forked from OSchip/llvm-project
5119 lines
193 KiB
C++
5119 lines
193 KiB
C++
//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the function verifier interface, that can be used for some
|
|
// sanity checking of input to the system.
|
|
//
|
|
// Note that this does not provide full `Java style' security and verifications,
|
|
// instead it just tries to ensure that code is well-formed.
|
|
//
|
|
// * Both of a binary operator's parameters are of the same type
|
|
// * Verify that the indices of mem access instructions match other operands
|
|
// * Verify that arithmetic and other things are only performed on first-class
|
|
// types. Verify that shifts & logicals only happen on integrals f.e.
|
|
// * All of the constants in a switch statement are of the correct type
|
|
// * The code is in valid SSA form
|
|
// * It should be illegal to put a label into any other type (like a structure)
|
|
// or to return one. [except constant arrays!]
|
|
// * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
|
|
// * PHI nodes must have an entry for each predecessor, with no extras.
|
|
// * PHI nodes must be the first thing in a basic block, all grouped together
|
|
// * PHI nodes must have at least one entry
|
|
// * All basic blocks should only end with terminator insts, not contain them
|
|
// * The entry node to a function must not have predecessors
|
|
// * All Instructions must be embedded into a basic block
|
|
// * Functions cannot take a void-typed parameter
|
|
// * Verify that a function's argument list agrees with it's declared type.
|
|
// * It is illegal to specify a name for a void value.
|
|
// * It is illegal to have a internal global value with no initializer
|
|
// * It is illegal to have a ret instruction that returns a value that does not
|
|
// agree with the function return value type.
|
|
// * Function call argument types match the function prototype
|
|
// * A landing pad is defined by a landingpad instruction, and can be jumped to
|
|
// only by the unwind edge of an invoke instruction.
|
|
// * A landingpad instruction must be the first non-PHI instruction in the
|
|
// block.
|
|
// * Landingpad instructions must be in a function with a personality function.
|
|
// * All other things that are tested by asserts spread about the code...
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/IR/Verifier.h"
|
|
#include "llvm/ADT/APFloat.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringMap.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/ADT/ilist.h"
|
|
#include "llvm/BinaryFormat/Dwarf.h"
|
|
#include "llvm/IR/Argument.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/IR/Comdat.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/ConstantRange.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugInfo.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalAlias.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/InlineAsm.h"
|
|
#include "llvm/IR/InstVisitor.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/ModuleSlotTracker.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/IR/Statepoint.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/AtomicOrdering.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
namespace llvm {
|
|
|
|
struct VerifierSupport {
|
|
raw_ostream *OS;
|
|
const Module &M;
|
|
ModuleSlotTracker MST;
|
|
const DataLayout &DL;
|
|
LLVMContext &Context;
|
|
|
|
/// Track the brokenness of the module while recursively visiting.
|
|
bool Broken = false;
|
|
/// Broken debug info can be "recovered" from by stripping the debug info.
|
|
bool BrokenDebugInfo = false;
|
|
/// Whether to treat broken debug info as an error.
