forked from OSchip/llvm-project
1700 lines
66 KiB
C++
1700 lines
66 KiB
C++
//===- llvm/unittest/IR/InstructionsTest.cpp - Instructions unit tests ----===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/ADT/CombinationGenerator.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/Analysis/VectorUtils.h"
|
|
#include "llvm/AsmParser/Parser.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/FPEnv.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/MDBuilder.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/NoFolder.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/Support/SourceMgr.h"
|
|
#include "llvm-c/Core.h"
|
|
#include "gmock/gmock-matchers.h"
|
|
#include "gtest/gtest.h"
|
|
#include <memory>
|
|
|
|
namespace llvm {
|
|
namespace {
|
|
|
|
static std::unique_ptr<Module> parseIR(LLVMContext &C, const char *IR) {
|
|
SMDiagnostic Err;
|
|
std::unique_ptr<Module> Mod = parseAssemblyString(IR, Err, C);
|
|
if (!Mod)
|
|
Err.print("InstructionsTests", errs());
|
|
return Mod;
|
|
}
|
|
|
|
TEST(InstructionsTest, ReturnInst) {
|
|
LLVMContext C;
|
|
|
|
// test for PR6589
|
|
const ReturnInst* r0 = ReturnInst::Create(C);
|
|
EXPECT_EQ(r0->getNumOperands(), 0U);
|
|
EXPECT_EQ(r0->op_begin(), r0->op_end());
|
|
|
|
IntegerType* Int1 = IntegerType::get(C, 1);
|
|
Constant* One = ConstantInt::get(Int1, 1, true);
|
|
const ReturnInst* r1 = ReturnInst::Create(C, One);
|
|
EXPECT_EQ(1U, r1->getNumOperands());
|
|
User::const_op_iterator b(r1->op_begin());
|
|
EXPECT_NE(r1->op_end(), b);
|
|
EXPECT_EQ(One, *b);
|
|
EXPECT_EQ(One, r1->getOperand(0));
|
|
++b;
|
|
EXPECT_EQ(r1->op_end(), b);
|
|
|
|
// clean up
|
|
delete r0;
|
|
delete r1;
|
|
}
|
|
|
|
// Test fixture that provides a module and a single function within it. Useful
|
|
// for tests that need to refer to the function in some way.
|
|
class ModuleWithFunctionTest : public testing::Test {
|
|
protected:
|
|
ModuleWithFunctionTest() : M(new Module("MyModule", Ctx)) {
|
|
FArgTypes.push_back(Type::getInt8Ty(Ctx));
|
|
FArgTypes.push_back(Type::getInt32Ty(Ctx));
|
|
FArgTypes.push_back(Type::getInt64Ty(Ctx));
|
|
FunctionType *FTy =
|
|
FunctionType::get(Type::getVoidTy(Ctx), FArgTypes, false);
|
|
F = Function::Create(FTy, Function::ExternalLinkage, "", M.get());
|
|
}
|
|
|
|
LLVMContext Ctx;
|
|
std::unique_ptr<Module> M;
|
|
SmallVector<Type *, 3> FArgTypes;
|
|
Function *F;
|
|
};
|
|
|
|
TEST_F(ModuleWithFunctionTest, CallInst) {
|
|
Value *Args[] = {ConstantInt::get(Type::getInt8Ty(Ctx), 20),
|
|
ConstantInt::get(Type::getInt32Ty(Ctx), 9999),
|
|
ConstantInt::get(Type::getInt64Ty(Ctx), 42)};
|
|
std::unique_ptr<CallInst> Call(CallInst::Create(F, Args));
|
|
|
|
// Make sure iteration over a call's arguments works as expected.
|
|
unsigned Idx = 0;
|
|
for (Value *Arg : Call->args()) {
|
|
EXPECT_EQ(FArgTypes[Idx], Arg->getType());
|
|
EXPECT_EQ(Call->getArgOperand(Idx)->getType(), Arg->getType());
|
|
Idx++;
|
|
}
|
|
|
|
Call->addRetAttr(Attribute::get(Call->getContext(), "test-str-attr"));
|
|
EXPECT_TRUE(Call->hasRetAttr("test-str-attr"));
|
|
EXPECT_FALSE(Call->hasRetAttr("not-on-call"));
|
|
}
|
|
|
|
TEST_F(ModuleWithFunctionTest, InvokeInst) {
|
|
BasicBlock *BB1 = BasicBlock::Create(Ctx, "", F);
|
|
BasicBlock *BB2 = BasicBlock::Create(Ctx, "", F);
|
|
|
|
Value *Args[] = {ConstantInt::get(Type::getInt8Ty(Ctx), 20),
|
|
ConstantInt::get(Type::getInt32Ty(Ctx), 9999),
|
|
ConstantInt::get(Type::getInt64Ty(Ctx), 42)};
|
|
std::unique_ptr<InvokeInst> Invoke(InvokeInst::Create(F, BB1, BB2, Args));
|
|
|
|
// Make sure iteration over invoke's arguments works as expected.
|
|
unsigned Idx = 0;
|
|
for (Value *Arg : Invoke->args()) {
|
|
EXPECT_EQ(FArgTypes[Idx], Arg->getType());
|
|
EXPECT_EQ(Invoke->getArgOperand(Idx)->getType(), Arg->getType());
|
|
Idx++;
|
|
}
|
|
}
|
|
|
|
TEST(InstructionsTest, BranchInst) {
|
|
LLVMContext C;
|
|
|
|
// Make a BasicBlocks
|
|
BasicBlock* bb0 = BasicBlock::Create(C);
|
|
BasicBlock* bb1 = BasicBlock::Create(C);
|
|
|
|
// Mandatory BranchInst
|
|
const BranchInst* b0 = BranchInst::Create(bb0);
|
|
|
|
EXPECT_TRUE(b0->isUnconditional());
|
|
EXPECT_FALSE(b0->isConditional());
|
|
EXPECT_EQ(1U, b0->getNumSuccessors());
|
|
|
|
// check num operands
|
|
EXPECT_EQ(1U, b0->getNumOperands());
|
|
|
|
EXPECT_NE(b0->op_begin(), b0->op_end());
|
|
EXPECT_EQ(b0->op_end(), std::next(b0->op_begin()));
|
|
|
|
EXPECT_EQ(b0->op_end(), std::next(b0->op_begin()));
|
|
|
|
IntegerType* Int1 = IntegerType::get(C, 1);
|
|
Constant* One = ConstantInt::get(Int1, 1, true);
|
|
|
|
// Conditional BranchInst
|
|
BranchInst* b1 = BranchInst::Create(bb0, bb1, One);
|
|
|
|
EXPECT_FALSE(b1->isUnconditional());
|
|
EXPECT_TRUE(b1->isConditional());
|
|
EXPECT_EQ(2U, b1->getNumSuccessors());
|
|
|
|
// check num operands
|
|
EXPECT_EQ(3U, b1->getNumOperands());
|
|
|
|
User::const_op_iterator b(b1->op_begin());
|
|
|
|
// check COND
|
|
EXPECT_NE(b, b1->op_end());
|
|
EXPECT_EQ(One, *b);
|
|
EXPECT_EQ(One, b1->getOperand(0));
|
|
EXPECT_EQ(One, b1->getCondition());
|
|
++b;
|
|
|
|
// check ELSE
|
|
EXPECT_EQ(bb1, *b);
|
|
EXPECT_EQ(bb1, b1->getOperand(1));
|
|
EXPECT_EQ(bb1, b1->getSuccessor(1));
|
|
++b;
|
|
|
|
// check THEN
|
|
EXPECT_EQ(bb0, *b);
|
|
EXPECT_EQ(bb0, b1->getOperand(2));
|
|
EXPECT_EQ(bb0, b1->getSuccessor(0));
|
|
++b;
|
|
|
|
EXPECT_EQ(b1->op_end(), b);
|
|
|
|
// clean up
|
|
delete b0;
|
|
delete b1;
|
|
|
|
delete bb0;
|
|
delete bb1;
|
|
}
|
|
|
|
TEST(InstructionsTest, CastInst) {
|
|
LLVMContext C;
|
|
|
|
Type *Int8Ty = Type::getInt8Ty(C);
|
|
Type *Int16Ty = Type::getInt16Ty(C);
|
|
Type *Int32Ty = Type::getInt32Ty(C);
|
|
Type *Int64Ty = Type::getInt64Ty(C);
|
|
Type *V8x8Ty = FixedVectorType::get(Int8Ty, 8);
|
|
Type *V8x64Ty = FixedVectorType::get(Int64Ty, 8);
|
|
Type *X86MMXTy = Type::getX86_MMXTy(C);
|
|
|
|
Type *HalfTy = Type::getHalfTy(C);
|
|
Type *FloatTy = Type::getFloatTy(C);
|
|
Type *DoubleTy = Type::getDoubleTy(C);
|
|
|
|
Type *V2Int32Ty = FixedVectorType::get(Int32Ty, 2);
|
|
Type *V2Int64Ty = FixedVectorType::get(Int64Ty, 2);
|
|
Type *V4Int16Ty = FixedVectorType::get(Int16Ty, 4);
|
|
Type *V1Int16Ty = FixedVectorType::get(Int16Ty, 1);
|
|
|
|
Type *VScaleV2Int32Ty = ScalableVectorType::get(Int32Ty, 2);
|
|
Type *VScaleV2Int64Ty = ScalableVectorType::get(Int64Ty, 2);
|
|
Type *VScaleV4Int16Ty = ScalableVectorType::get(Int16Ty, 4);
|
|
Type *VScaleV1Int16Ty = ScalableVectorType::get(Int16Ty, 1);
|
|
|
|
Type *Int32PtrTy = PointerType::get(Int32Ty, 0);
|
|
Type *Int64PtrTy = PointerType::get(Int64Ty, 0);
|
|
|
|
Type *Int32PtrAS1Ty = PointerType::get(Int32Ty, 1);
|
|
Type *Int64PtrAS1Ty = PointerType::get(Int64Ty, 1);
|
|
|
|
Type *V2Int32PtrAS1Ty = FixedVectorType::get(Int32PtrAS1Ty, 2);
|
|
Type *V2Int64PtrAS1Ty = FixedVectorType::get(Int64PtrAS1Ty, 2);
|
|
Type *V4Int32PtrAS1Ty = FixedVectorType::get(Int32PtrAS1Ty, 4);
|
|
Type *VScaleV4Int32PtrAS1Ty = ScalableVectorType::get(Int32PtrAS1Ty, 4);
|
|
Type *V4Int64PtrAS1Ty = FixedVectorType::get(Int64PtrAS1Ty, 4);
|
|
|
|
Type *V2Int64PtrTy = FixedVectorType::get(Int64PtrTy, 2);
|
|
Type *V2Int32PtrTy = FixedVectorType::get(Int32PtrTy, 2);
|
|
Type *VScaleV2Int32PtrTy = ScalableVectorType::get(Int32PtrTy, 2);
|
|
Type *V4Int32PtrTy = FixedVectorType::get(Int32PtrTy, 4);
|
|
Type *VScaleV4Int32PtrTy = ScalableVectorType::get(Int32PtrTy, 4);
|
|
Type *VScaleV4Int64PtrTy = ScalableVectorType::get(Int64PtrTy, 4);
|
|
|
|
const Constant* c8 = Constant::getNullValue(V8x8Ty);
|
|
const Constant* c64 = Constant::getNullValue(V8x64Ty);
|
|
|
|
const Constant *v2ptr32 = Constant::getNullValue(V2Int32PtrTy);
|
|
|
|
EXPECT_EQ(CastInst::Trunc, CastInst::getCastOpcode(c64, true, V8x8Ty, true));
|
|
EXPECT_EQ(CastInst::SExt, CastInst::getCastOpcode(c8, true, V8x64Ty, true));
|
|
|
|
EXPECT_FALSE(CastInst::isBitCastable(V8x8Ty, X86MMXTy));
|
|
EXPECT_FALSE(CastInst::isBitCastable(X86MMXTy, V8x8Ty));
|
|
EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, X86MMXTy));
|
|
EXPECT_FALSE(CastInst::isBitCastable(V8x64Ty, V8x8Ty));
|
|
EXPECT_FALSE(CastInst::isBitCastable(V8x8Ty, V8x64Ty));
|
|
|
|
// Check address space casts are rejected since we don't know the sizes here
|
|
EXPECT_FALSE(CastInst::isBitCastable(Int32PtrTy, Int32PtrAS1Ty));
|
|
EXPECT_FALSE(CastInst::isBitCastable(Int32PtrAS1Ty, Int32PtrTy));
|
|
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, V2Int32PtrAS1Ty));
|
|
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V2Int32PtrTy));
|
|
EXPECT_TRUE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V2Int64PtrAS1Ty));
|
|
EXPECT_EQ(CastInst::AddrSpaceCast, CastInst::getCastOpcode(v2ptr32, true,
|
|
V2Int32PtrAS1Ty,
|
|
true));
|
|
|
|
// Test mismatched number of elements for pointers
|
|
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V4Int64PtrAS1Ty));
