forked from OSchip/llvm-project
272 lines
9.7 KiB
C++
272 lines
9.7 KiB
C++
//===- TFUtilsTest.cpp - test for TFUtils ---------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/Utils/TFUtils.h"
|
|
#include "google/protobuf/struct.pb.h"
|
|
#include "tensorflow/core/example/example.pb.h"
|
|
#include "tensorflow/core/example/feature.pb.h"
|
|
#include "llvm/AsmParser/Parser.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include "llvm/Support/SourceMgr.h"
|
|
#include "llvm/Testing/Support/SupportHelpers.h"
|
|
#include "gtest/gtest.h"
|
|
|
|
using namespace llvm;
|
|
|
|
extern const char *TestMainArgv0;
|
|
|
|
// NOTE! This test model is currently also used by test/Transforms/Inline/ML tests
|
|
//- relevant if updating this model.
|
|
static std::string getModelPath() {
|
|
SmallString<128> InputsDir = unittest::getInputFileDirectory(TestMainArgv0);
|
|
llvm::sys::path::append(InputsDir, "ir2native_x86_64_model");
|
|
return std::string(InputsDir);
|
|
}
|
|
|
|
// Test observable behavior when no model is provided.
|
|
TEST(TFUtilsTest, NoModel) {
|
|
TFModelEvaluator Evaluator("", {}, {});
|
|
EXPECT_FALSE(Evaluator.isValid());
|
|
}
|
|
|
|
// Test we can correctly load a savedmodel and evaluate it.
|
|
TEST(TFUtilsTest, LoadAndExecuteTest) {
|
|
// We use the ir2native model for test. We know it has one feature of
|
|
// dimension (1, 214)
|
|
const static int64_t KnownSize = 214;
|
|
std::vector<TensorSpec> InputSpecs{TensorSpec::createSpec<int32_t>(
|
|
"serving_default_input_1", {1, KnownSize})};
|
|
std::vector<TensorSpec> OutputSpecs{
|
|
TensorSpec::createSpec<float>("StatefulPartitionedCall", {1})};
|
|
|
|
TFModelEvaluator Evaluator(getModelPath(), InputSpecs, OutputSpecs);
|
|
EXPECT_TRUE(Evaluator.isValid());
|
|
|
|
int32_t *V = Evaluator.getInput<int32_t>(0);
|
|
// Fill it up with 1's, we know the output.
|
|
for (auto I = 0; I < KnownSize; ++I) {
|
|
V[I] = 1;
|
|
}
|
|
{
|
|
auto ER = Evaluator.evaluate();
|
|
EXPECT_TRUE(ER.hasValue());
|
|
float Ret = *ER->getTensorValue<float>(0);
|
|
EXPECT_EQ(static_cast<int64_t>(Ret), 80);
|
|
EXPECT_EQ(ER->getUntypedTensorValue(0),
|
|
reinterpret_cast<const void *>(ER->getTensorValue<float>(0)));
|
|
}
|
|
// The input vector should be unchanged
|
|
for (auto I = 0; I < KnownSize; ++I) {
|
|
EXPECT_EQ(V[I], 1);
|
|
}
|
|
// Zero-out the unused position '0' of the instruction histogram, which is
|
|
// after the first 9 calculated values. Should the the same result.
|
|
V[9] = 0;
|
|
{
|
|
auto ER = Evaluator.evaluate();
|
|
EXPECT_TRUE(ER.hasValue());
|
|
float Ret = *ER->getTensorValue<float>(0);
|
|
EXPECT_EQ(static_cast<int64_t>(Ret), 80);
|
|
}
|
|
}
|
|
|
|
// Test incorrect input setup
|
|
TEST(TFUtilsTest, EvalError) {
|
|
// We use the ir2native model for test. We know it has one feature of
|
|
// dimension (1, 214)
|
|
const static int64_t KnownSize = 213;
|
|
std::vector<TensorSpec> InputSpecs{TensorSpec::createSpec<int32_t>(
|
|
"serving_default_input_1", {1, KnownSize})};
|
|
std::vector<TensorSpec> OutputSpecs{
|
|
TensorSpec::createSpec<float>("StatefulPartitionedCall", {1})};
|
|
|
|
TFModelEvaluator Evaluator(getModelPath(), InputSpecs, OutputSpecs);
|
|
EXPECT_TRUE(Evaluator.isValid());
|
|
|
|
int32_t *V = Evaluator.getInput<int32_t>(0);
|
|
// Fill it up with 1's, we know the output.
