llvm-project/clang/lib/CodeGen/CodeGenAction.cpp

1176 lines
45 KiB
C++

//===--- CodeGenAction.cpp - LLVM Code Generation Frontend Action ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "clang/CodeGen/CodeGenAction.h"
#include "CodeGenModule.h"
#include "CoverageMappingGen.h"
#include "MacroPPCallbacks.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclGroup.h"
#include "clang/Basic/DiagnosticFrontend.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/LangStandard.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/CodeGen/BackendUtil.h"
#include "clang/CodeGen/ModuleBuilder.h"
#include "clang/Driver/DriverDiagnostic.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Frontend/FrontendDiagnostic.h"
#include "clang/Lex/Preprocessor.h"
#include "llvm/Bitcode/BitcodeReader.h"
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/LLVMRemarkStreamer.h"
#include "llvm/IR/Module.h"
#include "llvm/IRReader/IRReader.h"
#include "llvm/LTO/LTOBackend.h"
#include "llvm/Linker/Linker.h"
#include "llvm/Pass.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TimeProfiler.h"
#include "llvm/Support/Timer.h"
#include "llvm/Support/ToolOutputFile.h"
#include "llvm/Support/YAMLTraits.h"
#include "llvm/Transforms/IPO/Internalize.h"
#include <memory>
using namespace clang;
using namespace llvm;
namespace clang {
class BackendConsumer;
class ClangDiagnosticHandler final : public DiagnosticHandler {
public:
ClangDiagnosticHandler(const CodeGenOptions &CGOpts, BackendConsumer *BCon)
: CodeGenOpts(CGOpts), BackendCon(BCon) {}
bool handleDiagnostics(const DiagnosticInfo &DI) override;
bool isAnalysisRemarkEnabled(StringRef PassName) const override {
return CodeGenOpts.OptimizationRemarkAnalysis.patternMatches(PassName);
}
bool isMissedOptRemarkEnabled(StringRef PassName) const override {
return CodeGenOpts.OptimizationRemarkMissed.patternMatches(PassName);
}
bool isPassedOptRemarkEnabled(StringRef PassName) const override {
return CodeGenOpts.OptimizationRemark.patternMatches(PassName);
}
bool isAnyRemarkEnabled() const override {
return CodeGenOpts.OptimizationRemarkAnalysis.hasValidPattern() ||
CodeGenOpts.OptimizationRemarkMissed.hasValidPattern() ||
CodeGenOpts.OptimizationRemark.hasValidPattern();
}
private:
const CodeGenOptions &CodeGenOpts;
BackendConsumer *BackendCon;
};
static void reportOptRecordError(Error E, DiagnosticsEngine &Diags,
const CodeGenOptions CodeGenOpts) {
handleAllErrors(
std::move(E),
[&](const LLVMRemarkSetupFileError &E) {
Diags.Report(diag::err_cannot_open_file)
<< CodeGenOpts.OptRecordFile << E.message();
},
[&](const LLVMRemarkSetupPatternError &E) {
Diags.Report(diag::err_drv_optimization_remark_pattern)
<< E.message() << CodeGenOpts.OptRecordPasses;
},
[&](const LLVMRemarkSetupFormatError &E) {
Diags.Report(diag::err_drv_optimization_remark_format)
<< CodeGenOpts.OptRecordFormat;
});
}
class BackendConsumer : public ASTConsumer {
using LinkModule = CodeGenAction::LinkModule;
virtual void anchor();
DiagnosticsEngine &Diags;
BackendAction Action;
const HeaderSearchOptions &HeaderSearchOpts;
const CodeGenOptions &CodeGenOpts;
const TargetOptions &TargetOpts;
const LangOptions &LangOpts;
std::unique_ptr<raw_pwrite_stream> AsmOutStream;
ASTContext *Context;
Timer LLVMIRGeneration;
unsigned LLVMIRGenerationRefCount;
/// True if we've finished generating IR. This prevents us from generating
/// additional LLVM IR after emitting output in HandleTranslationUnit. This
/// can happen when Clang plugins trigger additional AST deserialization.
bool IRGenFinished = false;
bool TimerIsEnabled = false;
std::unique_ptr<CodeGenerator> Gen;
SmallVector<LinkModule, 4> LinkModules;
// This is here so that the diagnostic printer knows the module a diagnostic
// refers to.
llvm::Module *CurLinkModule = nullptr;
public:
BackendConsumer(BackendAction Action, DiagnosticsEngine &Diags,
const HeaderSearchOptions &HeaderSearchOpts,
const PreprocessorOptions &PPOpts,
const CodeGenOptions &CodeGenOpts,
const TargetOptions &TargetOpts,
const LangOptions &LangOpts, const std::string &InFile,
SmallVector<LinkModule, 4> LinkModules,
std::unique_ptr<raw_pwrite_stream> OS, LLVMContext &C,
CoverageSourceInfo *CoverageInfo = nullptr)
: Diags(Diags), Action(Action), HeaderSearchOpts(HeaderSearchOpts),
CodeGenOpts(CodeGenOpts), TargetOpts(TargetOpts), LangOpts(LangOpts),
AsmOutStream(std::move(OS)), Context(nullptr),
LLVMIRGeneration("irgen", "LLVM IR Generation Time"),
LLVMIRGenerationRefCount(0),
Gen(CreateLLVMCodeGen(Diags, InFile, HeaderSearchOpts, PPOpts,
CodeGenOpts, C, CoverageInfo)),
LinkModules(std::move(LinkModules)) {
TimerIsEnabled = CodeGenOpts.TimePasses;
llvm::TimePassesIsEnabled = CodeGenOpts.TimePasses;
llvm::TimePassesPerRun = CodeGenOpts.TimePassesPerRun;
}
// This constructor is used in installing an empty BackendConsumer
// to use the clang diagnostic handler for IR input files. It avoids
// initializing the OS field.