|
|
EXPECT_FALSE(CastInst::isBitCastable(V4Int64PtrAS1Ty, V2Int32PtrAS1Ty));
|
|
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V4Int32PtrAS1Ty));
|
|
EXPECT_FALSE(CastInst::isBitCastable(Int32PtrTy, V2Int32PtrTy));
|
|
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, Int32PtrTy));
|
|
|
|
EXPECT_TRUE(CastInst::isBitCastable(Int32PtrTy, Int64PtrTy));
|
|
EXPECT_FALSE(CastInst::isBitCastable(DoubleTy, FloatTy));
|
|
EXPECT_FALSE(CastInst::isBitCastable(FloatTy, DoubleTy));
|
|
EXPECT_TRUE(CastInst::isBitCastable(FloatTy, FloatTy));
|
|
EXPECT_TRUE(CastInst::isBitCastable(FloatTy, FloatTy));
|
|
EXPECT_TRUE(CastInst::isBitCastable(FloatTy, Int32Ty));
|
|
EXPECT_TRUE(CastInst::isBitCastable(Int16Ty, HalfTy));
|
|
EXPECT_TRUE(CastInst::isBitCastable(Int32Ty, FloatTy));
|
|
EXPECT_TRUE(CastInst::isBitCastable(V2Int32Ty, Int64Ty));
|
|
|
|
EXPECT_TRUE(CastInst::isBitCastable(V2Int32Ty, V4Int16Ty));
|
|
EXPECT_FALSE(CastInst::isBitCastable(Int32Ty, Int64Ty));
|
|
EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, Int32Ty));
|
|
|
|
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, Int64Ty));
|
|
EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, V2Int32PtrTy));
|
|
EXPECT_TRUE(CastInst::isBitCastable(V2Int64PtrTy, V2Int32PtrTy));
|
|
EXPECT_TRUE(CastInst::isBitCastable(V2Int32PtrTy, V2Int64PtrTy));
|
|
EXPECT_FALSE(CastInst::isBitCastable(V2Int32Ty, V2Int64Ty));
|
|
EXPECT_FALSE(CastInst::isBitCastable(V2Int64Ty, V2Int32Ty));
|
|
|
|
|
|
EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
|
|
Constant::getNullValue(V4Int32PtrTy),
|
|
V2Int32PtrTy));
|
|
EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
|
|
Constant::getNullValue(V2Int32PtrTy),
|
|
V4Int32PtrTy));
|
|
|
|
EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast,
|
|
Constant::getNullValue(V4Int32PtrAS1Ty),
|
|
V2Int32PtrTy));
|
|
EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast,
|
|
Constant::getNullValue(V2Int32PtrTy),
|
|
V4Int32PtrAS1Ty));
|
|
|
|
// Address space cast of fixed/scalable vectors of pointers to scalable/fixed
|
|
// vector of pointers.
|
|
EXPECT_FALSE(CastInst::castIsValid(
|
|
Instruction::AddrSpaceCast, Constant::getNullValue(VScaleV4Int32PtrAS1Ty),
|
|
V4Int32PtrTy));
|
|
EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast,
|
|
Constant::getNullValue(V4Int32PtrTy),
|
|
VScaleV4Int32PtrAS1Ty));
|
|
// Address space cast of scalable vectors of pointers to scalable vector of
|
|
// pointers.
|
|
EXPECT_FALSE(CastInst::castIsValid(
|
|
Instruction::AddrSpaceCast, Constant::getNullValue(VScaleV4Int32PtrAS1Ty),
|
|
VScaleV2Int32PtrTy));
|
|
EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast,
|
|
Constant::getNullValue(VScaleV2Int32PtrTy),
|
|
VScaleV4Int32PtrAS1Ty));
|
|
EXPECT_TRUE(CastInst::castIsValid(Instruction::AddrSpaceCast,
|
|
Constant::getNullValue(VScaleV4Int64PtrTy),
|
|
VScaleV4Int32PtrAS1Ty));
|
|
// Same number of lanes, different address space.
|
|
EXPECT_TRUE(CastInst::castIsValid(
|
|
Instruction::AddrSpaceCast, Constant::getNullValue(VScaleV4Int32PtrAS1Ty),
|
|
VScaleV4Int32PtrTy));
|
|
// Same number of lanes, same address space.
|
|
EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast,
|
|
Constant::getNullValue(VScaleV4Int64PtrTy),
|
|
VScaleV4Int32PtrTy));
|
|
|
|
// Bit casting fixed/scalable vector to scalable/fixed vectors.
|
|
EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
|
|
Constant::getNullValue(V2Int32Ty),
|
|
VScaleV2Int32Ty));
|
|
EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
|
|
Constant::getNullValue(V2Int64Ty),
|
|
VScaleV2Int64Ty));
|
|
EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
|
|
Constant::getNullValue(V4Int16Ty),
|
|
VScaleV4Int16Ty));
|
|
EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
|
|
Constant::getNullValue(VScaleV2Int32Ty),
|
|
V2Int32Ty));
|
|
EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
|
|
Constant::getNullValue(VScaleV2Int64Ty),
|
|
V2Int64Ty));
|
|
EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
|
|
Constant::getNullValue(VScaleV4Int16Ty),
|
|
V4Int16Ty));
|
|
|
|
// Bit casting scalable vectors to scalable vectors.
|
|
EXPECT_TRUE(CastInst::castIsValid(Instruction::BitCast,
|
|
Constant::getNullValue(VScaleV4Int16Ty),
|
|
VScaleV2Int32Ty));
|
|
EXPECT_TRUE(CastInst::castIsValid(Instruction::BitCast,
|
|
Constant::getNullValue(VScaleV2Int32Ty),
|
|
VScaleV4Int16Ty));
|
|
EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
|
|
Constant::getNullValue(VScaleV2Int64Ty),
|
|
VScaleV2Int32Ty));
|
|
EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
|
|
Constant::getNullValue(VScaleV2Int32Ty),
|
|
VScaleV2Int64Ty));
|
|
|
|
// Bitcasting to/from <vscale x 1 x Ty>
|
|
EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
|
|
Constant::getNullValue(VScaleV1Int16Ty),
|
|
V1Int16Ty));
|
|
EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
|
|
Constant::getNullValue(V1Int16Ty),
|
|
VScaleV1Int16Ty));
|
|
|
|
// Check that assertion is not hit when creating a cast with a vector of
|
|
// pointers
|
|
// First form
|
|
BasicBlock *BB = BasicBlock::Create(C);
|
|
Constant *NullV2I32Ptr = Constant::getNullValue(V2Int32PtrTy);
|
|
auto Inst1 = CastInst::CreatePointerCast(NullV2I32Ptr, V2Int32Ty, "foo", BB);
|
|
|
|
Constant *NullVScaleV2I32Ptr = Constant::getNullValue(VScaleV2Int32PtrTy);
|
|
auto Inst1VScale = CastInst::CreatePointerCast(
|
|
NullVScaleV2I32Ptr, VScaleV2Int32Ty, "foo.vscale", BB);
|
|
|
|
// Second form
|
|
auto Inst2 = CastInst::CreatePointerCast(NullV2I32Ptr, V2Int32Ty);
|
|
auto Inst2VScale =
|
|
CastInst::CreatePointerCast(NullVScaleV2I32Ptr, VScaleV2Int32Ty);
|
|
|
|
delete Inst2;
|
|
delete Inst2VScale;
|
|
Inst1->eraseFromParent();
|
|
Inst1VScale->eraseFromParent();
|
|
delete BB;
|
|
}
|
|
|
|
TEST(InstructionsTest, CastCAPI) {
|
|
LLVMContext C;
|
|
|
|
Type *Int8Ty = Type::getInt8Ty(C);
|
|
Type *Int32Ty = Type::getInt32Ty(C);
|
|
Type *Int64Ty = Type::getInt64Ty(C);
|
|
|
|
Type *FloatTy = Type::getFloatTy(C);
|
|
Type *DoubleTy = Type::getDoubleTy(C);
|
|
|
|
Type *Int8PtrTy = PointerType::get(Int8Ty, 0);
|
|
Type *Int32PtrTy = PointerType::get(Int32Ty, 0);
|
|
|
|
const Constant *C8 = Constant::getNullValue(Int8Ty);
|
|
const Constant *C64 = Constant::getNullValue(Int64Ty);
|
|
|
|
EXPECT_EQ(LLVMBitCast,
|
|
LLVMGetCastOpcode(wrap(C64), true, wrap(Int64Ty), true));
|
|
EXPECT_EQ(LLVMTrunc, LLVMGetCastOpcode(wrap(C64), true, wrap(Int8Ty), true));
|
|
EXPECT_EQ(LLVMSExt, LLVMGetCastOpcode(wrap(C8), true, wrap(Int64Ty), true));
|
|
EXPECT_EQ(LLVMZExt, LLVMGetCastOpcode(wrap(C8), false, wrap(Int64Ty), true));
|
|
|
|
const Constant *CF32 = Constant::getNullValue(FloatTy);
|
|
const Constant *CF64 = Constant::getNullValue(DoubleTy);
|
|
|
|
EXPECT_EQ(LLVMFPToUI,
|
|
LLVMGetCastOpcode(wrap(CF32), true, wrap(Int8Ty), false));
|
|
EXPECT_EQ(LLVMFPToSI,
|
|
LLVMGetCastOpcode(wrap(CF32), true, wrap(Int8Ty), true));
|
|
EXPECT_EQ(LLVMUIToFP,
|
|
LLVMGetCastOpcode(wrap(C8), false, wrap(FloatTy), true));
|
|
EXPECT_EQ(LLVMSIToFP, LLVMGetCastOpcode(wrap(C8), true, wrap(FloatTy), true));
|
|
EXPECT_EQ(LLVMFPTrunc,
|
|
LLVMGetCastOpcode(wrap(CF64), true, wrap(FloatTy), true));
|
|
EXPECT_EQ(LLVMFPExt,
|
|
LLVMGetCastOpcode(wrap(CF32), true, wrap(DoubleTy), true));
|
|
|
|
const Constant *CPtr8 = Constant::getNullValue(Int8PtrTy);
|
|
|
|
EXPECT_EQ(LLVMPtrToInt,
|
|
LLVMGetCastOpcode(wrap(CPtr8), true, wrap(Int8Ty), true));
|
|
EXPECT_EQ(LLVMIntToPtr,
|
|
LLVMGetCastOpcode(wrap(C8), true, wrap(Int8PtrTy), true));
|
|
|
|
Type *V8x8Ty = FixedVectorType::get(Int8Ty, 8);
|
|
Type *V8x64Ty = FixedVectorType::get(Int64Ty, 8);
|
|
const Constant *CV8 = Constant::getNullValue(V8x8Ty);
|
|
const Constant *CV64 = Constant::getNullValue(V8x64Ty);
|
|
|
|
EXPECT_EQ(LLVMTrunc, LLVMGetCastOpcode(wrap(CV64), true, wrap(V8x8Ty), true));
|
|
EXPECT_EQ(LLVMSExt, LLVMGetCastOpcode(wrap(CV8), true, wrap(V8x64Ty), true));
|
|
|
|
Type *Int32PtrAS1Ty = PointerType::get(Int32Ty, 1);
|
|
Type *V2Int32PtrAS1Ty = FixedVectorType::get(Int32PtrAS1Ty, 2);
|
|
Type *V2Int32PtrTy = FixedVectorType::get(Int32PtrTy, 2);
|
|
const Constant *CV2ptr32 = Constant::getNullValue(V2Int32PtrTy);
|
|
|
|
EXPECT_EQ(LLVMAddrSpaceCast, LLVMGetCastOpcode(wrap(CV2ptr32), true,
|
|
wrap(V2Int32PtrAS1Ty), true));
|
|
}
|
|
|
|
TEST(InstructionsTest, VectorGep) {
|
|
LLVMContext C;
|
|
|
|
// Type Definitions
|
|
Type *I8Ty = IntegerType::get(C, 8);
|
|
Type *I32Ty = IntegerType::get(C, 32);
|
|
PointerType *Ptri8Ty = PointerType::get(I8Ty, 0);
|
|
PointerType *Ptri32Ty = PointerType::get(I32Ty, 0);
|
|
|
|
VectorType *V2xi8PTy = FixedVectorType::get(Ptri8Ty, 2);
|
|
VectorType *V2xi32PTy = FixedVectorType::get(Ptri32Ty, 2);
|
|
|
|
// Test different aspects of the vector-of-pointers type
|
|
// and GEPs which use this type.
