.getContext(), E, Layout);
Address BufAddr = EmitPointerWithAlignment(E->getArg(0));
// Ignore argument 1, the format string. It is not currently used.
CharUnits Offset;
Builder.CreateStore(
Builder.getInt8(Layout.getSummaryByte()),
Builder.CreateConstByteGEP(BufAddr, Offset++, "summary"));
Builder.CreateStore(
Builder.getInt8(Layout.getNumArgsByte()),
Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs"));
llvm::SmallVector<llvm::Value *, 4> RetainableOperands;
for (const auto &Item : Layout.Items) {
Builder.CreateStore(
Builder.getInt8(Item.getDescriptorByte()),
Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor"));
Builder.CreateStore(
Builder.getInt8(Item.getSizeByte()),
Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize"));
Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset);
if (const Expr *TheExpr = Item.getExpr()) {
Addr = Builder.CreateElementBitCast(
Addr, ConvertTypeForMem(TheExpr->getType()));
// Check if this is a retainable type.
if (TheExpr->getType()->isObjCRetainableType()) {
assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&
"Only scalar can be a ObjC retainable type");
llvm::Value *SV = EmitScalarExpr(TheExpr, /*Ignore*/ false);
RValue RV = RValue::get(SV);
LValue LV = MakeAddrLValue(Addr, TheExpr->getType());
EmitStoreThroughLValue(RV, LV);
// Check if the object is constant, if not, save it in
// RetainableOperands.
if (!isa<Constant>(SV))
RetainableOperands.push_back(SV);
} else {
EmitAnyExprToMem(TheExpr, Addr, Qualifiers(), /*isInit*/ true);
}
} else {
Addr = Builder.CreateElementBitCast(Addr, Int32Ty);
Builder.CreateStore(
Builder.getInt32(Item.getConstValue().getQuantity()), Addr);
}
Offset += Item.size();
}
// Push a clang.arc.use cleanup for each object in RetainableOperands. The
// cleanup will cause the use to appear after the final log call, keeping
// the object valid while its held in the log buffer. Note that if theres
// a release cleanup on the object, it will already be active; since
// cleanups are emitted in reverse order, the use will occur before the
// object is released.
if (!RetainableOperands.empty() && getLangOpts().ObjCAutoRefCount &&
CGM.getCodeGenOpts().OptimizationLevel != 0)
for (llvm::Value *object : RetainableOperands)
pushFullExprCleanup<CallObjCArcUse>(getARCCleanupKind(), object);
return RValue::get(BufAddr.getPointer());
}
case Builtin::BI__builtin_os_log_format_buffer_size: {
analyze_os_log::OSLogBufferLayout Layout;
analyze_os_log::computeOSLogBufferLayout(CGM.getContext(), E, Layout);
return RValue::get(ConstantInt::get(ConvertType(E->getType()),
Layout.size().getQuantity()));
}
}
// If this is an alias for a lib function (e.g. __builtin_sin), emit
// the call using the normal call path, but using the unmangled
// version of the function name.
if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
return emitLibraryCall(*this, FD, E,
CGM.getBuiltinLibFunction(FD, BuiltinID));
// If this is a predefined lib function (e.g. malloc), emit the call
// using exactly the normal call path.
if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
return emitLibraryCall(*this, FD, E,
cast<llvm::Constant>(EmitScalarExpr(E->getCallee())));
// Check that a call to a target specific builtin has the correct target
// features.
// This is down here to avoid non-target specific builtins, however, if
// generic builtins start to require generic target features then we
// can move this up to the beginning of the function.
checkTargetFeatures(E, FD);
// See if we have a target specific intrinsic.
const char *Name = getContext().BuiltinInfo.getName(BuiltinID);
Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
StringRef Prefix =
llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch());
if (!Prefix.empty()) {
IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix.data(), Name);
// NOTE we dont need to perform a compatibility flag check here since the
// intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
// MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
if (IntrinsicID == Intrinsic::not_intrinsic)
IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name);
}
if (IntrinsicID != Intrinsic::not_intrinsic) {
SmallVector<Value*, 16> Args;
// Find out if any arguments are required to be integer constant
// expressions.
unsigned ICEArguments = 0;
ASTContext::GetBuiltinTypeError Error;
getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
assert(Error == ASTContext::GE_None && "Should not codegen an error");
Function *F = CGM.getIntrinsic(IntrinsicID);
llvm::FunctionType *FTy = F->getFunctionType();
for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
Value *ArgValue;
// If this is a normal argument, just emit it as a scalar.
if ((ICEArguments & (1 << i)) == 0) {
ArgValue = EmitScalarExpr(E->getArg(i));
} else {
// If this is required to be a constant, constant fold it so that we
// know that the generated intrinsic gets a ConstantInt.
llvm::APSInt Result;
bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext());
assert(IsConst && "Constant arg isn't actually constant?");
(void)IsConst;
ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result);
}
// If the intrinsic arg type is different from the builtin arg type
// we need to do a bit cast.
llvm::Type *PTy = FTy->getParamType(i);
if (PTy != ArgValue->getType()) {
assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
"Must be able to losslessly bit cast to param");
ArgValue = Builder.CreateBitCast(ArgValue, PTy);
}
Args.push_back(ArgValue);
}
Value *V = Builder.CreateCall(F, Args);
QualType BuiltinRetType = E->getType();
llvm::Type *RetTy = VoidTy;
if (!BuiltinRetType->isVoidType())
RetTy = ConvertType(BuiltinRetType);
if (RetTy != V->getType()) {
assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
"Must be able to losslessly bit cast result type");
V = Builder.CreateBitCast(V, RetTy);
}
return RValue::get(V);
}
// See if we have a target specific builtin that needs to be lowered.
if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E))
return RValue::get(V);
ErrorUnsupported(E, "builtin function");
// Unknown builtin, for now just dump it out and return undef.
return GetUndefRValue(E->getType());
}
static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF,
unsigned BuiltinID, const CallExpr *E,
llvm::Triple::ArchType Arch) {
switch (Arch) {
case llvm::Triple::arm:
case llvm::Triple::armeb:
case llvm::Triple::thumb:
case llvm::Triple::thumbeb:
return CGF->EmitARMBuiltinExpr(BuiltinID, E);
case llvm::Triple::aarch64:
case llvm::Triple::aarch64_be:
return CGF->EmitAArch64BuiltinExpr(BuiltinID, E);
case llvm::Triple::x86:
case llvm::Triple::x86_64:
return CGF->EmitX86BuiltinExpr(BuiltinID, E);
case llvm::Triple::ppc:
case llvm::Triple::ppc64:
case llvm::Triple::ppc64le:
return CGF->EmitPPCBuiltinExpr(BuiltinID, E);
case llvm::Triple::r600:
case llvm::Triple::amdgcn:
return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E);
case llvm::Triple::systemz:
return CGF->EmitSystemZBuiltinExpr(BuiltinID, E);
case llvm::Triple::nvptx:
case llvm::Triple::nvptx64:
return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E);
case llvm::Triple::wasm32:
case llvm::Triple::wasm64:
return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E);
default:
return nullptr;
}
}
Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
assert(getContext().getAuxTargetInfo() && "Missing aux target info");
return EmitTargetArchBuiltinExpr(
this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E,
getContext().getAuxTargetInfo()->getTriple().getArch());
}
return EmitTargetArchBuiltinExpr(this, BuiltinID, E,
getTarget().getTriple().getArch());
}
static llvm::VectorType *GetNeonType(CodeGenFunction *CGF,
NeonTypeFlags TypeFlags,
bool V1Ty=false) {
int IsQuad = TypeFlags.isQuad();
switch (TypeFlags.getEltType()) {
case NeonTypeFlags::Int8:
case NeonTypeFlags::Poly8:
return llvm::VectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
case NeonTypeFlags::Int16:
case NeonTypeFlags::Poly16:
case NeonTypeFlags::Float16:
return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
case NeonTypeFlags::Int32:
return llvm::VectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
case NeonTypeFlags::Int64:
case NeonTypeFlags::Poly64:
return llvm::VectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
case NeonTypeFlags::Poly128:
// FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
// There is a lot of i128 and f128 API missing.
// so we use v16i8 to represent poly128 and get pattern matched.
return llvm::VectorType::get(CGF->Int8Ty, 16);
case NeonTypeFlags::Float32:
return llvm::VectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
case NeonTypeFlags::Float64:
return llvm::VectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
}
llvm_unreachable("Unknown vector element type!");
}
static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF,
NeonTypeFlags IntTypeFlags) {
int IsQuad = IntTypeFlags.isQuad();
switch (IntTypeFlags.getEltType()) {
case NeonTypeFlags::Int32:
return llvm::VectorType::get(CGF->FloatTy, (2 << IsQuad));
case NeonTypeFlags::Int64:
return llvm::VectorType::get(CGF->DoubleTy, (1 << IsQuad));
default:
llvm_unreachable("Type can't be converted to floating-point!");
}
}
Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
unsigned nElts = V->getType()->getVectorNumElements();
Value* SV = llvm::ConstantVector::getSplat(nElts, C);
return Builder.CreateShuffleVector(V, V, SV, "lane");
}
Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
const char *name,
unsigned shift, bool rightshift) {
unsigned j = 0;
for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
ai != ae; ++ai, ++j)
if (shift > 0 && shift == j)
Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
else
Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
return Builder.CreateCall(F, Ops, name);
}
Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
bool neg) {
int SV = cast<ConstantInt>(V)->getSExtValue();
return ConstantInt::get(Ty, neg ? -SV : SV);
}
// \brief Right-shift a vector by a constant.
Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
llvm::Type *Ty, bool usgn,
const char *name) {
llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
int EltSize = VTy->getScalarSizeInBits();
Vec = Builder.CreateBitCast(Vec, Ty);
// lshr/ashr are undefined when the shift amount is equal to the vector
// element size.
if (ShiftAmt == EltSize) {
if (usgn) {
// Right-shifting an unsigned value by its size yields 0.
return llvm::ConstantAggregateZero::get(VTy);
} else {
// Right-shifting a signed value by its size is equivalent
// to a shift of size-1.
--ShiftAmt;
Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
}
}
Shift = EmitNeonShiftVector(Shift, Ty, false);
if (usgn)
return Builder.CreateLShr(Vec, Shift, name);
else
return Builder.CreateAShr(Vec, Shift, name);
}
enum {
AddRetType = (1 << 0),
Add1ArgType = (1 << 1),
Add2ArgTypes = (1 << 2),
VectorizeRetType = (1 << 3),
VectorizeArgTypes = (1 << 4),
InventFloatType = (1 << 5),
UnsignedAlts = (1 << 6),
Use64BitVectors = (1 << 7),
Use128BitVectors = (1 << 8),
Vectorize1ArgType = Add1ArgType | VectorizeArgTypes,
VectorRet = AddRetType | VectorizeRetType,
VectorRetGetArgs01 =
AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes,
FpCmpzModifiers =
AddRetType | VectorizeRetType | Add1ArgType | InventFloatType
};
namespace {
struct NeonIntrinsicInfo {
const char *NameHint;
unsigned BuiltinID;
unsigned LLVMIntrinsic;
unsigned AltLLVMIntrinsic;
unsigned TypeModifier;
bool operator<(unsigned RHSBuiltinID) const {
return BuiltinID < RHSBuiltinID;
}
bool operator<(const NeonIntrinsicInfo &TE) const {
return BuiltinID < TE.BuiltinID;
}
};
} // end anonymous namespace
#define NEONMAP0(NameBase) \
{ #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 }
#define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
{ #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
Intrinsic::LLVMIntrinsic, 0, TypeModifier }
#define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
{ #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
TypeModifier }
static const NeonIntrinsicInfo ARMSIMDIntrinsicMap [] = {
NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
NEONMAP1(vabs_v, arm_neon_vabs, 0),
NEONMAP1(vabsq_v, arm_neon_vabs, 0),
NEONMAP0(vaddhn_v),
NEONMAP1(vaesdq_v, arm_neon_aesd, 0),
NEONMAP1(vaeseq_v, arm_neon_aese, 0),
NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0),
NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0),
NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType),
NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType),
NEONMAP1(vcage_v, arm_neon_vacge, 0),
NEONMAP1(vcageq_v, arm_neon_vacge, 0),
NEONMAP1(vcagt_v, arm_neon_vacgt, 0),
NEONMAP1(vcagtq_v, arm_neon_vacgt, 0),
NEONMAP1(vcale_v, arm_neon_vacge, 0),
NEONMAP1(vcaleq_v, arm_neon_vacge, 0),
NEONMAP1(vcalt_v, arm_neon_vacgt, 0),
NEONMAP1(vcaltq_v, arm_neon_vacgt, 0),
NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType),
NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType),
NEONMAP1(vclz_v, ctlz, Add1ArgType),
NEONMAP1(vclzq_v, ctlz, Add1ArgType),
NEONMAP1(vcnt_v, ctpop, Add1ArgType),
NEONMAP1(vcntq_v, ctpop, Add1ArgType),
NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0),
NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0),
NEONMAP0(vcvt_f32_v),
NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0),
NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0),
NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0),
NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0),
NEONMAP0(vcvt_s32_v),
NEONMAP0(vcvt_s64_v),
NEONMAP0(vcvt_u32_v),
NEONMAP0(vcvt_u64_v),
NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0),
NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0),
NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0),
NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0),
NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0),
NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0),
NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0),
NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0),
NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0),
NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0),
NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0),
NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0),
NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0),
NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0),
NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0),
NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0),
NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0),
NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0),
NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0),
NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0),
NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0),
NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0),
NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0),
NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0),
NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0),
NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0),
NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0),
NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0),
NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0),
NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0),
NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0),
NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0),
NEONMAP0(vcvtq_f32_v),
NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0),
NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0),
NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0),
NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0),
NEONMAP0(vcvtq_s32_v),
NEONMAP0(vcvtq_s64_v),
NEONMAP0(vcvtq_u32_v),
NEONMAP0(vcvtq_u64_v),
NEONMAP0(vext_v),
NEONMAP0(vextq_v),
NEONMAP0(vfma_v),
NEONMAP0(vfmaq_v),
NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
NEONMAP0(vld1_dup_v),
NEONMAP1(vld1_v, arm_neon_vld1, 0),
NEONMAP0(vld1q_dup_v),
NEONMAP1(vld1q_v, arm_neon_vld1, 0),
NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0),
NEONMAP1(vld2_v, arm_neon_vld2, 0),
NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0),
NEONMAP1(vld2q_v, arm_neon_vld2, 0),
NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0),
NEONMAP1(vld3_v, arm_neon_vld3, 0),
NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0),
NEONMAP1(vld3q_v, arm_neon_vld3, 0),
NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0),
NEONMAP1(vld4_v, arm_neon_vld4, 0),
NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0),
NEONMAP1(vld4q_v, arm_neon_vld4, 0),
NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType),
NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType),
NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType),
NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType),
NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
NEONMAP0(vmovl_v),
NEONMAP0(vmovn_v),
NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType),
NEONMAP0(vmull_v),
NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType),
NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType),
NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType),
NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts),
NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts),
NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType),
NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType),
NEONMAP2(vqadd_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts),
NEONMAP2(vqaddq_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts),
NEONMAP2(vqdmlal_v, arm_neon_vqdmull, arm_neon_vqadds, 0),
NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, arm_neon_vqsubs, 0),
NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType),
NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType),
NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType),
NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts),
NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType),
NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType),
NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType),
NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType),
NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType),
NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0),
NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0),
NEONMAP2(vqsub_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts),
NEONMAP2(vqsubq_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts),
NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType),
NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType),
NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType),
NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType),
NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType),
NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType),
NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType),
NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType),
NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType),
NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType),
NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType),
NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType),
NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType),
NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType),
NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType),
NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType),
NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType),
NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType),
NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0),
NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0),
NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0),
NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0),
NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0),
NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0),
NEONMAP0(vshl_n_v),
NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
NEONMAP0(vshll_n_v),
NEONMAP0(vshlq_n_v),
NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
NEONMAP0(vshr_n_v),
NEONMAP0(vshrn_n_v),
NEONMAP0(vshrq_n_v),
NEONMAP1(vst1_v, arm_neon_vst1, 0),
NEONMAP1(vst1q_v, arm_neon_vst1, 0),
NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0),
NEONMAP1(vst2_v, arm_neon_vst2, 0),
NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0),
NEONMAP1(vst2q_v, arm_neon_vst2, 0),
NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0),
NEONMAP1(vst3_v, arm_neon_vst3, 0),
NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0),
NEONMAP1(vst3q_v, arm_neon_vst3, 0),
NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0),
NEONMAP1(vst4_v, arm_neon_vst4, 0),
NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0),
NEONMAP1(vst4q_v, arm_neon_vst4, 0),
NEONMAP0(vsubhn_v),
NEONMAP0(vtrn_v),
NEONMAP0(vtrnq_v),
NEONMAP0(vtst_v),
NEONMAP0(vtstq_v),
NEONMAP0(vuzp_v),
NEONMAP0(vuzpq_v),
NEONMAP0(vzip_v),
NEONMAP0(vzipq_v)
};
static const NeonIntrinsicInfo AArch64SIMDIntrinsicMap[] = {
NEONMAP1(vabs_v, aarch64_neon_abs, 0),
NEONMAP1(vabsq_v, aarch64_neon_abs, 0),
NEONMAP0(vaddhn_v),
NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0),
NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0),
NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0),
NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0),
NEONMAP1(vcage_v, aarch64_neon_facge, 0),
NEONMAP1(vcageq_v, aarch64_neon_facge, 0),
NEONMAP1(vcagt_v, aarch64_neon_facgt, 0),
NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0),
NEONMAP1(vcale_v, aarch64_neon_facge, 0),
NEONMAP1(vcaleq_v, aarch64_neon_facge, 0),
NEONMAP1(vcalt_v, aarch64_neon_facgt, 0),
NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0),
NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType),
NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType),
NEONMAP1(vclz_v, ctlz, Add1ArgType),
NEONMAP1(vclzq_v, ctlz, Add1ArgType),
NEONMAP1(vcnt_v, ctpop, Add1ArgType),
NEONMAP1(vcntq_v, ctpop, Add1ArgType),
NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0),
NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0),
NEONMAP0(vcvt_f32_v),
NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
NEONMAP0(vcvtq_f32_v),
NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType),
NEONMAP0(vext_v),
NEONMAP0(vextq_v),
NEONMAP0(vfma_v),
NEONMAP0(vfmaq_v),
NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
NEONMAP0(vmovl_v),
NEONMAP0(vmovn_v),
NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType),
NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType),
NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType),
NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType),
NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType),
NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType),
NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0),
NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0),
NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType),
NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType),
NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType),
NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts),
NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType),
NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType),
NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType),
NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType),
NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType),
NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts),
NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts),
NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0),
NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0),
NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType),
NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType),
NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType),
NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType),
NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType),
NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType),
NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0),
NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0),
NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0),
NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0),
NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0),
NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0),
NEONMAP0(vshl_n_v),
NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
NEONMAP0(vshll_n_v),
NEONMAP0(vshlq_n_v),
NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
NEONMAP0(vshr_n_v),
NEONMAP0(vshrn_n_v),
NEONMAP0(vshrq_n_v),
NEONMAP0(vsubhn_v),
NEONMAP0(vtst_v),
NEONMAP0(vtstq_v),
};
static const NeonIntrinsicInfo AArch64SISDIntrinsicMap[] = {
NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType),
NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType),
NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType),
NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType),
NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType),
NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0),
NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0),
NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType),
NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType),
NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType),
NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType),
NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType),
NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType),
NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType),
NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType),
NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType),
NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors),
NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0),
NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType),
NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType),
NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType),
NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType),
NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType),
NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType),
NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType),
NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType),
NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType),
NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType),
NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType),
NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType),
NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType),
NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType),
NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType),
NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType),
NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType),
NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType),
NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType),
NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType),
NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType),
NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType),
NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType),
NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType),
NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType),
NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType),
NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType),
NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType),
NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType),
NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType),
NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType),
NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType),
NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType),
NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType),
NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType),
NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType),
NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType),
NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0),
NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0),
NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0),
NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0),
NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType),
NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType),
NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType),
NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType),
NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType),
NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType),
NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType),
NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType),
NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType),
NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType),
};
#undef NEONMAP0
#undef NEONMAP1
#undef NEONMAP2
static bool NEONSIMDIntrinsicsProvenSorted = false;
static bool AArch64SIMDIntrinsicsProvenSorted = false;
static bool AArch64SISDIntrinsicsProvenSorted = false;
static const NeonIntrinsicInfo *
findNeonIntrinsicInMap(ArrayRef<NeonIntrinsicInfo> IntrinsicMap,
unsigned BuiltinID, bool &MapProvenSorted) {
#ifndef NDEBUG
if (!MapProvenSorted) {
assert(std::is_sorted(std::begin(IntrinsicMap), std::end(IntrinsicMap)));
MapProvenSorted = true;
}
#endif
const NeonIntrinsicInfo *Builtin =
std::lower_bound(IntrinsicMap.begin(), IntrinsicMap.end(), BuiltinID);
if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID)
return Builtin;
return nullptr;
}
Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
unsigned Modifier,
llvm::Type *ArgType,
const CallExpr *E) {
int VectorSize = 0;
if (Modifier & Use64BitVectors)
VectorSize = 64;
else if (Modifier & Use128BitVectors)
VectorSize = 128;
// Return type.
SmallVector<llvm::Type *, 3> Tys;
if (Modifier & AddRetType) {
llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
if (Modifier & VectorizeRetType)
Ty = llvm::VectorType::get(
Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1);
Tys.push_back(Ty);
}
// Arguments.
if (Modifier & VectorizeArgTypes) {
int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1;
ArgType = llvm::VectorType::get(ArgType, Elts);
}
if (Modifier & (Add1ArgType | Add2ArgTypes))
Tys.push_back(ArgType);
if (Modifier & Add2ArgTypes)
Tys.push_back(ArgType);
if (Modifier & InventFloatType)
Tys.push_back(FloatTy);
return CGM.getIntrinsic(IntrinsicID, Tys);
}
static Value *EmitCommonNeonSISDBuiltinExpr(CodeGenFunction &CGF,
const NeonIntrinsicInfo &SISDInfo,
SmallVectorImpl<Value *> &Ops,
const CallExpr *E) {
unsigned BuiltinID = SISDInfo.BuiltinID;
unsigned int Int = SISDInfo.LLVMIntrinsic;
unsigned Modifier = SISDInfo.TypeModifier;
const char *s = SISDInfo.NameHint;
switch (BuiltinID) {
case NEON::BI__builtin_neon_vcled_s64:
case NEON::BI__builtin_neon_vcled_u64:
case NEON::BI__builtin_neon_vcles_f32:
case NEON::BI__builtin_neon_vcled_f64:
case NEON::BI__builtin_neon_vcltd_s64:
case NEON::BI__builtin_neon_vcltd_u64:
case NEON::BI__builtin_neon_vclts_f32:
case NEON::BI__builtin_neon_vcltd_f64:
case NEON::BI__builtin_neon_vcales_f32:
case NEON::BI__builtin_neon_vcaled_f64:
case NEON::BI__builtin_neon_vcalts_f32:
case NEON::BI__builtin_neon_vcaltd_f64:
// Only one direction of comparisons actually exist, cmle is actually a cmge
// with swapped operands. The table gives us the right intrinsic but we
// still need to do the swap.
std::swap(Ops[0], Ops[1]);
break;
}
assert(Int && "Generic code assumes a valid intrinsic");
// Determine the type(s) of this overloaded AArch64 intrinsic.
const Expr *Arg = E->getArg(0);
llvm::Type *ArgTy = CGF.ConvertType(Arg->getType());
Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E);
int j = 0;
ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0);
for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
ai != ae; ++ai, ++j) {
llvm::Type *ArgTy = ai->getType();
if (Ops[j]->getType()->getPrimitiveSizeInBits() ==
ArgTy->getPrimitiveSizeInBits())
continue;
assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy());
// The constant argument to an _n_ intrinsic always has Int32Ty, so truncate
// it before inserting.
Ops[j] =
CGF.Builder.CreateTruncOrBitCast(Ops[j], ArgTy->getVectorElementType());
Ops[j] =
CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0);
}
Value *Result = CGF.EmitNeonCall(F, Ops, s);
llvm::Type *ResultType = CGF.ConvertType(E->getType());
if (ResultType->getPrimitiveSizeInBits() <
Result->getType()->getPrimitiveSizeInBits())
return CGF.Builder.CreateExtractElement(Result, C0);
return CGF.Builder.CreateBitCast(Result, ResultType, s);
}
Value *CodeGenFunction::EmitCommonNeonBuiltinExpr(
unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic,
const char *NameHint, unsigned Modifier, const CallExpr *E,
SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1) {
// Get the last argument, which specifies the vector type.
llvm::APSInt NeonTypeConst;
const Expr *Arg = E->getArg(E->getNumArgs() - 1);
if (!Arg->isIntegerConstantExpr(NeonTypeConst, getContext()))
return nullptr;
// Determine the type of this overloaded NEON intrinsic.