BackendConsumer(BackendAction Action, DiagnosticsEngine &Diags,
const HeaderSearchOptions &HeaderSearchOpts,
const PreprocessorOptions &PPOpts,
const CodeGenOptions &CodeGenOpts,
const TargetOptions &TargetOpts,
const LangOptions &LangOpts,
SmallVector<LinkModule, 4> LinkModules, LLVMContext &C,
CoverageSourceInfo *CoverageInfo = nullptr)
: Diags(Diags), Action(Action), HeaderSearchOpts(HeaderSearchOpts),
CodeGenOpts(CodeGenOpts), TargetOpts(TargetOpts), LangOpts(LangOpts),
Context(nullptr),
LLVMIRGeneration("irgen", "LLVM IR Generation Time"),
LLVMIRGenerationRefCount(0),
Gen(CreateLLVMCodeGen(Diags, "", HeaderSearchOpts, PPOpts,
CodeGenOpts, C, CoverageInfo)),
LinkModules(std::move(LinkModules)) {
TimerIsEnabled = CodeGenOpts.TimePasses;
llvm::TimePassesIsEnabled = CodeGenOpts.TimePasses;
llvm::TimePassesPerRun = CodeGenOpts.TimePassesPerRun;
}
llvm::Module *getModule() const { return Gen->GetModule(); }
std::unique_ptr<llvm::Module> takeModule() {
return std::unique_ptr<llvm::Module>(Gen->ReleaseModule());
}
CodeGenerator *getCodeGenerator() { return Gen.get(); }
void HandleCXXStaticMemberVarInstantiation(VarDecl *VD) override {
Gen->HandleCXXStaticMemberVarInstantiation(VD);
}
void Initialize(ASTContext &Ctx) override {
assert(!Context && "initialized multiple times");
Context = &Ctx;
if (TimerIsEnabled)
LLVMIRGeneration.startTimer();
Gen->Initialize(Ctx);
if (TimerIsEnabled)
LLVMIRGeneration.stopTimer();
}
bool HandleTopLevelDecl(DeclGroupRef D) override {
PrettyStackTraceDecl CrashInfo(*D.begin(), SourceLocation(),
Context->getSourceManager(),
"LLVM IR generation of declaration");
// Recurse.
if (TimerIsEnabled) {
LLVMIRGenerationRefCount += 1;
if (LLVMIRGenerationRefCount == 1)
LLVMIRGeneration.startTimer();
}
Gen->HandleTopLevelDecl(D);
if (TimerIsEnabled) {
LLVMIRGenerationRefCount -= 1;
if (LLVMIRGenerationRefCount == 0)
LLVMIRGeneration.stopTimer();
}
return true;
}
void HandleInlineFunctionDefinition(FunctionDecl *D) override {
PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
Context->getSourceManager(),
"LLVM IR generation of inline function");
if (TimerIsEnabled)
LLVMIRGeneration.startTimer();
Gen->HandleInlineFunctionDefinition(D);
if (TimerIsEnabled)
LLVMIRGeneration.stopTimer();
}
void HandleInterestingDecl(DeclGroupRef D) override {
// Ignore interesting decls from the AST reader after IRGen is finished.
if (!IRGenFinished)
HandleTopLevelDecl(D);
}
// Links each entry in LinkModules into our module. Returns true on error.
bool LinkInModules() {
for (auto &LM : LinkModules) {
if (LM.PropagateAttrs)
for (Function &F : *LM.Module) {
// Skip intrinsics. Keep consistent with how intrinsics are created
// in LLVM IR.
if (F.isIntrinsic())
continue;
Gen->CGM().addDefaultFunctionDefinitionAttributes(F);
}
CurLinkModule = LM.Module.get();
bool Err;
if (LM.Internalize) {
Err = Linker::linkModules(
*getModule(), std::move(LM.Module), LM.LinkFlags,
[](llvm::Module &M, const llvm::StringSet<> &GVS) {
internalizeModule(M, [&GVS](const llvm::GlobalValue &GV) {
return !GV.hasName() || (GVS.count(GV.getName()) == 0);
});
});
} else {
Err = Linker::linkModules(*getModule(), std::move(LM.Module),
LM.LinkFlags);
}
if (Err)
return true;
}
return false; // success
}
void HandleTranslationUnit(ASTContext &C) override {
{
llvm::TimeTraceScope TimeScope("Frontend");
PrettyStackTraceString CrashInfo("Per-file LLVM IR generation");
if (TimerIsEnabled) {
LLVMIRGenerationRefCount += 1;
if (LLVMIRGenerationRefCount == 1)
LLVMIRGeneration.startTimer();
}
Gen->HandleTranslationUnit(C);
if (TimerIsEnabled) {
LLVMIRGenerationRefCount -= 1;
if (LLVMIRGenerationRefCount == 0)
LLVMIRGeneration.stopTimer();
}
IRGenFinished = true;
}
// Silently ignore if we weren't initialized for some reason.
if (!getModule())
return;
// Install an inline asm handler so that diagnostics get printed through
// our diagnostics hooks.