|
|
ConstantInt *Ci32a = ConstantInt::get(C, APInt(32, 1492));
|
|
ConstantInt *Ci32b = ConstantInt::get(C, APInt(32, 1948));
|
|
std::vector<Constant*> ConstVa(2, Ci32a);
|
|
std::vector<Constant*> ConstVb(2, Ci32b);
|
|
Constant *C2xi32a = ConstantVector::get(ConstVa);
|
|
Constant *C2xi32b = ConstantVector::get(ConstVb);
|
|
|
|
CastInst *PtrVecA = new IntToPtrInst(C2xi32a, V2xi32PTy);
|
|
CastInst *PtrVecB = new IntToPtrInst(C2xi32b, V2xi32PTy);
|
|
|
|
ICmpInst *ICmp0 = new ICmpInst(ICmpInst::ICMP_SGT, PtrVecA, PtrVecB);
|
|
ICmpInst *ICmp1 = new ICmpInst(ICmpInst::ICMP_ULT, PtrVecA, PtrVecB);
|
|
EXPECT_NE(ICmp0, ICmp1); // suppress warning.
|
|
|
|
BasicBlock* BB0 = BasicBlock::Create(C);
|
|
// Test InsertAtEnd ICmpInst constructor.
|
|
ICmpInst *ICmp2 = new ICmpInst(*BB0, ICmpInst::ICMP_SGE, PtrVecA, PtrVecB);
|
|
EXPECT_NE(ICmp0, ICmp2); // suppress warning.
|
|
|
|
GetElementPtrInst *Gep0 = GetElementPtrInst::Create(I32Ty, PtrVecA, C2xi32a);
|
|
GetElementPtrInst *Gep1 = GetElementPtrInst::Create(I32Ty, PtrVecA, C2xi32b);
|
|
GetElementPtrInst *Gep2 = GetElementPtrInst::Create(I32Ty, PtrVecB, C2xi32a);
|
|
GetElementPtrInst *Gep3 = GetElementPtrInst::Create(I32Ty, PtrVecB, C2xi32b);
|
|
|
|
CastInst *BTC0 = new BitCastInst(Gep0, V2xi8PTy);
|
|
CastInst *BTC1 = new BitCastInst(Gep1, V2xi8PTy);
|
|
CastInst *BTC2 = new BitCastInst(Gep2, V2xi8PTy);
|
|
CastInst *BTC3 = new BitCastInst(Gep3, V2xi8PTy);
|
|
|
|
Value *S0 = BTC0->stripPointerCasts();
|
|
Value *S1 = BTC1->stripPointerCasts();
|
|
Value *S2 = BTC2->stripPointerCasts();
|
|
Value *S3 = BTC3->stripPointerCasts();
|
|
|
|
EXPECT_NE(S0, Gep0);
|
|
EXPECT_NE(S1, Gep1);
|
|
EXPECT_NE(S2, Gep2);
|
|
EXPECT_NE(S3, Gep3);
|
|
|
|
int64_t Offset;
|
|
DataLayout TD("e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f3"
|
|
"2:32:32-f64:64:64-v64:64:64-v128:128:128-a:0:64-s:64:64-f80"
|
|
":128:128-n8:16:32:64-S128");
|
|
// Make sure we don't crash
|
|
GetPointerBaseWithConstantOffset(Gep0, Offset, TD);
|
|
GetPointerBaseWithConstantOffset(Gep1, Offset, TD);
|
|
GetPointerBaseWithConstantOffset(Gep2, Offset, TD);
|
|
GetPointerBaseWithConstantOffset(Gep3, Offset, TD);
|
|
|
|
// Gep of Geps
|
|
GetElementPtrInst *GepII0 = GetElementPtrInst::Create(I32Ty, Gep0, C2xi32b);
|
|
GetElementPtrInst *GepII1 = GetElementPtrInst::Create(I32Ty, Gep1, C2xi32a);
|
|
GetElementPtrInst *GepII2 = GetElementPtrInst::Create(I32Ty, Gep2, C2xi32b);
|
|
GetElementPtrInst *GepII3 = GetElementPtrInst::Create(I32Ty, Gep3, C2xi32a);
|
|
|
|
EXPECT_EQ(GepII0->getNumIndices(), 1u);
|
|
EXPECT_EQ(GepII1->getNumIndices(), 1u);
|
|
EXPECT_EQ(GepII2->getNumIndices(), 1u);
|
|
EXPECT_EQ(GepII3->getNumIndices(), 1u);
|
|
|
|
EXPECT_FALSE(GepII0->hasAllZeroIndices());
|
|
EXPECT_FALSE(GepII1->hasAllZeroIndices());
|
|
EXPECT_FALSE(GepII2->hasAllZeroIndices());
|
|
EXPECT_FALSE(GepII3->hasAllZeroIndices());
|
|
|
|
delete GepII0;
|
|
delete GepII1;
|
|
delete GepII2;
|
|
delete GepII3;
|
|
|
|
delete BTC0;
|
|
delete BTC1;
|
|
delete BTC2;
|
|
delete BTC3;
|
|
|
|
delete Gep0;
|
|
delete Gep1;
|
|
delete Gep2;
|
|
delete Gep3;
|
|
|
|
ICmp2->eraseFromParent();
|
|
delete BB0;
|
|
|
|
delete ICmp0;
|
|
delete ICmp1;
|
|
delete PtrVecA;
|
|
delete PtrVecB;
|
|
}
|
|
|
|
TEST(InstructionsTest, FPMathOperator) {
|
|
LLVMContext Context;
|
|
IRBuilder<> Builder(Context);
|
|
MDBuilder MDHelper(Context);
|
|
Instruction *I = Builder.CreatePHI(Builder.getDoubleTy(), 0);
|
|
MDNode *MD1 = MDHelper.createFPMath(1.0);
|
|
Value *V1 = Builder.CreateFAdd(I, I, "", MD1);
|
|
EXPECT_TRUE(isa<FPMathOperator>(V1));
|
|
FPMathOperator *O1 = cast<FPMathOperator>(V1);
|
|
EXPECT_EQ(O1->getFPAccuracy(), 1.0);
|
|
V1->deleteValue();
|
|
I->deleteValue();
|
|
}
|
|
|
|
TEST(InstructionTest, ConstrainedTrans) {
|
|
LLVMContext Context;
|
|
std::unique_ptr<Module> M(new Module("MyModule", Context));
|
|
FunctionType *FTy =
|
|
FunctionType::get(Type::getVoidTy(Context),
|
|
{Type::getFloatTy(Context), Type::getFloatTy(Context),
|
|
Type::getInt32Ty(Context)},
|
|
false);
|
|
auto *F = Function::Create(FTy, Function::ExternalLinkage, "", M.get());
|
|
auto *BB = BasicBlock::Create(Context, "bb", F);
|
|
IRBuilder<> Builder(Context);
|
|
Builder.SetInsertPoint(BB);
|
|
auto *Arg0 = F->arg_begin();
|
|
auto *Arg1 = F->arg_begin() + 1;
|
|
|
|
{
|
|
auto *I = cast<Instruction>(Builder.CreateFAdd(Arg0, Arg1));
|
|
EXPECT_EQ(Intrinsic::experimental_constrained_fadd,
|
|
getConstrainedIntrinsicID(*I));
|
|
}
|
|
|
|
{
|
|
auto *I = cast<Instruction>(
|
|
Builder.CreateFPToSI(Arg0, Type::getInt32Ty(Context)));
|
|
EXPECT_EQ(Intrinsic::experimental_constrained_fptosi,
|
|
getConstrainedIntrinsicID(*I));
|
|
}
|
|
|
|
{
|
|
auto *I = cast<Instruction>(Builder.CreateIntrinsic(
|
|
Intrinsic::ceil, {Type::getFloatTy(Context)}, {Arg0}));
|
|
EXPECT_EQ(Intrinsic::experimental_constrained_ceil,
|
|
getConstrainedIntrinsicID(*I));
|
|
}
|
|
|
|
{
|
|
auto *I = cast<Instruction>(Builder.CreateFCmpOEQ(Arg0, Arg1));
|
|
EXPECT_EQ(Intrinsic::experimental_constrained_fcmp,
|
|
getConstrainedIntrinsicID(*I));
|
|
}
|
|
|
|
{
|
|
auto *Arg2 = F->arg_begin() + 2;
|
|
auto *I = cast<Instruction>(Builder.CreateAdd(Arg2, Arg2));
|
|
EXPECT_EQ(Intrinsic::not_intrinsic, getConstrainedIntrinsicID(*I));
|
|
}
|
|
|
|
{
|
|
auto *I = cast<Instruction>(Builder.CreateConstrainedFPBinOp(
|
|
Intrinsic::experimental_constrained_fadd, Arg0, Arg0));
|
|
EXPECT_EQ(Intrinsic::not_intrinsic, getConstrainedIntrinsicID(*I));
|
|
}
|
|
}
|
|
|
|
TEST(InstructionsTest, isEliminableCastPair) {
|
|
LLVMContext C;
|
|
|
|
Type* Int16Ty = Type::getInt16Ty(C);
|
|
Type* Int32Ty = Type::getInt32Ty(C);
|
|
Type* Int64Ty = Type::getInt64Ty(C);
|
|
Type* Int64PtrTy = Type::getInt64PtrTy(C);
|
|
|
|
// Source and destination pointers have same size -> bitcast.
|
|
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt,
|
|
CastInst::IntToPtr,
|
|
Int64PtrTy, Int64Ty, Int64PtrTy,
|
|
Int32Ty, nullptr, Int32Ty),
|
|
CastInst::BitCast);
|
|
|
|
// Source and destination have unknown sizes, but the same address space and
|
|
// the intermediate int is the maximum pointer size -> bitcast
|
|
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt,
|
|
CastInst::IntToPtr,
|
|
Int64PtrTy, Int64Ty, Int64PtrTy,
|
|
nullptr, nullptr, nullptr),
|
|
CastInst::BitCast);
|
|
|
|
// Source and destination have unknown sizes, but the same address space and
|
|
// the intermediate int is not the maximum pointer size -> nothing
|
|
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt,
|
|
CastInst::IntToPtr,
|
|
Int64PtrTy, Int32Ty, Int64PtrTy,
|
|
nullptr, nullptr, nullptr),
|
|
0U);
|
|
|
|
// Middle pointer big enough -> bitcast.
|
|
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
|
|
CastInst::PtrToInt,
|
|
Int64Ty, Int64PtrTy, Int64Ty,
|
|
nullptr, Int64Ty, nullptr),
|
|
CastInst::BitCast);
|
|
|
|
// Middle pointer too small -> fail.
|
|
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
|
|
CastInst::PtrToInt,
|
|
Int64Ty, Int64PtrTy, Int64Ty,
|
|
nullptr, Int32Ty, nullptr),
|
|
0U);
|
|
|
|
// Test that we don't eliminate bitcasts between different address spaces,
|
|
// or if we don't have available pointer size information.