|
|
for (auto I = 0; I < KnownSize; ++I) {
|
|
V[I] = 1;
|
|
}
|
|
auto ER = Evaluator.evaluate();
|
|
EXPECT_FALSE(ER.hasValue());
|
|
EXPECT_FALSE(Evaluator.isValid());
|
|
}
|
|
|
|
#define PROTO_CHECKER(FNAME, TYPE, INDEX, EXP) \
|
|
do { \
|
|
const auto &V = Expected.feature_lists() \
|
|
.feature_list() \
|
|
.at(FNAME) \
|
|
.feature(INDEX) \
|
|
.TYPE() \
|
|
.value(); \
|
|
for (auto I = 0; I < V.size(); ++I) \
|
|
EXPECT_EQ(V.at(I), EXP[I]); \
|
|
} while (false)
|
|
|
|
TEST(TFUtilsTest, Logger) {
|
|
std::vector<LoggedFeatureSpec> Features;
|
|
Features.push_back(
|
|
{TensorSpec::createSpec<float>("the_float", {2, 3}), None});
|
|
Features.push_back({TensorSpec::createSpec<int64_t>("the_int", {2}),
|
|
std::string("alternate_name")});
|
|
|
|
auto Rewards = TensorSpec::createSpec<float>("reward", {1});
|
|
Logger L(Features, Rewards, true);
|
|
const float F00[]{0.0, 0.1, 0.2, 0.3, 0.4, 0.5};
|
|
const int64_t F01[]{2, 3};
|
|
|
|
L.logFloatValue(0, F00);
|
|
L.logInt64Value(1, F01);
|
|
L.logFloatReward(3.4);
|
|
const float F10[]{0.0, 1.0, 2.0, 3.0, 4.0, 5.0};
|
|
const int64_t F11[]{-2, -3};
|
|
L.logFloatValue(0, F10);
|
|
L.logInt64Value(1, F11);
|
|
L.logFloatReward(-3.0);
|
|
std::string Result;
|
|
raw_string_ostream OS(Result);
|
|
L.flush(OS);
|
|
|
|
tensorflow::SequenceExample Expected;
|
|
ASSERT_TRUE(Expected.ParseFromString(Result));
|
|
PROTO_CHECKER("the_float", float_list, 0, F00);
|
|
PROTO_CHECKER("the_float", float_list, 1, F10);
|
|
PROTO_CHECKER("alternate_name", int64_list, 0, F01);
|
|
PROTO_CHECKER("alternate_name", int64_list, 1, F11);
|
|
float R0[]{3.4};
|
|
float R1[]{-3.0};
|
|
PROTO_CHECKER("reward", float_list, 0, R0);
|
|
PROTO_CHECKER("reward", float_list, 1, R1);
|
|
}
|
|
|
|
TEST(TFUtilsTest, LoggerInt32FeaturesAndReward) {
|
|
std::vector<LoggedFeatureSpec> Features;
|
|
Features.push_back(
|
|
{TensorSpec::createSpec<float>("the_float", {2, 3}), None});
|
|
Features.push_back({TensorSpec::createSpec<int32_t>("the_int", {2}),
|
|
std::string("alternate_name")});
|
|
|
|
auto Rewards = TensorSpec::createSpec<int32_t>("reward", {1});
|
|
Logger L(Features, Rewards, true);
|
|
const float F00[]{0.0, 0.1, 0.2, 0.3, 0.4, 0.5};
|
|
const int32_t F01[]{2, 3};
|
|
|
|
L.logFloatValue(0, F00);
|
|
L.logInt32Value(1, F01);
|
|
L.logInt32Reward(3);
|
|
const float F10[]{0.0, 1.0, 2.0, 3.0, 4.0, 5.0};
|
|
const int32_t F11[]{-2, -3};
|
|
L.logFloatValue(0, F10);
|
|
L.logInt32Value(1, F11);
|
|
L.logInt32Reward(-3);
|
|
std::string Result;
|
|
raw_string_ostream OS(Result);
|
|
L.flush(OS);
|
|
|
|
tensorflow::SequenceExample Expected;
|
|
ASSERT_TRUE(Expected.ParseFromString(Result));
|
|
PROTO_CHECKER("the_float", float_list, 0, F00);
|
|
PROTO_CHECKER("the_float", float_list, 1, F10);
|
|
PROTO_CHECKER("alternate_name", int64_list, 0, F01);
|
|
PROTO_CHECKER("alternate_name", int64_list, 1, F11);
|
|
int32_t R0[]{3};
|
|
int32_t R1[]{-3};
|
|
PROTO_CHECKER("reward", int64_list, 0, R0);
|
|
PROTO_CHECKER("reward", int64_list, 1, R1);
|
|
}
|
|
|
|
TEST(TFUtilsTest, LoggerNoReward) {