LLVMContext &Ctx = getModule()->getContext();
LLVMContext::InlineAsmDiagHandlerTy OldHandler =
Ctx.getInlineAsmDiagnosticHandler();
void *OldContext = Ctx.getInlineAsmDiagnosticContext();
Ctx.setInlineAsmDiagnosticHandler(InlineAsmDiagHandler, this);
std::unique_ptr<DiagnosticHandler> OldDiagnosticHandler =
Ctx.getDiagnosticHandler();
Ctx.setDiagnosticHandler(std::make_unique<ClangDiagnosticHandler>(
CodeGenOpts, this));
Expected<std::unique_ptr<llvm::ToolOutputFile>> OptRecordFileOrErr =
setupLLVMOptimizationRemarks(
Ctx, CodeGenOpts.OptRecordFile, CodeGenOpts.OptRecordPasses,
CodeGenOpts.OptRecordFormat, CodeGenOpts.DiagnosticsWithHotness,
CodeGenOpts.DiagnosticsHotnessThreshold);
if (Error E = OptRecordFileOrErr.takeError()) {
reportOptRecordError(std::move(E), Diags, CodeGenOpts);
return;
}
std::unique_ptr<llvm::ToolOutputFile> OptRecordFile =
std::move(*OptRecordFileOrErr);
if (OptRecordFile &&
CodeGenOpts.getProfileUse() != CodeGenOptions::ProfileNone)
Ctx.setDiagnosticsHotnessRequested(true);
// Link each LinkModule into our module.
if (LinkInModules())
return;
EmbedBitcode(getModule(), CodeGenOpts, llvm::MemoryBufferRef());
EmitBackendOutput(Diags, HeaderSearchOpts, CodeGenOpts, TargetOpts,
LangOpts, C.getTargetInfo().getDataLayout(),
getModule(), Action, std::move(AsmOutStream));
Ctx.setInlineAsmDiagnosticHandler(OldHandler, OldContext);
Ctx.setDiagnosticHandler(std::move(OldDiagnosticHandler));
if (OptRecordFile)
OptRecordFile->keep();
}
void HandleTagDeclDefinition(TagDecl *D) override {
PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
Context->getSourceManager(),
"LLVM IR generation of declaration");
Gen->HandleTagDeclDefinition(D);
}
void HandleTagDeclRequiredDefinition(const TagDecl *D) override {
Gen->HandleTagDeclRequiredDefinition(D);
}
void CompleteTentativeDefinition(VarDecl *D) override {
Gen->CompleteTentativeDefinition(D);
}
void CompleteExternalDeclaration(VarDecl *D) override {
Gen->CompleteExternalDeclaration(D);
}
void AssignInheritanceModel(CXXRecordDecl *RD) override {
Gen->AssignInheritanceModel(RD);
}
void HandleVTable(CXXRecordDecl *RD) override {
Gen->HandleVTable(RD);
}
static void InlineAsmDiagHandler(const llvm::SMDiagnostic &SM,void *Context,
unsigned LocCookie) {
SourceLocation Loc = SourceLocation::getFromRawEncoding(LocCookie);
((BackendConsumer*)Context)->InlineAsmDiagHandler2(SM, Loc);
}
/// Get the best possible source location to represent a diagnostic that
/// may have associated debug info.
const FullSourceLoc
getBestLocationFromDebugLoc(const llvm::DiagnosticInfoWithLocationBase &D,
bool &BadDebugInfo, StringRef &Filename,
unsigned &Line, unsigned &Column) const;
void InlineAsmDiagHandler2(const llvm::SMDiagnostic &,
SourceLocation LocCookie);
void DiagnosticHandlerImpl(const llvm::DiagnosticInfo &DI);
/// Specialized handler for InlineAsm diagnostic.
/// \return True if the diagnostic has been successfully reported, false
/// otherwise.
bool InlineAsmDiagHandler(const llvm::DiagnosticInfoInlineAsm &D);
/// Specialized handler for StackSize diagnostic.
/// \return True if the diagnostic has been successfully reported, false
/// otherwise.
bool StackSizeDiagHandler(const llvm::DiagnosticInfoStackSize &D);
/// Specialized handler for unsupported backend feature diagnostic.
void UnsupportedDiagHandler(const llvm::DiagnosticInfoUnsupported &D);
/// Specialized handlers for optimization remarks.
/// Note that these handlers only accept remarks and they always handle
/// them.
void EmitOptimizationMessage(const llvm::DiagnosticInfoOptimizationBase &D,
unsigned DiagID);
void
OptimizationRemarkHandler(const llvm::DiagnosticInfoOptimizationBase &D);
void OptimizationRemarkHandler(
const llvm::OptimizationRemarkAnalysisFPCommute &D);
void OptimizationRemarkHandler(
const llvm::OptimizationRemarkAnalysisAliasing &D);
void OptimizationFailureHandler(
const llvm::DiagnosticInfoOptimizationFailure &D);
};
void BackendConsumer::anchor() {}
}
bool ClangDiagnosticHandler::handleDiagnostics(const DiagnosticInfo &DI) {
BackendCon->DiagnosticHandlerImpl(DI);
return true;
}
/// ConvertBackendLocation - Convert a location in a temporary llvm::SourceMgr
/// buffer to be a valid FullSourceLoc.
static FullSourceLoc ConvertBackendLocation(const llvm::SMDiagnostic &D,
SourceManager &CSM) {
// Get both the clang and llvm source managers. The location is relative to
// a memory buffer that the LLVM Source Manager is handling, we need to add
// a copy to the Clang source manager.
const llvm::SourceMgr &LSM = *D.getSourceMgr();
// We need to copy the underlying LLVM memory buffer because llvm::SourceMgr
// already owns its one and clang::SourceManager wants to own its one.
const MemoryBuffer *LBuf =
LSM.getMemoryBuffer(LSM.FindBufferContainingLoc(D.getLoc()));
// Create the copy and transfer ownership to clang::SourceManager.
// TODO: Avoid copying files into memory.
std::unique_ptr<llvm::MemoryBuffer> CBuf =
llvm::MemoryBuffer::getMemBufferCopy(LBuf->getBuffer(),
LBuf->getBufferIdentifier());
// FIXME: Keep a file ID map instead of creating new IDs for each location.