|
|
DataLayout DL("e-p:32:32:32-p1:16:16:16-p2:64:64:64-i1:8:8-i8:8:8-i16:16:16"
|
|
"-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64"
|
|
"-v128:128:128-a:0:64-s:64:64-f80:128:128-n8:16:32:64-S128");
|
|
|
|
Type* Int64PtrTyAS1 = Type::getInt64PtrTy(C, 1);
|
|
Type* Int64PtrTyAS2 = Type::getInt64PtrTy(C, 2);
|
|
|
|
IntegerType *Int16SizePtr = DL.getIntPtrType(C, 1);
|
|
IntegerType *Int64SizePtr = DL.getIntPtrType(C, 2);
|
|
|
|
// Cannot simplify inttoptr, addrspacecast
|
|
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
|
|
CastInst::AddrSpaceCast,
|
|
Int16Ty, Int64PtrTyAS1, Int64PtrTyAS2,
|
|
nullptr, Int16SizePtr, Int64SizePtr),
|
|
0U);
|
|
|
|
// Cannot simplify addrspacecast, ptrtoint
|
|
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::AddrSpaceCast,
|
|
CastInst::PtrToInt,
|
|
Int64PtrTyAS1, Int64PtrTyAS2, Int16Ty,
|
|
Int64SizePtr, Int16SizePtr, nullptr),
|
|
0U);
|
|
|
|
// Pass since the bitcast address spaces are the same
|
|
EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
|
|
CastInst::BitCast,
|
|
Int16Ty, Int64PtrTyAS1, Int64PtrTyAS1,
|
|
nullptr, nullptr, nullptr),
|
|
CastInst::IntToPtr);
|
|
|
|
}
|
|
|
|
TEST(InstructionsTest, CloneCall) {
|
|
LLVMContext C;
|
|
Type *Int32Ty = Type::getInt32Ty(C);
|
|
Type *ArgTys[] = {Int32Ty, Int32Ty, Int32Ty};
|
|
FunctionType *FnTy = FunctionType::get(Int32Ty, ArgTys, /*isVarArg=*/false);
|
|
Value *Callee = Constant::getNullValue(FnTy->getPointerTo());
|
|
Value *Args[] = {
|
|
ConstantInt::get(Int32Ty, 1),
|
|
ConstantInt::get(Int32Ty, 2),
|
|
ConstantInt::get(Int32Ty, 3)
|
|
};
|
|
std::unique_ptr<CallInst> Call(
|
|
CallInst::Create(FnTy, Callee, Args, "result"));
|
|
|
|
// Test cloning the tail call kind.
|
|
CallInst::TailCallKind Kinds[] = {CallInst::TCK_None, CallInst::TCK_Tail,
|
|
CallInst::TCK_MustTail};
|
|
for (CallInst::TailCallKind TCK : Kinds) {
|
|
Call->setTailCallKind(TCK);
|
|
std::unique_ptr<CallInst> Clone(cast<CallInst>(Call->clone()));
|
|
EXPECT_EQ(Call->getTailCallKind(), Clone->getTailCallKind());
|
|
}
|
|
Call->setTailCallKind(CallInst::TCK_None);
|
|
|
|
// Test cloning an attribute.
|
|
{
|
|
AttrBuilder AB(C);
|
|
AB.addAttribute(Attribute::ReadOnly);
|
|
Call->setAttributes(
|
|
AttributeList::get(C, AttributeList::FunctionIndex, AB));
|
|
std::unique_ptr<CallInst> Clone(cast<CallInst>(Call->clone()));
|
|
EXPECT_TRUE(Clone->onlyReadsMemory());
|
|
}
|
|
}
|
|
|
|
TEST(InstructionsTest, AlterCallBundles) {
|
|
LLVMContext C;
|
|
Type *Int32Ty = Type::getInt32Ty(C);
|
|
FunctionType *FnTy = FunctionType::get(Int32Ty, Int32Ty, /*isVarArg=*/false);
|
|
Value *Callee = Constant::getNullValue(FnTy->getPointerTo());
|
|
Value *Args[] = {ConstantInt::get(Int32Ty, 42)};
|
|
OperandBundleDef OldBundle("before", UndefValue::get(Int32Ty));
|
|
std::unique_ptr<CallInst> Call(
|
|
CallInst::Create(FnTy, Callee, Args, OldBundle, "result"));
|
|
Call->setTailCallKind(CallInst::TailCallKind::TCK_NoTail);
|
|
AttrBuilder AB(C);
|
|
AB.addAttribute(Attribute::Cold);
|
|
Call->setAttributes(AttributeList::get(C, AttributeList::FunctionIndex, AB));
|
|
Call->setDebugLoc(DebugLoc(MDNode::get(C, None)));
|
|
|
|
OperandBundleDef NewBundle("after", ConstantInt::get(Int32Ty, 7));
|
|
std::unique_ptr<CallInst> Clone(CallInst::Create(Call.get(), NewBundle));
|
|
EXPECT_EQ(Call->arg_size(), Clone->arg_size());
|
|
EXPECT_EQ(Call->getArgOperand(0), Clone->getArgOperand(0));
|
|
EXPECT_EQ(Call->getCallingConv(), Clone->getCallingConv());
|
|
EXPECT_EQ(Call->getTailCallKind(), Clone->getTailCallKind());
|
|
EXPECT_TRUE(Clone->hasFnAttr(Attribute::AttrKind::Cold));
|
|
EXPECT_EQ(Call->getDebugLoc(), Clone->getDebugLoc());
|
|
EXPECT_EQ(Clone->getNumOperandBundles(), 1U);
|
|
EXPECT_TRUE(Clone->getOperandBundle("after").hasValue());
|
|
}
|
|
|
|
TEST(InstructionsTest, AlterInvokeBundles) {
|
|
LLVMContext C;
|
|
Type *Int32Ty = Type::getInt32Ty(C);
|
|
FunctionType *FnTy = FunctionType::get(Int32Ty, Int32Ty, /*isVarArg=*/false);
|
|
Value *Callee = Constant::getNullValue(FnTy->getPointerTo());
|
|
Value *Args[] = {ConstantInt::get(Int32Ty, 42)};
|
|
std::unique_ptr<BasicBlock> NormalDest(BasicBlock::Create(C));
|
|
std::unique_ptr<BasicBlock> UnwindDest(BasicBlock::Create(C));
|
|
OperandBundleDef OldBundle("before", UndefValue::get(Int32Ty));
|
|
std::unique_ptr<InvokeInst> Invoke(
|
|
InvokeInst::Create(FnTy, Callee, NormalDest.get(), UnwindDest.get(), Args,
|
|
OldBundle, "result"));
|
|
AttrBuilder AB(C);
|
|
AB.addAttribute(Attribute::Cold);
|
|
Invoke->setAttributes(
|
|
AttributeList::get(C, AttributeList::FunctionIndex, AB));
|
|
Invoke->setDebugLoc(DebugLoc(MDNode::get(C, None)));
|
|
|
|
OperandBundleDef NewBundle("after", ConstantInt::get(Int32Ty, 7));
|
|
std::unique_ptr<InvokeInst> Clone(
|
|
InvokeInst::Create(Invoke.get(), NewBundle));
|
|
EXPECT_EQ(Invoke->getNormalDest(), Clone->getNormalDest());
|
|
EXPECT_EQ(Invoke->getUnwindDest(), Clone->getUnwindDest());
|
|
EXPECT_EQ(Invoke->arg_size(), Clone->arg_size());
|
|
EXPECT_EQ(Invoke->getArgOperand(0), Clone->getArgOperand(0));
|
|
EXPECT_EQ(Invoke->getCallingConv(), Clone->getCallingConv());
|
|
EXPECT_TRUE(Clone->hasFnAttr(Attribute::AttrKind::Cold));
|
|
EXPECT_EQ(Invoke->getDebugLoc(), Clone->getDebugLoc());
|
|
EXPECT_EQ(Clone->getNumOperandBundles(), 1U);
|
|
EXPECT_TRUE(Clone->getOperandBundle("after").hasValue());
|
|
}
|
|
|
|
TEST_F(ModuleWithFunctionTest, DropPoisonGeneratingFlags) {
|
|
auto *OnlyBB = BasicBlock::Create(Ctx, "bb", F);
|
|
auto *Arg0 = &*F->arg_begin();
|
|
|
|
IRBuilder<NoFolder> B(Ctx);
|
|
B.SetInsertPoint(OnlyBB);
|
|
|
|
{
|
|
auto *UI =
|
|
cast<Instruction>(B.CreateUDiv(Arg0, Arg0, "", /*isExact*/ true));
|
|
ASSERT_TRUE(UI->isExact());
|
|
UI->dropPoisonGeneratingFlags();
|
|
ASSERT_FALSE(UI->isExact());
|
|
}
|
|
|
|
{
|
|
auto *ShrI =
|
|
cast<Instruction>(B.CreateLShr(Arg0, Arg0, "", /*isExact*/ true));
|
|
ASSERT_TRUE(ShrI->isExact());
|
|
ShrI->dropPoisonGeneratingFlags();
|
|
ASSERT_FALSE(ShrI->isExact());
|
|
}
|
|
|
|
{
|
|
auto *AI = cast<Instruction>(
|
|
B.CreateAdd(Arg0, Arg0, "", /*HasNUW*/ true, /*HasNSW*/ false));
|
|
ASSERT_TRUE(AI->hasNoUnsignedWrap());
|
|
AI->dropPoisonGeneratingFlags();
|
|
ASSERT_FALSE(AI->hasNoUnsignedWrap());
|
|
ASSERT_FALSE(AI->hasNoSignedWrap());
|
|
}
|
|
|
|
{
|
|
auto *SI = cast<Instruction>(
|
|
B.CreateAdd(Arg0, Arg0, "", /*HasNUW*/ false, /*HasNSW*/ true));
|
|
ASSERT_TRUE(SI->hasNoSignedWrap());
|
|
SI->dropPoisonGeneratingFlags();
|
|
ASSERT_FALSE(SI->hasNoUnsignedWrap());
|
|
ASSERT_FALSE(SI->hasNoSignedWrap());
|
|
}
|
|
|
|
{
|
|
auto *ShlI = cast<Instruction>(
|
|
B.CreateShl(Arg0, Arg0, "", /*HasNUW*/ true, /*HasNSW*/ true));
|
|
ASSERT_TRUE(ShlI->hasNoSignedWrap());
|
|
ASSERT_TRUE(ShlI->hasNoUnsignedWrap());
|
|
ShlI->dropPoisonGeneratingFlags();
|
|
ASSERT_FALSE(ShlI->hasNoUnsignedWrap());
|
|
ASSERT_FALSE(ShlI->hasNoSignedWrap());
|
|
}
|
|
|
|
{
|
|
Value *GEPBase = Constant::getNullValue(B.getInt8PtrTy());
|
|
auto *GI = cast<GetElementPtrInst>(
|
|
B.CreateInBoundsGEP(B.getInt8Ty(), GEPBase, Arg0));
|
|
ASSERT_TRUE(GI->isInBounds());
|
|
GI->dropPoisonGeneratingFlags();
|
|
ASSERT_FALSE(GI->isInBounds());
|
|
}
|
|
}
|
|
|
|
TEST(InstructionsTest, GEPIndices) {
|
|
LLVMContext Context;
|
|
IRBuilder<NoFolder> Builder(Context);
|
|
Type *ElementTy = Builder.getInt8Ty();
|
|
Type *ArrTy = ArrayType::get(ArrayType::get(ElementTy, 64), 64);
|
|
Value *Indices[] = {
|
|
Builder.getInt32(0),
|
|
Builder.getInt32(13),
|
|
Builder.getInt32(42) };
|
|
|
|
Value *V = Builder.CreateGEP(ArrTy, UndefValue::get(PointerType::getUnqual(ArrTy)),
|
|
Indices);
|
|
ASSERT_TRUE(isa<GetElementPtrInst>(V));
|
|
|
|
auto *GEPI = cast<GetElementPtrInst>(V);
|
|
ASSERT_NE(GEPI->idx_begin(), GEPI->idx_end());
|
|
ASSERT_EQ(GEPI->idx_end(), std::next(GEPI->idx_begin(), 3));
|
|
EXPECT_EQ(Indices[0], GEPI->idx_begin()[0]);
|
|
EXPECT_EQ(Indices[1], GEPI->idx_begin()[1]);
|
|
EXPECT_EQ(Indices[2], GEPI->idx_begin()[2]);
|
|
EXPECT_EQ(GEPI->idx_begin(), GEPI->indices().begin());
|
|
EXPECT_EQ(GEPI->idx_end(), GEPI->indices().end());
|
|
|
|
const auto *CGEPI = GEPI;
|
|
ASSERT_NE(CGEPI->idx_begin(), CGEPI->idx_end());
|
|
ASSERT_EQ(CGEPI->idx_end(), std::next(CGEPI->idx_begin(), 3));
|
|
EXPECT_EQ(Indices[0], CGEPI->idx_begin()[0]);
|
|
EXPECT_EQ(Indices[1], CGEPI->idx_begin()[1]);
|
|
EXPECT_EQ(Indices[2], CGEPI->idx_begin()[2]);
|
|
EXPECT_EQ(CGEPI->idx_begin(), CGEPI->indices().begin());
|
|
EXPECT_EQ(CGEPI->idx_end(), CGEPI->indices().end());
|
|
|
|
delete GEPI;
|
|
}
|
|
|
|
TEST(InstructionsTest, SwitchInst) {
|
|
LLVMContext C;
|
|
|
|
std::unique_ptr<BasicBlock> BB1, BB2, BB3;
|
|
BB1.reset(BasicBlock::Create(C));
|
|
BB2.reset(BasicBlock::Create(C));
|
|
BB3.reset(BasicBlock::Create(C));
|
|
|
|
// We create block 0 after the others so that it gets destroyed first and
|
|
// clears the uses of the other basic blocks.