NeonTypeFlags Type(NeonTypeConst.getZExtValue());
bool Usgn = Type.isUnsigned();
bool Quad = Type.isQuad();
llvm::VectorType *VTy = GetNeonType(this, Type);
llvm::Type *Ty = VTy;
if (!Ty)
return nullptr;
auto getAlignmentValue32 = [&](Address addr) -> Value* {
return Builder.getInt32(addr.getAlignment().getQuantity());
};
unsigned Int = LLVMIntrinsic;
if ((Modifier & UnsignedAlts) && !Usgn)
Int = AltLLVMIntrinsic;
switch (BuiltinID) {
default: break;
case NEON::BI__builtin_neon_vabs_v:
case NEON::BI__builtin_neon_vabsq_v:
if (VTy->getElementType()->isFloatingPointTy())
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs");
case NEON::BI__builtin_neon_vaddhn_v: {
llvm::VectorType *SrcTy =
llvm::VectorType::getExtendedElementVectorType(VTy);
// %sum = add <4 x i32> %lhs, %rhs
Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
// %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
Constant *ShiftAmt =
ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
// %res = trunc <4 x i32> %high to <4 x i16>
return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
}
case NEON::BI__builtin_neon_vcale_v:
case NEON::BI__builtin_neon_vcaleq_v:
case NEON::BI__builtin_neon_vcalt_v:
case NEON::BI__builtin_neon_vcaltq_v:
std::swap(Ops[0], Ops[1]);
case NEON::BI__builtin_neon_vcage_v:
case NEON::BI__builtin_neon_vcageq_v:
case NEON::BI__builtin_neon_vcagt_v:
case NEON::BI__builtin_neon_vcagtq_v: {
llvm::Type *VecFlt = llvm::VectorType::get(
VTy->getScalarSizeInBits() == 32 ? FloatTy : DoubleTy,
VTy->getNumElements());
llvm::Type *Tys[] = { VTy, VecFlt };
Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
return EmitNeonCall(F, Ops, NameHint);
}
case NEON::BI__builtin_neon_vclz_v:
case NEON::BI__builtin_neon_vclzq_v:
// We generate target-independent intrinsic, which needs a second argument
// for whether or not clz of zero is undefined; on ARM it isn't.
Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
break;
case NEON::BI__builtin_neon_vcvt_f32_v:
case NEON::BI__builtin_neon_vcvtq_f32_v:
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad));
return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
: Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
case NEON::BI__builtin_neon_vcvt_n_f32_v:
case NEON::BI__builtin_neon_vcvt_n_f64_v:
case NEON::BI__builtin_neon_vcvtq_n_f32_v:
case NEON::BI__builtin_neon_vcvtq_n_f64_v: {
llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
Function *F = CGM.getIntrinsic(Int, Tys);
return EmitNeonCall(F, Ops, "vcvt_n");
}
case NEON::BI__builtin_neon_vcvt_n_s32_v:
case NEON::BI__builtin_neon_vcvt_n_u32_v:
case NEON::BI__builtin_neon_vcvt_n_s64_v:
case NEON::BI__builtin_neon_vcvt_n_u64_v:
case NEON::BI__builtin_neon_vcvtq_n_s32_v:
case NEON::BI__builtin_neon_vcvtq_n_u32_v:
case NEON::BI__builtin_neon_vcvtq_n_s64_v:
case NEON::BI__builtin_neon_vcvtq_n_u64_v: {
llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
return EmitNeonCall(F, Ops, "vcvt_n");
}
case NEON::BI__builtin_neon_vcvt_s32_v:
case NEON::BI__builtin_neon_vcvt_u32_v:
case NEON::BI__builtin_neon_vcvt_s64_v:
case NEON::BI__builtin_neon_vcvt_u64_v:
case NEON::BI__builtin_neon_vcvtq_s32_v:
case NEON::BI__builtin_neon_vcvtq_u32_v:
case NEON::BI__builtin_neon_vcvtq_s64_v:
case NEON::BI__builtin_neon_vcvtq_u64_v: {
Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
: Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
}
case NEON::BI__builtin_neon_vcvta_s32_v:
case NEON::BI__builtin_neon_vcvta_s64_v:
case NEON::BI__builtin_neon_vcvta_u32_v:
case NEON::BI__builtin_neon_vcvta_u64_v:
case NEON::BI__builtin_neon_vcvtaq_s32_v:
case NEON::BI__builtin_neon_vcvtaq_s64_v:
case NEON::BI__builtin_neon_vcvtaq_u32_v:
case NEON::BI__builtin_neon_vcvtaq_u64_v:
case NEON::BI__builtin_neon_vcvtn_s32_v:
case NEON::BI__builtin_neon_vcvtn_s64_v:
case NEON::BI__builtin_neon_vcvtn_u32_v:
case NEON::BI__builtin_neon_vcvtn_u64_v:
case NEON::BI__builtin_neon_vcvtnq_s32_v:
case NEON::BI__builtin_neon_vcvtnq_s64_v:
case NEON::BI__builtin_neon_vcvtnq_u32_v:
case NEON::BI__builtin_neon_vcvtnq_u64_v:
case NEON::BI__builtin_neon_vcvtp_s32_v:
case NEON::BI__builtin_neon_vcvtp_s64_v:
case NEON::BI__builtin_neon_vcvtp_u32_v:
case NEON::BI__builtin_neon_vcvtp_u64_v:
case NEON::BI__builtin_neon_vcvtpq_s32_v:
case NEON::BI__builtin_neon_vcvtpq_s64_v:
case NEON::BI__builtin_neon_vcvtpq_u32_v:
case NEON::BI__builtin_neon_vcvtpq_u64_v:
case NEON::BI__builtin_neon_vcvtm_s32_v:
case NEON::BI__builtin_neon_vcvtm_s64_v:
case NEON::BI__builtin_neon_vcvtm_u32_v:
case NEON::BI__builtin_neon_vcvtm_u64_v:
case NEON::BI__builtin_neon_vcvtmq_s32_v:
case NEON::BI__builtin_neon_vcvtmq_s64_v:
case NEON::BI__builtin_neon_vcvtmq_u32_v:
case NEON::BI__builtin_neon_vcvtmq_u64_v: {
llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
}
case NEON::BI__builtin_neon_vext_v:
case NEON::BI__builtin_neon_vextq_v: {
int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
SmallVector<uint32_t, 16> Indices;
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
Indices.push_back(i+CV);
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext");
}
case NEON::BI__builtin_neon_vfma_v:
case NEON::BI__builtin_neon_vfmaq_v: {
Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
// NEON intrinsic puts accumulator first, unlike the LLVM fma.
return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
}
case NEON::BI__builtin_neon_vld1_v:
case NEON::BI__builtin_neon_vld1q_v: {
llvm::Type *Tys[] = {Ty, Int8PtrTy};
Ops.push_back(getAlignmentValue32(PtrOp0));
return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1");
}
case NEON::BI__builtin_neon_vld2_v:
case NEON::BI__builtin_neon_vld2q_v:
case NEON::BI__builtin_neon_vld3_v:
case NEON::BI__builtin_neon_vld3q_v:
case NEON::BI__builtin_neon_vld4_v:
case NEON::BI__builtin_neon_vld4q_v: {
llvm::Type *Tys[] = {Ty, Int8PtrTy};
Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
Value *Align = getAlignmentValue32(PtrOp1);
Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint);
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
case NEON::BI__builtin_neon_vld1_dup_v:
case NEON::BI__builtin_neon_vld1q_dup_v: {
Value *V = UndefValue::get(Ty);
Ty = llvm::PointerType::getUnqual(VTy->getElementType());
PtrOp0 = Builder.CreateBitCast(PtrOp0, Ty);
LoadInst *Ld = Builder.CreateLoad(PtrOp0);
llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
return EmitNeonSplat(Ops[0], CI);
}
case NEON::BI__builtin_neon_vld2_lane_v:
case NEON::BI__builtin_neon_vld2q_lane_v:
case NEON::BI__builtin_neon_vld3_lane_v:
case NEON::BI__builtin_neon_vld3q_lane_v:
case NEON::BI__builtin_neon_vld4_lane_v:
case NEON::BI__builtin_neon_vld4q_lane_v: {
llvm::Type *Tys[] = {Ty, Int8PtrTy};
Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
for (unsigned I = 2; I < Ops.size() - 1; ++I)
Ops[I] = Builder.CreateBitCast(Ops[I], Ty);
Ops.push_back(getAlignmentValue32(PtrOp1));
Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint);
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
case NEON::BI__builtin_neon_vmovl_v: {
llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy);
Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
if (Usgn)
return Builder.CreateZExt(Ops[0], Ty, "vmovl");
return Builder.CreateSExt(Ops[0], Ty, "vmovl");
}
case NEON::BI__builtin_neon_vmovn_v: {
llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy);
Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
}
case NEON::BI__builtin_neon_vmull_v:
// FIXME: the integer vmull operations could be emitted in terms of pure
// LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
// hoisting the exts outside loops. Until global ISel comes along that can
// see through such movement this leads to bad CodeGen. So we need an
// intrinsic for now.
Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
case NEON::BI__builtin_neon_vpadal_v:
case NEON::BI__builtin_neon_vpadalq_v: {
// The source operand type has twice as many elements of half the size.
unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
llvm::Type *EltTy =
llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
llvm::Type *NarrowTy =
llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
llvm::Type *Tys[2] = { Ty, NarrowTy };
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
}
case NEON::BI__builtin_neon_vpaddl_v:
case NEON::BI__builtin_neon_vpaddlq_v: {
// The source operand type has twice as many elements of half the size.
unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
llvm::Type *NarrowTy =
llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
llvm::Type *Tys[2] = { Ty, NarrowTy };
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
}
case NEON::BI__builtin_neon_vqdmlal_v:
case NEON::BI__builtin_neon_vqdmlsl_v: {
SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
Ops[1] =
EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal");
Ops.resize(2);
return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint);
}
case NEON::BI__builtin_neon_vqshl_n_v:
case NEON::BI__builtin_neon_vqshlq_n_v:
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
1, false);
case NEON::BI__builtin_neon_vqshlu_n_v:
case NEON::BI__builtin_neon_vqshluq_n_v:
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n",
1, false);
case NEON::BI__builtin_neon_vrecpe_v:
case NEON::BI__builtin_neon_vrecpeq_v:
case NEON::BI__builtin_neon_vrsqrte_v:
case NEON::BI__builtin_neon_vrsqrteq_v:
Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
case NEON::BI__builtin_neon_vrshr_n_v:
case NEON::BI__builtin_neon_vrshrq_n_v:
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n",
1, true);
case NEON::BI__builtin_neon_vshl_n_v:
case NEON::BI__builtin_neon_vshlq_n_v:
Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
"vshl_n");
case NEON::BI__builtin_neon_vshll_n_v: {
llvm::Type *SrcTy = llvm::VectorType::getTruncatedElementVectorType(VTy);
Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
if (Usgn)
Ops[0] = Builder.CreateZExt(Ops[0], VTy);
else
Ops[0] = Builder.CreateSExt(Ops[0], VTy);
Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
}
case NEON::BI__builtin_neon_vshrn_n_v: {
llvm::Type *SrcTy = llvm::VectorType::getExtendedElementVectorType(VTy);
Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
if (Usgn)
Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
else
Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
}
case NEON::BI__builtin_neon_vshr_n_v:
case NEON::BI__builtin_neon_vshrq_n_v:
return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n");
case NEON::BI__builtin_neon_vst1_v:
case NEON::BI__builtin_neon_vst1q_v:
case NEON::BI__builtin_neon_vst2_v:
case NEON::BI__builtin_neon_vst2q_v:
case NEON::BI__builtin_neon_vst3_v:
case NEON::BI__builtin_neon_vst3q_v:
case NEON::BI__builtin_neon_vst4_v:
case NEON::BI__builtin_neon_vst4q_v:
case NEON::BI__builtin_neon_vst2_lane_v:
case NEON::BI__builtin_neon_vst2q_lane_v:
case NEON::BI__builtin_neon_vst3_lane_v:
case NEON::BI__builtin_neon_vst3q_lane_v:
case NEON::BI__builtin_neon_vst4_lane_v:
case NEON::BI__builtin_neon_vst4q_lane_v: {
llvm::Type *Tys[] = {Int8PtrTy, Ty};
Ops.push_back(getAlignmentValue32(PtrOp0));
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
}
case NEON::BI__builtin_neon_vsubhn_v: {
llvm::VectorType *SrcTy =
llvm::VectorType::getExtendedElementVectorType(VTy);
// %sum = add <4 x i32> %lhs, %rhs
Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
// %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
Constant *ShiftAmt =
ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
// %res = trunc <4 x i32> %high to <4 x i16>
return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
}
case NEON::BI__builtin_neon_vtrn_v:
case NEON::BI__builtin_neon_vtrnq_v: {
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Value *SV = nullptr;
for (unsigned vi = 0; vi != 2; ++vi) {
SmallVector<uint32_t, 16> Indices;
for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
Indices.push_back(i+vi);
Indices.push_back(i+e+vi);
}
Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
SV = Builder.CreateDefaultAlignedStore(SV, Addr);
}
return SV;
}
case NEON::BI__builtin_neon_vtst_v:
case NEON::BI__builtin_neon_vtstq_v: {
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
ConstantAggregateZero::get(Ty));
return Builder.CreateSExt(Ops[0], Ty, "vtst");
}
case NEON::BI__builtin_neon_vuzp_v:
case NEON::BI__builtin_neon_vuzpq_v: {
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Value *SV = nullptr;
for (unsigned vi = 0; vi != 2; ++vi) {
SmallVector<uint32_t, 16> Indices;
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
Indices.push_back(2*i+vi);
Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
SV = Builder.CreateDefaultAlignedStore(SV, Addr);
}
return SV;
}
case NEON::BI__builtin_neon_vzip_v:
case NEON::BI__builtin_neon_vzipq_v: {
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Value *SV = nullptr;
for (unsigned vi = 0; vi != 2; ++vi) {
SmallVector<uint32_t, 16> Indices;
for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
Indices.push_back((i + vi*e) >> 1);
Indices.push_back(((i + vi*e) >> 1)+e);
}
Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
SV = Builder.CreateDefaultAlignedStore(SV, Addr);
}
return SV;
}
}
assert(Int && "Expected valid intrinsic number");
// Determine the type(s) of this overloaded AArch64 intrinsic.
Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E);
Value *Result = EmitNeonCall(F, Ops, NameHint);
llvm::Type *ResultType = ConvertType(E->getType());
// AArch64 intrinsic one-element vector type cast to
// scalar type expected by the builtin
return Builder.CreateBitCast(Result, ResultType, NameHint);
}
Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
const CmpInst::Predicate Ip, const Twine &Name) {
llvm::Type *OTy = Op->getType();
// FIXME: this is utterly horrific. We should not be looking at previous
// codegen context to find out what needs doing. Unfortunately TableGen
// currently gives us exactly the same calls for vceqz_f32 and vceqz_s32
// (etc).
if (BitCastInst *BI = dyn_cast<BitCastInst>(Op))
OTy = BI->getOperand(0)->getType();
Op = Builder.CreateBitCast(Op, OTy);
if (OTy->getScalarType()->isFloatingPointTy()) {
Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy));
} else {
Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy));
}
return Builder.CreateSExt(Op, Ty, Name);
}
static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
Value *ExtOp, Value *IndexOp,
llvm::Type *ResTy, unsigned IntID,
const char *Name) {
SmallVector<Value *, 2> TblOps;
if (ExtOp)
TblOps.push_back(ExtOp);
// Build a vector containing sequential number like (0, 1, 2, ..., 15)
SmallVector<uint32_t, 16> Indices;
llvm::VectorType *TblTy = cast<llvm::VectorType>(Ops[0]->getType());
for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
Indices.push_back(2*i);
Indices.push_back(2*i+1);
}
int PairPos = 0, End = Ops.size() - 1;
while (PairPos < End) {
TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
Ops[PairPos+1], Indices,
Name));
PairPos += 2;
}
// If there's an odd number of 64-bit lookup table, fill the high 64-bit
// of the 128-bit lookup table with zero.
if (PairPos == End) {
Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
ZeroTbl, Indices, Name));
}
Function *TblF;
TblOps.push_back(IndexOp);
TblF = CGF.CGM.getIntrinsic(IntID, ResTy);
return CGF.EmitNeonCall(TblF, TblOps, Name);
}
Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) {
unsigned Value;
switch (BuiltinID) {
default:
return nullptr;
case ARM::BI__builtin_arm_nop:
Value = 0;
break;
case ARM::BI__builtin_arm_yield:
case ARM::BI__yield:
Value = 1;
break;
case ARM::BI__builtin_arm_wfe:
case ARM::BI__wfe:
Value = 2;
break;
case ARM::BI__builtin_arm_wfi:
case ARM::BI__wfi:
Value = 3;
break;
case ARM::BI__builtin_arm_sev:
case ARM::BI__sev:
Value = 4;
break;
case ARM::BI__builtin_arm_sevl:
case ARM::BI__sevl:
Value = 5;
break;
}
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
llvm::ConstantInt::get(Int32Ty, Value));
}
// Generates the IR for the read/write special register builtin,
// ValueType is the type of the value that is to be written or read,
// RegisterType is the type of the register being written to or read from.
static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF,
const CallExpr *E,
llvm::Type *RegisterType,
llvm::Type *ValueType,
bool IsRead,
StringRef SysReg = "") {
// write and register intrinsics only support 32 and 64 bit operations.
assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64))
&& "Unsupported size for register.");
CodeGen::CGBuilderTy &Builder = CGF.Builder;
CodeGen::CodeGenModule &CGM = CGF.CGM;
LLVMContext &Context = CGM.getLLVMContext();
if (SysReg.empty()) {
const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts();
SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString();
}
llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) };
llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
llvm::Type *Types[] = { RegisterType };
bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32);
assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64))
&& "Can't fit 64-bit value in 32-bit register");
if (IsRead) {
llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
llvm::Value *Call = Builder.CreateCall(F, Metadata);
if (MixedTypes)
// Read into 64 bit register and then truncate result to 32 bit.
return Builder.CreateTrunc(Call, ValueType);
if (ValueType->isPointerTy())
// Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*).
return Builder.CreateIntToPtr(Call, ValueType);
return Call;
}
llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1));
if (MixedTypes) {
// Extend 32 bit write value to 64 bit to pass to write.
ArgValue = Builder.CreateZExt(ArgValue, RegisterType);
return Builder.CreateCall(F, { Metadata, ArgValue });
}
if (ValueType->isPointerTy()) {
// Have VoidPtrTy ArgValue but want to return an i32/i64.
ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType);
return Builder.CreateCall(F, { Metadata, ArgValue });
}
return Builder.CreateCall(F, { Metadata, ArgValue });
}
/// Return true if BuiltinID is an overloaded Neon intrinsic with an extra
/// argument that specifies the vector type.
static bool HasExtraNeonArgument(unsigned BuiltinID) {
switch (BuiltinID) {
default: break;
case NEON::BI__builtin_neon_vget_lane_i8:
case NEON::BI__builtin_neon_vget_lane_i16:
case NEON::BI__builtin_neon_vget_lane_i32:
case NEON::BI__builtin_neon_vget_lane_i64:
case NEON::BI__builtin_neon_vget_lane_f32:
case NEON::BI__builtin_neon_vgetq_lane_i8:
case NEON::BI__builtin_neon_vgetq_lane_i16:
case NEON::BI__builtin_neon_vgetq_lane_i32:
case NEON::BI__builtin_neon_vgetq_lane_i64:
case NEON::BI__builtin_neon_vgetq_lane_f32:
case NEON::BI__builtin_neon_vset_lane_i8:
case NEON::BI__builtin_neon_vset_lane_i16:
case NEON::BI__builtin_neon_vset_lane_i32:
case NEON::BI__builtin_neon_vset_lane_i64:
case NEON::BI__builtin_neon_vset_lane_f32:
case NEON::BI__builtin_neon_vsetq_lane_i8:
case NEON::BI__builtin_neon_vsetq_lane_i16:
case NEON::BI__builtin_neon_vsetq_lane_i32:
case NEON::BI__builtin_neon_vsetq_lane_i64:
case NEON::BI__builtin_neon_vsetq_lane_f32:
case NEON::BI__builtin_neon_vsha1h_u32:
case NEON::BI__builtin_neon_vsha1cq_u32:
case NEON::BI__builtin_neon_vsha1pq_u32:
case NEON::BI__builtin_neon_vsha1mq_u32:
case ARM::BI_MoveToCoprocessor:
case ARM::BI_MoveToCoprocessor2:
return false;
}
return true;
}
Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
if (auto Hint = GetValueForARMHint(BuiltinID))
return Hint;
if (BuiltinID == ARM::BI__emit) {
bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb;
llvm::FunctionType *FTy =
llvm::FunctionType::get(VoidTy, /*Variadic=*/false);
APSInt Value;
if (!E->getArg(0)->EvaluateAsInt(Value, CGM.getContext()))
llvm_unreachable("Sema will ensure that the parameter is constant");
uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue();
llvm::InlineAsm *Emit =
IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "",
/*SideEffects=*/true)
: InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "",
/*SideEffects=*/true);
return Builder.CreateCall(Emit);
}
if (BuiltinID == ARM::BI__builtin_arm_dbg) {
Value *Option = EmitScalarExpr(E->getArg(0));
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option);
}
if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
Value *Address = EmitScalarExpr(E->getArg(0));
Value *RW = EmitScalarExpr(E->getArg(1));
Value *IsData = EmitScalarExpr(E->getArg(2));
// Locality is not supported on ARM target
Value *Locality = llvm::ConstantInt::get(Int32Ty, 3);
Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
return Builder.CreateCall(F, {Address, RW, Locality, IsData});
}
if (BuiltinID == ARM::BI__builtin_arm_rbit) {
llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
return Builder.CreateCall(
CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
}
if (BuiltinID == ARM::BI__clear_cache) {
assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
const FunctionDecl *FD = E->getDirectCallee();
Value *Ops[2];
for (unsigned i = 0; i < 2; i++)
Ops[i] = EmitScalarExpr(E->getArg(i));
llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
StringRef Name = FD->getName();
return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
}
if (BuiltinID == ARM::BI__builtin_arm_mcrr ||
BuiltinID == ARM::BI__builtin_arm_mcrr2) {
Function *F;
switch (BuiltinID) {
default: llvm_unreachable("unexpected builtin");
case ARM::BI__builtin_arm_mcrr:
F = CGM.getIntrinsic(Intrinsic::arm_mcrr);
break;
case ARM::BI__builtin_arm_mcrr2:
F = CGM.getIntrinsic(Intrinsic::arm_mcrr2);
break;
}
// MCRR{2} instruction has 5 operands but
// the intrinsic has 4 because Rt and Rt2
// are represented as a single unsigned 64
// bit integer in the intrinsic definition
// but internally it's represented as 2 32
// bit integers.
Value *Coproc = EmitScalarExpr(E->getArg(0));
Value *Opc1 = EmitScalarExpr(E->getArg(1));
Value *RtAndRt2 = EmitScalarExpr(E->getArg(2));
Value *CRm = EmitScalarExpr(E->getArg(3));
Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty);
Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1);
Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty);
return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm});
}
if (BuiltinID == ARM::BI__builtin_arm_mrrc ||
BuiltinID == ARM::BI__builtin_arm_mrrc2) {
Function *F;
switch (BuiltinID) {
default: llvm_unreachable("unexpected builtin");
case ARM::BI__builtin_arm_mrrc:
F = CGM.getIntrinsic(Intrinsic::arm_mrrc);
break;
case ARM::BI__builtin_arm_mrrc2:
F = CGM.getIntrinsic(Intrinsic::arm_mrrc2);
break;
}
Value *Coproc = EmitScalarExpr(E->getArg(0));
Value *Opc1 = EmitScalarExpr(E->getArg(1));
Value *CRm = EmitScalarExpr(E->getArg(2));
Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm});
// Returns an unsigned 64 bit integer, represented
// as two 32 bit integers.
Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1);
Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0);
Rt = Builder.CreateZExt(Rt, Int64Ty);
Rt1 = Builder.CreateZExt(Rt1, Int64Ty);
Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32);
RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true);
RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1);
return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType()));
}
if (BuiltinID == ARM::BI__builtin_arm_ldrexd ||
((BuiltinID == ARM::BI__builtin_arm_ldrex ||
BuiltinID == ARM::BI__builtin_arm_ldaex) &&
getContext().getTypeSize(E->getType()) == 64) ||
BuiltinID == ARM::BI__ldrexd) {
Function *F;
switch (BuiltinID) {
default: llvm_unreachable("unexpected builtin");
case ARM::BI__builtin_arm_ldaex:
F = CGM.getIntrinsic(Intrinsic::arm_ldaexd);
break;
case ARM::BI__builtin_arm_ldrexd:
case ARM::BI__builtin_arm_ldrex:
case ARM::BI__ldrexd:
F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
break;
}
Value *LdPtr = EmitScalarExpr(E->getArg(0));
Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
"ldrexd");
Value *Val0 = Builder.CreateExtractValue(Val, 1);
Value *Val1 = Builder.CreateExtractValue(Val, 0);
Val0 = Builder.CreateZExt(Val0, Int64Ty);
Val1 = Builder.CreateZExt(Val1, Int64Ty);
Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
Val = Builder.CreateOr(Val, Val1);
return Builder.CreateBitCast(Val, ConvertType(E->getType()));
}
if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
BuiltinID == ARM::BI__builtin_arm_ldaex) {
Value *LoadAddr = EmitScalarExpr(E->getArg(0));
QualType Ty = E->getType();
llvm::Type *RealResTy = ConvertType(Ty);
llvm::Type *PtrTy = llvm::IntegerType::get(
getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex
? Intrinsic::arm_ldaex
: Intrinsic::arm_ldrex,
PtrTy);
Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
if (RealResTy->isPointerTy())
return Builder.CreateIntToPtr(Val, RealResTy);
else {
llvm::Type *IntResTy = llvm::IntegerType::get(
getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
return Builder.CreateBitCast(Val, RealResTy);
}
}
if (BuiltinID == ARM::BI__builtin_arm_strexd ||
((BuiltinID == ARM::BI__builtin_arm_stlex ||
BuiltinID == ARM::BI__builtin_arm_strex) &&
getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
? Intrinsic::arm_stlexd
: Intrinsic::arm_strexd);
llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, nullptr);
Address Tmp = CreateMemTemp(E->getArg(0)->getType());
Value *Val = EmitScalarExpr(E->getArg(0));
Builder.CreateStore(Val, Tmp);
Address LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
Val = Builder.CreateLoad(LdPtr);
Value *Arg0 = Builder.CreateExtractValue(Val, 0);
Value *Arg1 = Builder.CreateExtractValue(Val, 1);
Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy);
return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd");
}
if (BuiltinID == ARM::BI__builtin_arm_strex ||
BuiltinID == ARM::BI__builtin_arm_stlex) {
Value *StoreVal = EmitScalarExpr(E->getArg(0));
Value *StoreAddr = EmitScalarExpr(E->getArg(1));
QualType Ty = E->getArg(0)->getType();
llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
getContext().getTypeSize(Ty));
StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
if (StoreVal->getType()->isPointerTy())
StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
else {
llvm::Type *IntTy = llvm::IntegerType::get(
getLLVMContext(),
CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
}
Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
? Intrinsic::arm_stlex
: Intrinsic::arm_strex,
StoreAddr->getType());
return Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex");
}
switch (BuiltinID) {
case ARM::BI__iso_volatile_load8:
case ARM::BI__iso_volatile_load16:
case ARM::BI__iso_volatile_load32:
case ARM::BI__iso_volatile_load64: {
Value *Ptr = EmitScalarExpr(E->getArg(0));
QualType ElTy = E->getArg(0)->getType()->getPointeeType();
CharUnits LoadSize = getContext().getTypeSizeInChars(ElTy);
llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
LoadSize.getQuantity() * 8);
Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
llvm::LoadInst *Load =
Builder.CreateAlignedLoad(Ptr, LoadSize);
Load->setVolatile(true);
return Load;
}
case ARM::BI__iso_volatile_store8:
case ARM::BI__iso_volatile_store16:
case ARM::BI__iso_volatile_store32:
case ARM::BI__iso_volatile_store64: {
Value *Ptr = EmitScalarExpr(E->getArg(0));
Value *Value = EmitScalarExpr(E->getArg(1));
QualType ElTy = E->getArg(0)->getType()->getPointeeType();
CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
StoreSize.getQuantity() * 8);
Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
llvm::StoreInst *Store =
Builder.CreateAlignedStore(Value, Ptr,
StoreSize);
Store->setVolatile(true);
return Store;
}
}
if (BuiltinID == ARM::BI__builtin_arm_clrex) {
Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
return Builder.CreateCall(F);
}
// CRC32
Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
switch (BuiltinID) {
case ARM::BI__builtin_arm_crc32b:
CRCIntrinsicID = Intrinsic::arm_crc32b; break;
case ARM::BI__builtin_arm_crc32cb:
CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
case ARM::BI__builtin_arm_crc32h:
CRCIntrinsicID = Intrinsic::arm_crc32h; break;
case ARM::BI__builtin_arm_crc32ch:
CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
case ARM::BI__builtin_arm_crc32w:
case ARM::BI__builtin_arm_crc32d:
CRCIntrinsicID = Intrinsic::arm_crc32w; break;
case ARM::BI__builtin_arm_crc32cw:
case ARM::BI__builtin_arm_crc32cd:
CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
}
if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
Value *Arg0 = EmitScalarExpr(E->getArg(0));
Value *Arg1 = EmitScalarExpr(E->getArg(1));
// crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w
// intrinsics, hence we need different codegen for these cases.
if (BuiltinID == ARM::BI__builtin_arm_crc32d ||
BuiltinID == ARM::BI__builtin_arm_crc32cd) {
Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
Value *Arg1b = Builder.CreateLShr(Arg1, C1);
Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
Function *F = CGM.getIntrinsic(CRCIntrinsicID);
Value *Res = Builder.CreateCall(F, {Arg0, Arg1a});
return Builder.CreateCall(F, {Res, Arg1b});
} else {
Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
Function *F = CGM.getIntrinsic(CRCIntrinsicID);
return Builder.CreateCall(F, {Arg0, Arg1});
}
}
if (BuiltinID == ARM::BI__builtin_arm_rsr ||
BuiltinID == ARM::BI__builtin_arm_rsr64 ||
BuiltinID == ARM::BI__builtin_arm_rsrp ||
BuiltinID == ARM::BI__builtin_arm_wsr ||
BuiltinID == ARM::BI__builtin_arm_wsr64 ||
BuiltinID == ARM::BI__builtin_arm_wsrp) {
bool IsRead = BuiltinID == ARM::BI__builtin_arm_rsr ||
BuiltinID == ARM::BI__builtin_arm_rsr64 ||
BuiltinID == ARM::BI__builtin_arm_rsrp;
bool IsPointerBuiltin = BuiltinID == ARM::BI__builtin_arm_rsrp ||
BuiltinID == ARM::BI__builtin_arm_wsrp;
bool Is64Bit = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
BuiltinID == ARM::BI__builtin_arm_wsr64;
llvm::Type *ValueType;
llvm::Type *RegisterType;
if (IsPointerBuiltin) {
ValueType = VoidPtrTy;
RegisterType = Int32Ty;
} else if (Is64Bit) {
ValueType = RegisterType = Int64Ty;
} else {
ValueType = RegisterType = Int32Ty;
}
return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead);
}
// Find out if any arguments are required to be integer constant
// expressions.
unsigned ICEArguments = 0;
ASTContext::GetBuiltinTypeError Error;
getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
assert(Error == ASTContext::GE_None && "Should not codegen an error");
auto getAlignmentValue32 = [&](Address addr) -> Value* {
return Builder.getInt32(addr.getAlignment().getQuantity());
};
Address PtrOp0 = Address::invalid();
Address PtrOp1 = Address::invalid();
SmallVector<Value*, 4> Ops;
bool HasExtraArg = HasExtraNeonArgument(BuiltinID);
unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0);
for (unsigned i = 0, e = NumArgs; i != e; i++) {
if (i == 0) {
switch (BuiltinID) {
case NEON::BI__builtin_neon_vld1_v:
case NEON::BI__builtin_neon_vld1q_v:
case NEON::BI__builtin_neon_vld1q_lane_v:
case NEON::BI__builtin_neon_vld1_lane_v:
case NEON::BI__builtin_neon_vld1_dup_v:
case NEON::BI__builtin_neon_vld1q_dup_v:
case NEON::BI__builtin_neon_vst1_v:
case NEON::BI__builtin_neon_vst1q_v:
case NEON::BI__builtin_neon_vst1q_lane_v:
case NEON::BI__builtin_neon_vst1_lane_v:
case NEON::BI__builtin_neon_vst2_v:
case NEON::BI__builtin_neon_vst2q_v:
case NEON::BI__builtin_neon_vst2_lane_v:
case NEON::BI__builtin_neon_vst2q_lane_v:
case NEON::BI__builtin_neon_vst3_v:
case NEON::BI__builtin_neon_vst3q_v:
case NEON::BI__builtin_neon_vst3_lane_v:
case NEON::BI__builtin_neon_vst3q_lane_v:
case NEON::BI__builtin_neon_vst4_v:
case NEON::BI__builtin_neon_vst4q_v:
case NEON::BI__builtin_neon_vst4_lane_v:
case NEON::BI__builtin_neon_vst4q_lane_v:
// Get the alignment for the argument in addition to the value;
// we'll use it later.
PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
Ops.push_back(PtrOp0.getPointer());
continue;
}
}
if (i == 1) {
switch (BuiltinID) {
case NEON::BI__builtin_neon_vld2_v:
case NEON::BI__builtin_neon_vld2q_v:
case NEON::BI__builtin_neon_vld3_v:
case NEON::BI__builtin_neon_vld3q_v:
case NEON::BI__builtin_neon_vld4_v:
case NEON::BI__builtin_neon_vld4q_v:
case NEON::BI__builtin_neon_vld2_lane_v:
case NEON::BI__builtin_neon_vld2q_lane_v:
case NEON::BI__builtin_neon_vld3_lane_v:
case NEON::BI__builtin_neon_vld3q_lane_v:
case NEON::BI__builtin_neon_vld4_lane_v:
case NEON::BI__builtin_neon_vld4q_lane_v:
case NEON::BI__builtin_neon_vld2_dup_v:
case NEON::BI__builtin_neon_vld3_dup_v:
case NEON::BI__builtin_neon_vld4_dup_v:
// Get the alignment for the argument in addition to the value;
// we'll use it later.
PtrOp1 = EmitPointerWithAlignment(E->getArg(1));
Ops.push_back(PtrOp1.getPointer());
continue;
}
}
if ((ICEArguments & (1 << i)) == 0) {
Ops.push_back(EmitScalarExpr(E->getArg(i)));
} else {
// If this is required to be a constant, constant fold it so that we know
// that the generated intrinsic gets a ConstantInt.
llvm::APSInt Result;
bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
}
}
switch (BuiltinID) {
default: break;
case NEON::BI__builtin_neon_vget_lane_i8:
case NEON::BI__builtin_neon_vget_lane_i16:
case NEON::BI__builtin_neon_vget_lane_i32:
case NEON::BI__builtin_neon_vget_lane_i64:
case NEON::BI__builtin_neon_vget_lane_f32:
case NEON::BI__builtin_neon_vgetq_lane_i8:
case NEON::BI__builtin_neon_vgetq_lane_i16:
case NEON::BI__builtin_neon_vgetq_lane_i32:
case NEON::BI__builtin_neon_vgetq_lane_i64:
case NEON::BI__builtin_neon_vgetq_lane_f32:
return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane");
case NEON::BI__builtin_neon_vset_lane_i8:
case NEON::BI__builtin_neon_vset_lane_i16:
case NEON::BI__builtin_neon_vset_lane_i32:
case NEON::BI__builtin_neon_vset_lane_i64:
case NEON::BI__builtin_neon_vset_lane_f32:
case NEON::BI__builtin_neon_vsetq_lane_i8:
case NEON::BI__builtin_neon_vsetq_lane_i16:
case NEON::BI__builtin_neon_vsetq_lane_i32:
case NEON::BI__builtin_neon_vsetq_lane_i64:
case NEON::BI__builtin_neon_vsetq_lane_f32:
return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
case NEON::BI__builtin_neon_vsha1h_u32:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops,
"vsha1h");
case NEON::BI__builtin_neon_vsha1cq_u32:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops,
"vsha1h");
case NEON::BI__builtin_neon_vsha1pq_u32:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops,
"vsha1h");
case NEON::BI__builtin_neon_vsha1mq_u32:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops,
"vsha1h");
// The ARM _MoveToCoprocessor builtins put the input register value as
// the first argument, but the LLVM intrinsic expects it as the third one.
case ARM::BI_MoveToCoprocessor:
case ARM::BI_MoveToCoprocessor2: {
Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI_MoveToCoprocessor ?
Intrinsic::arm_mcr : Intrinsic::arm_mcr2);
return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0],
Ops[3], Ops[4], Ops[5]});
}
case ARM::BI_BitScanForward:
case ARM::BI_BitScanForward64:
return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
case ARM::BI_BitScanReverse:
case ARM::BI_BitScanReverse64:
return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
case ARM::BI_InterlockedAnd64:
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
case ARM::BI_InterlockedExchange64:
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
case ARM::BI_InterlockedExchangeAdd64:
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
case ARM::BI_InterlockedExchangeSub64:
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
case ARM::BI_InterlockedOr64:
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
case ARM::BI_InterlockedXor64:
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
case ARM::BI_InterlockedDecrement64:
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
case ARM::BI_InterlockedIncrement64:
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
}
// Get the last argument, which specifies the vector type.
assert(HasExtraArg);
llvm::APSInt Result;
const Expr *Arg = E->getArg(E->getNumArgs()-1);
if (!Arg->isIntegerConstantExpr(Result, getContext()))
return nullptr;
if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
// Determine the overloaded type of this builtin.
llvm::Type *Ty;
if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
Ty = FloatTy;
else
Ty = DoubleTy;
// Determine whether this is an unsigned conversion or not.
bool usgn = Result.getZExtValue() == 1;
unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
// Call the appropriate intrinsic.
Function *F = CGM.getIntrinsic(Int, Ty);
return Builder.CreateCall(F, Ops, "vcvtr");
}
// Determine the type of this overloaded NEON intrinsic.
NeonTypeFlags Type(Result.getZExtValue());
bool usgn = Type.isUnsigned();
bool rightShift = false;
llvm::VectorType *VTy = GetNeonType(this, Type);
llvm::Type *Ty = VTy;
if (!Ty)
return nullptr;
// Many NEON builtins have identical semantics and uses in ARM and
// AArch64. Emit these in a single function.
auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap);
const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap(
IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted);
if (Builtin)
return EmitCommonNeonBuiltinExpr(
Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1);
unsigned Int;
switch (BuiltinID) {
default: return nullptr;
case NEON::BI__builtin_neon_vld1q_lane_v:
// Handle 64-bit integer elements as a special case. Use shuffles of
// one-element vectors to avoid poor code for i64 in the backend.
if (VTy->getElementType()->isIntegerTy(64)) {
// Extract the other lane.
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
uint32_t Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
// Load the value as a one-element vector.
Ty = llvm::VectorType::get(VTy->getElementType(), 1);
llvm::Type *Tys[] = {Ty, Int8PtrTy};
Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys);
Value *Align = getAlignmentValue32(PtrOp0);
Value *Ld = Builder.CreateCall(F, {Ops[0], Align});
// Combine them.
uint32_t Indices[] = {1 - Lane, Lane};
SV = llvm::ConstantDataVector::get(getLLVMContext(), Indices);
return Builder.CreateShuffleVector(Ops[1], Ld, SV, "vld1q_lane");
}
// fall through
case NEON::BI__builtin_neon_vld1_lane_v: {
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType());
Value *Ld = Builder.CreateLoad(PtrOp0);
return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
}
case NEON::BI__builtin_neon_vld2_dup_v:
case NEON::BI__builtin_neon_vld3_dup_v:
case NEON::BI__builtin_neon_vld4_dup_v: {
// Handle 64-bit elements as a special-case. There is no "dup" needed.
if (VTy->getElementType()->getPrimitiveSizeInBits() == 64) {
switch (BuiltinID) {
case NEON::BI__builtin_neon_vld2_dup_v:
Int = Intrinsic::arm_neon_vld2;
break;
case NEON::BI__builtin_neon_vld3_dup_v:
Int = Intrinsic::arm_neon_vld3;
break;
case NEON::BI__builtin_neon_vld4_dup_v:
Int = Intrinsic::arm_neon_vld4;
break;
default: llvm_unreachable("unknown vld_dup intrinsic?");
}
llvm::Type *Tys[] = {Ty, Int8PtrTy};
Function *F = CGM.getIntrinsic(Int, Tys);
llvm::Value *Align = getAlignmentValue32(PtrOp1);
Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, "vld_dup");
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
switch (BuiltinID) {
case NEON::BI__builtin_neon_vld2_dup_v:
Int = Intrinsic::arm_neon_vld2lane;
break;
case NEON::BI__builtin_neon_vld3_dup_v:
Int = Intrinsic::arm_neon_vld3lane;
break;
case NEON::BI__builtin_neon_vld4_dup_v:
Int = Intrinsic::arm_neon_vld4lane;
break;
default: llvm_unreachable("unknown vld_dup intrinsic?");
}
llvm::Type *Tys[] = {Ty, Int8PtrTy};
Function *F = CGM.getIntrinsic(Int, Tys);
llvm::StructType *STy = cast<llvm::StructType>(F->getReturnType());
SmallVector<Value*, 6> Args;
Args.push_back(Ops[1]);
Args.append(STy->getNumElements(), UndefValue::get(Ty));
llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
Args.push_back(CI);
Args.push_back(getAlignmentValue32(PtrOp1));
Ops[1] = Builder.CreateCall(F, Args, "vld_dup");
// splat lane 0 to all elts in each vector of the result.
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
Value *Val = Builder.CreateExtractValue(Ops[1], i);
Value *Elt = Builder.CreateBitCast(Val, Ty);
Elt = EmitNeonSplat(Elt, CI);
Elt = Builder.CreateBitCast(Elt, Val->getType());
Ops[1] = Builder.CreateInsertValue(Ops[1], Elt, i);
}
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
case NEON::BI__builtin_neon_vqrshrn_n_v:
Int =
usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
1, true);
case NEON::BI__builtin_neon_vqrshrun_n_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
Ops, "vqrshrun_n", 1, true);
case NEON::BI__builtin_neon_vqshrn_n_v:
Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
1, true);
case NEON::BI__builtin_neon_vqshrun_n_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
Ops, "vqshrun_n", 1, true);
case NEON::BI__builtin_neon_vrecpe_v:
case NEON::BI__builtin_neon_vrecpeq_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
Ops, "vrecpe");
case NEON::BI__builtin_neon_vrshrn_n_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
Ops, "vrshrn_n", 1, true);
case NEON::BI__builtin_neon_vrsra_n_v:
case NEON::BI__builtin_neon_vrsraq_n_v:
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]});
return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
case NEON::BI__builtin_neon_vsri_n_v:
case NEON::BI__builtin_neon_vsriq_n_v:
rightShift = true;
case NEON::BI__builtin_neon_vsli_n_v:
case NEON::BI__builtin_neon_vsliq_n_v:
Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
Ops, "vsli_n");
case NEON::BI__builtin_neon_vsra_n_v:
case NEON::BI__builtin_neon_vsraq_n_v:
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
return Builder.CreateAdd(Ops[0], Ops[1]);
case NEON::BI__builtin_neon_vst1q_lane_v:
// Handle 64-bit integer elements as a special case. Use a shuffle to get
// a one-element vector and avoid poor code for i64 in the backend.
if (VTy->getElementType()->isIntegerTy(64)) {
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
Ops[2] = getAlignmentValue32(PtrOp0);
llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()};
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
Tys), Ops);
}
// fall through
case NEON::BI__builtin_neon_vst1_lane_v: {
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
auto St = Builder.CreateStore(Ops[1], Builder.CreateBitCast(PtrOp0, Ty));
return St;
}
case NEON::BI__builtin_neon_vtbl1_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
Ops, "vtbl1");
case NEON::BI__builtin_neon_vtbl2_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
Ops, "vtbl2");
case NEON::BI__builtin_neon_vtbl3_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
Ops, "vtbl3");
case NEON::BI__builtin_neon_vtbl4_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
Ops, "vtbl4");
case NEON::BI__builtin_neon_vtbx1_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
Ops, "vtbx1");
case NEON::BI__builtin_neon_vtbx2_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
Ops, "vtbx2");
case NEON::BI__builtin_neon_vtbx3_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
Ops, "vtbx3");
case NEON::BI__builtin_neon_vtbx4_v:
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
Ops, "vtbx4");
}
}
static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID,
const CallExpr *E,
SmallVectorImpl<Value *> &Ops) {
unsigned int Int = 0;
const char *s = nullptr;
switch (BuiltinID) {
default:
return nullptr;
case NEON::BI__builtin_neon_vtbl1_v:
case NEON::BI__builtin_neon_vqtbl1_v:
case NEON::BI__builtin_neon_vqtbl1q_v:
case NEON::BI__builtin_neon_vtbl2_v:
case NEON::BI__builtin_neon_vqtbl2_v:
case NEON::BI__builtin_neon_vqtbl2q_v:
case NEON::BI__builtin_neon_vtbl3_v:
case NEON::BI__builtin_neon_vqtbl3_v:
case NEON::BI__builtin_neon_vqtbl3q_v:
case NEON::BI__builtin_neon_vtbl4_v:
case NEON::BI__builtin_neon_vqtbl4_v:
case NEON::BI__builtin_neon_vqtbl4q_v:
break;
case NEON::BI__builtin_neon_vtbx1_v:
case NEON::BI__builtin_neon_vqtbx1_v:
case NEON::BI__builtin_neon_vqtbx1q_v:
case NEON::BI__builtin_neon_vtbx2_v:
case NEON::BI__builtin_neon_vqtbx2_v:
case NEON::BI__builtin_neon_vqtbx2q_v:
case NEON::BI__builtin_neon_vtbx3_v:
case NEON::BI__builtin_neon_vqtbx3_v:
case NEON::BI__builtin_neon_vqtbx3q_v:
case NEON::BI__builtin_neon_vtbx4_v:
case NEON::BI__builtin_neon_vqtbx4_v:
case NEON::BI__builtin_neon_vqtbx4q_v:
break;
}
assert(E->getNumArgs() >= 3);
// Get the last argument, which specifies the vector type.
llvm::APSInt Result;
const Expr *Arg = E->getArg(E->getNumArgs() - 1);
if (!Arg->isIntegerConstantExpr(Result, CGF.getContext()))
return nullptr;
// Determine the type of this overloaded NEON intrinsic.
NeonTypeFlags Type(Result.getZExtValue());
llvm::VectorType *Ty = GetNeonType(&CGF, Type);
if (!Ty)
return nullptr;
CodeGen::CGBuilderTy &Builder = CGF.Builder;
// AArch64 scalar builtins are not overloaded, they do not have an extra
// argument that specifies the vector type, need to handle each case.
switch (BuiltinID) {
case NEON::BI__builtin_neon_vtbl1_v: {
return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 1), nullptr,
Ops[1], Ty, Intrinsic::aarch64_neon_tbl1,
"vtbl1");
}
case NEON::BI__builtin_neon_vtbl2_v: {
return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 2), nullptr,
Ops[2], Ty, Intrinsic::aarch64_neon_tbl1,
"vtbl1");
}
case NEON::BI__builtin_neon_vtbl3_v: {
return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 3), nullptr,
Ops[3], Ty, Intrinsic::aarch64_neon_tbl2,
"vtbl2");
}
case NEON::BI__builtin_neon_vtbl4_v: {
return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 4), nullptr,
Ops[4], Ty, Intrinsic::aarch64_neon_tbl2,
"vtbl2");
}
case NEON::BI__builtin_neon_vtbx1_v: {
Value *TblRes =
packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 1), nullptr, Ops[2],
Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
llvm::Constant *EightV = ConstantInt::get(Ty, 8);
Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
CmpRes = Builder.CreateSExt(CmpRes, Ty);
Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
}
case NEON::BI__builtin_neon_vtbx2_v: {
return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 2), Ops[0],
Ops[3], Ty, Intrinsic::aarch64_neon_tbx1,
"vtbx1");
}
case NEON::BI__builtin_neon_vtbx3_v: {
Value *TblRes =
packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 3), nullptr, Ops[4],
Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24);
Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
TwentyFourV);
CmpRes = Builder.CreateSExt(CmpRes, Ty);
Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
}
case NEON::BI__builtin_neon_vtbx4_v: {
return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 4), Ops[0],
Ops[5], Ty, Intrinsic::aarch64_neon_tbx2,
"vtbx2");
}
case NEON::BI__builtin_neon_vqtbl1_v:
case NEON::BI__builtin_neon_vqtbl1q_v:
Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break;
case NEON::BI__builtin_neon_vqtbl2_v:
case NEON::BI__builtin_neon_vqtbl2q_v: {
Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break;
case NEON::BI__builtin_neon_vqtbl3_v:
case NEON::BI__builtin_neon_vqtbl3q_v:
Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break;
case NEON::BI__builtin_neon_vqtbl4_v:
case NEON::BI__builtin_neon_vqtbl4q_v:
Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break;
case NEON::BI__builtin_neon_vqtbx1_v:
case NEON::BI__builtin_neon_vqtbx1q_v:
Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break;
case NEON::BI__builtin_neon_vqtbx2_v:
case NEON::BI__builtin_neon_vqtbx2q_v:
Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break;
case NEON::BI__builtin_neon_vqtbx3_v:
case NEON::BI__builtin_neon_vqtbx3q_v:
Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break;
case NEON::BI__builtin_neon_vqtbx4_v:
case NEON::BI__builtin_neon_vqtbx4q_v:
Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break;
}
}
if (!Int)
return nullptr;
Function *F = CGF.CGM.getIntrinsic(Int, Ty);
return CGF.EmitNeonCall(F, Ops, s);
}
Value *CodeGenFunction::vectorWrapScalar16(Value *Op) {
llvm::Type *VTy = llvm::VectorType::get(Int16Ty, 4);
Op = Builder.CreateBitCast(Op, Int16Ty);
Value *V = UndefValue::get(VTy);
llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
Op = Builder.CreateInsertElement(V, Op, CI);
return Op;
}
Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
unsigned HintID = static_cast<unsigned>(-1);
switch (BuiltinID) {
default: break;
case AArch64::BI__builtin_arm_nop:
HintID = 0;
break;
case AArch64::BI__builtin_arm_yield:
HintID = 1;
break;
case AArch64::BI__builtin_arm_wfe:
HintID = 2;
break;
case AArch64::BI__builtin_arm_wfi:
HintID = 3;
break;
case AArch64::BI__builtin_arm_sev:
HintID = 4;
break;
case AArch64::BI__builtin_arm_sevl:
HintID = 5;
break;
}
if (HintID != static_cast<unsigned>(-1)) {
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint);
return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID));
}
if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
Value *Address = EmitScalarExpr(E->getArg(0));
Value *RW = EmitScalarExpr(E->getArg(1));
Value *CacheLevel = EmitScalarExpr(E->getArg(2));
Value *RetentionPolicy = EmitScalarExpr(E->getArg(3));
Value *IsData = EmitScalarExpr(E->getArg(4));
Value *Locality = nullptr;
if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) {
// Temporal fetch, needs to convert cache level to locality.
Locality = llvm::ConstantInt::get(Int32Ty,
-cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3);
} else {
// Streaming fetch.
Locality = llvm::ConstantInt::get(Int32Ty, 0);
}
// FIXME: We need AArch64 specific LLVM intrinsic if we want to specify
// PLDL3STRM or PLDL2STRM.
Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
return Builder.CreateCall(F, {Address, RW, Locality, IsData});
}
if (BuiltinID == AArch64::BI__builtin_arm_rbit) {
assert((getContext().getTypeSize(E->getType()) == 32) &&
"rbit of unusual size!");
llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
return Builder.CreateCall(
CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
}
if (BuiltinID == AArch64::BI__builtin_arm_rbit64) {
assert((getContext().getTypeSize(E->getType()) == 64) &&
"rbit of unusual size!");
llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
return Builder.CreateCall(
CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
}
if (BuiltinID == AArch64::BI__clear_cache) {
assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
const FunctionDecl *FD = E->getDirectCallee();
Value *Ops[2];
for (unsigned i = 0; i < 2; i++)
Ops[i] = EmitScalarExpr(E->getArg(i));
llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
StringRef Name = FD->getName();
return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
}
if ((BuiltinID == AArch64::BI__builtin_arm_ldrex ||
BuiltinID == AArch64::BI__builtin_arm_ldaex) &&
getContext().getTypeSize(E->getType()) == 128) {
Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
? Intrinsic::aarch64_ldaxp
: Intrinsic::aarch64_ldxp);
Value *LdPtr = EmitScalarExpr(E->getArg(0));
Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
"ldxp");
Value *Val0 = Builder.CreateExtractValue(Val, 1);
Value *Val1 = Builder.CreateExtractValue(Val, 0);
llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
Val0 = Builder.CreateZExt(Val0, Int128Ty);
Val1 = Builder.CreateZExt(Val1, Int128Ty);
Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64);
Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
Val = Builder.CreateOr(Val, Val1);
return Builder.CreateBitCast(Val, ConvertType(E->getType()));
} else if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
BuiltinID == AArch64::BI__builtin_arm_ldaex) {
Value *LoadAddr = EmitScalarExpr(E->getArg(0));
QualType Ty = E->getType();
llvm::Type *RealResTy = ConvertType(Ty);
llvm::Type *PtrTy = llvm::IntegerType::get(
getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
? Intrinsic::aarch64_ldaxr
: Intrinsic::aarch64_ldxr,
PtrTy);
Value *Val = Builder.CreateCall(F, LoadAddr, "ldxr");
if (RealResTy->isPointerTy())
return Builder.CreateIntToPtr(Val, RealResTy);
llvm::Type *IntResTy = llvm::IntegerType::get(
getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
return Builder.CreateBitCast(Val, RealResTy);
}
if ((BuiltinID == AArch64::BI__builtin_arm_strex ||
BuiltinID == AArch64::BI__builtin_arm_stlex) &&
getContext().getTypeSize(E->getArg(0)->getType()) == 128) {
Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
? Intrinsic::aarch64_stlxp
: Intrinsic::aarch64_stxp);
llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty, nullptr);
Address Tmp = CreateMemTemp(E->getArg(0)->getType());
EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true);
Tmp = Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(STy));
llvm::Value *Val = Builder.CreateLoad(Tmp);
Value *Arg0 = Builder.CreateExtractValue(Val, 0);
Value *Arg1 = Builder.CreateExtractValue(Val, 1);
Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)),
Int8PtrTy);
return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp");
}
if (BuiltinID == AArch64::BI__builtin_arm_strex ||
BuiltinID == AArch64::BI__builtin_arm_stlex) {
Value *StoreVal = EmitScalarExpr(E->getArg(0));
Value *StoreAddr = EmitScalarExpr(E->getArg(1));
QualType Ty = E->getArg(0)->getType();
llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
getContext().getTypeSize(Ty));
StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
if (StoreVal->getType()->isPointerTy())
StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty);
else {
llvm::Type *IntTy = llvm::IntegerType::get(
getLLVMContext(),
CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty);
}
Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
? Intrinsic::aarch64_stlxr
: Intrinsic::aarch64_stxr,
StoreAddr->getType());
return Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr");
}
if (BuiltinID == AArch64::BI__builtin_arm_clrex) {
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex);
return Builder.CreateCall(F);
}
// CRC32
Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
switch (BuiltinID) {
case AArch64::BI__builtin_arm_crc32b:
CRCIntrinsicID = Intrinsic::aarch64_crc32b; break;
case AArch64::BI__builtin_arm_crc32cb:
CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break;
case AArch64::BI__builtin_arm_crc32h:
CRCIntrinsicID = Intrinsic::aarch64_crc32h; break;
case AArch64::BI__builtin_arm_crc32ch:
CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break;
case AArch64::BI__builtin_arm_crc32w:
CRCIntrinsicID = Intrinsic::aarch64_crc32w; break;
case AArch64::BI__builtin_arm_crc32cw:
CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break;
case AArch64::BI__builtin_arm_crc32d:
CRCIntrinsicID = Intrinsic::aarch64_crc32x; break;
case AArch64::BI__builtin_arm_crc32cd:
CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break;
}
if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
Value *Arg0 = EmitScalarExpr(E->getArg(0));
Value *Arg1 = EmitScalarExpr(E->getArg(1));
Function *F = CGM.getIntrinsic(CRCIntrinsicID);
llvm::Type *DataTy = F->getFunctionType()->getParamType(1);
Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy);
return Builder.CreateCall(F, {Arg0, Arg1});
}
if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
BuiltinID == AArch64::BI__builtin_arm_rsrp ||
BuiltinID == AArch64::BI__builtin_arm_wsr ||
BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
BuiltinID == AArch64::BI__builtin_arm_wsrp) {
bool IsRead = BuiltinID == AArch64::BI__builtin_arm_rsr ||
BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
BuiltinID == AArch64::BI__builtin_arm_rsrp;
bool IsPointerBuiltin = BuiltinID == AArch64::BI__builtin_arm_rsrp ||
BuiltinID == AArch64::BI__builtin_arm_wsrp;
bool Is64Bit = BuiltinID != AArch64::BI__builtin_arm_rsr &&
BuiltinID != AArch64::BI__builtin_arm_wsr;
llvm::Type *ValueType;
llvm::Type *RegisterType = Int64Ty;
if (IsPointerBuiltin) {
ValueType = VoidPtrTy;
} else if (Is64Bit) {
ValueType = Int64Ty;
} else {
ValueType = Int32Ty;
}
return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead);
}
// Find out if any arguments are required to be integer constant
// expressions.
unsigned ICEArguments = 0;
ASTContext::GetBuiltinTypeError Error;
getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
assert(Error == ASTContext::GE_None && "Should not codegen an error");
llvm::SmallVector<Value*, 4> Ops;
for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
if ((ICEArguments & (1 << i)) == 0) {
Ops.push_back(EmitScalarExpr(E->getArg(i)));
} else {
// If this is required to be a constant, constant fold it so that we know
// that the generated intrinsic gets a ConstantInt.
llvm::APSInt Result;
bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
assert(IsConst && "Constant arg isn't actually constant?");
(void)IsConst;
Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
}
}
auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap);
const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap(
SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted);
if (Builtin) {
Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1)));
Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E);
assert(Result && "SISD intrinsic should have been handled");
return Result;
}
llvm::APSInt Result;
const Expr *Arg = E->getArg(E->getNumArgs()-1);
NeonTypeFlags Type(0);
if (Arg->isIntegerConstantExpr(Result, getContext()))
// Determine the type of this overloaded NEON intrinsic.
Type = NeonTypeFlags(Result.getZExtValue());
bool usgn = Type.isUnsigned();
bool quad = Type.isQuad();
// Handle non-overloaded intrinsics first.
switch (BuiltinID) {
default: break;
case NEON::BI__builtin_neon_vldrq_p128: {
llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
llvm::Type *Int128PTy = llvm::PointerType::get(Int128Ty, 0);
Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy);
return Builder.CreateAlignedLoad(Int128Ty, Ptr,
CharUnits::fromQuantity(16));
}
case NEON::BI__builtin_neon_vstrq_p128: {
llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy);
return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr);
}
case NEON::BI__builtin_neon_vcvts_u32_f32:
case NEON::BI__builtin_neon_vcvtd_u64_f64:
usgn = true;
// FALL THROUGH
case NEON::BI__builtin_neon_vcvts_s32_f32:
case NEON::BI__builtin_neon_vcvtd_s64_f64: {
Ops.push_back(EmitScalarExpr(E->getArg(0)));
bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
Ops[0] = Builder.CreateBitCast(Ops[0], FTy);
if (usgn)
return Builder.CreateFPToUI(Ops[0], InTy);
return Builder.CreateFPToSI(Ops[0], InTy);
}
case NEON::BI__builtin_neon_vcvts_f32_u32:
case NEON::BI__builtin_neon_vcvtd_f64_u64:
usgn = true;
// FALL THROUGH
case NEON::BI__builtin_neon_vcvts_f32_s32:
case NEON::BI__builtin_neon_vcvtd_f64_s64: {
Ops.push_back(EmitScalarExpr(E->getArg(0)));
bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
if (usgn)
return Builder.CreateUIToFP(Ops[0], FTy);
return Builder.CreateSIToFP(Ops[0], FTy);
}
case NEON::BI__builtin_neon_vpaddd_s64: {
llvm::Type *Ty = llvm::VectorType::get(Int64Ty, 2);
Value *Vec = EmitScalarExpr(E->getArg(0));
// The vector is v2f64, so make sure it's bitcast to that.
Vec = Builder.CreateBitCast(Vec, Ty, "v2i64");
llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
// Pairwise addition of a v2f64 into a scalar f64.
return Builder.CreateAdd(Op0, Op1, "vpaddd");
}
case NEON::BI__builtin_neon_vpaddd_f64: {
llvm::Type *Ty =
llvm::VectorType::get(DoubleTy, 2);
Value *Vec = EmitScalarExpr(E->getArg(0));
// The vector is v2f64, so make sure it's bitcast to that.
Vec = Builder.CreateBitCast(Vec, Ty, "v2f64");
llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
// Pairwise addition of a v2f64 into a scalar f64.
return Builder.CreateFAdd(Op0, Op1, "vpaddd");
}
case NEON::BI__builtin_neon_vpadds_f32: {
llvm::Type *Ty =
llvm::VectorType::get(FloatTy, 2);
Value *Vec = EmitScalarExpr(E->getArg(0));
// The vector is v2f32, so make sure it's bitcast to that.
Vec = Builder.CreateBitCast(Vec, Ty, "v2f32");
llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
// Pairwise addition of a v2f32 into a scalar f32.
return Builder.CreateFAdd(Op0, Op1, "vpaddd");
}
case NEON::BI__builtin_neon_vceqzd_s64:
case NEON::BI__builtin_neon_vceqzd_f64:
case NEON::BI__builtin_neon_vceqzs_f32:
Ops.push_back(EmitScalarExpr(E->getArg(0)));
return EmitAArch64CompareBuiltinExpr(
Ops[0], ConvertType(E->getCallReturnType(getContext())),
ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz");
case NEON::BI__builtin_neon_vcgezd_s64:
case NEON::BI__builtin_neon_vcgezd_f64:
case NEON::BI__builtin_neon_vcgezs_f32:
Ops.push_back(EmitScalarExpr(E->getArg(0)));
return EmitAArch64CompareBuiltinExpr(
Ops[0], ConvertType(E->getCallReturnType(getContext())),
ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez");
case NEON::BI__builtin_neon_vclezd_s64:
case NEON::BI__builtin_neon_vclezd_f64:
case NEON::BI__builtin_neon_vclezs_f32:
Ops.push_back(EmitScalarExpr(E->getArg(0)));
return EmitAArch64CompareBuiltinExpr(
Ops[0], ConvertType(E->getCallReturnType(getContext())),
ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez");
case NEON::BI__builtin_neon_vcgtzd_s64:
case NEON::BI__builtin_neon_vcgtzd_f64:
case NEON::BI__builtin_neon_vcgtzs_f32:
Ops.push_back(EmitScalarExpr(E->getArg(0)));
return EmitAArch64CompareBuiltinExpr(
Ops[0], ConvertType(E->getCallReturnType(getContext())),
ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz");
case NEON::BI__builtin_neon_vcltzd_s64:
case NEON::BI__builtin_neon_vcltzd_f64:
case NEON::BI__builtin_neon_vcltzs_f32:
Ops.push_back(EmitScalarExpr(E->getArg(0)));
return EmitAArch64CompareBuiltinExpr(
Ops[0], ConvertType(E->getCallReturnType(getContext())),
ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz");
case NEON::BI__builtin_neon_vceqzd_u64: {
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
Ops[0] =
Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty));
return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd");
}
case NEON::BI__builtin_neon_vceqd_f64:
case NEON::BI__builtin_neon_vcled_f64:
case NEON::BI__builtin_neon_vcltd_f64:
case NEON::BI__builtin_neon_vcged_f64:
case NEON::BI__builtin_neon_vcgtd_f64: {
llvm::CmpInst::Predicate P;
switch (BuiltinID) {
default: llvm_unreachable("missing builtin ID in switch!");
case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break;
case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break;
case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break;
case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break;
case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break;
}
Ops.push_back(EmitScalarExpr(E->getArg(1)));
Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd");
}
case NEON::BI__builtin_neon_vceqs_f32:
case NEON::BI__builtin_neon_vcles_f32:
case NEON::BI__builtin_neon_vclts_f32:
case NEON::BI__builtin_neon_vcges_f32:
case NEON::BI__builtin_neon_vcgts_f32: {
llvm::CmpInst::Predicate P;
switch (BuiltinID) {
default: llvm_unreachable("missing builtin ID in switch!");
case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break;
case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break;
case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break;
case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break;
case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break;
}
Ops.push_back(EmitScalarExpr(E->getArg(1)));
Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy);
Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd");
}
case NEON::BI__builtin_neon_vceqd_s64:
case NEON::BI__builtin_neon_vceqd_u64:
case NEON::BI__builtin_neon_vcgtd_s64:
case NEON::BI__builtin_neon_vcgtd_u64:
case NEON::BI__builtin_neon_vcltd_s64:
case NEON::BI__builtin_neon_vcltd_u64:
case NEON::BI__builtin_neon_vcged_u64:
case NEON::BI__builtin_neon_vcged_s64:
case NEON::BI__builtin_neon_vcled_u64:
case NEON::BI__builtin_neon_vcled_s64: {
llvm::CmpInst::Predicate P;
switch (BuiltinID) {
default: llvm_unreachable("missing builtin ID in switch!");
case NEON::BI__builtin_neon_vceqd_s64:
case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break;
case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break;
case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break;
case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break;
case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break;
case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break;
case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break;
case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break;
case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break;
}
Ops.push_back(EmitScalarExpr(E->getArg(1)));
Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]);
return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd");
}
case NEON::BI__builtin_neon_vtstd_s64:
case NEON::BI__builtin_neon_vtstd_u64: {
Ops.push_back(EmitScalarExpr(E->getArg(1)));
Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
llvm::Constant::getNullValue(Int64Ty));
return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd");
}
case NEON::BI__builtin_neon_vset_lane_i8:
case NEON::BI__builtin_neon_vset_lane_i16:
case NEON::BI__builtin_neon_vset_lane_i32:
case NEON::BI__builtin_neon_vset_lane_i64:
case NEON::BI__builtin_neon_vset_lane_f32:
case NEON::BI__builtin_neon_vsetq_lane_i8:
case NEON::BI__builtin_neon_vsetq_lane_i16:
case NEON::BI__builtin_neon_vsetq_lane_i32:
case NEON::BI__builtin_neon_vsetq_lane_i64:
case NEON::BI__builtin_neon_vsetq_lane_f32:
Ops.push_back(EmitScalarExpr(E->getArg(2)));
return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
case NEON::BI__builtin_neon_vset_lane_f64:
// The vector type needs a cast for the v1f64 variant.
Ops[1] = Builder.CreateBitCast(Ops[1],
llvm::VectorType::get(DoubleTy, 1));
Ops.push_back(EmitScalarExpr(E->getArg(2)));
return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
case NEON::BI__builtin_neon_vsetq_lane_f64:
// The vector type needs a cast for the v2f64 variant.
Ops[1] = Builder.CreateBitCast(Ops[1],
llvm::VectorType::get(DoubleTy, 2));
Ops.push_back(EmitScalarExpr(E->getArg(2)));
return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
case NEON::BI__builtin_neon_vget_lane_i8:
case NEON::BI__builtin_neon_vdupb_lane_i8:
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int8Ty, 8));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vget_lane");
case NEON::BI__builtin_neon_vgetq_lane_i8:
case NEON::BI__builtin_neon_vdupb_laneq_i8:
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int8Ty, 16));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vgetq_lane");
case NEON::BI__builtin_neon_vget_lane_i16:
case NEON::BI__builtin_neon_vduph_lane_i16:
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int16Ty, 4));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vget_lane");
case NEON::BI__builtin_neon_vgetq_lane_i16:
case NEON::BI__builtin_neon_vduph_laneq_i16:
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int16Ty, 8));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vgetq_lane");
case NEON::BI__builtin_neon_vget_lane_i32:
case NEON::BI__builtin_neon_vdups_lane_i32:
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 2));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vget_lane");
case NEON::BI__builtin_neon_vdups_lane_f32:
Ops[0] = Builder.CreateBitCast(Ops[0],
llvm::VectorType::get(FloatTy, 2));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vdups_lane");
case NEON::BI__builtin_neon_vgetq_lane_i32:
case NEON::BI__builtin_neon_vdups_laneq_i32:
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vgetq_lane");
case NEON::BI__builtin_neon_vget_lane_i64:
case NEON::BI__builtin_neon_vdupd_lane_i64:
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 1));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vget_lane");
case NEON::BI__builtin_neon_vdupd_lane_f64:
Ops[0] = Builder.CreateBitCast(Ops[0],
llvm::VectorType::get(DoubleTy, 1));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vdupd_lane");
case NEON::BI__builtin_neon_vgetq_lane_i64:
case NEON::BI__builtin_neon_vdupd_laneq_i64:
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vgetq_lane");
case NEON::BI__builtin_neon_vget_lane_f32:
Ops[0] = Builder.CreateBitCast(Ops[0],
llvm::VectorType::get(FloatTy, 2));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vget_lane");
case NEON::BI__builtin_neon_vget_lane_f64:
Ops[0] = Builder.CreateBitCast(Ops[0],
llvm::VectorType::get(DoubleTy, 1));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vget_lane");
case NEON::BI__builtin_neon_vgetq_lane_f32:
case NEON::BI__builtin_neon_vdups_laneq_f32:
Ops[0] = Builder.CreateBitCast(Ops[0],
llvm::VectorType::get(FloatTy, 4));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vgetq_lane");
case NEON::BI__builtin_neon_vgetq_lane_f64:
case NEON::BI__builtin_neon_vdupd_laneq_f64:
Ops[0] = Builder.CreateBitCast(Ops[0],
llvm::VectorType::get(DoubleTy, 2));
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
"vgetq_lane");
case NEON::BI__builtin_neon_vaddd_s64:
case NEON::BI__builtin_neon_vaddd_u64:
return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd");
case NEON::BI__builtin_neon_vsubd_s64:
case NEON::BI__builtin_neon_vsubd_u64:
return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd");
case NEON::BI__builtin_neon_vqdmlalh_s16:
case NEON::BI__builtin_neon_vqdmlslh_s16: {
SmallVector<Value *, 2> ProductOps;
ProductOps.push_back(vectorWrapScalar16(Ops[1]));
ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2))));
llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4);
Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
ProductOps, "vqdmlXl");
Constant *CI = ConstantInt::get(SizeTy, 0);
Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16
? Intrinsic::aarch64_neon_sqadd
: Intrinsic::aarch64_neon_sqsub;
return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl");
}
case NEON::BI__builtin_neon_vqshlud_n_s64: {
Ops.push_back(EmitScalarExpr(E->getArg(1)));
Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty),
Ops, "vqshlu_n");
}
case NEON::BI__builtin_neon_vqshld_n_u64:
case NEON::BI__builtin_neon_vqshld_n_s64: {
unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64
? Intrinsic::aarch64_neon_uqshl
: Intrinsic::aarch64_neon_sqshl;
Ops.push_back(EmitScalarExpr(E->getArg(1)));
Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n");
}
case NEON::BI__builtin_neon_vrshrd_n_u64:
case NEON::BI__builtin_neon_vrshrd_n_s64: {
unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64
? Intrinsic::aarch64_neon_urshl
: Intrinsic::aarch64_neon_srshl;
Ops.push_back(EmitScalarExpr(E->getArg(1)));
int SV = cast<ConstantInt>(Ops[1])->getSExtValue();
Ops[1] = ConstantInt::get(Int64Ty, -SV);
return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n");
}
case NEON::BI__builtin_neon_vrsrad_n_u64:
case NEON::BI__builtin_neon_vrsrad_n_s64: {
unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64
? Intrinsic::aarch64_neon_urshl
: Intrinsic::aarch64_neon_srshl;
Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2))));
Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty),
{Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)});
return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty));
}
case NEON::BI__builtin_neon_vshld_n_s64:
case NEON::BI__builtin_neon_vshld_n_u64: {
llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
return Builder.CreateShl(
Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n");
}
case NEON::BI__builtin_neon_vshrd_n_s64: {
llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
return Builder.CreateAShr(
Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
Amt->getZExtValue())),
"shrd_n");
}
case NEON::BI__builtin_neon_vshrd_n_u64: {
llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
uint64_t ShiftAmt = Amt->getZExtValue();
// Right-shifting an unsigned value by its size yields 0.
if (ShiftAmt == 64)
return ConstantInt::get(Int64Ty, 0);
return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt),
"shrd_n");
}
case NEON::BI__builtin_neon_vsrad_n_s64: {
llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
Ops[1] = Builder.CreateAShr(
Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
Amt->getZExtValue())),
"shrd_n");
return Builder.CreateAdd(Ops[0], Ops[1]);
}
case NEON::BI__builtin_neon_vsrad_n_u64: {
llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
uint64_t ShiftAmt = Amt->getZExtValue();
// Right-shifting an unsigned value by its size yields 0.
// As Op + 0 = Op, return Ops[0] directly.
if (ShiftAmt == 64)
return Ops[0];
Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt),
"shrd_n");
return Builder.CreateAdd(Ops[0], Ops[1]);
}
case NEON::BI__builtin_neon_vqdmlalh_lane_s16:
case NEON::BI__builtin_neon_vqdmlalh_laneq_s16:
case NEON::BI__builtin_neon_vqdmlslh_lane_s16:
case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: {
Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
"lane");
SmallVector<Value *, 2> ProductOps;
ProductOps.push_back(vectorWrapScalar16(Ops[1]));
ProductOps.push_back(vectorWrapScalar16(Ops[2]));
llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4);
Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
ProductOps, "vqdmlXl");
Constant *CI = ConstantInt::get(SizeTy, 0);
Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
Ops.pop_back();
unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 ||
BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16)
? Intrinsic::aarch64_neon_sqadd
: Intrinsic::aarch64_neon_sqsub;
return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl");
}
case NEON::BI__builtin_neon_vqdmlals_s32:
case NEON::BI__builtin_neon_vqdmlsls_s32: {
SmallVector<Value *, 2> ProductOps;
ProductOps.push_back(Ops[1]);
ProductOps.push_back(EmitScalarExpr(E->getArg(2)));
Ops[1] =
EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
ProductOps, "vqdmlXl");
unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32
? Intrinsic::aarch64_neon_sqadd
: Intrinsic::aarch64_neon_sqsub;
return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl");
}
case NEON::BI__builtin_neon_vqdmlals_lane_s32:
case NEON::BI__builtin_neon_vqdmlals_laneq_s32:
case NEON::BI__builtin_neon_vqdmlsls_lane_s32:
case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: {
Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
"lane");
SmallVector<Value *, 2> ProductOps;
ProductOps.push_back(Ops[1]);
ProductOps.push_back(Ops[2]);
Ops[1] =
EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
ProductOps, "vqdmlXl");
Ops.pop_back();
unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 ||
BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32)
? Intrinsic::aarch64_neon_sqadd
: Intrinsic::aarch64_neon_sqsub;
return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl");
}
}
llvm::VectorType *VTy = GetNeonType(this, Type);
llvm::Type *Ty = VTy;
if (!Ty)
return nullptr;
// Not all intrinsics handled by the common case work for AArch64 yet, so only
// defer to common code if it's been added to our special map.
Builtin = findNeonIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID,
AArch64SIMDIntrinsicsProvenSorted);
if (Builtin)
return EmitCommonNeonBuiltinExpr(
Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
Builtin->NameHint, Builtin->TypeModifier, E, Ops,
/*never use addresses*/ Address::invalid(), Address::invalid());
if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops))
return V;
unsigned Int;
switch (BuiltinID) {
default: return nullptr;
case NEON::BI__builtin_neon_vbsl_v:
case NEON::BI__builtin_neon_vbslq_v: {
llvm::Type *BitTy = llvm::VectorType::getInteger(VTy);
Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl");
Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl");
Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl");
Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl");
Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl");
Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl");
return Builder.CreateBitCast(Ops[0], Ty);
}
case NEON::BI__builtin_neon_vfma_lane_v:
case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types
// The ARM builtins (and instructions) have the addend as the first
// operand, but the 'fma' intrinsics have it last. Swap it around here.