FileID FID = CSM.createFileID(std::move(CBuf));
// Translate the offset into the file.
unsigned Offset = D.getLoc().getPointer() - LBuf->getBufferStart();
SourceLocation NewLoc =
CSM.getLocForStartOfFile(FID).getLocWithOffset(Offset);
return FullSourceLoc(NewLoc, CSM);
}
/// InlineAsmDiagHandler2 - This function is invoked when the backend hits an
/// error parsing inline asm. The SMDiagnostic indicates the error relative to
/// the temporary memory buffer that the inline asm parser has set up.
void BackendConsumer::InlineAsmDiagHandler2(const llvm::SMDiagnostic &D,
SourceLocation LocCookie) {
// There are a couple of different kinds of errors we could get here. First,
// we re-format the SMDiagnostic in terms of a clang diagnostic.
// Strip "error: " off the start of the message string.
StringRef Message = D.getMessage();
if (Message.startswith("error: "))
Message = Message.substr(7);
// If the SMDiagnostic has an inline asm source location, translate it.
FullSourceLoc Loc;
if (D.getLoc() != SMLoc())
Loc = ConvertBackendLocation(D, Context->getSourceManager());
unsigned DiagID;
switch (D.getKind()) {
case llvm::SourceMgr::DK_Error:
DiagID = diag::err_fe_inline_asm;
break;
case llvm::SourceMgr::DK_Warning:
DiagID = diag::warn_fe_inline_asm;
break;
case llvm::SourceMgr::DK_Note:
DiagID = diag::note_fe_inline_asm;
break;
case llvm::SourceMgr::DK_Remark:
llvm_unreachable("remarks unexpected");
}
// If this problem has clang-level source location information, report the
// issue in the source with a note showing the instantiated
// code.
if (LocCookie.isValid()) {
Diags.Report(LocCookie, DiagID).AddString(Message);
if (D.getLoc().isValid()) {
DiagnosticBuilder B = Diags.Report(Loc, diag::note_fe_inline_asm_here);
// Convert the SMDiagnostic ranges into SourceRange and attach them
// to the diagnostic.
for (const std::pair<unsigned, unsigned> &Range : D.getRanges()) {
unsigned Column = D.getColumnNo();
B << SourceRange(Loc.getLocWithOffset(Range.first - Column),
Loc.getLocWithOffset(Range.second - Column));
}
}
return;
}
// Otherwise, report the backend issue as occurring in the generated .s file.
// If Loc is invalid, we still need to report the issue, it just gets no
// location info.
Diags.Report(Loc, DiagID).AddString(Message);
}
#define ComputeDiagID(Severity, GroupName, DiagID) \
do { \
switch (Severity) { \
case llvm::DS_Error: \
DiagID = diag::err_fe_##GroupName; \
break; \
case llvm::DS_Warning: \
DiagID = diag::warn_fe_##GroupName; \
break; \
case llvm::DS_Remark: \
llvm_unreachable("'remark' severity not expected"); \
break; \
case llvm::DS_Note: \
DiagID = diag::note_fe_##GroupName; \
break; \
} \
} while (false)
#define ComputeDiagRemarkID(Severity, GroupName, DiagID) \
do { \
switch (Severity) { \
case llvm::DS_Error: \
DiagID = diag::err_fe_##GroupName; \
break; \
case llvm::DS_Warning: \
DiagID = diag::warn_fe_##GroupName; \
break; \
case llvm::DS_Remark: \
DiagID = diag::remark_fe_##GroupName; \
break; \
case llvm::DS_Note: \
DiagID = diag::note_fe_##GroupName; \
break; \
} \
} while (false)
bool
BackendConsumer::InlineAsmDiagHandler(const llvm::DiagnosticInfoInlineAsm &D) {
unsigned DiagID;
ComputeDiagID(D.getSeverity(), inline_asm, DiagID);
std::string Message = D.getMsgStr().str();
// If this problem has clang-level source location information, report the
// issue as being a problem in the source with a note showing the instantiated
// code.
SourceLocation LocCookie =
SourceLocation::getFromRawEncoding(D.getLocCookie());
if (LocCookie.isValid())
Diags.Report(LocCookie, DiagID).AddString(Message);
else {
// Otherwise, report the backend diagnostic as occurring in the generated
// .s file.
// If Loc is invalid, we still need to report the diagnostic, it just gets
// no location info.
FullSourceLoc Loc;
Diags.Report(Loc, DiagID).AddString(Message);
}
// We handled all the possible severities.
return true;
}
bool
BackendConsumer::StackSizeDiagHandler(const llvm::DiagnosticInfoStackSize &D) {
if (D.getSeverity() != llvm::DS_Warning)
// For now, the only support we have for StackSize diagnostic is warning.
// We do not know how to format other severities.
return false;
if (const Decl *ND = Gen->GetDeclForMangledName(D.getFunction().getName())) {
// FIXME: Shouldn't need to truncate to uint32_t
Diags.Report(ND->getASTContext().getFullLoc(ND->getLocation()),
diag::warn_fe_frame_larger_than)
<< static_cast<uint32_t>(D.getStackSize()) << Decl::castToDeclContext(ND);
return true;
}
return false;
}
const FullSourceLoc BackendConsumer::getBestLocationFromDebugLoc(
const llvm::DiagnosticInfoWithLocationBase &D, bool &BadDebugInfo,
StringRef &Filename, unsigned &Line, unsigned &Column) const {
SourceManager &SourceMgr = Context->getSourceManager();
FileManager &FileMgr = SourceMgr.getFileManager();
SourceLocation DILoc;
if (D.isLocationAvailable()) {
D.getLocation(Filename, Line, Column);
if (Line > 0) {
auto FE = FileMgr.getFile(Filename);
if (!FE)
FE = FileMgr.getFile(D.getAbsolutePath());
if (FE) {
// If -gcolumn-info was not used, Column will be 0. This upsets the
// source manager, so pass 1 if Column is not set.