|
|
std::unique_ptr<BasicBlock> BB0(BasicBlock::Create(C));
|
|
|
|
auto *Int32Ty = Type::getInt32Ty(C);
|
|
|
|
SwitchInst *SI =
|
|
SwitchInst::Create(UndefValue::get(Int32Ty), BB0.get(), 3, BB0.get());
|
|
SI->addCase(ConstantInt::get(Int32Ty, 1), BB1.get());
|
|
SI->addCase(ConstantInt::get(Int32Ty, 2), BB2.get());
|
|
SI->addCase(ConstantInt::get(Int32Ty, 3), BB3.get());
|
|
|
|
auto CI = SI->case_begin();
|
|
ASSERT_NE(CI, SI->case_end());
|
|
EXPECT_EQ(1, CI->getCaseValue()->getSExtValue());
|
|
EXPECT_EQ(BB1.get(), CI->getCaseSuccessor());
|
|
EXPECT_EQ(2, (CI + 1)->getCaseValue()->getSExtValue());
|
|
EXPECT_EQ(BB2.get(), (CI + 1)->getCaseSuccessor());
|
|
EXPECT_EQ(3, (CI + 2)->getCaseValue()->getSExtValue());
|
|
EXPECT_EQ(BB3.get(), (CI + 2)->getCaseSuccessor());
|
|
EXPECT_EQ(CI + 1, std::next(CI));
|
|
EXPECT_EQ(CI + 2, std::next(CI, 2));
|
|
EXPECT_EQ(CI + 3, std::next(CI, 3));
|
|
EXPECT_EQ(SI->case_end(), CI + 3);
|
|
EXPECT_EQ(0, CI - CI);
|
|
EXPECT_EQ(1, (CI + 1) - CI);
|
|
EXPECT_EQ(2, (CI + 2) - CI);
|
|
EXPECT_EQ(3, SI->case_end() - CI);
|
|
EXPECT_EQ(3, std::distance(CI, SI->case_end()));
|
|
|
|
auto CCI = const_cast<const SwitchInst *>(SI)->case_begin();
|
|
SwitchInst::ConstCaseIt CCE = SI->case_end();
|
|
ASSERT_NE(CCI, SI->case_end());
|
|
EXPECT_EQ(1, CCI->getCaseValue()->getSExtValue());
|
|
EXPECT_EQ(BB1.get(), CCI->getCaseSuccessor());
|
|
EXPECT_EQ(2, (CCI + 1)->getCaseValue()->getSExtValue());
|
|
EXPECT_EQ(BB2.get(), (CCI + 1)->getCaseSuccessor());
|
|
EXPECT_EQ(3, (CCI + 2)->getCaseValue()->getSExtValue());
|
|
EXPECT_EQ(BB3.get(), (CCI + 2)->getCaseSuccessor());
|
|
EXPECT_EQ(CCI + 1, std::next(CCI));
|
|
EXPECT_EQ(CCI + 2, std::next(CCI, 2));
|
|
EXPECT_EQ(CCI + 3, std::next(CCI, 3));
|
|
EXPECT_EQ(CCE, CCI + 3);
|
|
EXPECT_EQ(0, CCI - CCI);
|
|
EXPECT_EQ(1, (CCI + 1) - CCI);
|
|
EXPECT_EQ(2, (CCI + 2) - CCI);
|
|
EXPECT_EQ(3, CCE - CCI);
|
|
EXPECT_EQ(3, std::distance(CCI, CCE));
|
|
|
|
// Make sure that the const iterator is compatible with a const auto ref.
|
|
const auto &Handle = *CCI;
|
|
EXPECT_EQ(1, Handle.getCaseValue()->getSExtValue());
|
|
EXPECT_EQ(BB1.get(), Handle.getCaseSuccessor());
|
|
}
|
|
|
|
TEST(InstructionsTest, SwitchInstProfUpdateWrapper) {
|
|
LLVMContext C;
|
|
|
|
std::unique_ptr<BasicBlock> BB1, BB2, BB3;
|
|
BB1.reset(BasicBlock::Create(C));
|
|
BB2.reset(BasicBlock::Create(C));
|
|
BB3.reset(BasicBlock::Create(C));
|
|
|
|
// We create block 0 after the others so that it gets destroyed first and
|
|
// clears the uses of the other basic blocks.
|
|
std::unique_ptr<BasicBlock> BB0(BasicBlock::Create(C));
|
|
|
|
auto *Int32Ty = Type::getInt32Ty(C);
|
|
|
|
SwitchInst *SI =
|
|
SwitchInst::Create(UndefValue::get(Int32Ty), BB0.get(), 4, BB0.get());
|
|
SI->addCase(ConstantInt::get(Int32Ty, 1), BB1.get());
|
|
SI->addCase(ConstantInt::get(Int32Ty, 2), BB2.get());
|
|
SI->setMetadata(LLVMContext::MD_prof,
|
|
MDBuilder(C).createBranchWeights({ 9, 1, 22 }));
|
|
|
|
{
|
|
SwitchInstProfUpdateWrapper SIW(*SI);
|
|
EXPECT_EQ(*SIW.getSuccessorWeight(0), 9u);
|
|
EXPECT_EQ(*SIW.getSuccessorWeight(1), 1u);
|
|
EXPECT_EQ(*SIW.getSuccessorWeight(2), 22u);
|
|
SIW.setSuccessorWeight(0, 99u);
|
|
SIW.setSuccessorWeight(1, 11u);
|
|
EXPECT_EQ(*SIW.getSuccessorWeight(0), 99u);
|
|
EXPECT_EQ(*SIW.getSuccessorWeight(1), 11u);
|
|
EXPECT_EQ(*SIW.getSuccessorWeight(2), 22u);
|
|
}
|
|
|
|
{ // Create another wrapper and check that the data persist.
|
|
SwitchInstProfUpdateWrapper SIW(*SI);
|
|
EXPECT_EQ(*SIW.getSuccessorWeight(0), 99u);
|
|
EXPECT_EQ(*SIW.getSuccessorWeight(1), 11u);
|
|
EXPECT_EQ(*SIW.getSuccessorWeight(2), 22u);
|
|
}
|
|
}
|
|
|
|
TEST(InstructionsTest, CommuteShuffleMask) {
|
|
SmallVector<int, 16> Indices({-1, 0, 7});
|
|
ShuffleVectorInst::commuteShuffleMask(Indices, 4);
|
|
EXPECT_THAT(Indices, testing::ContainerEq(ArrayRef<int>({-1, 4, 3})));
|
|
}
|
|
|
|
TEST(InstructionsTest, ShuffleMaskQueries) {
|
|
// Create the elements for various constant vectors.
|
|
LLVMContext Ctx;
|
|
Type *Int32Ty = Type::getInt32Ty(Ctx);
|
|
Constant *CU = UndefValue::get(Int32Ty);
|
|
Constant *C0 = ConstantInt::get(Int32Ty, 0);
|
|
Constant *C1 = ConstantInt::get(Int32Ty, 1);
|
|
Constant *C2 = ConstantInt::get(Int32Ty, 2);
|
|
Constant *C3 = ConstantInt::get(Int32Ty, 3);
|
|
Constant *C4 = ConstantInt::get(Int32Ty, 4);
|
|
Constant *C5 = ConstantInt::get(Int32Ty, 5);
|
|
Constant *C6 = ConstantInt::get(Int32Ty, 6);
|
|
Constant *C7 = ConstantInt::get(Int32Ty, 7);
|
|
|
|
Constant *Identity = ConstantVector::get({C0, CU, C2, C3, C4});
|
|
EXPECT_TRUE(ShuffleVectorInst::isIdentityMask(Identity));
|
|
EXPECT_FALSE(ShuffleVectorInst::isSelectMask(Identity)); // identity is distinguished from select
|
|
EXPECT_FALSE(ShuffleVectorInst::isReverseMask(Identity));
|
|
EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(Identity)); // identity is always single source
|
|
EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(Identity));
|
|
EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(Identity));
|
|
|
|
Constant *Select = ConstantVector::get({CU, C1, C5});
|
|
EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(Select));
|
|
EXPECT_TRUE(ShuffleVectorInst::isSelectMask(Select));
|
|
EXPECT_FALSE(ShuffleVectorInst::isReverseMask(Select));
|
|
EXPECT_FALSE(ShuffleVectorInst::isSingleSourceMask(Select));
|
|
EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(Select));
|
|
EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(Select));
|
|
|
|
Constant *Reverse = ConstantVector::get({C3, C2, C1, CU});
|
|
EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(Reverse));
|
|
EXPECT_FALSE(ShuffleVectorInst::isSelectMask(Reverse));
|
|
EXPECT_TRUE(ShuffleVectorInst::isReverseMask(Reverse));
|
|
EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(Reverse)); // reverse is always single source
|
|
EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(Reverse));
|
|
EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(Reverse));
|
|
|
|
Constant *SingleSource = ConstantVector::get({C2, C2, C0, CU});
|
|
EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(SingleSource));
|
|
EXPECT_FALSE(ShuffleVectorInst::isSelectMask(SingleSource));
|
|
EXPECT_FALSE(ShuffleVectorInst::isReverseMask(SingleSource));
|
|
EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(SingleSource));
|
|
EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(SingleSource));
|
|
EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(SingleSource));
|
|
|
|
Constant *ZeroEltSplat = ConstantVector::get({C0, C0, CU, C0});
|
|
EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(ZeroEltSplat));
|
|
EXPECT_FALSE(ShuffleVectorInst::isSelectMask(ZeroEltSplat));
|
|
EXPECT_FALSE(ShuffleVectorInst::isReverseMask(ZeroEltSplat));
|
|
EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(ZeroEltSplat)); // 0-splat is always single source
|
|
EXPECT_TRUE(ShuffleVectorInst::isZeroEltSplatMask(ZeroEltSplat));
|
|
EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(ZeroEltSplat));
|
|
|
|
Constant *Transpose = ConstantVector::get({C0, C4, C2, C6});
|
|
EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(Transpose));
|
|
EXPECT_FALSE(ShuffleVectorInst::isSelectMask(Transpose));
|
|
EXPECT_FALSE(ShuffleVectorInst::isReverseMask(Transpose));
|
|
EXPECT_FALSE(ShuffleVectorInst::isSingleSourceMask(Transpose));
|
|
EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(Transpose));
|
|
EXPECT_TRUE(ShuffleVectorInst::isTransposeMask(Transpose));
|
|
|
|
// More tests to make sure the logic is/stays correct...