|
|
bool TreatBrokenDebugInfoAsError = true;
|
|
|
|
explicit VerifierSupport(raw_ostream *OS, const Module &M)
|
|
: OS(OS), M(M), MST(&M), DL(M.getDataLayout()), Context(M.getContext()) {}
|
|
|
|
private:
|
|
void Write(const Module *M) {
|
|
*OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
|
|
}
|
|
|
|
void Write(const Value *V) {
|
|
if (!V)
|
|
return;
|
|
if (isa<Instruction>(V)) {
|
|
V->print(*OS, MST);
|
|
*OS << '\n';
|
|
} else {
|
|
V->printAsOperand(*OS, true, MST);
|
|
*OS << '\n';
|
|
}
|
|
}
|
|
|
|
void Write(ImmutableCallSite CS) {
|
|
Write(CS.getInstruction());
|
|
}
|
|
|
|
void Write(const Metadata *MD) {
|
|
if (!MD)
|
|
return;
|
|
MD->print(*OS, MST, &M);
|
|
*OS << '\n';
|
|
}
|
|
|
|
template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
|
|
Write(MD.get());
|
|
}
|
|
|
|
void Write(const NamedMDNode *NMD) {
|
|
if (!NMD)
|
|
return;
|
|
NMD->print(*OS, MST);
|
|
*OS << '\n';
|
|
}
|
|
|
|
void Write(Type *T) {
|
|
if (!T)
|
|
return;
|
|
*OS << ' ' << *T;
|
|
}
|
|
|
|
void Write(const Comdat *C) {
|
|
if (!C)
|
|
return;
|
|
*OS << *C;
|
|
}
|
|
|
|
void Write(const APInt *AI) {
|
|
if (!AI)
|
|
return;
|
|
*OS << *AI << '\n';
|
|
}
|
|
|
|
void Write(const unsigned i) { *OS << i << '\n'; }
|
|
|
|
template <typename T> void Write(ArrayRef<T> Vs) {
|
|
for (const T &V : Vs)
|
|
Write(V);
|
|
}
|
|
|
|
template <typename T1, typename... Ts>
|
|
void WriteTs(const T1 &V1, const Ts &... Vs) {
|
|
Write(V1);
|
|
WriteTs(Vs...);
|
|
}
|
|
|
|
template <typename... Ts> void WriteTs() {}
|
|
|
|
public:
|
|
/// \brief A check failed, so printout out the condition and the message.
|
|
///
|
|
/// This provides a nice place to put a breakpoint if you want to see why
|
|
/// something is not correct.
|
|
void CheckFailed(const Twine &Message) {
|
|
if (OS)
|
|
*OS << Message << '\n';
|
|
Broken = true;
|
|
}
|
|
|
|
/// \brief A check failed (with values to print).
|
|
///
|
|
/// This calls the Message-only version so that the above is easier to set a
|
|
/// breakpoint on.
|
|
template <typename T1, typename... Ts>
|
|
void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
|
|
CheckFailed(Message);
|
|
if (OS)
|
|
WriteTs(V1, Vs...);
|
|
}
|
|
|
|
/// A debug info check failed.
|
|
void DebugInfoCheckFailed(const Twine &Message) {
|
|
if (OS)
|
|
*OS << Message << '\n';
|
|
Broken |= TreatBrokenDebugInfoAsError;
|
|
BrokenDebugInfo = true;
|
|
}
|
|
|
|
/// A debug info check failed (with values to print).
|
|
template <typename T1, typename... Ts>
|
|
void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
|
|
const Ts &... Vs) {
|
|
DebugInfoCheckFailed(Message);
|
|
if (OS)
|
|
WriteTs(V1, Vs...);
|
|
}
|
|
};
|
|
|
|
} // namespace llvm
|
|
|
|
namespace {
|
|
|
|
class Verifier : public InstVisitor<Verifier>, VerifierSupport {
|
|
friend class InstVisitor<Verifier>;
|
|
|
|
DominatorTree DT;
|
|
|
|
/// \brief When verifying a basic block, keep track of all of the
|
|
/// instructions we have seen so far.
|
|
///
|
|
/// This allows us to do efficient dominance checks for the case when an
|
|
/// instruction has an operand that is an instruction in the same block.
|
|
SmallPtrSet<Instruction *, 16> InstsInThisBlock;
|
|
|
|
/// \brief Keep track of the metadata nodes that have been checked already.
|
|
SmallPtrSet<const Metadata *, 32> MDNodes;
|
|
|
|
/// Keep track which DISubprogram is attached to which function.
|
|
DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
|
|
|
|
/// Track all DICompileUnits visited.
|
|
SmallPtrSet<const Metadata *, 2> CUVisited;
|
|
|
|
/// \brief The result type for a landingpad.
|
|
Type *LandingPadResultTy;
|
|
|
|
/// \brief Whether we've seen a call to @llvm.localescape in this function
|
|
/// already.