DILoc = SourceMgr.translateFileLineCol(*FE, Line, Column ? Column : 1);
}
}
BadDebugInfo = DILoc.isInvalid();
}
// If a location isn't available, try to approximate it using the associated
// function definition. We use the definition's right brace to differentiate
// from diagnostics that genuinely relate to the function itself.
FullSourceLoc Loc(DILoc, SourceMgr);
if (Loc.isInvalid())
if (const Decl *FD = Gen->GetDeclForMangledName(D.getFunction().getName()))
Loc = FD->getASTContext().getFullLoc(FD->getLocation());
if (DILoc.isInvalid() && D.isLocationAvailable())
// If we were not able to translate the file:line:col information
// back to a SourceLocation, at least emit a note stating that
// we could not translate this location. This can happen in the
// case of #line directives.
Diags.Report(Loc, diag::note_fe_backend_invalid_loc)
<< Filename << Line << Column;
return Loc;
}
void BackendConsumer::UnsupportedDiagHandler(
const llvm::DiagnosticInfoUnsupported &D) {
// We only support warnings or errors.
assert(D.getSeverity() == llvm::DS_Error ||
D.getSeverity() == llvm::DS_Warning);
StringRef Filename;
unsigned Line, Column;
bool BadDebugInfo = false;
FullSourceLoc Loc;
std::string Msg;
raw_string_ostream MsgStream(Msg);
// Context will be nullptr for IR input files, we will construct the diag
// message from llvm::DiagnosticInfoUnsupported.
if (Context != nullptr) {
Loc = getBestLocationFromDebugLoc(D, BadDebugInfo, Filename, Line, Column);
MsgStream << D.getMessage();
} else {
DiagnosticPrinterRawOStream DP(MsgStream);
D.print(DP);
}
auto DiagType = D.getSeverity() == llvm::DS_Error
? diag::err_fe_backend_unsupported
: diag::warn_fe_backend_unsupported;
Diags.Report(Loc, DiagType) << MsgStream.str();
if (BadDebugInfo)
// If we were not able to translate the file:line:col information
// back to a SourceLocation, at least emit a note stating that
// we could not translate this location. This can happen in the
// case of #line directives.
Diags.Report(Loc, diag::note_fe_backend_invalid_loc)
<< Filename << Line << Column;
}
void BackendConsumer::EmitOptimizationMessage(
const llvm::DiagnosticInfoOptimizationBase &D, unsigned DiagID) {
// We only support warnings and remarks.
assert(D.getSeverity() == llvm::DS_Remark ||
D.getSeverity() == llvm::DS_Warning);
StringRef Filename;
unsigned Line, Column;
bool BadDebugInfo = false;
FullSourceLoc Loc;
std::string Msg;
raw_string_ostream MsgStream(Msg);
// Context will be nullptr for IR input files, we will construct the remark
// message from llvm::DiagnosticInfoOptimizationBase.
if (Context != nullptr) {
Loc = getBestLocationFromDebugLoc(D, BadDebugInfo, Filename, Line, Column);
MsgStream << D.getMsg();
} else {
DiagnosticPrinterRawOStream DP(MsgStream);
D.print(DP);
}
if (D.getHotness())
MsgStream << " (hotness: " << *D.getHotness() << ")";
Diags.Report(Loc, DiagID)
<< AddFlagValue(D.getPassName())
<< MsgStream.str();
if (BadDebugInfo)
// If we were not able to translate the file:line:col information
// back to a SourceLocation, at least emit a note stating that
// we could not translate this location. This can happen in the
// case of #line directives.
Diags.Report(Loc, diag::note_fe_backend_invalid_loc)
<< Filename << Line << Column;
}
void BackendConsumer::OptimizationRemarkHandler(
const llvm::DiagnosticInfoOptimizationBase &D) {
// Without hotness information, don't show noisy remarks.
if (D.isVerbose() && !D.getHotness())
return;
if (D.isPassed()) {
// Optimization remarks are active only if the -Rpass flag has a regular
// expression that matches the name of the pass name in \p D.
if (CodeGenOpts.OptimizationRemark.patternMatches(D.getPassName()))
EmitOptimizationMessage(D, diag::remark_fe_backend_optimization_remark);
} else if (D.isMissed()) {
// Missed optimization remarks are active only if the -Rpass-missed
// flag has a regular expression that matches the name of the pass
// name in \p D.
if (CodeGenOpts.OptimizationRemarkMissed.patternMatches(D.getPassName()))
EmitOptimizationMessage(
D, diag::remark_fe_backend_optimization_remark_missed);
} else {
assert(D.isAnalysis() && "Unknown remark type");
bool ShouldAlwaysPrint = false;
if (auto *ORA = dyn_cast<llvm::OptimizationRemarkAnalysis>(&D))
ShouldAlwaysPrint = ORA->shouldAlwaysPrint();
if (ShouldAlwaysPrint ||
CodeGenOpts.OptimizationRemarkAnalysis.patternMatches(D.getPassName()))
EmitOptimizationMessage(
D, diag::remark_fe_backend_optimization_remark_analysis);
}
}
void BackendConsumer::OptimizationRemarkHandler(
const llvm::OptimizationRemarkAnalysisFPCommute &D) {
// Optimization analysis remarks are active if the pass name is set to
// llvm::DiagnosticInfo::AlwasyPrint or if the -Rpass-analysis flag has a
// regular expression that matches the name of the pass name in \p D.
if (D.shouldAlwaysPrint() ||
CodeGenOpts.OptimizationRemarkAnalysis.patternMatches(D.getPassName()))
EmitOptimizationMessage(
D, diag::remark_fe_backend_optimization_remark_analysis_fpcommute);
}
void BackendConsumer::OptimizationRemarkHandler(
const llvm::OptimizationRemarkAnalysisAliasing &D) {
// Optimization analysis remarks are active if the pass name is set to
// llvm::DiagnosticInfo::AlwasyPrint or if the -Rpass-analysis flag has a
// regular expression that matches the name of the pass name in \p D.