|
|
EXPECT_TRUE(ShuffleVectorInst::isIdentityMask(ConstantVector::get({CU, C1, CU, C3})));
|
|
EXPECT_TRUE(ShuffleVectorInst::isIdentityMask(ConstantVector::get({C4, CU, C6, CU})));
|
|
|
|
EXPECT_TRUE(ShuffleVectorInst::isSelectMask(ConstantVector::get({C4, C1, C6, CU})));
|
|
EXPECT_TRUE(ShuffleVectorInst::isSelectMask(ConstantVector::get({CU, C1, C6, C3})));
|
|
|
|
EXPECT_TRUE(ShuffleVectorInst::isReverseMask(ConstantVector::get({C7, C6, CU, C4})));
|
|
EXPECT_TRUE(ShuffleVectorInst::isReverseMask(ConstantVector::get({C3, CU, C1, CU})));
|
|
|
|
EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(ConstantVector::get({C7, C5, CU, C7})));
|
|
EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(ConstantVector::get({C3, C0, CU, C3})));
|
|
|
|
EXPECT_TRUE(ShuffleVectorInst::isZeroEltSplatMask(ConstantVector::get({C4, CU, CU, C4})));
|
|
EXPECT_TRUE(ShuffleVectorInst::isZeroEltSplatMask(ConstantVector::get({CU, C0, CU, C0})));
|
|
|
|
EXPECT_TRUE(ShuffleVectorInst::isTransposeMask(ConstantVector::get({C1, C5, C3, C7})));
|
|
EXPECT_TRUE(ShuffleVectorInst::isTransposeMask(ConstantVector::get({C1, C3})));
|
|
|
|
// Nothing special about the values here - just re-using inputs to reduce code.
|
|
Constant *V0 = ConstantVector::get({C0, C1, C2, C3});
|
|
Constant *V1 = ConstantVector::get({C3, C2, C1, C0});
|
|
|
|
// Identity with undef elts.
|
|
ShuffleVectorInst *Id1 = new ShuffleVectorInst(V0, V1,
|
|
ConstantVector::get({C0, C1, CU, CU}));
|
|
EXPECT_TRUE(Id1->isIdentity());
|
|
EXPECT_FALSE(Id1->isIdentityWithPadding());
|
|
EXPECT_FALSE(Id1->isIdentityWithExtract());
|
|
EXPECT_FALSE(Id1->isConcat());
|
|
delete Id1;
|
|
|
|
// Result has less elements than operands.
|
|
ShuffleVectorInst *Id2 = new ShuffleVectorInst(V0, V1,
|
|
ConstantVector::get({C0, C1, C2}));
|
|
EXPECT_FALSE(Id2->isIdentity());
|
|
EXPECT_FALSE(Id2->isIdentityWithPadding());
|
|
EXPECT_TRUE(Id2->isIdentityWithExtract());
|
|
EXPECT_FALSE(Id2->isConcat());
|
|
delete Id2;
|
|
|
|
// Result has less elements than operands; choose from Op1.
|
|
ShuffleVectorInst *Id3 = new ShuffleVectorInst(V0, V1,
|
|
ConstantVector::get({C4, CU, C6}));
|
|
EXPECT_FALSE(Id3->isIdentity());
|
|
EXPECT_FALSE(Id3->isIdentityWithPadding());
|
|
EXPECT_TRUE(Id3->isIdentityWithExtract());
|
|
EXPECT_FALSE(Id3->isConcat());
|
|
delete Id3;
|
|
|
|
// Result has less elements than operands; choose from Op0 and Op1 is not identity.
|
|
ShuffleVectorInst *Id4 = new ShuffleVectorInst(V0, V1,
|
|
ConstantVector::get({C4, C1, C6}));
|
|
EXPECT_FALSE(Id4->isIdentity());
|
|
EXPECT_FALSE(Id4->isIdentityWithPadding());
|
|
EXPECT_FALSE(Id4->isIdentityWithExtract());
|
|
EXPECT_FALSE(Id4->isConcat());
|
|
delete Id4;
|
|
|
|
// Result has more elements than operands, and extra elements are undef.
|
|
ShuffleVectorInst *Id5 = new ShuffleVectorInst(V0, V1,
|
|
ConstantVector::get({CU, C1, C2, C3, CU, CU}));
|
|
EXPECT_FALSE(Id5->isIdentity());
|
|
EXPECT_TRUE(Id5->isIdentityWithPadding());
|
|
EXPECT_FALSE(Id5->isIdentityWithExtract());
|
|
EXPECT_FALSE(Id5->isConcat());
|
|
delete Id5;
|
|
|
|
// Result has more elements than operands, and extra elements are undef; choose from Op1.
|
|
ShuffleVectorInst *Id6 = new ShuffleVectorInst(V0, V1,
|
|
ConstantVector::get({C4, C5, C6, CU, CU, CU}));
|
|
EXPECT_FALSE(Id6->isIdentity());
|
|
EXPECT_TRUE(Id6->isIdentityWithPadding());
|
|
EXPECT_FALSE(Id6->isIdentityWithExtract());
|
|
EXPECT_FALSE(Id6->isConcat());
|
|
delete Id6;
|
|
|
|
// Result has more elements than operands, but extra elements are not undef.
|
|
ShuffleVectorInst *Id7 = new ShuffleVectorInst(V0, V1,
|
|
ConstantVector::get({C0, C1, C2, C3, CU, C1}));
|
|
EXPECT_FALSE(Id7->isIdentity());
|
|
EXPECT_FALSE(Id7->isIdentityWithPadding());
|
|
EXPECT_FALSE(Id7->isIdentityWithExtract());
|
|
EXPECT_FALSE(Id7->isConcat());
|
|
delete Id7;
|
|
|
|
// Result has more elements than operands; choose from Op0 and Op1 is not identity.
|
|
ShuffleVectorInst *Id8 = new ShuffleVectorInst(V0, V1,
|
|
ConstantVector::get({C4, CU, C2, C3, CU, CU}));
|
|
EXPECT_FALSE(Id8->isIdentity());
|
|
EXPECT_FALSE(Id8->isIdentityWithPadding());
|
|
EXPECT_FALSE(Id8->isIdentityWithExtract());
|
|
EXPECT_FALSE(Id8->isConcat());
|
|
delete Id8;
|
|
|
|
// Result has twice as many elements as operands; choose consecutively from Op0 and Op1 is concat.
|
|
ShuffleVectorInst *Id9 = new ShuffleVectorInst(V0, V1,
|
|
ConstantVector::get({C0, CU, C2, C3, CU, CU, C6, C7}));
|
|
EXPECT_FALSE(Id9->isIdentity());
|
|
EXPECT_FALSE(Id9->isIdentityWithPadding());
|
|
EXPECT_FALSE(Id9->isIdentityWithExtract());
|
|
EXPECT_TRUE(Id9->isConcat());
|
|
delete Id9;
|
|
|
|
// Result has less than twice as many elements as operands, so not a concat.
|
|
ShuffleVectorInst *Id10 = new ShuffleVectorInst(V0, V1,
|
|
ConstantVector::get({C0, CU, C2, C3, CU, CU, C6}));
|
|
EXPECT_FALSE(Id10->isIdentity());
|
|
EXPECT_FALSE(Id10->isIdentityWithPadding());
|
|
EXPECT_FALSE(Id10->isIdentityWithExtract());
|
|
EXPECT_FALSE(Id10->isConcat());
|
|
delete Id10;
|
|
|
|
// Result has more than twice as many elements as operands, so not a concat.
|
|
ShuffleVectorInst *Id11 = new ShuffleVectorInst(V0, V1,
|
|
ConstantVector::get({C0, CU, C2, C3, CU, CU, C6, C7, CU}));
|
|
EXPECT_FALSE(Id11->isIdentity());
|
|
EXPECT_FALSE(Id11->isIdentityWithPadding());
|
|
EXPECT_FALSE(Id11->isIdentityWithExtract());
|
|
EXPECT_FALSE(Id11->isConcat());
|
|
delete Id11;
|
|
|
|
// If an input is undef, it's not a concat.
|
|
// TODO: IdentityWithPadding should be true here even though the high mask values are not undef.
|
|
ShuffleVectorInst *Id12 = new ShuffleVectorInst(V0, ConstantVector::get({CU, CU, CU, CU}),
|
|
ConstantVector::get({C0, CU, C2, C3, CU, CU, C6, C7}));
|
|
EXPECT_FALSE(Id12->isIdentity());
|
|
EXPECT_FALSE(Id12->isIdentityWithPadding());
|
|
EXPECT_FALSE(Id12->isIdentityWithExtract());
|
|
EXPECT_FALSE(Id12->isConcat());
|
|
delete Id12;
|
|
|
|
// Not possible to express shuffle mask for scalable vector for extract
|
|
// subvector.
|
|
Type *VScaleV4Int32Ty = ScalableVectorType::get(Int32Ty, 4);
|
|
ShuffleVectorInst *Id13 =
|
|
new ShuffleVectorInst(Constant::getAllOnesValue(VScaleV4Int32Ty),
|
|
UndefValue::get(VScaleV4Int32Ty),
|
|
Constant::getNullValue(VScaleV4Int32Ty));
|
|
int Index = 0;
|
|
EXPECT_FALSE(Id13->isExtractSubvectorMask(Index));
|
|
EXPECT_FALSE(Id13->changesLength());
|
|
EXPECT_FALSE(Id13->increasesLength());
|
|
delete Id13;
|
|
|
|
// Result has twice as many operands.
|
|
Type *VScaleV2Int32Ty = ScalableVectorType::get(Int32Ty, 2);
|
|
ShuffleVectorInst *Id14 =
|
|
new ShuffleVectorInst(Constant::getAllOnesValue(VScaleV2Int32Ty),
|
|
UndefValue::get(VScaleV2Int32Ty),
|
|
Constant::getNullValue(VScaleV4Int32Ty));
|
|
EXPECT_TRUE(Id14->changesLength());
|
|
EXPECT_TRUE(Id14->increasesLength());
|
|
delete Id14;
|
|
|
|
// Not possible to express these masks for scalable vectors, make sure we
|
|
// don't crash.
|
|
ShuffleVectorInst *Id15 =
|
|
new ShuffleVectorInst(Constant::getAllOnesValue(VScaleV2Int32Ty),
|
|
Constant::getNullValue(VScaleV2Int32Ty),
|
|
Constant::getNullValue(VScaleV2Int32Ty));
|
|
EXPECT_FALSE(Id15->isIdentityWithPadding());
|
|
EXPECT_FALSE(Id15->isIdentityWithExtract());
|
|
EXPECT_FALSE(Id15->isConcat());
|
|
delete Id15;
|
|
}
|
|
|
|
TEST(InstructionsTest, ShuffleMaskIsReplicationMask) {
|
|
for (int ReplicationFactor : seq_inclusive(1, 8)) {
|
|
for (int VF : seq_inclusive(1, 8)) {
|
|
const auto ReplicatedMask = createReplicatedMask(ReplicationFactor, VF);
|
|
int GuessedReplicationFactor = -1, GuessedVF = -1;
|
|
EXPECT_TRUE(ShuffleVectorInst::isReplicationMask(
|
|
ReplicatedMask, GuessedReplicationFactor, GuessedVF));
|
|
EXPECT_EQ(GuessedReplicationFactor, ReplicationFactor);
|
|
EXPECT_EQ(GuessedVF, VF);
|
|
|
|
for (int OpVF : seq_inclusive(VF, 2 * VF + 1)) {
|
|
LLVMContext Ctx;
|
|
Type *OpVFTy = FixedVectorType::get(IntegerType::getInt1Ty(Ctx), OpVF);
|
|
Value *Op = ConstantVector::getNullValue(OpVFTy);
|
|
ShuffleVectorInst *SVI = new ShuffleVectorInst(Op, Op, ReplicatedMask);
|
|
EXPECT_EQ(SVI->isReplicationMask(GuessedReplicationFactor, GuessedVF),
|
|
OpVF == VF);
|
|
delete SVI;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(InstructionsTest, ShuffleMaskIsReplicationMask_undef) {
|
|
for (int ReplicationFactor : seq_inclusive(1, 4)) {
|
|
for (int VF : seq_inclusive(1, 4)) {
|
|
const auto ReplicatedMask = createReplicatedMask(ReplicationFactor, VF);
|
|
int GuessedReplicationFactor = -1, GuessedVF = -1;
|
|
|
|
// If we change some mask elements to undef, we should still match.