|
|
bool SawFrameEscape;
|
|
|
|
/// Whether the current function has a DISubprogram attached to it.
|
|
bool HasDebugInfo = false;
|
|
|
|
/// Stores the count of how many objects were passed to llvm.localescape for a
|
|
/// given function and the largest index passed to llvm.localrecover.
|
|
DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
|
|
|
|
// Maps catchswitches and cleanuppads that unwind to siblings to the
|
|
// terminators that indicate the unwind, used to detect cycles therein.
|
|
MapVector<Instruction *, TerminatorInst *> SiblingFuncletInfo;
|
|
|
|
/// Cache of constants visited in search of ConstantExprs.
|
|
SmallPtrSet<const Constant *, 32> ConstantExprVisited;
|
|
|
|
/// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
|
|
SmallVector<const Function *, 4> DeoptimizeDeclarations;
|
|
|
|
// Verify that this GlobalValue is only used in this module.
|
|
// This map is used to avoid visiting uses twice. We can arrive at a user
|
|
// twice, if they have multiple operands. In particular for very large
|
|
// constant expressions, we can arrive at a particular user many times.
|
|
SmallPtrSet<const Value *, 32> GlobalValueVisited;
|
|
|
|
// Keeps track of duplicate function argument debug info.
|
|
SmallVector<const DILocalVariable *, 16> DebugFnArgs;
|
|
|
|
TBAAVerifier TBAAVerifyHelper;
|
|
|
|
void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
|
|
|
|
public:
|
|
explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
|
|
const Module &M)
|
|
: VerifierSupport(OS, M), LandingPadResultTy(nullptr),
|
|
SawFrameEscape(false), TBAAVerifyHelper(this) {
|
|
TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
|
|
}
|
|
|
|
bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
|
|
|
|
bool verify(const Function &F) {
|
|
assert(F.getParent() == &M &&
|
|
"An instance of this class only works with a specific module!");
|
|
|
|
// First ensure the function is well-enough formed to compute dominance
|
|
// information, and directly compute a dominance tree. We don't rely on the
|
|
// pass manager to provide this as it isolates us from a potentially
|
|
// out-of-date dominator tree and makes it significantly more complex to run
|
|
// this code outside of a pass manager.
|
|
// FIXME: It's really gross that we have to cast away constness here.
|
|
if (!F.empty())
|
|
DT.recalculate(const_cast<Function &>(F));
|
|
|
|
for (const BasicBlock &BB : F) {
|
|
if (!BB.empty() && BB.back().isTerminator())
|
|
continue;
|
|
|
|
if (OS) {
|
|
*OS << "Basic Block in function '" << F.getName()
|
|
<< "' does not have terminator!\n";
|
|
BB.printAsOperand(*OS, true, MST);
|
|
*OS << "\n";
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Broken = false;
|
|
// FIXME: We strip const here because the inst visitor strips const.
|
|
visit(const_cast<Function &>(F));
|
|
verifySiblingFuncletUnwinds();
|
|
InstsInThisBlock.clear();
|
|
DebugFnArgs.clear();
|
|
LandingPadResultTy = nullptr;
|
|
SawFrameEscape = false;
|
|
SiblingFuncletInfo.clear();
|
|
|
|
return !Broken;
|
|
}
|
|
|
|
/// Verify the module that this instance of \c Verifier was initialized with.
|
|
bool verify() {
|
|
Broken = false;
|
|
|
|
// Collect all declarations of the llvm.experimental.deoptimize intrinsic.
|
|
for (const Function &F : M)
|
|
if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
|
|
DeoptimizeDeclarations.push_back(&F);
|
|
|
|
// Now that we've visited every function, verify that we never asked to
|
|
// recover a frame index that wasn't escaped.