if (D.shouldAlwaysPrint() ||
CodeGenOpts.OptimizationRemarkAnalysis.patternMatches(D.getPassName()))
EmitOptimizationMessage(
D, diag::remark_fe_backend_optimization_remark_analysis_aliasing);
}
void BackendConsumer::OptimizationFailureHandler(
const llvm::DiagnosticInfoOptimizationFailure &D) {
EmitOptimizationMessage(D, diag::warn_fe_backend_optimization_failure);
}
/// This function is invoked when the backend needs
/// to report something to the user.
void BackendConsumer::DiagnosticHandlerImpl(const DiagnosticInfo &DI) {
unsigned DiagID = diag::err_fe_inline_asm;
llvm::DiagnosticSeverity Severity = DI.getSeverity();
// Get the diagnostic ID based.
switch (DI.getKind()) {
case llvm::DK_InlineAsm:
if (InlineAsmDiagHandler(cast<DiagnosticInfoInlineAsm>(DI)))
return;
ComputeDiagID(Severity, inline_asm, DiagID);
break;
case llvm::DK_StackSize:
if (StackSizeDiagHandler(cast<DiagnosticInfoStackSize>(DI)))
return;
ComputeDiagID(Severity, backend_frame_larger_than, DiagID);
break;
case DK_Linker:
assert(CurLinkModule);
// FIXME: stop eating the warnings and notes.
if (Severity != DS_Error)
return;
DiagID = diag::err_fe_cannot_link_module;
break;
case llvm::DK_OptimizationRemark:
// Optimization remarks are always handled completely by this
// handler. There is no generic way of emitting them.
OptimizationRemarkHandler(cast<OptimizationRemark>(DI));
return;
case llvm::DK_OptimizationRemarkMissed:
// Optimization remarks are always handled completely by this
// handler. There is no generic way of emitting them.
OptimizationRemarkHandler(cast<OptimizationRemarkMissed>(DI));
return;
case llvm::DK_OptimizationRemarkAnalysis:
// Optimization remarks are always handled completely by this
// handler. There is no generic way of emitting them.
OptimizationRemarkHandler(cast<OptimizationRemarkAnalysis>(DI));
return;
case llvm::DK_OptimizationRemarkAnalysisFPCommute:
// Optimization remarks are always handled completely by this
// handler. There is no generic way of emitting them.
OptimizationRemarkHandler(cast<OptimizationRemarkAnalysisFPCommute>(DI));
return;
case llvm::DK_OptimizationRemarkAnalysisAliasing:
// Optimization remarks are always handled completely by this
// handler. There is no generic way of emitting them.
OptimizationRemarkHandler(cast<OptimizationRemarkAnalysisAliasing>(DI));
return;
case llvm::DK_MachineOptimizationRemark:
// Optimization remarks are always handled completely by this
// handler. There is no generic way of emitting them.
OptimizationRemarkHandler(cast<MachineOptimizationRemark>(DI));
return;
case llvm::DK_MachineOptimizationRemarkMissed:
// Optimization remarks are always handled completely by this
// handler. There is no generic way of emitting them.
OptimizationRemarkHandler(cast<MachineOptimizationRemarkMissed>(DI));
return;
case llvm::DK_MachineOptimizationRemarkAnalysis:
// Optimization remarks are always handled completely by this
// handler. There is no generic way of emitting them.
OptimizationRemarkHandler(cast<MachineOptimizationRemarkAnalysis>(DI));
return;
case llvm::DK_OptimizationFailure:
// Optimization failures are always handled completely by this
// handler.
OptimizationFailureHandler(cast<DiagnosticInfoOptimizationFailure>(DI));
return;
case llvm::DK_Unsupported:
UnsupportedDiagHandler(cast<DiagnosticInfoUnsupported>(DI));
return;
default:
// Plugin IDs are not bound to any value as they are set dynamically.
ComputeDiagRemarkID(Severity, backend_plugin, DiagID);
break;
}
std::string MsgStorage;
{
raw_string_ostream Stream(MsgStorage);
DiagnosticPrinterRawOStream DP(Stream);
DI.print(DP);
}
if (DiagID == diag::err_fe_cannot_link_module) {
Diags.Report(diag::err_fe_cannot_link_module)
<< CurLinkModule->getModuleIdentifier() << MsgStorage;
return;
}
// Report the backend message using the usual diagnostic mechanism.
FullSourceLoc Loc;
Diags.Report(Loc, DiagID).AddString(MsgStorage);
}
#undef ComputeDiagID
CodeGenAction::CodeGenAction(unsigned _Act, LLVMContext *_VMContext)
: Act(_Act), VMContext(_VMContext ? _VMContext : new LLVMContext),
OwnsVMContext(!_VMContext) {}
CodeGenAction::~CodeGenAction() {
TheModule.reset();
if (OwnsVMContext)
delete VMContext;
}
bool CodeGenAction::hasIRSupport() const { return true; }
void CodeGenAction::EndSourceFileAction() {
// If the consumer creation failed, do nothing.
if (!getCompilerInstance().hasASTConsumer())
return;
// Steal the module from the consumer.