|
|
|
|
SmallVector<SmallVector<bool>> ElementChoices(ReplicatedMask.size(),
|
|
{false, true});
|
|
|
|
CombinationGenerator<bool, decltype(ElementChoices)::value_type,
|
|
/*variable_smallsize=*/4>
|
|
G(ElementChoices);
|
|
|
|
G.generate([&](ArrayRef<bool> UndefOverrides) -> bool {
|
|
SmallVector<int> AdjustedMask;
|
|
AdjustedMask.reserve(ReplicatedMask.size());
|
|
for (auto I : zip(ReplicatedMask, UndefOverrides))
|
|
AdjustedMask.emplace_back(std::get<1>(I) ? -1 : std::get<0>(I));
|
|
assert(AdjustedMask.size() == ReplicatedMask.size() &&
|
|
"Size misprediction");
|
|
|
|
EXPECT_TRUE(ShuffleVectorInst::isReplicationMask(
|
|
AdjustedMask, GuessedReplicationFactor, GuessedVF));
|
|
// Do not check GuessedReplicationFactor and GuessedVF,
|
|
// with enough undef's we may deduce a different tuple.
|
|
|
|
return /*Abort=*/false;
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(InstructionsTest, ShuffleMaskIsReplicationMask_Exhaustive_Correctness) {
|
|
for (int ShufMaskNumElts : seq_inclusive(1, 6)) {
|
|
SmallVector<int> PossibleShufMaskElts;
|
|
PossibleShufMaskElts.reserve(ShufMaskNumElts + 2);
|
|
for (int PossibleShufMaskElt : seq_inclusive(-1, ShufMaskNumElts))
|
|
PossibleShufMaskElts.emplace_back(PossibleShufMaskElt);
|
|
assert(PossibleShufMaskElts.size() == ShufMaskNumElts + 2U &&
|
|
"Size misprediction");
|
|
|
|
SmallVector<SmallVector<int>> ElementChoices(ShufMaskNumElts,
|
|
PossibleShufMaskElts);
|
|
|
|
CombinationGenerator<int, decltype(ElementChoices)::value_type,
|
|
/*variable_smallsize=*/4>
|
|
G(ElementChoices);
|
|
|
|
G.generate([&](ArrayRef<int> Mask) -> bool {
|
|
int GuessedReplicationFactor = -1, GuessedVF = -1;
|
|
bool Match = ShuffleVectorInst::isReplicationMask(
|
|
Mask, GuessedReplicationFactor, GuessedVF);
|
|
if (!Match)
|
|
return /*Abort=*/false;
|
|
|
|
const auto ActualMask =
|
|
createReplicatedMask(GuessedReplicationFactor, GuessedVF);
|
|
EXPECT_EQ(Mask.size(), ActualMask.size());
|
|
for (auto I : zip(Mask, ActualMask)) {
|
|
int Elt = std::get<0>(I);
|
|
int ActualElt = std::get<0>(I);
|
|
|
|
if (Elt != -1) {
|
|
EXPECT_EQ(Elt, ActualElt);
|
|
}
|
|
}
|
|
|
|
return /*Abort=*/false;
|
|
});
|
|
}
|
|
}
|
|
|
|
TEST(InstructionsTest, GetSplat) {
|
|
// Create the elements for various constant vectors.
|
|
LLVMContext Ctx;
|
|
Type *Int32Ty = Type::getInt32Ty(Ctx);
|
|
Constant *CU = UndefValue::get(Int32Ty);
|
|
Constant *C0 = ConstantInt::get(Int32Ty, 0);
|
|
Constant *C1 = ConstantInt::get(Int32Ty, 1);
|
|
|
|
Constant *Splat0 = ConstantVector::get({C0, C0, C0, C0});
|
|
Constant *Splat1 = ConstantVector::get({C1, C1, C1, C1 ,C1});
|
|
Constant *Splat0Undef = ConstantVector::get({C0, CU, C0, CU});
|
|
Constant *Splat1Undef = ConstantVector::get({CU, CU, C1, CU});
|
|
Constant *NotSplat = ConstantVector::get({C1, C1, C0, C1 ,C1});
|
|
Constant *NotSplatUndef = ConstantVector::get({CU, C1, CU, CU ,C0});
|
|
|
|
// Default - undefs are not allowed.
|
|
EXPECT_EQ(Splat0->getSplatValue(), C0);
|
|
EXPECT_EQ(Splat1->getSplatValue(), C1);
|
|
EXPECT_EQ(Splat0Undef->getSplatValue(), nullptr);
|
|
EXPECT_EQ(Splat1Undef->getSplatValue(), nullptr);
|
|
EXPECT_EQ(NotSplat->getSplatValue(), nullptr);
|
|
EXPECT_EQ(NotSplatUndef->getSplatValue(), nullptr);
|
|
|
|
// Disallow undefs explicitly.
|
|
EXPECT_EQ(Splat0->getSplatValue(false), C0);
|
|
EXPECT_EQ(Splat1->getSplatValue(false), C1);
|
|
EXPECT_EQ(Splat0Undef->getSplatValue(false), nullptr);
|
|
EXPECT_EQ(Splat1Undef->getSplatValue(false), nullptr);
|
|
EXPECT_EQ(NotSplat->getSplatValue(false), nullptr);
|
|
EXPECT_EQ(NotSplatUndef->getSplatValue(false), nullptr);
|
|
|
|
// Allow undefs.
|
|
EXPECT_EQ(Splat0->getSplatValue(true), C0);
|
|
EXPECT_EQ(Splat1->getSplatValue(true), C1);
|
|
EXPECT_EQ(Splat0Undef->getSplatValue(true), C0);
|
|
EXPECT_EQ(Splat1Undef->getSplatValue(true), C1);
|
|
EXPECT_EQ(NotSplat->getSplatValue(true), nullptr);
|
|
EXPECT_EQ(NotSplatUndef->getSplatValue(true), nullptr);
|
|
}
|
|
|
|
TEST(InstructionsTest, SkipDebug) {
|
|
LLVMContext C;
|
|
std::unique_ptr<Module> M = parseIR(C,
|
|
R"(
|
|
declare void @llvm.dbg.value(metadata, metadata, metadata)
|
|
|
|
define void @f() {
|
|
entry:
|
|
call void @llvm.dbg.value(metadata i32 0, metadata !11, metadata !DIExpression()), !dbg !13
|
|
ret void
|
|
}
|
|
|
|
!llvm.dbg.cu = !{!0}
|
|
!llvm.module.flags = !{!3, !4}
|
|
!0 = distinct !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang version 6.0.0", isOptimized: false, runtimeVersion: 0, emissionKind: FullDebug, enums: !2)
|
|
!1 = !DIFile(filename: "t2.c", directory: "foo")
|
|
!2 = !{}
|
|
!3 = !{i32 2, !"Dwarf Version", i32 4}
|
|
!4 = !{i32 2, !"Debug Info Version", i32 3}
|
|
!8 = distinct !DISubprogram(name: "f", scope: !1, file: !1, line: 1, type: !9, isLocal: false, isDefinition: true, scopeLine: 1, isOptimized: false, unit: !0, retainedNodes: !2)
|
|
!9 = !DISubroutineType(types: !10)
|
|
!10 = !{null}
|
|
!11 = !DILocalVariable(name: "x", scope: !8, file: !1, line: 2, type: !12)
|
|
!12 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
|
|
!13 = !DILocation(line: 2, column: 7, scope: !8)
|
|
)");
|
|
ASSERT_TRUE(M);
|
|
Function *F = cast<Function>(M->getNamedValue("f"));
|
|
BasicBlock &BB = F->front();
|
|
|
|
// The first non-debug instruction is the terminator.
|
|
auto *Term = BB.getTerminator();
|
|
EXPECT_EQ(Term, BB.begin()->getNextNonDebugInstruction());
|
|
EXPECT_EQ(Term->getIterator(), skipDebugIntrinsics(BB.begin()));
|
|
|
|
// After the terminator, there are no non-debug instructions.
|
|
EXPECT_EQ(nullptr, Term->getNextNonDebugInstruction());
|
|
}
|
|
|
|
TEST(InstructionsTest, PhiMightNotBeFPMathOperator) {
|
|
LLVMContext Context;
|
|
IRBuilder<> Builder(Context);
|
|
MDBuilder MDHelper(Context);
|
|
Instruction *I = Builder.CreatePHI(Builder.getInt32Ty(), 0);
|
|
EXPECT_FALSE(isa<FPMathOperator>(I));
|
|
I->deleteValue();
|
|
Instruction *FP = Builder.CreatePHI(Builder.getDoubleTy(), 0);
|
|
EXPECT_TRUE(isa<FPMathOperator>(FP));
|
|
FP->deleteValue();
|
|
}
|
|
|
|
TEST(InstructionsTest, FPCallIsFPMathOperator) {
|
|
LLVMContext C;
|
|
|
|
Type *ITy = Type::getInt32Ty(C);
|
|
FunctionType *IFnTy = FunctionType::get(ITy, {});
|
|
Value *ICallee = Constant::getNullValue(IFnTy->getPointerTo());
|
|
std::unique_ptr<CallInst> ICall(CallInst::Create(IFnTy, ICallee, {}, ""));
|
|
EXPECT_FALSE(isa<FPMathOperator>(ICall));
|
|
|
|
Type *VITy = FixedVectorType::get(ITy, 2);
|
|
FunctionType *VIFnTy = FunctionType::get(VITy, {});
|
|
Value *VICallee = Constant::getNullValue(VIFnTy->getPointerTo());
|
|
std::unique_ptr<CallInst> VICall(CallInst::Create(VIFnTy, VICallee, {}, ""));
|
|
EXPECT_FALSE(isa<FPMathOperator>(VICall));
|
|
|
|
Type *AITy = ArrayType::get(ITy, 2);
|
|
FunctionType *AIFnTy = FunctionType::get(AITy, {});
|
|
Value *AICallee = Constant::getNullValue(AIFnTy->getPointerTo());
|
|
std::unique_ptr<CallInst> AICall(CallInst::Create(AIFnTy, AICallee, {}, ""));
|
|
EXPECT_FALSE(isa<FPMathOperator>(AICall));
|
|
|
|
Type *FTy = Type::getFloatTy(C);
|
|
FunctionType *FFnTy = FunctionType::get(FTy, {});
|
|
Value *FCallee = Constant::getNullValue(FFnTy->getPointerTo());
|
|
std::unique_ptr<CallInst> FCall(CallInst::Create(FFnTy, FCallee, {}, ""));
|
|
EXPECT_TRUE(isa<FPMathOperator>(FCall));
|
|
|
|
Type *VFTy = FixedVectorType::get(FTy, 2);
|
|
FunctionType *VFFnTy = FunctionType::get(VFTy, {});
|
|
Value *VFCallee = Constant::getNullValue(VFFnTy->getPointerTo());
|
|
std::unique_ptr<CallInst> VFCall(CallInst::Create(VFFnTy, VFCallee, {}, ""));
|
|
EXPECT_TRUE(isa<FPMathOperator>(VFCall));
|
|
|
|
Type *AFTy = ArrayType::get(FTy, 2);
|
|
FunctionType *AFFnTy = FunctionType::get(AFTy, {});
|
|
Value *AFCallee = Constant::getNullValue(AFFnTy->getPointerTo());
|
|
std::unique_ptr<CallInst> AFCall(CallInst::Create(AFFnTy, AFCallee, {}, ""));
|
|
EXPECT_TRUE(isa<FPMathOperator>(AFCall));
|
|
|
|
Type *AVFTy = ArrayType::get(VFTy, 2);
|
|
FunctionType *AVFFnTy = FunctionType::get(AVFTy, {});
|
|
Value *AVFCallee = Constant::getNullValue(AVFFnTy->getPointerTo());
|
|
std::unique_ptr<CallInst> AVFCall(
|
|
CallInst::Create(AVFFnTy, AVFCallee, {}, ""));
|
|
EXPECT_TRUE(isa<FPMathOperator>(AVFCall));
|
|
|
|
Type *AAVFTy = ArrayType::get(AVFTy, 2);
|
|
FunctionType *AAVFFnTy = FunctionType::get(AAVFTy, {});
|
|
Value *AAVFCallee = Constant::getNullValue(AAVFFnTy->getPointerTo());
|
|
std::unique_ptr<CallInst> AAVFCall(
|
|
CallInst::Create(AAVFFnTy, AAVFCallee, {}, ""));
|
|
EXPECT_TRUE(isa<FPMathOperator>(AAVFCall));
|
|
}
|
|
|
|
TEST(InstructionsTest, FNegInstruction) {
|
|
LLVMContext Context;
|
|
Type *FltTy = Type::getFloatTy(Context);
|
|
Constant *One = ConstantFP::get(FltTy, 1.0);
|
|
BinaryOperator *FAdd = BinaryOperator::CreateFAdd(One, One);
|
|
FAdd->setHasNoNaNs(true);
|
|
UnaryOperator *FNeg = UnaryOperator::CreateFNegFMF(One, FAdd);
|
|
EXPECT_TRUE(FNeg->hasNoNaNs());
|
|
EXPECT_FALSE(FNeg->hasNoInfs());
|
|
EXPECT_FALSE(FNeg->hasNoSignedZeros());
|
|
EXPECT_FALSE(FNeg->hasAllowReciprocal());
|
|
EXPECT_FALSE(FNeg->hasAllowContract());
|
|
EXPECT_FALSE(FNeg->hasAllowReassoc());
|
|
EXPECT_FALSE(FNeg->hasApproxFunc());
|
|
FAdd->deleteValue();
|
|
FNeg->deleteValue();
|
|
}
|
|
|
|
TEST(InstructionsTest, CallBrInstruction) {
|
|
LLVMContext Context;
|
|
std::unique_ptr<Module> M = parseIR(Context, R"(
|
|
define void @foo() {
|
|
entry:
|
|
callbr void asm sideeffect "// XXX: ${0:l}", "X"(i8* blockaddress(@foo, %branch_test.exit))
|
|
to label %land.rhs.i [label %branch_test.exit]
|
|
|
|
land.rhs.i:
|
|
br label %branch_test.exit
|
|
|
|
branch_test.exit:
|
|
%0 = phi i1 [ true, %entry ], [ false, %land.rhs.i ]
|
|
br i1 %0, label %if.end, label %if.then
|
|
|
|
if.then:
|
|
ret void
|
|
|
|
if.end:
|
|
ret void
|
|
}
|
|
)");
|
|
Function *Foo = M->getFunction("foo");
|
|
auto BBs = Foo->getBasicBlockList().begin();
|
|
CallBrInst &CBI = cast<CallBrInst>(BBs->front());
|
|
++BBs;
|
|
++BBs;
|
|
BasicBlock &BranchTestExit = *BBs;
|
|
++BBs;
|
|
BasicBlock &IfThen = *BBs;
|
|
|
|
// Test that setting the first indirect destination of callbr updates the dest
|
|
EXPECT_EQ(&BranchTestExit, CBI.getIndirectDest(0));
|
|
CBI.setIndirectDest(0, &IfThen);
|
|
EXPECT_EQ(&IfThen, CBI.getIndirectDest(0));
|
|
|
|
// Further, test that changing the indirect destination updates the arg
|
|
// operand to use the block address of the new indirect destination basic
|
|
// block. This is a critical invariant of CallBrInst.