Value *Addend = Ops[0];
Value *Multiplicand = Ops[1];
Value *LaneSource = Ops[2];
Ops[0] = Multiplicand;
Ops[1] = LaneSource;
Ops[2] = Addend;
// Now adjust things to handle the lane access.
llvm::Type *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v ?
llvm::VectorType::get(VTy->getElementType(), VTy->getNumElements() / 2) :
VTy;
llvm::Constant *cst = cast<Constant>(Ops[3]);
Value *SV = llvm::ConstantVector::getSplat(VTy->getNumElements(), cst);
Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy);
Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane");
Ops.pop_back();
Int = Intrinsic::fma;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla");
}
case NEON::BI__builtin_neon_vfma_laneq_v: {
llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
// v1f64 fma should be mapped to Neon scalar f64 fma
if (VTy && VTy->getElementType() == DoubleTy) {
Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
llvm::Type *VTy = GetNeonType(this,
NeonTypeFlags(NeonTypeFlags::Float64, false, true));
Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
Value *F = CGM.getIntrinsic(Intrinsic::fma, DoubleTy);
Value *Result = Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
return Builder.CreateBitCast(Result, Ty);
}
Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
llvm::Type *STy = llvm::VectorType::get(VTy->getElementType(),
VTy->getNumElements() * 2);
Ops[2] = Builder.CreateBitCast(Ops[2], STy);
Value* SV = llvm::ConstantVector::getSplat(VTy->getNumElements(),
cast<ConstantInt>(Ops[3]));
Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]});
}
case NEON::BI__builtin_neon_vfmaq_laneq_v: {
Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]});
}
case NEON::BI__builtin_neon_vfmas_lane_f32:
case NEON::BI__builtin_neon_vfmas_laneq_f32:
case NEON::BI__builtin_neon_vfmad_lane_f64:
case NEON::BI__builtin_neon_vfmad_laneq_f64: {
Ops.push_back(EmitScalarExpr(E->getArg(3)));
llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
}
case NEON::BI__builtin_neon_vmull_v:
// FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull;
if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
case NEON::BI__builtin_neon_vmax_v:
case NEON::BI__builtin_neon_vmaxq_v:
// FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax;
if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
case NEON::BI__builtin_neon_vmin_v:
case NEON::BI__builtin_neon_vminq_v:
// FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin;
if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
case NEON::BI__builtin_neon_vabd_v:
case NEON::BI__builtin_neon_vabdq_v:
// FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd;
if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
case NEON::BI__builtin_neon_vpadal_v:
case NEON::BI__builtin_neon_vpadalq_v: {
unsigned ArgElts = VTy->getNumElements();
llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType());
unsigned BitWidth = EltTy->getBitWidth();
llvm::Type *ArgTy = llvm::VectorType::get(
llvm::IntegerType::get(getLLVMContext(), BitWidth/2), 2*ArgElts);
llvm::Type* Tys[2] = { VTy, ArgTy };
Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp;
SmallVector<llvm::Value*, 1> TmpOps;
TmpOps.push_back(Ops[1]);
Function *F = CGM.getIntrinsic(Int, Tys);
llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal");
llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType());
return Builder.CreateAdd(tmp, addend);
}
case NEON::BI__builtin_neon_vpmin_v:
case NEON::BI__builtin_neon_vpminq_v:
// FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp;
if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
case NEON::BI__builtin_neon_vpmax_v:
case NEON::BI__builtin_neon_vpmaxq_v:
// FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp;
if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
case NEON::BI__builtin_neon_vminnm_v:
case NEON::BI__builtin_neon_vminnmq_v:
Int = Intrinsic::aarch64_neon_fminnm;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
case NEON::BI__builtin_neon_vmaxnm_v:
case NEON::BI__builtin_neon_vmaxnmq_v:
Int = Intrinsic::aarch64_neon_fmaxnm;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
case NEON::BI__builtin_neon_vrecpss_f32: {
Ops.push_back(EmitScalarExpr(E->getArg(1)));
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy),
Ops, "vrecps");
}
case NEON::BI__builtin_neon_vrecpsd_f64: {
Ops.push_back(EmitScalarExpr(E->getArg(1)));
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy),
Ops, "vrecps");
}
case NEON::BI__builtin_neon_vqshrun_n_v:
Int = Intrinsic::aarch64_neon_sqshrun;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
case NEON::BI__builtin_neon_vqrshrun_n_v:
Int = Intrinsic::aarch64_neon_sqrshrun;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
case NEON::BI__builtin_neon_vqshrn_n_v:
Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
case NEON::BI__builtin_neon_vrshrn_n_v:
Int = Intrinsic::aarch64_neon_rshrn;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
case NEON::BI__builtin_neon_vqrshrn_n_v:
Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
case NEON::BI__builtin_neon_vrnda_v:
case NEON::BI__builtin_neon_vrndaq_v: {
Int = Intrinsic::round;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
}
case NEON::BI__builtin_neon_vrndi_v:
case NEON::BI__builtin_neon_vrndiq_v: {
Int = Intrinsic::nearbyint;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndi");
}
case NEON::BI__builtin_neon_vrndm_v:
case NEON::BI__builtin_neon_vrndmq_v: {
Int = Intrinsic::floor;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
}
case NEON::BI__builtin_neon_vrndn_v:
case NEON::BI__builtin_neon_vrndnq_v: {
Int = Intrinsic::aarch64_neon_frintn;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
}
case NEON::BI__builtin_neon_vrndp_v:
case NEON::BI__builtin_neon_vrndpq_v: {
Int = Intrinsic::ceil;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
}
case NEON::BI__builtin_neon_vrndx_v:
case NEON::BI__builtin_neon_vrndxq_v: {
Int = Intrinsic::rint;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
}
case NEON::BI__builtin_neon_vrnd_v:
case NEON::BI__builtin_neon_vrndq_v: {
Int = Intrinsic::trunc;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz");
}
case NEON::BI__builtin_neon_vceqz_v:
case NEON::BI__builtin_neon_vceqzq_v:
return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
ICmpInst::ICMP_EQ, "vceqz");
case NEON::BI__builtin_neon_vcgez_v:
case NEON::BI__builtin_neon_vcgezq_v:
return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
ICmpInst::ICMP_SGE, "vcgez");
case NEON::BI__builtin_neon_vclez_v:
case NEON::BI__builtin_neon_vclezq_v:
return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
ICmpInst::ICMP_SLE, "vclez");
case NEON::BI__builtin_neon_vcgtz_v:
case NEON::BI__builtin_neon_vcgtzq_v:
return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
ICmpInst::ICMP_SGT, "vcgtz");
case NEON::BI__builtin_neon_vcltz_v:
case NEON::BI__builtin_neon_vcltzq_v:
return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
ICmpInst::ICMP_SLT, "vcltz");
case NEON::BI__builtin_neon_vcvt_f64_v:
case NEON::BI__builtin_neon_vcvtq_f64_v:
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
: Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
case NEON::BI__builtin_neon_vcvt_f64_f32: {
assert(Type.getEltType() == NeonTypeFlags::Float64 && quad &&
"unexpected vcvt_f64_f32 builtin");
NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false);
Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
}
case NEON::BI__builtin_neon_vcvt_f32_f64: {
assert(Type.getEltType() == NeonTypeFlags::Float32 &&
"unexpected vcvt_f32_f64 builtin");
NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true);
Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
}
case NEON::BI__builtin_neon_vcvt_s32_v:
case NEON::BI__builtin_neon_vcvt_u32_v:
case NEON::BI__builtin_neon_vcvt_s64_v:
case NEON::BI__builtin_neon_vcvt_u64_v:
case NEON::BI__builtin_neon_vcvtq_s32_v:
case NEON::BI__builtin_neon_vcvtq_u32_v:
case NEON::BI__builtin_neon_vcvtq_s64_v:
case NEON::BI__builtin_neon_vcvtq_u64_v: {
Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
if (usgn)
return Builder.CreateFPToUI(Ops[0], Ty);
return Builder.CreateFPToSI(Ops[0], Ty);
}
case NEON::BI__builtin_neon_vcvta_s32_v:
case NEON::BI__builtin_neon_vcvtaq_s32_v:
case NEON::BI__builtin_neon_vcvta_u32_v:
case NEON::BI__builtin_neon_vcvtaq_u32_v:
case NEON::BI__builtin_neon_vcvta_s64_v:
case NEON::BI__builtin_neon_vcvtaq_s64_v:
case NEON::BI__builtin_neon_vcvta_u64_v:
case NEON::BI__builtin_neon_vcvtaq_u64_v: {
Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas;
llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta");
}
case NEON::BI__builtin_neon_vcvtm_s32_v:
case NEON::BI__builtin_neon_vcvtmq_s32_v:
case NEON::BI__builtin_neon_vcvtm_u32_v:
case NEON::BI__builtin_neon_vcvtmq_u32_v:
case NEON::BI__builtin_neon_vcvtm_s64_v:
case NEON::BI__builtin_neon_vcvtmq_s64_v:
case NEON::BI__builtin_neon_vcvtm_u64_v:
case NEON::BI__builtin_neon_vcvtmq_u64_v: {
Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms;
llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm");
}
case NEON::BI__builtin_neon_vcvtn_s32_v:
case NEON::BI__builtin_neon_vcvtnq_s32_v:
case NEON::BI__builtin_neon_vcvtn_u32_v:
case NEON::BI__builtin_neon_vcvtnq_u32_v:
case NEON::BI__builtin_neon_vcvtn_s64_v:
case NEON::BI__builtin_neon_vcvtnq_s64_v:
case NEON::BI__builtin_neon_vcvtn_u64_v:
case NEON::BI__builtin_neon_vcvtnq_u64_v: {
Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns;
llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn");
}
case NEON::BI__builtin_neon_vcvtp_s32_v:
case NEON::BI__builtin_neon_vcvtpq_s32_v:
case NEON::BI__builtin_neon_vcvtp_u32_v:
case NEON::BI__builtin_neon_vcvtpq_u32_v:
case NEON::BI__builtin_neon_vcvtp_s64_v:
case NEON::BI__builtin_neon_vcvtpq_s64_v:
case NEON::BI__builtin_neon_vcvtp_u64_v:
case NEON::BI__builtin_neon_vcvtpq_u64_v: {
Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps;
llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp");
}
case NEON::BI__builtin_neon_vmulx_v:
case NEON::BI__builtin_neon_vmulxq_v: {
Int = Intrinsic::aarch64_neon_fmulx;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
}
case NEON::BI__builtin_neon_vmul_lane_v:
case NEON::BI__builtin_neon_vmul_laneq_v: {
// v1f64 vmul_lane should be mapped to Neon scalar mul lane
bool Quad = false;
if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v)
Quad = true;
Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
llvm::Type *VTy = GetNeonType(this,
NeonTypeFlags(NeonTypeFlags::Float64, false, Quad));
Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
return Builder.CreateBitCast(Result, Ty);
}
case NEON::BI__builtin_neon_vnegd_s64:
return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd");
case NEON::BI__builtin_neon_vpmaxnm_v:
case NEON::BI__builtin_neon_vpmaxnmq_v: {
Int = Intrinsic::aarch64_neon_fmaxnmp;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
}
case NEON::BI__builtin_neon_vpminnm_v:
case NEON::BI__builtin_neon_vpminnmq_v: {
Int = Intrinsic::aarch64_neon_fminnmp;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
}
case NEON::BI__builtin_neon_vsqrt_v:
case NEON::BI__builtin_neon_vsqrtq_v: {
Int = Intrinsic::sqrt;
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
}
case NEON::BI__builtin_neon_vrbit_v:
case NEON::BI__builtin_neon_vrbitq_v: {
Int = Intrinsic::aarch64_neon_rbit;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
}
case NEON::BI__builtin_neon_vaddv_u8:
// FIXME: These are handled by the AArch64 scalar code.
usgn = true;
// FALLTHROUGH
case NEON::BI__builtin_neon_vaddv_s8: {
Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int8Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
return Builder.CreateTrunc(Ops[0], Int8Ty);
}
case NEON::BI__builtin_neon_vaddv_u16:
usgn = true;
// FALLTHROUGH
case NEON::BI__builtin_neon_vaddv_s16: {
Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int16Ty, 4);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vaddvq_u8:
usgn = true;
// FALLTHROUGH
case NEON::BI__builtin_neon_vaddvq_s8: {
Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int8Ty, 16);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
return Builder.CreateTrunc(Ops[0], Int8Ty);
}
case NEON::BI__builtin_neon_vaddvq_u16:
usgn = true;
// FALLTHROUGH
case NEON::BI__builtin_neon_vaddvq_s16: {
Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int16Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vmaxv_u8: {
Int = Intrinsic::aarch64_neon_umaxv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int8Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
return Builder.CreateTrunc(Ops[0], Int8Ty);
}
case NEON::BI__builtin_neon_vmaxv_u16: {
Int = Intrinsic::aarch64_neon_umaxv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int16Ty, 4);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vmaxvq_u8: {
Int = Intrinsic::aarch64_neon_umaxv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int8Ty, 16);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
return Builder.CreateTrunc(Ops[0], Int8Ty);
}
case NEON::BI__builtin_neon_vmaxvq_u16: {
Int = Intrinsic::aarch64_neon_umaxv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int16Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vmaxv_s8: {
Int = Intrinsic::aarch64_neon_smaxv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int8Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
return Builder.CreateTrunc(Ops[0], Int8Ty);
}
case NEON::BI__builtin_neon_vmaxv_s16: {
Int = Intrinsic::aarch64_neon_smaxv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int16Ty, 4);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vmaxvq_s8: {
Int = Intrinsic::aarch64_neon_smaxv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int8Ty, 16);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
return Builder.CreateTrunc(Ops[0], Int8Ty);
}
case NEON::BI__builtin_neon_vmaxvq_s16: {
Int = Intrinsic::aarch64_neon_smaxv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int16Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vminv_u8: {
Int = Intrinsic::aarch64_neon_uminv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int8Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
return Builder.CreateTrunc(Ops[0], Int8Ty);
}
case NEON::BI__builtin_neon_vminv_u16: {
Int = Intrinsic::aarch64_neon_uminv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int16Ty, 4);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vminvq_u8: {
Int = Intrinsic::aarch64_neon_uminv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int8Ty, 16);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
return Builder.CreateTrunc(Ops[0], Int8Ty);
}
case NEON::BI__builtin_neon_vminvq_u16: {
Int = Intrinsic::aarch64_neon_uminv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int16Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vminv_s8: {
Int = Intrinsic::aarch64_neon_sminv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int8Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
return Builder.CreateTrunc(Ops[0], Int8Ty);
}
case NEON::BI__builtin_neon_vminv_s16: {
Int = Intrinsic::aarch64_neon_sminv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int16Ty, 4);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vminvq_s8: {
Int = Intrinsic::aarch64_neon_sminv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int8Ty, 16);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
return Builder.CreateTrunc(Ops[0], Int8Ty);
}
case NEON::BI__builtin_neon_vminvq_s16: {
Int = Intrinsic::aarch64_neon_sminv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int16Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vmul_n_f64: {
Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy);
return Builder.CreateFMul(Ops[0], RHS);
}
case NEON::BI__builtin_neon_vaddlv_u8: {
Int = Intrinsic::aarch64_neon_uaddlv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int8Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vaddlv_u16: {
Int = Intrinsic::aarch64_neon_uaddlv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int16Ty, 4);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
}
case NEON::BI__builtin_neon_vaddlvq_u8: {
Int = Intrinsic::aarch64_neon_uaddlv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int8Ty, 16);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vaddlvq_u16: {
Int = Intrinsic::aarch64_neon_uaddlv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int16Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
}
case NEON::BI__builtin_neon_vaddlv_s8: {
Int = Intrinsic::aarch64_neon_saddlv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int8Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vaddlv_s16: {
Int = Intrinsic::aarch64_neon_saddlv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int16Ty, 4);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
}
case NEON::BI__builtin_neon_vaddlvq_s8: {
Int = Intrinsic::aarch64_neon_saddlv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int8Ty, 16);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
return Builder.CreateTrunc(Ops[0], Int16Ty);
}
case NEON::BI__builtin_neon_vaddlvq_s16: {
Int = Intrinsic::aarch64_neon_saddlv;
Ty = Int32Ty;
VTy = llvm::VectorType::get(Int16Ty, 8);
llvm::Type *Tys[2] = { Ty, VTy };
Ops.push_back(EmitScalarExpr(E->getArg(0)));
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
}
case NEON::BI__builtin_neon_vsri_n_v:
case NEON::BI__builtin_neon_vsriq_n_v: {
Int = Intrinsic::aarch64_neon_vsri;
llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
return EmitNeonCall(Intrin, Ops, "vsri_n");
}
case NEON::BI__builtin_neon_vsli_n_v:
case NEON::BI__builtin_neon_vsliq_n_v: {
Int = Intrinsic::aarch64_neon_vsli;
llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
return EmitNeonCall(Intrin, Ops, "vsli_n");
}
case NEON::BI__builtin_neon_vsra_n_v:
case NEON::BI__builtin_neon_vsraq_n_v:
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
return Builder.CreateAdd(Ops[0], Ops[1]);
case NEON::BI__builtin_neon_vrsra_n_v:
case NEON::BI__builtin_neon_vrsraq_n_v: {
Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl;
SmallVector<llvm::Value*,2> TmpOps;
TmpOps.push_back(Ops[1]);
TmpOps.push_back(Ops[2]);
Function* F = CGM.getIntrinsic(Int, Ty);
llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true);
Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
return Builder.CreateAdd(Ops[0], tmp);
}
// FIXME: Sharing loads & stores with 32-bit is complicated by the absence
// of an Align parameter here.
case NEON::BI__builtin_neon_vld1_x2_v:
case NEON::BI__builtin_neon_vld1q_x2_v:
case NEON::BI__builtin_neon_vld1_x3_v:
case NEON::BI__builtin_neon_vld1q_x3_v:
case NEON::BI__builtin_neon_vld1_x4_v:
case NEON::BI__builtin_neon_vld1q_x4_v: {
llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType());
Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
llvm::Type *Tys[2] = { VTy, PTy };
unsigned Int;
switch (BuiltinID) {
case NEON::BI__builtin_neon_vld1_x2_v:
case NEON::BI__builtin_neon_vld1q_x2_v:
Int = Intrinsic::aarch64_neon_ld1x2;
break;
case NEON::BI__builtin_neon_vld1_x3_v:
case NEON::BI__builtin_neon_vld1q_x3_v:
Int = Intrinsic::aarch64_neon_ld1x3;
break;
case NEON::BI__builtin_neon_vld1_x4_v:
case NEON::BI__builtin_neon_vld1q_x4_v:
Int = Intrinsic::aarch64_neon_ld1x4;
break;
}
Function *F = CGM.getIntrinsic(Int, Tys);
Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN");
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
case NEON::BI__builtin_neon_vst1_x2_v:
case NEON::BI__builtin_neon_vst1q_x2_v:
case NEON::BI__builtin_neon_vst1_x3_v:
case NEON::BI__builtin_neon_vst1q_x3_v:
case NEON::BI__builtin_neon_vst1_x4_v:
case NEON::BI__builtin_neon_vst1q_x4_v: {
llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType());
llvm::Type *Tys[2] = { VTy, PTy };
unsigned Int;
switch (BuiltinID) {
case NEON::BI__builtin_neon_vst1_x2_v:
case NEON::BI__builtin_neon_vst1q_x2_v:
Int = Intrinsic::aarch64_neon_st1x2;
break;
case NEON::BI__builtin_neon_vst1_x3_v:
case NEON::BI__builtin_neon_vst1q_x3_v:
Int = Intrinsic::aarch64_neon_st1x3;
break;
case NEON::BI__builtin_neon_vst1_x4_v:
case NEON::BI__builtin_neon_vst1q_x4_v:
Int = Intrinsic::aarch64_neon_st1x4;
break;
}
std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
}
case NEON::BI__builtin_neon_vld1_v:
case NEON::BI__builtin_neon_vld1q_v: {
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
auto Alignment = CharUnits::fromQuantity(
BuiltinID == NEON::BI__builtin_neon_vld1_v ? 8 : 16);
return Builder.CreateAlignedLoad(VTy, Ops[0], Alignment);
}
case NEON::BI__builtin_neon_vst1_v:
case NEON::BI__builtin_neon_vst1q_v:
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
case NEON::BI__builtin_neon_vld1_lane_v:
case NEON::BI__builtin_neon_vld1q_lane_v: {
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ty = llvm::PointerType::getUnqual(VTy->getElementType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
auto Alignment = CharUnits::fromQuantity(
BuiltinID == NEON::BI__builtin_neon_vld1_lane_v ? 8 : 16);
Ops[0] =
Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], Alignment);
return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
}
case NEON::BI__builtin_neon_vld1_dup_v:
case NEON::BI__builtin_neon_vld1q_dup_v: {
Value *V = UndefValue::get(Ty);
Ty = llvm::PointerType::getUnqual(VTy->getElementType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
auto Alignment = CharUnits::fromQuantity(
BuiltinID == NEON::BI__builtin_neon_vld1_dup_v ? 8 : 16);
Ops[0] =
Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], Alignment);
llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
return EmitNeonSplat(Ops[0], CI);
}
case NEON::BI__builtin_neon_vst1_lane_v:
case NEON::BI__builtin_neon_vst1q_lane_v:
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
return Builder.CreateDefaultAlignedStore(Ops[1],
Builder.CreateBitCast(Ops[0], Ty));
case NEON::BI__builtin_neon_vld2_v:
case NEON::BI__builtin_neon_vld2q_v: {
llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
llvm::Type *Tys[2] = { VTy, PTy };
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys);
Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
Ops[0] = Builder.CreateBitCast(Ops[0],
llvm::PointerType::getUnqual(Ops[1]->getType()));
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
case NEON::BI__builtin_neon_vld3_v:
case NEON::BI__builtin_neon_vld3q_v: {
llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
llvm::Type *Tys[2] = { VTy, PTy };
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys);
Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
Ops[0] = Builder.CreateBitCast(Ops[0],
llvm::PointerType::getUnqual(Ops[1]->getType()));
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
case NEON::BI__builtin_neon_vld4_v:
case NEON::BI__builtin_neon_vld4q_v: {
llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
llvm::Type *Tys[2] = { VTy, PTy };
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys);
Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
Ops[0] = Builder.CreateBitCast(Ops[0],
llvm::PointerType::getUnqual(Ops[1]->getType()));
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
case NEON::BI__builtin_neon_vld2_dup_v:
case NEON::BI__builtin_neon_vld2q_dup_v: {
llvm::Type *PTy =
llvm::PointerType::getUnqual(VTy->getElementType());
Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
llvm::Type *Tys[2] = { VTy, PTy };
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys);
Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
Ops[0] = Builder.CreateBitCast(Ops[0],
llvm::PointerType::getUnqual(Ops[1]->getType()));
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
case NEON::BI__builtin_neon_vld3_dup_v:
case NEON::BI__builtin_neon_vld3q_dup_v: {
llvm::Type *PTy =
llvm::PointerType::getUnqual(VTy->getElementType());
Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
llvm::Type *Tys[2] = { VTy, PTy };
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys);
Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
Ops[0] = Builder.CreateBitCast(Ops[0],
llvm::PointerType::getUnqual(Ops[1]->getType()));
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
case NEON::BI__builtin_neon_vld4_dup_v:
case NEON::BI__builtin_neon_vld4q_dup_v: {
llvm::Type *PTy =
llvm::PointerType::getUnqual(VTy->getElementType());
Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
llvm::Type *Tys[2] = { VTy, PTy };
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys);
Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
Ops[0] = Builder.CreateBitCast(Ops[0],
llvm::PointerType::getUnqual(Ops[1]->getType()));
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
case NEON::BI__builtin_neon_vld2_lane_v:
case NEON::BI__builtin_neon_vld2q_lane_v: {
llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys);
Ops.push_back(Ops[1]);
Ops.erase(Ops.begin()+1);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
case NEON::BI__builtin_neon_vld3_lane_v:
case NEON::BI__builtin_neon_vld3q_lane_v: {
llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys);
Ops.push_back(Ops[1]);
Ops.erase(Ops.begin()+1);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
case NEON::BI__builtin_neon_vld4_lane_v:
case NEON::BI__builtin_neon_vld4q_lane_v: {
llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys);
Ops.push_back(Ops[1]);
Ops.erase(Ops.begin()+1);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty);
Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane");
Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
case NEON::BI__builtin_neon_vst2_v:
case NEON::BI__builtin_neon_vst2q_v: {
Ops.push_back(Ops[0]);
Ops.erase(Ops.begin());
llvm::Type *Tys[2] = { VTy, Ops[2]->getType() };
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys),
Ops, "");
}
case NEON::BI__builtin_neon_vst2_lane_v:
case NEON::BI__builtin_neon_vst2q_lane_v: {
Ops.push_back(Ops[0]);
Ops.erase(Ops.begin());
Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys),
Ops, "");
}
case NEON::BI__builtin_neon_vst3_v:
case NEON::BI__builtin_neon_vst3q_v: {
Ops.push_back(Ops[0]);
Ops.erase(Ops.begin());
llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys),
Ops, "");
}
case NEON::BI__builtin_neon_vst3_lane_v:
case NEON::BI__builtin_neon_vst3q_lane_v: {
Ops.push_back(Ops[0]);
Ops.erase(Ops.begin());
Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys),
Ops, "");
}
case NEON::BI__builtin_neon_vst4_v:
case NEON::BI__builtin_neon_vst4q_v: {
Ops.push_back(Ops[0]);
Ops.erase(Ops.begin());
llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys),
Ops, "");
}
case NEON::BI__builtin_neon_vst4_lane_v:
case NEON::BI__builtin_neon_vst4q_lane_v: {
Ops.push_back(Ops[0]);
Ops.erase(Ops.begin());
Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
llvm::Type *Tys[2] = { VTy, Ops[5]->getType() };
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys),
Ops, "");
}
case NEON::BI__builtin_neon_vtrn_v:
case NEON::BI__builtin_neon_vtrnq_v: {
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Value *SV = nullptr;
for (unsigned vi = 0; vi != 2; ++vi) {
SmallVector<uint32_t, 16> Indices;
for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
Indices.push_back(i+vi);
Indices.push_back(i+e+vi);
}
Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
SV = Builder.CreateDefaultAlignedStore(SV, Addr);
}
return SV;
}
case NEON::BI__builtin_neon_vuzp_v:
case NEON::BI__builtin_neon_vuzpq_v: {
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Value *SV = nullptr;
for (unsigned vi = 0; vi != 2; ++vi) {
SmallVector<uint32_t, 16> Indices;
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
Indices.push_back(2*i+vi);
Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
SV = Builder.CreateDefaultAlignedStore(SV, Addr);
}
return SV;
}
case NEON::BI__builtin_neon_vzip_v:
case NEON::BI__builtin_neon_vzipq_v: {
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
Value *SV = nullptr;
for (unsigned vi = 0; vi != 2; ++vi) {
SmallVector<uint32_t, 16> Indices;
for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
Indices.push_back((i + vi*e) >> 1);
Indices.push_back(((i + vi*e) >> 1)+e);
}
Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
SV = Builder.CreateDefaultAlignedStore(SV, Addr);
}
return SV;
}
case NEON::BI__builtin_neon_vqtbl1q_v: {
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty),
Ops, "vtbl1");
}
case NEON::BI__builtin_neon_vqtbl2q_v: {
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty),
Ops, "vtbl2");
}
case NEON::BI__builtin_neon_vqtbl3q_v: {
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty),
Ops, "vtbl3");
}
case NEON::BI__builtin_neon_vqtbl4q_v: {
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty),
Ops, "vtbl4");
}
case NEON::BI__builtin_neon_vqtbx1q_v: {
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty),
Ops, "vtbx1");
}
case NEON::BI__builtin_neon_vqtbx2q_v: {
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty),
Ops, "vtbx2");
}
case NEON::BI__builtin_neon_vqtbx3q_v: {
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty),
Ops, "vtbx3");
}
case NEON::BI__builtin_neon_vqtbx4q_v: {
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty),
Ops, "vtbx4");
}
case NEON::BI__builtin_neon_vsqadd_v:
case NEON::BI__builtin_neon_vsqaddq_v: {
Int = Intrinsic::aarch64_neon_usqadd;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
}
case NEON::BI__builtin_neon_vuqadd_v:
case NEON::BI__builtin_neon_vuqaddq_v: {
Int = Intrinsic::aarch64_neon_suqadd;
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
}
}
}
llvm::Value *CodeGenFunction::
BuildVector(ArrayRef<llvm::Value*> Ops) {
assert((Ops.size() & (Ops.size() - 1)) == 0 &&
"Not a power-of-two sized vector!");
bool AllConstants = true;
for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
AllConstants &= isa<Constant>(Ops[i]);
// If this is a constant vector, create a ConstantVector.
if (AllConstants) {
SmallVector<llvm::Constant*, 16> CstOps;
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
CstOps.push_back(cast<Constant>(Ops[i]));
return llvm::ConstantVector::get(CstOps);
}
// Otherwise, insertelement the values to build the vector.