TheModule = BEConsumer->takeModule();
}
std::unique_ptr<llvm::Module> CodeGenAction::takeModule() {
return std::move(TheModule);
}
llvm::LLVMContext *CodeGenAction::takeLLVMContext() {
OwnsVMContext = false;
return VMContext;
}
static std::unique_ptr<raw_pwrite_stream>
GetOutputStream(CompilerInstance &CI, StringRef InFile, BackendAction Action) {
switch (Action) {
case Backend_EmitAssembly:
return CI.createDefaultOutputFile(false, InFile, "s");
case Backend_EmitLL:
return CI.createDefaultOutputFile(false, InFile, "ll");
case Backend_EmitBC:
return CI.createDefaultOutputFile(true, InFile, "bc");
case Backend_EmitNothing:
return nullptr;
case Backend_EmitMCNull:
return CI.createNullOutputFile();
case Backend_EmitObj:
return CI.createDefaultOutputFile(true, InFile, "o");
}
llvm_unreachable("Invalid action!");
}
std::unique_ptr<ASTConsumer>
CodeGenAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) {
BackendAction BA = static_cast<BackendAction>(Act);
std::unique_ptr<raw_pwrite_stream> OS = CI.takeOutputStream();
if (!OS)
OS = GetOutputStream(CI, InFile, BA);
if (BA != Backend_EmitNothing && !OS)
return nullptr;
// Load bitcode modules to link with, if we need to.
if (LinkModules.empty())
for (const CodeGenOptions::BitcodeFileToLink &F :
CI.getCodeGenOpts().LinkBitcodeFiles) {
auto BCBuf = CI.getFileManager().getBufferForFile(F.Filename);
if (!BCBuf) {
CI.getDiagnostics().Report(diag::err_cannot_open_file)
<< F.Filename << BCBuf.getError().message();
LinkModules.clear();
return nullptr;
}
Expected<std::unique_ptr<llvm::Module>> ModuleOrErr =
getOwningLazyBitcodeModule(std::move(*BCBuf), *VMContext);
if (!ModuleOrErr) {
handleAllErrors(ModuleOrErr.takeError(), [&](ErrorInfoBase &EIB) {
CI.getDiagnostics().Report(diag::err_cannot_open_file)
<< F.Filename << EIB.message();
});
LinkModules.clear();
return nullptr;
}
LinkModules.push_back({std::move(ModuleOrErr.get()), F.PropagateAttrs,
F.Internalize, F.LinkFlags});
}
CoverageSourceInfo *CoverageInfo = nullptr;
// Add the preprocessor callback only when the coverage mapping is generated.
if (CI.getCodeGenOpts().CoverageMapping)
CoverageInfo = CodeGen::CoverageMappingModuleGen::setUpCoverageCallbacks(
CI.getPreprocessor());
std::unique_ptr<BackendConsumer> Result(new BackendConsumer(
BA, CI.getDiagnostics(), CI.getHeaderSearchOpts(),
CI.getPreprocessorOpts(), CI.getCodeGenOpts(), CI.getTargetOpts(),
CI.getLangOpts(), std::string(InFile), std::move(LinkModules),
std::move(OS), *VMContext, CoverageInfo));
BEConsumer = Result.get();
// Enable generating macro debug info only when debug info is not disabled and
// also macro debug info is enabled.
if (CI.getCodeGenOpts().getDebugInfo() != codegenoptions::NoDebugInfo &&
CI.getCodeGenOpts().MacroDebugInfo) {
std::unique_ptr<PPCallbacks> Callbacks =
std::make_unique<MacroPPCallbacks>(BEConsumer->getCodeGenerator(),
CI.getPreprocessor());
CI.getPreprocessor().addPPCallbacks(std::move(Callbacks));
}
return std::move(Result);
}
static void BitcodeInlineAsmDiagHandler(const llvm::SMDiagnostic &SM,
void *Context,
unsigned LocCookie) {
SM.print(nullptr, llvm::errs());
auto Diags = static_cast<DiagnosticsEngine *>(Context);
unsigned DiagID;
switch (SM.getKind()) {
case llvm::SourceMgr::DK_Error:
DiagID = diag::err_fe_inline_asm;
break;
case llvm::SourceMgr::DK_Warning:
DiagID = diag::warn_fe_inline_asm;
break;
case llvm::SourceMgr::DK_Note:
DiagID = diag::note_fe_inline_asm;
break;
case llvm::SourceMgr::DK_Remark:
llvm_unreachable("remarks unexpected");
}
Diags->Report(DiagID).AddString("cannot compile inline asm");
}
std::unique_ptr<llvm::Module>
CodeGenAction::loadModule(MemoryBufferRef MBRef) {
CompilerInstance &CI = getCompilerInstance();
SourceManager &SM = CI.getSourceManager();
// For ThinLTO backend invocations, ensure that the context
// merges types based on ODR identifiers. We also need to read
// the correct module out of a multi-module bitcode file.
if (!CI.getCodeGenOpts().ThinLTOIndexFile.empty()) {
VMContext->enableDebugTypeODRUniquing();
auto DiagErrors = [&](Error E) -> std::unique_ptr<llvm::Module> {
unsigned DiagID =
CI.getDiagnostics().getCustomDiagID(DiagnosticsEngine::Error, "%0");
handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) {
CI.getDiagnostics().Report(DiagID) << EIB.message();
});
return {};
};
Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef);
if (!BMsOrErr)
return DiagErrors(BMsOrErr.takeError());
BitcodeModule *Bm = llvm::lto::findThinLTOModule(*BMsOrErr);
// We have nothing to do if the file contains no ThinLTO module. This is
// possible if ThinLTO compilation was not able to split module. Content of
// the file was already processed by indexing and will be passed to the
// linker using merged object file.
if (!Bm) {
auto M = std::make_unique<llvm::Module>("empty", *VMContext);
M->setTargetTriple(CI.getTargetOpts().Triple);
return M;
}
Expected<std::unique_ptr<llvm::Module>> MOrErr =
Bm->parseModule(*VMContext);
if (!MOrErr)
return DiagErrors(MOrErr.takeError());
return std::move(*MOrErr);
}
llvm::SMDiagnostic Err;
if (std::unique_ptr<llvm::Module> M = parseIR(MBRef, Err, *VMContext))
return M;
// Translate from the diagnostic info to the SourceManager location if
// available.