|
|
BlockAddress *IndirectBA = BlockAddress::get(CBI.getIndirectDest(0));
|
|
BlockAddress *ArgBA = cast<BlockAddress>(CBI.getArgOperand(0));
|
|
EXPECT_EQ(IndirectBA, ArgBA)
|
|
<< "After setting the indirect destination, callbr had an indirect "
|
|
"destination of '"
|
|
<< CBI.getIndirectDest(0)->getName() << "', but a argument of '"
|
|
<< ArgBA->getBasicBlock()->getName() << "'. These should always match:\n"
|
|
<< CBI;
|
|
EXPECT_EQ(IndirectBA->getBasicBlock(), &IfThen);
|
|
EXPECT_EQ(ArgBA->getBasicBlock(), &IfThen);
|
|
}
|
|
|
|
TEST(InstructionsTest, UnaryOperator) {
|
|
LLVMContext Context;
|
|
IRBuilder<> Builder(Context);
|
|
Instruction *I = Builder.CreatePHI(Builder.getDoubleTy(), 0);
|
|
Value *F = Builder.CreateFNeg(I);
|
|
|
|
EXPECT_TRUE(isa<Value>(F));
|
|
EXPECT_TRUE(isa<Instruction>(F));
|
|
EXPECT_TRUE(isa<UnaryInstruction>(F));
|
|
EXPECT_TRUE(isa<UnaryOperator>(F));
|
|
EXPECT_FALSE(isa<BinaryOperator>(F));
|
|
|
|
F->deleteValue();
|
|
I->deleteValue();
|
|
}
|
|
|
|
TEST(InstructionsTest, DropLocation) {
|
|
LLVMContext C;
|
|
std::unique_ptr<Module> M = parseIR(C,
|
|
R"(
|
|
declare void @callee()
|
|
|
|
define void @no_parent_scope() {
|
|
call void @callee() ; I1: Call with no location.
|
|
call void @callee(), !dbg !11 ; I2: Call with location.
|
|
ret void, !dbg !11 ; I3: Non-call with location.
|
|
}
|
|
|
|
define void @with_parent_scope() !dbg !8 {
|
|
call void @callee() ; I1: Call with no location.
|
|
call void @callee(), !dbg !11 ; I2: Call with location.
|
|
ret void, !dbg !11 ; I3: Non-call with location.
|
|
}
|
|
|
|
!llvm.dbg.cu = !{!0}
|
|
!llvm.module.flags = !{!3, !4}
|
|
!0 = distinct !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "", isOptimized: false, runtimeVersion: 0, emissionKind: FullDebug, enums: !2)
|
|
!1 = !DIFile(filename: "t2.c", directory: "foo")
|
|
!2 = !{}
|
|
!3 = !{i32 2, !"Dwarf Version", i32 4}
|
|
!4 = !{i32 2, !"Debug Info Version", i32 3}
|
|
!8 = distinct !DISubprogram(name: "f", scope: !1, file: !1, line: 1, type: !9, isLocal: false, isDefinition: true, scopeLine: 1, isOptimized: false, unit: !0, retainedNodes: !2)
|
|
!9 = !DISubroutineType(types: !10)
|
|
!10 = !{null}
|
|
!11 = !DILocation(line: 2, column: 7, scope: !8, inlinedAt: !12)
|
|
!12 = !DILocation(line: 3, column: 8, scope: !8)
|
|
)");
|
|
ASSERT_TRUE(M);
|
|
|
|
{
|
|
Function *NoParentScopeF =
|
|
cast<Function>(M->getNamedValue("no_parent_scope"));
|
|
BasicBlock &BB = NoParentScopeF->front();
|
|
|
|
auto *I1 = BB.getFirstNonPHI();
|
|
auto *I2 = I1->getNextNode();
|
|
auto *I3 = BB.getTerminator();
|
|
|
|
EXPECT_EQ(I1->getDebugLoc(), DebugLoc());
|
|
I1->dropLocation();
|
|
EXPECT_EQ(I1->getDebugLoc(), DebugLoc());
|
|
|
|
EXPECT_EQ(I2->getDebugLoc().getLine(), 2U);
|
|
I2->dropLocation();
|
|
EXPECT_EQ(I1->getDebugLoc(), DebugLoc());
|
|
|
|
EXPECT_EQ(I3->getDebugLoc().getLine(), 2U);
|
|
I3->dropLocation();
|
|
EXPECT_EQ(I3->getDebugLoc(), DebugLoc());
|
|
}
|
|
|
|
{
|
|
Function *WithParentScopeF =
|
|
cast<Function>(M->getNamedValue("with_parent_scope"));
|
|
BasicBlock &BB = WithParentScopeF->front();
|
|
|
|
auto *I2 = BB.getFirstNonPHI()->getNextNode();
|
|
|
|
MDNode *Scope = cast<MDNode>(WithParentScopeF->getSubprogram());
|
|
EXPECT_EQ(I2->getDebugLoc().getLine(), 2U);
|
|
I2->dropLocation();
|
|
EXPECT_EQ(I2->getDebugLoc().getLine(), 0U);
|
|
EXPECT_EQ(I2->getDebugLoc().getScope(), Scope);
|
|
EXPECT_EQ(I2->getDebugLoc().getInlinedAt(), nullptr);
|
|
}
|
|
}
|
|
|
|
TEST(InstructionsTest, BranchWeightOverflow) {
|
|
LLVMContext C;
|
|
std::unique_ptr<Module> M = parseIR(C,
|
|
R"(
|
|
declare void @callee()
|
|
|
|
define void @caller() {
|
|
call void @callee(), !prof !1
|
|
ret void
|
|
}
|
|
|
|
!1 = !{!"branch_weights", i32 20000}
|
|
)");
|
|
ASSERT_TRUE(M);
|
|
CallInst *CI =
|
|
cast<CallInst>(&M->getFunction("caller")->getEntryBlock().front());
|
|
uint64_t ProfWeight;
|
|
CI->extractProfTotalWeight(ProfWeight);
|
|
ASSERT_EQ(ProfWeight, 20000U);
|
|
CI->updateProfWeight(10000000, 1);
|
|
CI->extractProfTotalWeight(ProfWeight);
|
|
ASSERT_EQ(ProfWeight, UINT32_MAX);
|
|
}
|
|
|
|
TEST(InstructionsTest, AllocaInst) {
|
|
LLVMContext Ctx;
|
|
std::unique_ptr<Module> M = parseIR(Ctx, R"(
|
|
%T = type { i64, [3 x i32]}
|
|
define void @f(i32 %n) {
|
|
entry:
|
|
%A = alloca i32, i32 1
|
|
%B = alloca i32, i32 4
|
|
%C = alloca i32, i32 %n
|
|
%D = alloca <8 x double>
|
|
%E = alloca <vscale x 8 x double>
|
|
%F = alloca [2 x half]
|
|
%G = alloca [2 x [3 x i128]]
|
|
%H = alloca %T
|
|
ret void
|
|
}
|
|
)");
|
|
const DataLayout &DL = M->getDataLayout();
|
|
ASSERT_TRUE(M);
|
|
Function *Fun = cast<Function>(M->getNamedValue("f"));
|
|
BasicBlock &BB = Fun->front();
|
|
auto It = BB.begin();
|
|
AllocaInst &A = cast<AllocaInst>(*It++);
|
|
AllocaInst &B = cast<AllocaInst>(*It++);
|
|
AllocaInst &C = cast<AllocaInst>(*It++);
|
|
AllocaInst &D = cast<AllocaInst>(*It++);
|
|
AllocaInst &E = cast<AllocaInst>(*It++);
|
|
AllocaInst &F = cast<AllocaInst>(*It++);
|
|
AllocaInst &G = cast<AllocaInst>(*It++);
|
|
AllocaInst &H = cast<AllocaInst>(*It++);
|
|
EXPECT_EQ(A.getAllocationSizeInBits(DL), TypeSize::getFixed(32));
|
|
EXPECT_EQ(B.getAllocationSizeInBits(DL), TypeSize::getFixed(128));
|
|
EXPECT_FALSE(C.getAllocationSizeInBits(DL));
|
|
EXPECT_EQ(D.getAllocationSizeInBits(DL), TypeSize::getFixed(512));
|
|
EXPECT_EQ(E.getAllocationSizeInBits(DL), TypeSize::getScalable(512));
|
|
EXPECT_EQ(F.getAllocationSizeInBits(DL), TypeSize::getFixed(32));
|
|
EXPECT_EQ(G.getAllocationSizeInBits(DL), TypeSize::getFixed(768));
|
|
EXPECT_EQ(H.getAllocationSizeInBits(DL), TypeSize::getFixed(160));
|
|
}
|
|
|
|
} // end anonymous namespace
|
|
} // end namespace llvm
|