Value *Result =
llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), Ops.size()));
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
return Result;
}
// Convert the mask from an integer type to a vector of i1.
static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask,
unsigned NumElts) {
llvm::VectorType *MaskTy = llvm::VectorType::get(CGF.Builder.getInt1Ty(),
cast<IntegerType>(Mask->getType())->getBitWidth());
Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy);
// If we have less than 8 elements, then the starting mask was an i8 and
// we need to extract down to the right number of elements.
if (NumElts < 8) {
uint32_t Indices[4];
for (unsigned i = 0; i != NumElts; ++i)
Indices[i] = i;
MaskVec = CGF.Builder.CreateShuffleVector(MaskVec, MaskVec,
makeArrayRef(Indices, NumElts),
"extract");
}
return MaskVec;
}
static Value *EmitX86MaskedStore(CodeGenFunction &CGF,
SmallVectorImpl<Value *> &Ops,
unsigned Align) {
// Cast the pointer to right type.
Ops[0] = CGF.Builder.CreateBitCast(Ops[0],
llvm::PointerType::getUnqual(Ops[1]->getType()));
// If the mask is all ones just emit a regular store.
if (const auto *C = dyn_cast<Constant>(Ops[2]))
if (C->isAllOnesValue())
return CGF.Builder.CreateAlignedStore(Ops[1], Ops[0], Align);
Value *MaskVec = getMaskVecValue(CGF, Ops[2],
Ops[1]->getType()->getVectorNumElements());
return CGF.Builder.CreateMaskedStore(Ops[1], Ops[0], Align, MaskVec);
}
static Value *EmitX86MaskedLoad(CodeGenFunction &CGF,
SmallVectorImpl<Value *> &Ops, unsigned Align) {
// Cast the pointer to right type.
Ops[0] = CGF.Builder.CreateBitCast(Ops[0],
llvm::PointerType::getUnqual(Ops[1]->getType()));
// If the mask is all ones just emit a regular store.
if (const auto *C = dyn_cast<Constant>(Ops[2]))
if (C->isAllOnesValue())
return CGF.Builder.CreateAlignedLoad(Ops[0], Align);
Value *MaskVec = getMaskVecValue(CGF, Ops[2],
Ops[1]->getType()->getVectorNumElements());
return CGF.Builder.CreateMaskedLoad(Ops[0], Align, MaskVec, Ops[1]);
}
static Value *EmitX86SubVectorBroadcast(CodeGenFunction &CGF,
SmallVectorImpl<Value *> &Ops,
llvm::Type *DstTy,
unsigned SrcSizeInBits,
unsigned Align) {
// Load the subvector.
Ops[0] = CGF.Builder.CreateAlignedLoad(Ops[0], Align);
// Create broadcast mask.
unsigned NumDstElts = DstTy->getVectorNumElements();
unsigned NumSrcElts = SrcSizeInBits / DstTy->getScalarSizeInBits();
SmallVector<uint32_t, 8> Mask;
for (unsigned i = 0; i != NumDstElts; i += NumSrcElts)
for (unsigned j = 0; j != NumSrcElts; ++j)
Mask.push_back(j);
return CGF.Builder.CreateShuffleVector(Ops[0], Ops[0], Mask, "subvecbcst");
}
static Value *EmitX86Select(CodeGenFunction &CGF,
Value *Mask, Value *Op0, Value *Op1) {
// If the mask is all ones just return first argument.
if (const auto *C = dyn_cast<Constant>(Mask))
if (C->isAllOnesValue())
return Op0;
Mask = getMaskVecValue(CGF, Mask, Op0->getType()->getVectorNumElements());
return CGF.Builder.CreateSelect(Mask, Op0, Op1);
}
static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC,
bool Signed, SmallVectorImpl<Value *> &Ops) {
unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
Value *Cmp;
if (CC == 3) {
Cmp = Constant::getNullValue(
llvm::VectorType::get(CGF.Builder.getInt1Ty(), NumElts));
} else if (CC == 7) {
Cmp = Constant::getAllOnesValue(
llvm::VectorType::get(CGF.Builder.getInt1Ty(), NumElts));
} else {
ICmpInst::Predicate Pred;
switch (CC) {
default: llvm_unreachable("Unknown condition code");
case 0: Pred = ICmpInst::ICMP_EQ; break;
case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break;
case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break;
case 4: Pred = ICmpInst::ICMP_NE; break;
case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break;
case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break;
}
Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
}
const auto *C = dyn_cast<Constant>(Ops.back());
if (!C || !C->isAllOnesValue())
Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, Ops.back(), NumElts));
if (NumElts < 8) {
uint32_t Indices[8];
for (unsigned i = 0; i != NumElts; ++i)
Indices[i] = i;
for (unsigned i = NumElts; i != 8; ++i)
Indices[i] = i % NumElts + NumElts;
Cmp = CGF.Builder.CreateShuffleVector(
Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices);
}
return CGF.Builder.CreateBitCast(Cmp,
IntegerType::get(CGF.getLLVMContext(),
std::max(NumElts, 8U)));
}
static Value *EmitX86MinMax(CodeGenFunction &CGF, ICmpInst::Predicate Pred,
ArrayRef<Value *> Ops) {
Value *Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
Value *Res = CGF.Builder.CreateSelect(Cmp, Ops[0], Ops[1]);
if (Ops.size() == 2)
return Res;
assert(Ops.size() == 4);
return EmitX86Select(CGF, Ops[3], Res, Ops[2]);
}
Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
if (BuiltinID == X86::BI__builtin_ms_va_start ||
BuiltinID == X86::BI__builtin_ms_va_end)
return EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(),
BuiltinID == X86::BI__builtin_ms_va_start);
if (BuiltinID == X86::BI__builtin_ms_va_copy) {
// Lower this manually. We can't reliably determine whether or not any
// given va_copy() is for a Win64 va_list from the calling convention
// alone, because it's legal to do this from a System V ABI function.
// With opaque pointer types, we won't have enough information in LLVM
// IR to determine this from the argument types, either. Best to do it
// now, while we have enough information.
Address DestAddr = EmitMSVAListRef(E->getArg(0));
Address SrcAddr = EmitMSVAListRef(E->getArg(1));
llvm::Type *BPP = Int8PtrPtrTy;
DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"),
DestAddr.getAlignment());
SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"),
SrcAddr.getAlignment());
Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val");
return Builder.CreateStore(ArgPtr, DestAddr);
}
SmallVector<Value*, 4> Ops;
// Find out if any arguments are required to be integer constant expressions.
unsigned ICEArguments = 0;
ASTContext::GetBuiltinTypeError Error;
getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
assert(Error == ASTContext::GE_None && "Should not codegen an error");
for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
// If this is a normal argument, just emit it as a scalar.
if ((ICEArguments & (1 << i)) == 0) {
Ops.push_back(EmitScalarExpr(E->getArg(i)));
continue;
}
// If this is required to be a constant, constant fold it so that we know
// that the generated intrinsic gets a ConstantInt.
llvm::APSInt Result;
bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
}
// These exist so that the builtin that takes an immediate can be bounds
// checked by clang to avoid passing bad immediates to the backend. Since
// AVX has a larger immediate than SSE we would need separate builtins to
// do the different bounds checking. Rather than create a clang specific
// SSE only builtin, this implements eight separate builtins to match gcc
// implementation.
auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) {
Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm));
llvm::Function *F = CGM.getIntrinsic(ID);
return Builder.CreateCall(F, Ops);
};
// For the vector forms of FP comparisons, translate the builtins directly to
// IR.
// TODO: The builtins could be removed if the SSE header files used vector
// extension comparisons directly (vector ordered/unordered may need
// additional support via __builtin_isnan()).
auto getVectorFCmpIR = [this, &Ops](CmpInst::Predicate Pred) {
Value *Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType());
llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy);
Value *Sext = Builder.CreateSExt(Cmp, IntVecTy);
return Builder.CreateBitCast(Sext, FPVecTy);
};
switch (BuiltinID) {
default: return nullptr;
case X86::BI__builtin_cpu_supports: {
const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts();
StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString();
// TODO: When/if this becomes more than x86 specific then use a TargetInfo
// based mapping.
// Processor features and mapping to processor feature value.
enum X86Features {
CMOV = 0,
MMX,
POPCNT,
SSE,
SSE2,
SSE3,
SSSE3,
SSE4_1,
SSE4_2,
AVX,
AVX2,
SSE4_A,
FMA4,
XOP,
FMA,
AVX512F,
BMI,
BMI2,
AES,
PCLMUL,
AVX512VL,
AVX512BW,
AVX512DQ,
AVX512CD,
AVX512ER,
AVX512PF,
AVX512VBMI,
AVX512IFMA,
MAX
};
X86Features Feature = StringSwitch<X86Features>(FeatureStr)
.Case("cmov", X86Features::CMOV)
.Case("mmx", X86Features::MMX)
.Case("popcnt", X86Features::POPCNT)
.Case("sse", X86Features::SSE)
.Case("sse2", X86Features::SSE2)
.Case("sse3", X86Features::SSE3)
.Case("ssse3", X86Features::SSSE3)
.Case("sse4.1", X86Features::SSE4_1)
.Case("sse4.2", X86Features::SSE4_2)
.Case("avx", X86Features::AVX)
.Case("avx2", X86Features::AVX2)
.Case("sse4a", X86Features::SSE4_A)
.Case("fma4", X86Features::FMA4)
.Case("xop", X86Features::XOP)
.Case("fma", X86Features::FMA)
.Case("avx512f", X86Features::AVX512F)
.Case("bmi", X86Features::BMI)
.Case("bmi2", X86Features::BMI2)
.Case("aes", X86Features::AES)
.Case("pclmul", X86Features::PCLMUL)
.Case("avx512vl", X86Features::AVX512VL)
.Case("avx512bw", X86Features::AVX512BW)
.Case("avx512dq", X86Features::AVX512DQ)
.Case("avx512cd", X86Features::AVX512CD)
.Case("avx512er", X86Features::AVX512ER)
.Case("avx512pf", X86Features::AVX512PF)
.Case("avx512vbmi", X86Features::AVX512VBMI)
.Case("avx512ifma", X86Features::AVX512IFMA)
.Default(X86Features::MAX);
assert(Feature != X86Features::MAX && "Invalid feature!");
// Matching the struct layout from the compiler-rt/libgcc structure that is
// filled in:
// unsigned int __cpu_vendor;
// unsigned int __cpu_type;
// unsigned int __cpu_subtype;
// unsigned int __cpu_features[1];
llvm::Type *STy = llvm::StructType::get(
Int32Ty, Int32Ty, Int32Ty, llvm::ArrayType::get(Int32Ty, 1), nullptr);
// Grab the global __cpu_model.
llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
// Grab the first (0th) element from the field __cpu_features off of the
// global in the struct STy.
Value *Idxs[] = {
ConstantInt::get(Int32Ty, 0),
ConstantInt::get(Int32Ty, 3),
ConstantInt::get(Int32Ty, 0)
};
Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs);
Value *Features = Builder.CreateAlignedLoad(CpuFeatures,
CharUnits::fromQuantity(4));
// Check the value of the bit corresponding to the feature requested.
Value *Bitset = Builder.CreateAnd(
Features, llvm::ConstantInt::get(Int32Ty, 1ULL << Feature));
return Builder.CreateICmpNE(Bitset, llvm::ConstantInt::get(Int32Ty, 0));
}
case X86::BI_mm_prefetch: {
Value *Address = Ops[0];
Value *RW = ConstantInt::get(Int32Ty, 0);
Value *Locality = Ops[1];
Value *Data = ConstantInt::get(Int32Ty, 1);
Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
return Builder.CreateCall(F, {Address, RW, Locality, Data});
}
case X86::BI_mm_clflush: {
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush),
Ops[0]);
}
case X86::BI_mm_lfence: {
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence));
}
case X86::BI_mm_mfence: {
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence));
}
case X86::BI_mm_sfence: {
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence));
}
case X86::BI_mm_pause: {
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause));
}
case X86::BI__rdtsc: {
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc));
}
case X86::BI__builtin_ia32_undef128:
case X86::BI__builtin_ia32_undef256:
case X86::BI__builtin_ia32_undef512:
return UndefValue::get(ConvertType(E->getType()));
case X86::BI__builtin_ia32_vec_init_v8qi:
case X86::BI__builtin_ia32_vec_init_v4hi:
case X86::BI__builtin_ia32_vec_init_v2si:
return Builder.CreateBitCast(BuildVector(Ops),
llvm::Type::getX86_MMXTy(getLLVMContext()));
case X86::BI__builtin_ia32_vec_ext_v2si:
return Builder.CreateExtractElement(Ops[0],
llvm::ConstantInt::get(Ops[1]->getType(), 0));
case X86::BI_mm_setcsr:
case X86::BI__builtin_ia32_ldmxcsr: {
Address Tmp = CreateMemTemp(E->getArg(0)->getType());
Builder.CreateStore(Ops[0], Tmp);
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
}
case X86::BI_mm_getcsr:
case X86::BI__builtin_ia32_stmxcsr: {
Address Tmp = CreateMemTemp(E->getType());
Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
return Builder.CreateLoad(Tmp, "stmxcsr");
}
case X86::BI__builtin_ia32_xsave:
case X86::BI__builtin_ia32_xsave64:
case X86::BI__builtin_ia32_xrstor:
case X86::BI__builtin_ia32_xrstor64:
case X86::BI__builtin_ia32_xsaveopt:
case X86::BI__builtin_ia32_xsaveopt64:
case X86::BI__builtin_ia32_xrstors:
case X86::BI__builtin_ia32_xrstors64:
case X86::BI__builtin_ia32_xsavec:
case X86::BI__builtin_ia32_xsavec64:
case X86::BI__builtin_ia32_xsaves:
case X86::BI__builtin_ia32_xsaves64: {
Intrinsic::ID ID;
#define INTRINSIC_X86_XSAVE_ID(NAME) \
case X86::BI__builtin_ia32_##NAME: \
ID = Intrinsic::x86_##NAME; \
break
switch (BuiltinID) {
default: llvm_unreachable("Unsupported intrinsic!");
INTRINSIC_X86_XSAVE_ID(xsave);
INTRINSIC_X86_XSAVE_ID(xsave64);
INTRINSIC_X86_XSAVE_ID(xrstor);
INTRINSIC_X86_XSAVE_ID(xrstor64);
INTRINSIC_X86_XSAVE_ID(xsaveopt);
INTRINSIC_X86_XSAVE_ID(xsaveopt64);
INTRINSIC_X86_XSAVE_ID(xrstors);
INTRINSIC_X86_XSAVE_ID(xrstors64);
INTRINSIC_X86_XSAVE_ID(xsavec);
INTRINSIC_X86_XSAVE_ID(xsavec64);
INTRINSIC_X86_XSAVE_ID(xsaves);
INTRINSIC_X86_XSAVE_ID(xsaves64);
}
#undef INTRINSIC_X86_XSAVE_ID
Value *Mhi = Builder.CreateTrunc(
Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty);
Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty);
Ops[1] = Mhi;
Ops.push_back(Mlo);
return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
}
case X86::BI__builtin_ia32_storedqudi128_mask:
case X86::BI__builtin_ia32_storedqusi128_mask:
case X86::BI__builtin_ia32_storedquhi128_mask:
case X86::BI__builtin_ia32_storedquqi128_mask:
case X86::BI__builtin_ia32_storeupd128_mask:
case X86::BI__builtin_ia32_storeups128_mask:
case X86::BI__builtin_ia32_storedqudi256_mask:
case X86::BI__builtin_ia32_storedqusi256_mask:
case X86::BI__builtin_ia32_storedquhi256_mask:
case X86::BI__builtin_ia32_storedquqi256_mask:
case X86::BI__builtin_ia32_storeupd256_mask:
case X86::BI__builtin_ia32_storeups256_mask:
case X86::BI__builtin_ia32_storedqudi512_mask:
case X86::BI__builtin_ia32_storedqusi512_mask:
case X86::BI__builtin_ia32_storedquhi512_mask:
case X86::BI__builtin_ia32_storedquqi512_mask:
case X86::BI__builtin_ia32_storeupd512_mask:
case X86::BI__builtin_ia32_storeups512_mask:
return EmitX86MaskedStore(*this, Ops, 1);
case X86::BI__builtin_ia32_storess128_mask:
case X86::BI__builtin_ia32_storesd128_mask: {
return EmitX86MaskedStore(*this, Ops, 16);
}
case X86::BI__builtin_ia32_movdqa32store128_mask:
case X86::BI__builtin_ia32_movdqa64store128_mask:
case X86::BI__builtin_ia32_storeaps128_mask:
case X86::BI__builtin_ia32_storeapd128_mask:
case X86::BI__builtin_ia32_movdqa32store256_mask:
case X86::BI__builtin_ia32_movdqa64store256_mask:
case X86::BI__builtin_ia32_storeaps256_mask:
case X86::BI__builtin_ia32_storeapd256_mask:
case X86::BI__builtin_ia32_movdqa32store512_mask:
case X86::BI__builtin_ia32_movdqa64store512_mask:
case X86::BI__builtin_ia32_storeaps512_mask:
case X86::BI__builtin_ia32_storeapd512_mask: {
unsigned Align =
getContext().getTypeAlignInChars(E->getArg(1)->getType()).getQuantity();
return EmitX86MaskedStore(*this, Ops, Align);
}
case X86::BI__builtin_ia32_loadups128_mask:
case X86::BI__builtin_ia32_loadups256_mask:
case X86::BI__builtin_ia32_loadups512_mask:
case X86::BI__builtin_ia32_loadupd128_mask:
case X86::BI__builtin_ia32_loadupd256_mask:
case X86::BI__builtin_ia32_loadupd512_mask:
case X86::BI__builtin_ia32_loaddquqi128_mask:
case X86::BI__builtin_ia32_loaddquqi256_mask:
case X86::BI__builtin_ia32_loaddquqi512_mask:
case X86::BI__builtin_ia32_loaddquhi128_mask:
case X86::BI__builtin_ia32_loaddquhi256_mask:
case X86::BI__builtin_ia32_loaddquhi512_mask:
case X86::BI__builtin_ia32_loaddqusi128_mask:
case X86::BI__builtin_ia32_loaddqusi256_mask:
case X86::BI__builtin_ia32_loaddqusi512_mask:
case X86::BI__builtin_ia32_loaddqudi128_mask:
case X86::BI__builtin_ia32_loaddqudi256_mask:
case X86::BI__builtin_ia32_loaddqudi512_mask:
return EmitX86MaskedLoad(*this, Ops, 1);
case X86::BI__builtin_ia32_loadss128_mask:
case X86::BI__builtin_ia32_loadsd128_mask:
return EmitX86MaskedLoad(*this, Ops, 16);
case X86::BI__builtin_ia32_loadaps128_mask:
case X86::BI__builtin_ia32_loadaps256_mask:
case X86::BI__builtin_ia32_loadaps512_mask:
case X86::BI__builtin_ia32_loadapd128_mask:
case X86::BI__builtin_ia32_loadapd256_mask:
case X86::BI__builtin_ia32_loadapd512_mask:
case X86::BI__builtin_ia32_movdqa32load128_mask:
case X86::BI__builtin_ia32_movdqa32load256_mask:
case X86::BI__builtin_ia32_movdqa32load512_mask:
case X86::BI__builtin_ia32_movdqa64load128_mask:
case X86::BI__builtin_ia32_movdqa64load256_mask:
case X86::BI__builtin_ia32_movdqa64load512_mask: {
unsigned Align =
getContext().getTypeAlignInChars(E->getArg(1)->getType()).getQuantity();
return EmitX86MaskedLoad(*this, Ops, Align);
}
case X86::BI__builtin_ia32_vbroadcastf128_pd256:
case X86::BI__builtin_ia32_vbroadcastf128_ps256: {
llvm::Type *DstTy = ConvertType(E->getType());
return EmitX86SubVectorBroadcast(*this, Ops, DstTy, 128, 1);
}
case X86::BI__builtin_ia32_storehps:
case X86::BI__builtin_ia32_storelps: {
llvm::Type *PtrTy = llvm::PointerType::getUnqual(Int64Ty);
llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
// cast val v2i64
Ops[1] = Builder.CreateBitCast(Ops[1], VecTy, "cast");
// extract (0, 1)
unsigned Index = BuiltinID == X86::BI__builtin_ia32_storelps ? 0 : 1;
llvm::Value *Idx = llvm::ConstantInt::get(SizeTy, Index);
Ops[1] = Builder.CreateExtractElement(Ops[1], Idx, "extract");
// cast pointer to i64 & store
Ops[0] = Builder.CreateBitCast(Ops[0], PtrTy);
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
}
case X86::BI__builtin_ia32_palignr128:
case X86::BI__builtin_ia32_palignr256:
case X86::BI__builtin_ia32_palignr512_mask: {
unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
assert(NumElts % 16 == 0);
// If palignr is shifting the pair of vectors more than the size of two
// lanes, emit zero.
if (ShiftVal >= 32)
return llvm::Constant::getNullValue(ConvertType(E->getType()));
// If palignr is shifting the pair of input vectors more than one lane,
// but less than two lanes, convert to shifting in zeroes.
if (ShiftVal > 16) {
ShiftVal -= 16;
Ops[1] = Ops[0];
Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType());
}
uint32_t Indices[64];
// 256-bit palignr operates on 128-bit lanes so we need to handle that
for (unsigned l = 0; l != NumElts; l += 16) {
for (unsigned i = 0; i != 16; ++i) {
unsigned Idx = ShiftVal + i;
if (Idx >= 16)
Idx += NumElts - 16; // End of lane, switch operand.
Indices[l + i] = Idx + l;
}
}
Value *Align = Builder.CreateShuffleVector(Ops[1], Ops[0],
makeArrayRef(Indices, NumElts),
"palignr");
// If this isn't a masked builtin, just return the align operation.
if (Ops.size() == 3)
return Align;
return EmitX86Select(*this, Ops[4], Align, Ops[3]);
}
case X86::BI__builtin_ia32_movnti:
case X86::BI__builtin_ia32_movnti64:
case X86::BI__builtin_ia32_movntsd:
case X86::BI__builtin_ia32_movntss: {
llvm::MDNode *Node = llvm::MDNode::get(
getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
Value *Ptr = Ops[0];
Value *Src = Ops[1];
// Extract the 0'th element of the source vector.
if (BuiltinID == X86::BI__builtin_ia32_movntsd ||
BuiltinID == X86::BI__builtin_ia32_movntss)
Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract");
// Convert the type of the pointer to a pointer to the stored type.
Value *BC = Builder.CreateBitCast(
Ptr, llvm::PointerType::getUnqual(Src->getType()), "cast");
// Unaligned nontemporal store of the scalar value.
StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, BC);
SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
SI->setAlignment(1);
return SI;
}
case X86::BI__builtin_ia32_selectb_128:
case X86::BI__builtin_ia32_selectb_256:
case X86::BI__builtin_ia32_selectb_512:
case X86::BI__builtin_ia32_selectw_128:
case X86::BI__builtin_ia32_selectw_256:
case X86::BI__builtin_ia32_selectw_512:
case X86::BI__builtin_ia32_selectd_128:
case X86::BI__builtin_ia32_selectd_256:
case X86::BI__builtin_ia32_selectd_512:
case X86::BI__builtin_ia32_selectq_128:
case X86::BI__builtin_ia32_selectq_256:
case X86::BI__builtin_ia32_selectq_512:
case X86::BI__builtin_ia32_selectps_128:
case X86::BI__builtin_ia32_selectps_256:
case X86::BI__builtin_ia32_selectps_512:
case X86::BI__builtin_ia32_selectpd_128:
case X86::BI__builtin_ia32_selectpd_256:
case X86::BI__builtin_ia32_selectpd_512:
return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]);
case X86::BI__builtin_ia32_pcmpeqb128_mask:
case X86::BI__builtin_ia32_pcmpeqb256_mask:
case X86::BI__builtin_ia32_pcmpeqb512_mask:
case X86::BI__builtin_ia32_pcmpeqw128_mask:
case X86::BI__builtin_ia32_pcmpeqw256_mask:
case X86::BI__builtin_ia32_pcmpeqw512_mask:
case X86::BI__builtin_ia32_pcmpeqd128_mask:
case X86::BI__builtin_ia32_pcmpeqd256_mask:
case X86::BI__builtin_ia32_pcmpeqd512_mask:
case X86::BI__builtin_ia32_pcmpeqq128_mask:
case X86::BI__builtin_ia32_pcmpeqq256_mask:
case X86::BI__builtin_ia32_pcmpeqq512_mask:
return EmitX86MaskedCompare(*this, 0, false, Ops);
case X86::BI__builtin_ia32_pcmpgtb128_mask:
case X86::BI__builtin_ia32_pcmpgtb256_mask:
case X86::BI__builtin_ia32_pcmpgtb512_mask:
case X86::BI__builtin_ia32_pcmpgtw128_mask:
case X86::BI__builtin_ia32_pcmpgtw256_mask:
case X86::BI__builtin_ia32_pcmpgtw512_mask:
case X86::BI__builtin_ia32_pcmpgtd128_mask:
case X86::BI__builtin_ia32_pcmpgtd256_mask:
case X86::BI__builtin_ia32_pcmpgtd512_mask:
case X86::BI__builtin_ia32_pcmpgtq128_mask:
case X86::BI__builtin_ia32_pcmpgtq256_mask:
case X86::BI__builtin_ia32_pcmpgtq512_mask:
return EmitX86MaskedCompare(*this, 6, true, Ops);
case X86::BI__builtin_ia32_cmpb128_mask:
case X86::BI__builtin_ia32_cmpb256_mask:
case X86::BI__builtin_ia32_cmpb512_mask:
case X86::BI__builtin_ia32_cmpw128_mask:
case X86::BI__builtin_ia32_cmpw256_mask:
case X86::BI__builtin_ia32_cmpw512_mask:
case X86::BI__builtin_ia32_cmpd128_mask:
case X86::BI__builtin_ia32_cmpd256_mask:
case X86::BI__builtin_ia32_cmpd512_mask:
case X86::BI__builtin_ia32_cmpq128_mask:
case X86::BI__builtin_ia32_cmpq256_mask:
case X86::BI__builtin_ia32_cmpq512_mask: {
unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
return EmitX86MaskedCompare(*this, CC, true, Ops);
}
case X86::BI__builtin_ia32_ucmpb128_mask:
case X86::BI__builtin_ia32_ucmpb256_mask:
case X86::BI__builtin_ia32_ucmpb512_mask:
case X86::BI__builtin_ia32_ucmpw128_mask:
case X86::BI__builtin_ia32_ucmpw256_mask:
case X86::BI__builtin_ia32_ucmpw512_mask:
case X86::BI__builtin_ia32_ucmpd128_mask:
case X86::BI__builtin_ia32_ucmpd256_mask:
case X86::BI__builtin_ia32_ucmpd512_mask:
case X86::BI__builtin_ia32_ucmpq128_mask:
case X86::BI__builtin_ia32_ucmpq256_mask:
case X86::BI__builtin_ia32_ucmpq512_mask: {
unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
return EmitX86MaskedCompare(*this, CC, false, Ops);
}
case X86::BI__builtin_ia32_vplzcntd_128_mask:
case X86::BI__builtin_ia32_vplzcntd_256_mask:
case X86::BI__builtin_ia32_vplzcntd_512_mask:
case X86::BI__builtin_ia32_vplzcntq_128_mask:
case X86::BI__builtin_ia32_vplzcntq_256_mask:
case X86::BI__builtin_ia32_vplzcntq_512_mask: {
Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
return EmitX86Select(*this, Ops[2],
Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)}),
Ops[1]);
}
case X86::BI__builtin_ia32_pmaxsb128:
case X86::BI__builtin_ia32_pmaxsw128:
case X86::BI__builtin_ia32_pmaxsd128:
case X86::BI__builtin_ia32_pmaxsq128_mask:
case X86::BI__builtin_ia32_pmaxsb256:
case X86::BI__builtin_ia32_pmaxsw256:
case X86::BI__builtin_ia32_pmaxsd256:
case X86::BI__builtin_ia32_pmaxsq256_mask:
case X86::BI__builtin_ia32_pmaxsb512_mask:
case X86::BI__builtin_ia32_pmaxsw512_mask:
case X86::BI__builtin_ia32_pmaxsd512_mask:
case X86::BI__builtin_ia32_pmaxsq512_mask:
return EmitX86MinMax(*this, ICmpInst::ICMP_SGT, Ops);
case X86::BI__builtin_ia32_pmaxub128:
case X86::BI__builtin_ia32_pmaxuw128:
case X86::BI__builtin_ia32_pmaxud128:
case X86::BI__builtin_ia32_pmaxuq128_mask:
case X86::BI__builtin_ia32_pmaxub256:
case X86::BI__builtin_ia32_pmaxuw256:
case X86::BI__builtin_ia32_pmaxud256:
case X86::BI__builtin_ia32_pmaxuq256_mask:
case X86::BI__builtin_ia32_pmaxub512_mask:
case X86::BI__builtin_ia32_pmaxuw512_mask:
case X86::BI__builtin_ia32_pmaxud512_mask:
case X86::BI__builtin_ia32_pmaxuq512_mask:
return EmitX86MinMax(*this, ICmpInst::ICMP_UGT, Ops);
case X86::BI__builtin_ia32_pminsb128:
case X86::BI__builtin_ia32_pminsw128:
case X86::BI__builtin_ia32_pminsd128:
case X86::BI__builtin_ia32_pminsq128_mask:
case X86::BI__builtin_ia32_pminsb256:
case X86::BI__builtin_ia32_pminsw256:
case X86::BI__builtin_ia32_pminsd256:
case X86::BI__builtin_ia32_pminsq256_mask:
case X86::BI__builtin_ia32_pminsb512_mask:
case X86::BI__builtin_ia32_pminsw512_mask:
case X86::BI__builtin_ia32_pminsd512_mask:
case X86::BI__builtin_ia32_pminsq512_mask:
return EmitX86MinMax(*this, ICmpInst::ICMP_SLT, Ops);
case X86::BI__builtin_ia32_pminub128:
case X86::BI__builtin_ia32_pminuw128:
case X86::BI__builtin_ia32_pminud128:
case X86::BI__builtin_ia32_pminuq128_mask:
case X86::BI__builtin_ia32_pminub256:
case X86::BI__builtin_ia32_pminuw256:
case X86::BI__builtin_ia32_pminud256:
case X86::BI__builtin_ia32_pminuq256_mask:
case X86::BI__builtin_ia32_pminub512_mask:
case X86::BI__builtin_ia32_pminuw512_mask:
case X86::BI__builtin_ia32_pminud512_mask:
case X86::BI__builtin_ia32_pminuq512_mask:
return EmitX86MinMax(*this, ICmpInst::ICMP_ULT, Ops);
// 3DNow!
case X86::BI__builtin_ia32_pswapdsf:
case X86::BI__builtin_ia32_pswapdsi: {
llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd);
return Builder.CreateCall(F, Ops, "pswapd");
}
case X86::BI__builtin_ia32_rdrand16_step:
case X86::BI__builtin_ia32_rdrand32_step:
case X86::BI__builtin_ia32_rdrand64_step:
case X86::BI__builtin_ia32_rdseed16_step:
case X86::BI__builtin_ia32_rdseed32_step:
case X86::BI__builtin_ia32_rdseed64_step: {
Intrinsic::ID ID;
switch (BuiltinID) {
default: llvm_unreachable("Unsupported intrinsic!");
case X86::BI__builtin_ia32_rdrand16_step:
ID = Intrinsic::x86_rdrand_16;
break;
case X86::BI__builtin_ia32_rdrand32_step:
ID = Intrinsic::x86_rdrand_32;
break;
case X86::BI__builtin_ia32_rdrand64_step:
ID = Intrinsic::x86_rdrand_64;
break;
case X86::BI__builtin_ia32_rdseed16_step:
ID = Intrinsic::x86_rdseed_16;
break;
case X86::BI__builtin_ia32_rdseed32_step:
ID = Intrinsic::x86_rdseed_32;
break;
case X86::BI__builtin_ia32_rdseed64_step:
ID = Intrinsic::x86_rdseed_64;
break;
}
Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0),
Ops[0]);
return Builder.CreateExtractValue(Call, 1);
}
// SSE packed comparison intrinsics
case X86::BI__builtin_ia32_cmpeqps:
case X86::BI__builtin_ia32_cmpeqpd:
return getVectorFCmpIR(CmpInst::FCMP_OEQ);
case X86::BI__builtin_ia32_cmpltps:
case X86::BI__builtin_ia32_cmpltpd:
return getVectorFCmpIR(CmpInst::FCMP_OLT);
case X86::BI__builtin_ia32_cmpleps:
case X86::BI__builtin_ia32_cmplepd:
return getVectorFCmpIR(CmpInst::FCMP_OLE);
case X86::BI__builtin_ia32_cmpunordps:
case X86::BI__builtin_ia32_cmpunordpd:
return getVectorFCmpIR(CmpInst::FCMP_UNO);
case X86::BI__builtin_ia32_cmpneqps:
case X86::BI__builtin_ia32_cmpneqpd:
return getVectorFCmpIR(CmpInst::FCMP_UNE);
case X86::BI__builtin_ia32_cmpnltps:
case X86::BI__builtin_ia32_cmpnltpd:
return getVectorFCmpIR(CmpInst::FCMP_UGE);
case X86::BI__builtin_ia32_cmpnleps:
case X86::BI__builtin_ia32_cmpnlepd:
return getVectorFCmpIR(CmpInst::FCMP_UGT);
case X86::BI__builtin_ia32_cmpordps:
case X86::BI__builtin_ia32_cmpordpd:
return getVectorFCmpIR(CmpInst::FCMP_ORD);
case X86::BI__builtin_ia32_cmpps:
case X86::BI__builtin_ia32_cmpps256:
case X86::BI__builtin_ia32_cmppd:
case X86::BI__builtin_ia32_cmppd256: {
unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
// If this one of the SSE immediates, we can use native IR.
if (CC < 8) {
FCmpInst::Predicate Pred;
switch (CC) {
case 0: Pred = FCmpInst::FCMP_OEQ; break;
case 1: Pred = FCmpInst::FCMP_OLT; break;
case 2: Pred = FCmpInst::FCMP_OLE; break;
case 3: Pred = FCmpInst::FCMP_UNO; break;
case 4: Pred = FCmpInst::FCMP_UNE; break;
case 5: Pred = FCmpInst::FCMP_UGE; break;
case 6: Pred = FCmpInst::FCMP_UGT; break;
case 7: Pred = FCmpInst::FCMP_ORD; break;
}
return getVectorFCmpIR(Pred);
}
// We can't handle 8-31 immediates with native IR, use the intrinsic.
Intrinsic::ID ID;
switch (BuiltinID) {
default: llvm_unreachable("Unsupported intrinsic!");
case X86::BI__builtin_ia32_cmpps:
ID = Intrinsic::x86_sse_cmp_ps;
break;
case X86::BI__builtin_ia32_cmpps256:
ID = Intrinsic::x86_avx_cmp_ps_256;
break;
case X86::BI__builtin_ia32_cmppd:
ID = Intrinsic::x86_sse2_cmp_pd;
break;
case X86::BI__builtin_ia32_cmppd256:
ID = Intrinsic::x86_avx_cmp_pd_256;
break;
}
return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
}
// SSE scalar comparison intrinsics
case X86::BI__builtin_ia32_cmpeqss:
return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0);
case X86::BI__builtin_ia32_cmpltss:
return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1);
case X86::BI__builtin_ia32_cmpless:
return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2);
case X86::BI__builtin_ia32_cmpunordss:
return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3);
case X86::BI__builtin_ia32_cmpneqss:
return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4);
case X86::BI__builtin_ia32_cmpnltss:
return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5);
case X86::BI__builtin_ia32_cmpnless:
return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6);
case X86::BI__builtin_ia32_cmpordss:
return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7);
case X86::BI__builtin_ia32_cmpeqsd:
return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0);
case X86::BI__builtin_ia32_cmpltsd:
return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1);
case X86::BI__builtin_ia32_cmplesd:
return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2);
case X86::BI__builtin_ia32_cmpunordsd:
return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3);
case X86::BI__builtin_ia32_cmpneqsd:
return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4);
case X86::BI__builtin_ia32_cmpnltsd:
return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5);
case X86::BI__builtin_ia32_cmpnlesd:
return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6);
case X86::BI__builtin_ia32_cmpordsd:
return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7);
case X86::BI__emul:
case X86::BI__emulu: {
llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64);
bool isSigned = (BuiltinID == X86::BI__emul);
Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned);
Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned);
return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned);
}
case X86::BI__mulh:
case X86::BI__umulh:
case X86::BI_mul128:
case X86::BI_umul128: {
llvm::Type *ResType = ConvertType(E->getType());
llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128);
Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned);
Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned);
Value *MulResult, *HigherBits;
if (IsSigned) {
MulResult = Builder.CreateNSWMul(LHS, RHS);
HigherBits = Builder.CreateAShr(MulResult, 64);
} else {
MulResult = Builder.CreateNUWMul(LHS, RHS);
HigherBits = Builder.CreateLShr(MulResult, 64);
}
HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh)
return HigherBits;
Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2));
Builder.CreateStore(HigherBits, HighBitsAddress);
return Builder.CreateIntCast(MulResult, ResType, IsSigned);
}
case X86::BI__faststorefence: {
return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
llvm::CrossThread);
}
case X86::BI_ReadWriteBarrier:
case X86::BI_ReadBarrier:
case X86::BI_WriteBarrier: {
return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
llvm::SingleThread);
}
case X86::BI_BitScanForward:
case X86::BI_BitScanForward64:
return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
case X86::BI_BitScanReverse:
case X86::BI_BitScanReverse64:
return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
case X86::BI_InterlockedAnd64:
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
case X86::BI_InterlockedExchange64:
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
case X86::BI_InterlockedExchangeAdd64:
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
case X86::BI_InterlockedExchangeSub64:
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
case X86::BI_InterlockedOr64:
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
case X86::BI_InterlockedXor64:
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
case X86::BI_InterlockedDecrement64:
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
case X86::BI_InterlockedIncrement64:
return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
case X86::BI_AddressOfReturnAddress: {
Value *F = CGM.getIntrinsic(Intrinsic::addressofreturnaddress);
return Builder.CreateCall(F);
}
case X86::BI__stosb: {
// We treat __stosb as a volatile memset - it may not generate "rep stosb"
// instruction, but it will create a memset that won't be optimized away.
return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], 1, true);
}
}
}
Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
SmallVector<Value*, 4> Ops;
for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
Ops.push_back(EmitScalarExpr(E->getArg(i)));
Intrinsic::ID ID = Intrinsic::not_intrinsic;
switch (BuiltinID) {
default: return nullptr;
// __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we
// call __builtin_readcyclecounter.
case PPC::BI__builtin_ppc_get_timebase:
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter));
// vec_ld, vec_xl_be, vec_lvsl, vec_lvsr
case PPC::BI__builtin_altivec_lvx:
case PPC::BI__builtin_altivec_lvxl:
case PPC::BI__builtin_altivec_lvebx:
case PPC::BI__builtin_altivec_lvehx:
case PPC::BI__builtin_altivec_lvewx:
case PPC::BI__builtin_altivec_lvsl:
case PPC::BI__builtin_altivec_lvsr:
case PPC::BI__builtin_vsx_lxvd2x:
case PPC::BI__builtin_vsx_lxvw4x:
case PPC::BI__builtin_vsx_lxvd2x_be:
case PPC::BI__builtin_vsx_lxvw4x_be:
case PPC::BI__builtin_vsx_lxvl:
case PPC::BI__builtin_vsx_lxvll:
{
if(BuiltinID == PPC::BI__builtin_vsx_lxvl ||
BuiltinID == PPC::BI__builtin_vsx_lxvll){
Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy);
}else {
Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]);
Ops.pop_back();
}
switch (BuiltinID) {
default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
case PPC::BI__builtin_altivec_lvx:
ID = Intrinsic::ppc_altivec_lvx;
break;
case PPC::BI__builtin_altivec_lvxl:
ID = Intrinsic::ppc_altivec_lvxl;
break;
case PPC::BI__builtin_altivec_lvebx:
ID = Intrinsic::ppc_altivec_lvebx;
break;
case PPC::BI__builtin_altivec_lvehx:
ID = Intrinsic::ppc_altivec_lvehx;
break;
case PPC::BI__builtin_altivec_lvewx:
ID = Intrinsic::ppc_altivec_lvewx;
break;
case PPC::BI__builtin_altivec_lvsl:
ID = Intrinsic::ppc_altivec_lvsl;
break;
case PPC::BI__builtin_altivec_lvsr:
ID = Intrinsic::ppc_altivec_lvsr;
break;
case PPC::BI__builtin_vsx_lxvd2x:
ID = Intrinsic::ppc_vsx_lxvd2x;
break;
case PPC::BI__builtin_vsx_lxvw4x:
ID = Intrinsic::ppc_vsx_lxvw4x;
break;
case PPC::BI__builtin_vsx_lxvd2x_be:
ID = Intrinsic::ppc_vsx_lxvd2x_be;
break;
case PPC::BI__builtin_vsx_lxvw4x_be:
ID = Intrinsic::ppc_vsx_lxvw4x_be;
break;
case PPC::BI__builtin_vsx_lxvl:
ID = Intrinsic::ppc_vsx_lxvl;
break;
case PPC::BI__builtin_vsx_lxvll:
ID = Intrinsic::ppc_vsx_lxvll;
break;
}
llvm::Function *F = CGM.getIntrinsic(ID);
return Builder.CreateCall(F, Ops, "");
}
// vec_st, vec_xst_be
case PPC::BI__builtin_altivec_stvx:
case PPC::BI__builtin_altivec_stvxl:
case PPC::BI__builtin_altivec_stvebx:
case PPC::BI__builtin_altivec_stvehx:
case PPC::BI__builtin_altivec_stvewx:
case PPC::BI__builtin_vsx_stxvd2x:
case PPC::BI__builtin_vsx_stxvw4x:
case PPC::BI__builtin_vsx_stxvd2x_be:
case PPC::BI__builtin_vsx_stxvw4x_be:
case PPC::BI__builtin_vsx_stxvl:
case PPC::BI__builtin_vsx_stxvll:
{
if(BuiltinID == PPC::BI__builtin_vsx_stxvl ||
BuiltinID == PPC::BI__builtin_vsx_stxvll ){
Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
}else {
Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]);
Ops.pop_back();
}
switch (BuiltinID) {
default: llvm_unreachable("Unsupported st intrinsic!");
case PPC::BI__builtin_altivec_stvx:
ID = Intrinsic::ppc_altivec_stvx;
break;
case PPC::BI__builtin_altivec_stvxl:
ID = Intrinsic::ppc_altivec_stvxl;
break;
case PPC::BI__builtin_altivec_stvebx:
ID = Intrinsic::ppc_altivec_stvebx;
break;
case PPC::BI__builtin_altivec_stvehx:
ID = Intrinsic::ppc_altivec_stvehx;
break;
case PPC::BI__builtin_altivec_stvewx:
ID = Intrinsic::ppc_altivec_stvewx;
break;
case PPC::BI__builtin_vsx_stxvd2x:
ID = Intrinsic::ppc_vsx_stxvd2x;
break;
case PPC::BI__builtin_vsx_stxvw4x:
ID = Intrinsic::ppc_vsx_stxvw4x;
break;
case PPC::BI__builtin_vsx_stxvd2x_be:
ID = Intrinsic::ppc_vsx_stxvd2x_be;
break;
case PPC::BI__builtin_vsx_stxvw4x_be:
ID = Intrinsic::ppc_vsx_stxvw4x_be;
break;
case PPC::BI__builtin_vsx_stxvl:
ID = Intrinsic::ppc_vsx_stxvl;
break;
case PPC::BI__builtin_vsx_stxvll:
ID = Intrinsic::ppc_vsx_stxvll;
break;
}
llvm::Function *F = CGM.getIntrinsic(ID);
return Builder.CreateCall(F, Ops, "");
}
// Square root
case PPC::BI__builtin_vsx_xvsqrtsp:
case PPC::BI__builtin_vsx_xvsqrtdp: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
ID = Intrinsic::sqrt;
llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
return Builder.CreateCall(F, X);
}
// Count leading zeros
case PPC::BI__builtin_altivec_vclzb:
case PPC::BI__builtin_altivec_vclzh:
case PPC::BI__builtin_altivec_vclzw:
case PPC::BI__builtin_altivec_vclzd: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
return Builder.CreateCall(F, {X, Undef});
}
case PPC::BI__builtin_altivec_vctzb:
case PPC::BI__builtin_altivec_vctzh:
case PPC::BI__builtin_altivec_vctzw:
case PPC::BI__builtin_altivec_vctzd: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
return Builder.CreateCall(F, {X, Undef});
}
case PPC::BI__builtin_altivec_vpopcntb:
case PPC::BI__builtin_altivec_vpopcnth:
case PPC::BI__builtin_altivec_vpopcntw:
case PPC::BI__builtin_altivec_vpopcntd: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
return Builder.CreateCall(F, X);
}
// Copy sign
case PPC::BI__builtin_vsx_xvcpsgnsp:
case PPC::BI__builtin_vsx_xvcpsgndp: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Value *Y = EmitScalarExpr(E->getArg(1));
ID = Intrinsic::copysign;
llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
return Builder.CreateCall(F, {X, Y});
}
// Rounding/truncation
case PPC::BI__builtin_vsx_xvrspip:
case PPC::BI__builtin_vsx_xvrdpip:
case PPC::BI__builtin_vsx_xvrdpim:
case PPC::BI__builtin_vsx_xvrspim:
case PPC::BI__builtin_vsx_xvrdpi:
case PPC::BI__builtin_vsx_xvrspi:
case PPC::BI__builtin_vsx_xvrdpic:
case PPC::BI__builtin_vsx_xvrspic:
case PPC::BI__builtin_vsx_xvrdpiz:
case PPC::BI__builtin_vsx_xvrspiz: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim ||
BuiltinID == PPC::BI__builtin_vsx_xvrspim)
ID = Intrinsic::floor;
else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi ||
BuiltinID == PPC::BI__builtin_vsx_xvrspi)
ID = Intrinsic::round;
else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic ||
BuiltinID == PPC::BI__builtin_vsx_xvrspic)
ID = Intrinsic::nearbyint;
else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip ||
BuiltinID == PPC::BI__builtin_vsx_xvrspip)
ID = Intrinsic::ceil;
else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz ||
BuiltinID == PPC::BI__builtin_vsx_xvrspiz)
ID = Intrinsic::trunc;
llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
return Builder.CreateCall(F, X);
}
// Absolute value
case PPC::BI__builtin_vsx_xvabsdp:
case PPC::BI__builtin_vsx_xvabssp: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
return Builder.CreateCall(F, X);
}
// FMA variations
case PPC::BI__builtin_vsx_xvmaddadp:
case PPC::BI__builtin_vsx_xvmaddasp:
case PPC::BI__builtin_vsx_xvnmaddadp:
case PPC::BI__builtin_vsx_xvnmaddasp:
case PPC::BI__builtin_vsx_xvmsubadp:
case PPC::BI__builtin_vsx_xvmsubasp:
case PPC::BI__builtin_vsx_xvnmsubadp:
case PPC::BI__builtin_vsx_xvnmsubasp: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Value *Y = EmitScalarExpr(E->getArg(1));
Value *Z = EmitScalarExpr(E->getArg(2));
Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
llvm::Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
switch (BuiltinID) {
case PPC::BI__builtin_vsx_xvmaddadp:
case PPC::BI__builtin_vsx_xvmaddasp:
return Builder.CreateCall(F, {X, Y, Z});
case PPC::BI__builtin_vsx_xvnmaddadp:
case PPC::BI__builtin_vsx_xvnmaddasp:
return Builder.CreateFSub(Zero,
Builder.CreateCall(F, {X, Y, Z}), "sub");
case PPC::BI__builtin_vsx_xvmsubadp:
case PPC::BI__builtin_vsx_xvmsubasp:
return Builder.CreateCall(F,
{X, Y, Builder.CreateFSub(Zero, Z, "sub")});
case PPC::BI__builtin_vsx_xvnmsubadp:
case PPC::BI__builtin_vsx_xvnmsubasp:
Value *FsubRes =
Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
return Builder.CreateFSub(Zero, FsubRes, "sub");
}
llvm_unreachable("Unknown FMA operation");
return nullptr; // Suppress no-return warning
}
case PPC::BI__builtin_vsx_insertword: {
llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw);
// Third argument is a compile time constant int. It must be clamped to
// to the range [0, 12].
ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
assert(ArgCI &&
"Third arg to xxinsertw intrinsic must be constant integer");
const int64_t MaxIndex = 12;
int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
// The builtin semantics don't exactly match the xxinsertw instructions
// semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the
// word from the first argument, and inserts it in the second argument. The
// instruction extracts the word from its second input register and inserts
// it into its first input register, so swap the first and second arguments.
std::swap(Ops[0], Ops[1]);
// Need to cast the second argument from a vector of unsigned int to a
// vector of long long.
Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int64Ty, 2));
if (getTarget().isLittleEndian()) {
// Create a shuffle mask of (1, 0)
Constant *ShuffleElts[2] = { ConstantInt::get(Int32Ty, 1),
ConstantInt::get(Int32Ty, 0)
};
Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
// Reverse the double words in the vector we will extract from.
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
Ops[0] = Builder.CreateShuffleVector(Ops[0], Ops[0], ShuffleMask);
// Reverse the index.
Index = MaxIndex - Index;
}
// Intrinsic expects the first arg to be a vector of int.
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4));
Ops[2] = ConstantInt::getSigned(Int32Ty, Index);
return Builder.CreateCall(F, Ops);
}
case PPC::BI__builtin_vsx_extractuword: {
llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw);
// Intrinsic expects the first argument to be a vector of doublewords.
Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
// The second argument is a compile time constant int that needs to
// be clamped to the range [0, 12].
ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[1]);
assert(ArgCI &&
"Second Arg to xxextractuw intrinsic must be a constant integer!");
const int64_t MaxIndex = 12;
int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
if (getTarget().isLittleEndian()) {
// Reverse the index.
Index = MaxIndex - Index;
Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
// Emit the call, then reverse the double words of the results vector.
Value *Call = Builder.CreateCall(F, Ops);
// Create a shuffle mask of (1, 0)
Constant *ShuffleElts[2] = { ConstantInt::get(Int32Ty, 1),
ConstantInt::get(Int32Ty, 0)
};
Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
Value *ShuffleCall = Builder.CreateShuffleVector(Call, Call, ShuffleMask);
return ShuffleCall;
} else {
Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
return Builder.CreateCall(F, Ops);
}
}
}
}
Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
switch (BuiltinID) {
case AMDGPU::BI__builtin_amdgcn_div_scale:
case AMDGPU::BI__builtin_amdgcn_div_scalef: {
// Translate from the intrinsics's struct return to the builtin's out
// argument.
Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3));
llvm::Value *X = EmitScalarExpr(E->getArg(0));
llvm::Value *Y = EmitScalarExpr(E->getArg(1));
llvm::Value *Z = EmitScalarExpr(E->getArg(2));
llvm::Value *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale,
X->getType());
llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z});
llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0);
llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1);
llvm::Type *RealFlagType
= FlagOutPtr.getPointer()->getType()->getPointerElementType();
llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType);
Builder.CreateStore(FlagExt, FlagOutPtr);
return Result;
}
case AMDGPU::BI__builtin_amdgcn_div_fmas:
case AMDGPU::BI__builtin_amdgcn_div_fmasf: {
llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
llvm::Value *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas,
Src0->getType());
llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3);
return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool});
}
case AMDGPU::BI__builtin_amdgcn_ds_swizzle:
return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_ds_swizzle);
case AMDGPU::BI__builtin_amdgcn_div_fixup:
case AMDGPU::BI__builtin_amdgcn_div_fixupf:
case AMDGPU::BI__builtin_amdgcn_div_fixuph:
return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_div_fixup);
case AMDGPU::BI__builtin_amdgcn_trig_preop:
case AMDGPU::BI__builtin_amdgcn_trig_preopf:
return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop);
case AMDGPU::BI__builtin_amdgcn_rcp:
case AMDGPU::BI__builtin_amdgcn_rcpf:
case AMDGPU::BI__builtin_amdgcn_rcph:
return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rcp);
case AMDGPU::BI__builtin_amdgcn_rsq:
case AMDGPU::BI__builtin_amdgcn_rsqf:
case AMDGPU::BI__builtin_amdgcn_rsqh:
return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq);
case AMDGPU::BI__builtin_amdgcn_rsq_clamp:
case AMDGPU::BI__builtin_amdgcn_rsq_clampf:
return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq_clamp);
case AMDGPU::BI__builtin_amdgcn_sinf:
case AMDGPU::BI__builtin_amdgcn_sinh:
return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sin);
case AMDGPU::BI__builtin_amdgcn_cosf:
case AMDGPU::BI__builtin_amdgcn_cosh:
return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_cos);
case AMDGPU::BI__builtin_amdgcn_log_clampf:
return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log_clamp);
case AMDGPU::BI__builtin_amdgcn_ldexp:
case AMDGPU::BI__builtin_amdgcn_ldexpf:
case AMDGPU::BI__builtin_amdgcn_ldexph:
return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_ldexp);
case AMDGPU::BI__builtin_amdgcn_frexp_mant:
case AMDGPU::BI__builtin_amdgcn_frexp_mantf:
case AMDGPU::BI__builtin_amdgcn_frexp_manth:
return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_mant);
case AMDGPU::BI__builtin_amdgcn_frexp_exp:
case AMDGPU::BI__builtin_amdgcn_frexp_expf: {
Value *Src0 = EmitScalarExpr(E->getArg(0));
Value *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
{ Builder.getInt32Ty(), Src0->getType() });
return Builder.CreateCall(F, Src0);
}
case AMDGPU::BI__builtin_amdgcn_frexp_exph: {
Value *Src0 = EmitScalarExpr(E->getArg(0));
Value *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
{ Builder.getInt16Ty(), Src0->getType() });
return Builder.CreateCall(F, Src0);
}
case AMDGPU::BI__builtin_amdgcn_fract:
case AMDGPU::BI__builtin_amdgcn_fractf:
case AMDGPU::BI__builtin_amdgcn_fracth:
return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_fract);
case AMDGPU::BI__builtin_amdgcn_lerp:
return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_lerp);
case AMDGPU::BI__builtin_amdgcn_uicmp:
case AMDGPU::BI__builtin_amdgcn_uicmpl:
case AMDGPU::BI__builtin_amdgcn_sicmp:
case AMDGPU::BI__builtin_amdgcn_sicmpl:
return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_icmp);
case AMDGPU::BI__builtin_amdgcn_fcmp:
case AMDGPU::BI__builtin_amdgcn_fcmpf:
return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fcmp);
case AMDGPU::BI__builtin_amdgcn_class:
case AMDGPU::BI__builtin_amdgcn_classf:
case AMDGPU::BI__builtin_amdgcn_classh:
return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class);
case AMDGPU::BI__builtin_amdgcn_fmed3f:
return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fmed3);
case AMDGPU::BI__builtin_amdgcn_read_exec: {
CallInst *CI = cast<CallInst>(
EmitSpecialRegisterBuiltin(*this, E, Int64Ty, Int64Ty, true, "exec"));
CI->setConvergent();
return CI;
}
// amdgcn workitem
case AMDGPU::BI__builtin_amdgcn_workitem_id_x:
return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024);
case AMDGPU::BI__builtin_amdgcn_workitem_id_y:
return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024);
case AMDGPU::BI__builtin_amdgcn_workitem_id_z:
return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024);
// r600 intrinsics
case AMDGPU::BI__builtin_r600_recipsqrt_ieee:
case AMDGPU::BI__builtin_r600_recipsqrt_ieeef:
return emitUnaryBuiltin(*this, E, Intrinsic::r600_recipsqrt_ieee);
case AMDGPU::BI__builtin_r600_read_tidig_x:
return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024);
case AMDGPU::BI__builtin_r600_read_tidig_y:
return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024);
case AMDGPU::BI__builtin_r600_read_tidig_z:
return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024);
default:
return nullptr;
}
}
/// Handle a SystemZ function in which the final argument is a pointer
/// to an int that receives the post-instruction CC value. At the LLVM level
/// this is represented as a function that returns a {result, cc} pair.
static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF,
unsigned IntrinsicID,
const CallExpr *E) {
unsigned NumArgs = E->getNumArgs() - 1;
SmallVector<Value *, 8> Args(NumArgs);
for (unsigned I = 0; I < NumArgs; ++I)
Args[I] = CGF.EmitScalarExpr(E->getArg(I));
Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs));
Value *F = CGF.CGM.getIntrinsic(IntrinsicID);
Value *Call = CGF.Builder.CreateCall(F, Args);
Value *CC = CGF.Builder.CreateExtractValue(Call, 1);
CGF.Builder.CreateStore(CC, CCPtr);
return CGF.Builder.CreateExtractValue(Call, 0);
}
Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
switch (BuiltinID) {
case SystemZ::BI__builtin_tbegin: {
Value *TDB = EmitScalarExpr(E->getArg(0));
Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
Value *F = CGM.getIntrinsic(Intrinsic::s390_tbegin);
return Builder.CreateCall(F, {TDB, Control});
}
case SystemZ::BI__builtin_tbegin_nofloat: {
Value *TDB = EmitScalarExpr(E->getArg(0));
Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
Value *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat);
return Builder.CreateCall(F, {TDB, Control});
}
case SystemZ::BI__builtin_tbeginc: {
Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy);
Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08);
Value *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc);
return Builder.CreateCall(F, {TDB, Control});
}
case SystemZ::BI__builtin_tabort: {
Value *Data = EmitScalarExpr(E->getArg(0));
Value *F = CGM.getIntrinsic(Intrinsic::s390_tabort);
return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort"));
}
case SystemZ::BI__builtin_non_tx_store: {
Value *Address = EmitScalarExpr(E->getArg(0));
Value *Data = EmitScalarExpr(E->getArg(1));
Value *F = CGM.getIntrinsic(Intrinsic::s390_ntstg);
return Builder.CreateCall(F, {Data, Address});
}
// Vector builtins. Note that most vector builtins are mapped automatically
// to target-specific LLVM intrinsics. The ones handled specially here can
// be represented via standard LLVM IR, which is preferable to enable common
// LLVM optimizations.
case SystemZ::BI__builtin_s390_vpopctb:
case SystemZ::BI__builtin_s390_vpopcth:
case SystemZ::BI__builtin_s390_vpopctf:
case SystemZ::BI__builtin_s390_vpopctg: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
return Builder.CreateCall(F, X);
}
case SystemZ::BI__builtin_s390_vclzb:
case SystemZ::BI__builtin_s390_vclzh:
case SystemZ::BI__builtin_s390_vclzf:
case SystemZ::BI__builtin_s390_vclzg: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
return Builder.CreateCall(F, {X, Undef});
}
case SystemZ::BI__builtin_s390_vctzb:
case SystemZ::BI__builtin_s390_vctzh:
case SystemZ::BI__builtin_s390_vctzf:
case SystemZ::BI__builtin_s390_vctzg: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
return Builder.CreateCall(F, {X, Undef});
}
case SystemZ::BI__builtin_s390_vfsqdb: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
return Builder.CreateCall(F, X);
}
case SystemZ::BI__builtin_s390_vfmadb: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Value *Y = EmitScalarExpr(E->getArg(1));
Value *Z = EmitScalarExpr(E->getArg(2));
Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
return Builder.CreateCall(F, {X, Y, Z});
}
case SystemZ::BI__builtin_s390_vfmsdb: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Value *Y = EmitScalarExpr(E->getArg(1));
Value *Z = EmitScalarExpr(E->getArg(2));
Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
return Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
}
case SystemZ::BI__builtin_s390_vflpdb: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
return Builder.CreateCall(F, X);
}
case SystemZ::BI__builtin_s390_vflndb: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
return Builder.CreateFSub(Zero, Builder.CreateCall(F, X), "sub");
}
case SystemZ::BI__builtin_s390_vfidb: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
// Constant-fold the M4 and M5 mask arguments.
llvm::APSInt M4, M5;
bool IsConstM4 = E->getArg(1)->isIntegerConstantExpr(M4, getContext());
bool IsConstM5 = E->getArg(2)->isIntegerConstantExpr(M5, getContext());
assert(IsConstM4 && IsConstM5 && "Constant arg isn't actually constant?");
(void)IsConstM4; (void)IsConstM5;
// Check whether this instance of vfidb can be represented via a LLVM
// standard intrinsic. We only support some combinations of M4 and M5.
Intrinsic::ID ID = Intrinsic::not_intrinsic;
switch (M4.getZExtValue()) {
default: break;
case 0: // IEEE-inexact exception allowed
switch (M5.getZExtValue()) {
default: break;
case 0: ID = Intrinsic::rint; break;
}
break;
case 4: // IEEE-inexact exception suppressed
switch (M5.getZExtValue()) {
default: break;
case 0: ID = Intrinsic::nearbyint; break;
case 1: ID = Intrinsic::round; break;
case 5: ID = Intrinsic::trunc; break;
case 6: ID = Intrinsic::ceil; break;
case 7: ID = Intrinsic::floor; break;
}
break;
}
if (ID != Intrinsic::not_intrinsic) {
Function *F = CGM.getIntrinsic(ID, ResultType);
return Builder.CreateCall(F, X);
}
Function *F = CGM.getIntrinsic(Intrinsic::s390_vfidb);
Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5);
return Builder.CreateCall(F, {X, M4Value, M5Value});
}
// Vector intrisincs that output the post-instruction CC value.
#define INTRINSIC_WITH_CC(NAME) \
case SystemZ::BI__builtin_##NAME: \
return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E)
INTRINSIC_WITH_CC(s390_vpkshs);
INTRINSIC_WITH_CC(s390_vpksfs);
INTRINSIC_WITH_CC(s390_vpksgs);
INTRINSIC_WITH_CC(s390_vpklshs);
INTRINSIC_WITH_CC(s390_vpklsfs);
INTRINSIC_WITH_CC(s390_vpklsgs);
INTRINSIC_WITH_CC(s390_vceqbs);
INTRINSIC_WITH_CC(s390_vceqhs);
INTRINSIC_WITH_CC(s390_vceqfs);
INTRINSIC_WITH_CC(s390_vceqgs);
INTRINSIC_WITH_CC(s390_vchbs);
INTRINSIC_WITH_CC(s390_vchhs);
INTRINSIC_WITH_CC(s390_vchfs);
INTRINSIC_WITH_CC(s390_vchgs);
INTRINSIC_WITH_CC(s390_vchlbs);
INTRINSIC_WITH_CC(s390_vchlhs);
INTRINSIC_WITH_CC(s390_vchlfs);
INTRINSIC_WITH_CC(s390_vchlgs);
INTRINSIC_WITH_CC(s390_vfaebs);
INTRINSIC_WITH_CC(s390_vfaehs);
INTRINSIC_WITH_CC(s390_vfaefs);
INTRINSIC_WITH_CC(s390_vfaezbs);
INTRINSIC_WITH_CC(s390_vfaezhs);
INTRINSIC_WITH_CC(s390_vfaezfs);
INTRINSIC_WITH_CC(s390_vfeebs);
INTRINSIC_WITH_CC(s390_vfeehs);
INTRINSIC_WITH_CC(s390_vfeefs);
INTRINSIC_WITH_CC(s390_vfeezbs);
INTRINSIC_WITH_CC(s390_vfeezhs);
INTRINSIC_WITH_CC(s390_vfeezfs);
INTRINSIC_WITH_CC(s390_vfenebs);
INTRINSIC_WITH_CC(s390_vfenehs);
INTRINSIC_WITH_CC(s390_vfenefs);
INTRINSIC_WITH_CC(s390_vfenezbs);
INTRINSIC_WITH_CC(s390_vfenezhs);
INTRINSIC_WITH_CC(s390_vfenezfs);
INTRINSIC_WITH_CC(s390_vistrbs);
INTRINSIC_WITH_CC(s390_vistrhs);
INTRINSIC_WITH_CC(s390_vistrfs);
INTRINSIC_WITH_CC(s390_vstrcbs);
INTRINSIC_WITH_CC(s390_vstrchs);
INTRINSIC_WITH_CC(s390_vstrcfs);
INTRINSIC_WITH_CC(s390_vstrczbs);
INTRINSIC_WITH_CC(s390_vstrczhs);
INTRINSIC_WITH_CC(s390_vstrczfs);
INTRINSIC_WITH_CC(s390_vfcedbs);
INTRINSIC_WITH_CC(s390_vfchdbs);
INTRINSIC_WITH_CC(s390_vfchedbs);
INTRINSIC_WITH_CC(s390_vftcidb);
#undef INTRINSIC_WITH_CC
default:
return nullptr;
}
}
Value *CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
auto MakeLdg = [&](unsigned IntrinsicID) {
Value *Ptr = EmitScalarExpr(E->getArg(0));
AlignmentSource AlignSource;
clang::CharUnits Align =
getNaturalPointeeTypeAlignment(E->getArg(0)->getType(), &AlignSource);
return Builder.CreateCall(
CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
Ptr->getType()}),
{Ptr, ConstantInt::get(Builder.getInt32Ty(), Align.getQuantity())});
};
auto MakeScopedAtomic = [&](unsigned IntrinsicID) {
Value *Ptr = EmitScalarExpr(E->getArg(0));
return Builder.CreateCall(
CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
Ptr->getType()}),
{Ptr, EmitScalarExpr(E->getArg(1))});
};
switch (BuiltinID) {
case NVPTX::BI__nvvm_atom_add_gen_i:
case NVPTX::BI__nvvm_atom_add_gen_l:
case NVPTX::BI__nvvm_atom_add_gen_ll:
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E);
case NVPTX::BI__nvvm_atom_sub_gen_i:
case NVPTX::BI__nvvm_atom_sub_gen_l:
case NVPTX::BI__nvvm_atom_sub_gen_ll:
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E);
case NVPTX::BI__nvvm_atom_and_gen_i:
case NVPTX::BI__nvvm_atom_and_gen_l:
case NVPTX::BI__nvvm_atom_and_gen_ll:
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E);
case NVPTX::BI__nvvm_atom_or_gen_i:
case NVPTX::BI__nvvm_atom_or_gen_l:
case NVPTX::BI__nvvm_atom_or_gen_ll:
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E);
case NVPTX::BI__nvvm_atom_xor_gen_i:
case NVPTX::BI__nvvm_atom_xor_gen_l:
case NVPTX::BI__nvvm_atom_xor_gen_ll:
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E);
case NVPTX::BI__nvvm_atom_xchg_gen_i:
case NVPTX::BI__nvvm_atom_xchg_gen_l:
case NVPTX::BI__nvvm_atom_xchg_gen_ll:
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E);
case NVPTX::BI__nvvm_atom_max_gen_i:
case NVPTX::BI__nvvm_atom_max_gen_l:
case NVPTX::BI__nvvm_atom_max_gen_ll:
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E);
case NVPTX::BI__nvvm_atom_max_gen_ui:
case NVPTX::BI__nvvm_atom_max_gen_ul:
case NVPTX::BI__nvvm_atom_max_gen_ull:
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E);
case NVPTX::BI__nvvm_atom_min_gen_i:
case NVPTX::BI__nvvm_atom_min_gen_l:
case NVPTX::BI__nvvm_atom_min_gen_ll:
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E);
case NVPTX::BI__nvvm_atom_min_gen_ui:
case NVPTX::BI__nvvm_atom_min_gen_ul:
case NVPTX::BI__nvvm_atom_min_gen_ull:
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E);
case NVPTX::BI__nvvm_atom_cas_gen_i:
case NVPTX::BI__nvvm_atom_cas_gen_l:
case NVPTX::BI__nvvm_atom_cas_gen_ll:
// __nvvm_atom_cas_gen_* should return the old value rather than the
// success flag.
return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false);
case NVPTX::BI__nvvm_atom_add_gen_f: {
Value *Ptr = EmitScalarExpr(E->getArg(0));
Value *Val = EmitScalarExpr(E->getArg(1));
// atomicrmw only deals with integer arguments so we need to use
// LLVM's nvvm_atomic_load_add_f32 intrinsic for that.
Value *FnALAF32 =
CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_add_f32, Ptr->getType());
return Builder.CreateCall(FnALAF32, {Ptr, Val});
}
case NVPTX::BI__nvvm_atom_inc_gen_ui: {
Value *Ptr = EmitScalarExpr(E->getArg(0));
Value *Val = EmitScalarExpr(E->getArg(1));
Value *FnALI32 =
CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType());
return Builder.CreateCall(FnALI32, {Ptr, Val});
}
case NVPTX::BI__nvvm_atom_dec_gen_ui: {
Value *Ptr = EmitScalarExpr(E->getArg(0));
Value *Val = EmitScalarExpr(E->getArg(1));
Value *FnALD32 =
CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType());
return Builder.CreateCall(FnALD32, {Ptr, Val});
}
case NVPTX::BI__nvvm_ldg_c:
case NVPTX::BI__nvvm_ldg_c2:
case NVPTX::BI__nvvm_ldg_c4:
case NVPTX::BI__nvvm_ldg_s:
case NVPTX::BI__nvvm_ldg_s2:
case NVPTX::BI__nvvm_ldg_s4:
case NVPTX::BI__nvvm_ldg_i:
case NVPTX::BI__nvvm_ldg_i2:
case NVPTX::BI__nvvm_ldg_i4:
case NVPTX::BI__nvvm_ldg_l:
case NVPTX::BI__nvvm_ldg_ll:
case NVPTX::BI__nvvm_ldg_ll2:
case NVPTX::BI__nvvm_ldg_uc:
case NVPTX::BI__nvvm_ldg_uc2:
case NVPTX::BI__nvvm_ldg_uc4:
case NVPTX::BI__nvvm_ldg_us:
case NVPTX::BI__nvvm_ldg_us2:
case NVPTX::BI__nvvm_ldg_us4:
case NVPTX::BI__nvvm_ldg_ui:
case NVPTX::BI__nvvm_ldg_ui2:
case NVPTX::BI__nvvm_ldg_ui4:
case NVPTX::BI__nvvm_ldg_ul:
case NVPTX::BI__nvvm_ldg_ull:
case NVPTX::BI__nvvm_ldg_ull2:
// PTX Interoperability section 2.2: "For a vector with an even number of
// elements, its alignment is set to number of elements times the alignment
// of its member: n*alignof(t)."
return MakeLdg(Intrinsic::nvvm_ldg_global_i);
case NVPTX::BI__nvvm_ldg_f:
case NVPTX::BI__nvvm_ldg_f2:
case NVPTX::BI__nvvm_ldg_f4:
case NVPTX::BI__nvvm_ldg_d:
case NVPTX::BI__nvvm_ldg_d2:
return MakeLdg(Intrinsic::nvvm_ldg_global_f);
case NVPTX::BI__nvvm_atom_cta_add_gen_i:
case NVPTX::BI__nvvm_atom_cta_add_gen_l:
case NVPTX::BI__nvvm_atom_cta_add_gen_ll:
return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta);
case NVPTX::BI__nvvm_atom_sys_add_gen_i:
case NVPTX::BI__nvvm_atom_sys_add_gen_l:
case NVPTX::BI__nvvm_atom_sys_add_gen_ll:
return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys);
case NVPTX::BI__nvvm_atom_cta_add_gen_f:
case NVPTX::BI__nvvm_atom_cta_add_gen_d:
return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta);
case NVPTX::BI__nvvm_atom_sys_add_gen_f:
case NVPTX::BI__nvvm_atom_sys_add_gen_d:
return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys);
case NVPTX::BI__nvvm_atom_cta_xchg_gen_i:
case NVPTX::BI__nvvm_atom_cta_xchg_gen_l:
case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll:
return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta);
case NVPTX::BI__nvvm_atom_sys_xchg_gen_i:
case NVPTX::BI__nvvm_atom_sys_xchg_gen_l:
case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll:
return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys);
case NVPTX::BI__nvvm_atom_cta_max_gen_i:
case NVPTX::BI__nvvm_atom_cta_max_gen_ui:
case NVPTX::BI__nvvm_atom_cta_max_gen_l:
case NVPTX::BI__nvvm_atom_cta_max_gen_ul:
case NVPTX::BI__nvvm_atom_cta_max_gen_ll:
case NVPTX::BI__nvvm_atom_cta_max_gen_ull:
return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta);
case NVPTX::BI__nvvm_atom_sys_max_gen_i:
case NVPTX::BI__nvvm_atom_sys_max_gen_ui:
case NVPTX::BI__nvvm_atom_sys_max_gen_l:
case NVPTX::BI__nvvm_atom_sys_max_gen_ul:
case NVPTX::BI__nvvm_atom_sys_max_gen_ll:
case NVPTX::BI__nvvm_atom_sys_max_gen_ull:
return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys);
case NVPTX::BI__nvvm_atom_cta_min_gen_i:
case NVPTX::BI__nvvm_atom_cta_min_gen_ui:
case NVPTX::BI__nvvm_atom_cta_min_gen_l:
case NVPTX::BI__nvvm_atom_cta_min_gen_ul:
case NVPTX::BI__nvvm_atom_cta_min_gen_ll:
case NVPTX::BI__nvvm_atom_cta_min_gen_ull:
return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta);
case NVPTX::BI__nvvm_atom_sys_min_gen_i:
case NVPTX::BI__nvvm_atom_sys_min_gen_ui:
case NVPTX::BI__nvvm_atom_sys_min_gen_l:
case NVPTX::BI__nvvm_atom_sys_min_gen_ul:
case NVPTX::BI__nvvm_atom_sys_min_gen_ll:
case NVPTX::BI__nvvm_atom_sys_min_gen_ull:
return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys);
case NVPTX::BI__nvvm_atom_cta_inc_gen_ui:
return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta);
case NVPTX::BI__nvvm_atom_cta_dec_gen_ui:
return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta);
case NVPTX::BI__nvvm_atom_sys_inc_gen_ui:
return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys);
case NVPTX::BI__nvvm_atom_sys_dec_gen_ui:
return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys);
case NVPTX::BI__nvvm_atom_cta_and_gen_i:
case NVPTX::BI__nvvm_atom_cta_and_gen_l:
case NVPTX::BI__nvvm_atom_cta_and_gen_ll:
return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta);
case NVPTX::BI__nvvm_atom_sys_and_gen_i:
case NVPTX::BI__nvvm_atom_sys_and_gen_l:
case NVPTX::BI__nvvm_atom_sys_and_gen_ll:
return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys);
case NVPTX::BI__nvvm_atom_cta_or_gen_i:
case NVPTX::BI__nvvm_atom_cta_or_gen_l:
case NVPTX::BI__nvvm_atom_cta_or_gen_ll:
return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta);
case NVPTX::BI__nvvm_atom_sys_or_gen_i:
case NVPTX::BI__nvvm_atom_sys_or_gen_l:
case NVPTX::BI__nvvm_atom_sys_or_gen_ll:
return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys);
case NVPTX::BI__nvvm_atom_cta_xor_gen_i:
case NVPTX::BI__nvvm_atom_cta_xor_gen_l:
case NVPTX::BI__nvvm_atom_cta_xor_gen_ll:
return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta);
case NVPTX::BI__nvvm_atom_sys_xor_gen_i:
case NVPTX::BI__nvvm_atom_sys_xor_gen_l:
case NVPTX::BI__nvvm_atom_sys_xor_gen_ll:
return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys);
case NVPTX::BI__nvvm_atom_cta_cas_gen_i:
case NVPTX::BI__nvvm_atom_cta_cas_gen_l:
case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: {
Value *Ptr = EmitScalarExpr(E->getArg(0));
return Builder.CreateCall(
CGM.getIntrinsic(
Intrinsic::nvvm_atomic_cas_gen_i_cta,
{Ptr->getType()->getPointerElementType(), Ptr->getType()}),
{Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
}
case NVPTX::BI__nvvm_atom_sys_cas_gen_i:
case NVPTX::BI__nvvm_atom_sys_cas_gen_l:
case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: {
Value *Ptr = EmitScalarExpr(E->getArg(0));
return Builder.CreateCall(
CGM.getIntrinsic(
Intrinsic::nvvm_atomic_cas_gen_i_sys,
{Ptr->getType()->getPointerElementType(), Ptr->getType()}),
{Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
}
default:
return nullptr;
}
}
Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
switch (BuiltinID) {
case WebAssembly::BI__builtin_wasm_current_memory: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *Callee = CGM.getIntrinsic(Intrinsic::wasm_current_memory, ResultType);
return Builder.CreateCall(Callee);
}
case WebAssembly::BI__builtin_wasm_grow_memory: {
Value *X = EmitScalarExpr(E->getArg(0));
Value *Callee = CGM.getIntrinsic(Intrinsic::wasm_grow_memory, X->getType());
return Builder.CreateCall(Callee, X);
}
default:
return nullptr;
}
}