// TODO: Unify this with ConvertBackendLocation()
SourceLocation Loc;
if (Err.getLineNo() > 0) {
assert(Err.getColumnNo() >= 0);
Loc = SM.translateFileLineCol(SM.getFileEntryForID(SM.getMainFileID()),
Err.getLineNo(), Err.getColumnNo() + 1);
}
// Strip off a leading diagnostic code if there is one.
StringRef Msg = Err.getMessage();
if (Msg.startswith("error: "))
Msg = Msg.substr(7);
unsigned DiagID =
CI.getDiagnostics().getCustomDiagID(DiagnosticsEngine::Error, "%0");
CI.getDiagnostics().Report(Loc, DiagID) << Msg;
return {};
}
void CodeGenAction::ExecuteAction() {
if (getCurrentFileKind().getLanguage() != Language::LLVM_IR) {
this->ASTFrontendAction::ExecuteAction();
return;
}
// If this is an IR file, we have to treat it specially.
BackendAction BA = static_cast<BackendAction>(Act);
CompilerInstance &CI = getCompilerInstance();
auto &CodeGenOpts = CI.getCodeGenOpts();
auto &Diagnostics = CI.getDiagnostics();
std::unique_ptr<raw_pwrite_stream> OS =
GetOutputStream(CI, getCurrentFile(), BA);
if (BA != Backend_EmitNothing && !OS)
return;
SourceManager &SM = CI.getSourceManager();
FileID FID = SM.getMainFileID();
Optional<MemoryBufferRef> MainFile = SM.getBufferOrNone(FID);
if (!MainFile)
return;
TheModule = loadModule(*MainFile);
if (!TheModule)
return;
const TargetOptions &TargetOpts = CI.getTargetOpts();
if (TheModule->getTargetTriple() != TargetOpts.Triple) {
Diagnostics.Report(SourceLocation(), diag::warn_fe_override_module)
<< TargetOpts.Triple;
TheModule->setTargetTriple(TargetOpts.Triple);
}
EmbedBitcode(TheModule.get(), CodeGenOpts, *MainFile);
LLVMContext &Ctx = TheModule->getContext();
Ctx.setInlineAsmDiagnosticHandler(BitcodeInlineAsmDiagHandler, &Diagnostics);
// Restore any diagnostic handler previously set before returning from this
// function.
struct RAII {
LLVMContext &Ctx;
std::unique_ptr<DiagnosticHandler> PrevHandler = Ctx.getDiagnosticHandler();
~RAII() { Ctx.setDiagnosticHandler(std::move(PrevHandler)); }
} _{Ctx};
// Set clang diagnostic handler. To do this we need to create a fake
// BackendConsumer.
BackendConsumer Result(BA, CI.getDiagnostics(), CI.getHeaderSearchOpts(),
CI.getPreprocessorOpts(), CI.getCodeGenOpts(),
CI.getTargetOpts(), CI.getLangOpts(),
std::move(LinkModules), *VMContext, nullptr);
// PR44896: Force DiscardValueNames as false. DiscardValueNames cannot be
// true here because the valued names are needed for reading textual IR.
Ctx.setDiscardValueNames(false);
Ctx.setDiagnosticHandler(
std::make_unique<ClangDiagnosticHandler>(CodeGenOpts, &Result));
Expected<std::unique_ptr<llvm::ToolOutputFile>> OptRecordFileOrErr =
setupLLVMOptimizationRemarks(
Ctx, CodeGenOpts.OptRecordFile, CodeGenOpts.OptRecordPasses,
CodeGenOpts.OptRecordFormat, CodeGenOpts.DiagnosticsWithHotness,
CodeGenOpts.DiagnosticsHotnessThreshold);
if (Error E = OptRecordFileOrErr.takeError()) {
reportOptRecordError(std::move(E), Diagnostics, CodeGenOpts);
return;
}
std::unique_ptr<llvm::ToolOutputFile> OptRecordFile =
std::move(*OptRecordFileOrErr);
EmitBackendOutput(Diagnostics, CI.getHeaderSearchOpts(), CodeGenOpts,
TargetOpts, CI.getLangOpts(),
CI.getTarget().getDataLayout(), TheModule.get(), BA,
std::move(OS));
if (OptRecordFile)
OptRecordFile->keep();
}
//
void EmitAssemblyAction::anchor() { }
EmitAssemblyAction::EmitAssemblyAction(llvm::LLVMContext *_VMContext)
: CodeGenAction(Backend_EmitAssembly, _VMContext) {}
void EmitBCAction::anchor() { }
EmitBCAction::EmitBCAction(llvm::LLVMContext *_VMContext)
: CodeGenAction(Backend_EmitBC, _VMContext) {}
void EmitLLVMAction::anchor() { }
EmitLLVMAction::EmitLLVMAction(llvm::LLVMContext *_VMContext)
: CodeGenAction(Backend_EmitLL, _VMContext) {}
void EmitLLVMOnlyAction::anchor() { }
EmitLLVMOnlyAction::EmitLLVMOnlyAction(llvm::LLVMContext *_VMContext)
: CodeGenAction(Backend_EmitNothing, _VMContext) {}
void EmitCodeGenOnlyAction::anchor() { }
EmitCodeGenOnlyAction::EmitCodeGenOnlyAction(llvm::LLVMContext *_VMContext)
: CodeGenAction(Backend_EmitMCNull, _VMContext) {}
void EmitObjAction::anchor() { }
EmitObjAction::EmitObjAction(llvm::LLVMContext *_VMContext)
: CodeGenAction(Backend_EmitObj, _VMContext) {}