|
|
std::vector<LoggedFeatureSpec> Features;
|
|
Features.push_back(
|
|
{TensorSpec::createSpec<float>("the_float", {2, 3}), None});
|
|
Features.push_back({TensorSpec::createSpec<int64_t>("the_int", {2}),
|
|
std::string("alternate_name")});
|
|
|
|
auto Rewards = TensorSpec::createSpec<float>("reward", {1});
|
|
Logger L(Features, Rewards, false);
|
|
const float F00[]{0.0, 0.1, 0.2, 0.3, 0.4, 0.5};
|
|
const int64_t F01[]{2, 3};
|
|
|
|
L.logFloatValue(0, F00);
|
|
L.logInt64Value(1, F01);
|
|
const float F10[]{0.0, 1.0, 2.0, 3.0, 4.0, 5.0};
|
|
const int64_t F11[]{-2, -3};
|
|
L.logFloatValue(0, F10);
|
|
L.logInt64Value(1, F11);
|
|
|
|
std::string Result;
|
|
raw_string_ostream OS(Result);
|
|
L.flush(OS);
|
|
tensorflow::SequenceExample Expected;
|
|
ASSERT_TRUE(Expected.ParseFromString(Result));
|
|
PROTO_CHECKER("the_float", float_list, 0, F00);
|
|
PROTO_CHECKER("the_float", float_list, 1, F10);
|
|
PROTO_CHECKER("alternate_name", int64_list, 0, F01);
|
|
PROTO_CHECKER("alternate_name", int64_list, 1, F11);
|
|
}
|
|
|
|
TEST(TFUtilsTest, LoggerFinalReward) {
|
|
std::vector<LoggedFeatureSpec> Features;
|
|
Features.push_back({TensorSpec::createSpec<float>("the_float", {1}), None});
|
|
Features.push_back({TensorSpec::createSpec<int64_t>("the_int", {1}), None});
|
|
|
|
auto Rewards = TensorSpec::createSpec<float>("reward", {1});
|
|
Logger L(Features, Rewards, true);
|
|
for (int64_t I = 0; I < 3; ++I) {
|
|
float F = static_cast<float>(I);
|
|
L.logFloatValue(0, &F);
|
|
L.logInt64Value(1, &I);
|
|
}
|
|
L.logFloatFinalReward(3.14);
|
|
std::string Result;
|
|
raw_string_ostream OS(Result);
|
|
L.flush(OS);
|
|
const float Zero[]{0.0};
|
|
const float R[]{3.14};
|
|
tensorflow::SequenceExample Expected;
|
|
ASSERT_TRUE(Expected.ParseFromString(Result));
|
|
PROTO_CHECKER("reward", float_list, 0, Zero);
|
|
PROTO_CHECKER("reward", float_list, 1, Zero);
|
|
PROTO_CHECKER("reward", float_list, 2, R);
|
|
}
|
|
|
|
TEST(TFUtilsTest, LoggerGroup) {
|
|
std::vector<LoggedFeatureSpec> Features;
|
|
Features.push_back({TensorSpec::createSpec<float>("the_float", {1}), None});
|
|
Features.push_back({TensorSpec::createSpec<int64_t>("the_int", {1}), None});
|
|
|
|
auto Rewards = TensorSpec::createSpec<float>("reward", {1});
|
|
StringMap<std::unique_ptr<Logger>> Loggers;
|
|
std::vector<std::string> Names{"a", "b"};
|
|
size_t Bump = 0;
|
|
for (auto Name : Names) {
|
|
auto L = std::make_unique<Logger>(Features, Rewards, true);
|
|
for (int64_t I = 0; I < 3; ++I) {
|
|
float F = static_cast<float>(I) + Bump;
|
|
L->logFloatValue(0, &F);
|
|
L->logInt64Value(1, &I);
|
|
}
|
|
L->logFloatFinalReward(3.14 + Bump);
|
|
Loggers.insert(std::make_pair(Name, std::move(L)));
|
|
}
|
|
std::string Result;
|
|
raw_string_ostream OS(Result);
|
|
Logger::flushLogs(OS, Loggers);
|
|
google::protobuf::Struct Expected;
|
|
ASSERT_TRUE(Expected.ParseFromString(Result));
|
|
EXPECT_EQ(Expected.fields_size(), 2);
|
|
EXPECT_TRUE(Expected.fields().contains("a"));
|
|
EXPECT_TRUE(Expected.fields().contains("b"));
|
|
}
|