|
|
verifyFrameRecoverIndices();
|
|
for (const GlobalVariable &GV : M.globals())
|
|
visitGlobalVariable(GV);
|
|
|
|
for (const GlobalAlias &GA : M.aliases())
|
|
visitGlobalAlias(GA);
|
|
|
|
for (const NamedMDNode &NMD : M.named_metadata())
|
|
visitNamedMDNode(NMD);
|
|
|
|
for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
|
|
visitComdat(SMEC.getValue());
|
|
|
|
visitModuleFlags(M);
|
|
visitModuleIdents(M);
|
|
|
|
verifyCompileUnits();
|
|
|
|
verifyDeoptimizeCallingConvs();
|
|
DISubprogramAttachments.clear();
|
|
return !Broken;
|
|
}
|
|
|
|
private:
|
|
// Verification methods...
|
|
void visitGlobalValue(const GlobalValue &GV);
|
|
void visitGlobalVariable(const GlobalVariable &GV);
|
|
void visitGlobalAlias(const GlobalAlias &GA);
|
|
void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
|
|
void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
|
|
const GlobalAlias &A, const Constant &C);
|
|
void visitNamedMDNode(const NamedMDNode &NMD);
|
|
void visitMDNode(const MDNode &MD);
|
|
void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
|
|
void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
|
|
void visitComdat(const Comdat &C);
|
|
void visitModuleIdents(const Module &M);
|
|
void visitModuleFlags(const Module &M);
|
|
void visitModuleFlag(const MDNode *Op,
|
|
DenseMap<const MDString *, const MDNode *> &SeenIDs,
|
|
SmallVectorImpl<const MDNode *> &Requirements);
|
|
void visitFunction(const Function &F);
|
|
void visitBasicBlock(BasicBlock &BB);
|
|
void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
|
|
void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
|
|
|
|
template <class Ty> bool isValidMetadataArray(const MDTuple &N);
|
|
#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
|
|
#include "llvm/IR/Metadata.def"
|
|
void visitDIScope(const DIScope &N);
|
|
void visitDIVariable(const DIVariable &N);
|
|
void visitDILexicalBlockBase(const DILexicalBlockBase &N);
|
|
void visitDITemplateParameter(const DITemplateParameter &N);
|
|
|
|
void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
|
|
|
|
// InstVisitor overrides...
|
|
using InstVisitor<Verifier>::visit;
|
|
void visit(Instruction &I);
|
|
|
|
void visitTruncInst(TruncInst &I);
|
|
void visitZExtInst(ZExtInst &I);
|
|
void visitSExtInst(SExtInst &I);
|
|
void visitFPTruncInst(FPTruncInst &I);
|
|
void visitFPExtInst(FPExtInst &I);
|
|
void visitFPToUIInst(FPToUIInst &I);
|
|
void visitFPToSIInst(FPToSIInst &I);
|
|
void visitUIToFPInst(UIToFPInst &I);
|
|
void visitSIToFPInst(SIToFPInst &I);
|
|
void visitIntToPtrInst(IntToPtrInst &I);
|
|
void visitPtrToIntInst(PtrToIntInst &I);
|
|
void visitBitCastInst(BitCastInst &I);
|
|
void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
|
|
void visitPHINode(PHINode &PN);
|
|
void visitBinaryOperator(BinaryOperator &B);
|
|
void visitICmpInst(ICmpInst &IC);
|
|
void visitFCmpInst(FCmpInst &FC);
|
|
void visitExtractElementInst(ExtractElementInst &EI);
|
|
void visitInsertElementInst(InsertElementInst &EI);
|
|
void visitShuffleVectorInst(ShuffleVectorInst &EI);
|
|
void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
|
|
void visitCallInst(CallInst &CI);
|
|
void visitInvokeInst(InvokeInst &II);
|
|
void visitGetElementPtrInst(GetElementPtrInst &GEP);
|
|
void visitLoadInst(LoadInst &LI);
|
|
void visitStoreInst(StoreInst &SI);
|
|
void verifyDominatesUse(Instruction &I, unsigned i);
|
|
void visitInstruction(Instruction &I);
|
|
void visitTerminatorInst(TerminatorInst &I);
|
|
void visitBranchInst(BranchInst &BI);
|
|
void visitReturnInst(ReturnInst &RI);
|
|
void visitSwitchInst(SwitchInst &SI);
|
|
void visitIndirectBrInst(IndirectBrInst &BI);
|
|
void visitSelectInst(SelectInst &SI);
|
|
void visitUserOp1(Instruction &I);
|
|
void visitUserOp2(Instruction &I) { visitUserOp1(I); }
|
|
void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS);
|
|
void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
|
|
void visitDbgIntrinsic(StringRef Kind, DbgInfoIntrinsic &DII);
|
|
void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
|
|
void visitAtomicRMWInst(AtomicRMWInst &RMWI);
|
|
void visitFenceInst(FenceInst &FI);
|
|
void visitAllocaInst(AllocaInst &AI);
|
|
void visitExtractValueInst(ExtractValueInst &EVI);
|
|
void visitInsertValueInst(InsertValueInst &IVI);
|
|
void visitEHPadPredecessors(Instruction &I);
|
|
void visitLandingPadInst(LandingPadInst &LPI);
|
|
void visitResumeInst(ResumeInst &RI);
|
|
void visitCatchPadInst(CatchPadInst &CPI);
|
|
void visitCatchReturnInst(CatchReturnInst &CatchReturn);
|
|
void visitCleanupPadInst(CleanupPadInst &CPI);
|
|
void visitFuncletPadInst(FuncletPadInst &FPI);
|
|
void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
|
|
void visitCleanupReturnInst(CleanupReturnInst &CRI);
|
|
|
|
void verifyCallSite(CallSite CS);
|
|
void verifySwiftErrorCallSite(CallSite CS, const Value *SwiftErrorVal);
|
|
void verifySwiftErrorValue(const Value *SwiftErrorVal);
|
|
void verifyMustTailCall(CallInst &CI);
|
|
bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
|
|
unsigned ArgNo, std::string &Suffix);
|
|
bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
|
|
void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
|
|
const Value *V);
|
|
void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
|
|
void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
|
|
const Value *V);
|
|
void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
|
|
|
|
void visitConstantExprsRecursively(const Constant *EntryC);
|
|
void visitConstantExpr(const ConstantExpr *CE);
|
|
void verifyStatepoint(ImmutableCallSite CS);
|
|
void verifyFrameRecoverIndices();
|
|
void verifySiblingFuncletUnwinds();
|
|
|
|
void verifyFragmentExpression(const DbgInfoIntrinsic &I);
|
|
template <typename ValueOrMetadata>
|
|
void verifyFragmentExpression(const DIVariable &V,
|
|
DIExpression::FragmentInfo Fragment,
|
|
ValueOrMetadata *Desc);
|
|
void verifyFnArgs(const DbgInfoIntrinsic &I);
|
|
|
|
/// Module-level debug info verification...
|
|
void verifyCompileUnits();
|
|
|
|
/// Module-level verification that all @llvm.experimental.deoptimize
|
|
/// declarations share the same calling convention.
|
|
void verifyDeoptimizeCallingConvs();
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// We know that cond should be true, if not print an error message.
|
|
#define Assert(C, ...) \
|
|
do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
|
|
|
|
/// We know that a debug info condition should be true, if not print
|
|
/// an error message.
|
|
#define AssertDI(C, ...) \
|
|
do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
|
|
|
|
void Verifier::visit(Instruction &I) {
|
|
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
|
|
Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
|
|
InstVisitor<Verifier>::visit(I);
|
|
}
|
|
|
|
// Helper to recursively iterate over indirect users. By
|
|
// returning false, the callback can ask to stop recursing
|
|
// further.
|
|
static void forEachUser(const Value *User,
|
|
SmallPtrSet<const Value *, 32> &Visited,
|
|
llvm::function_ref<bool(const Value *)> Callback) {
|
|
if (!Visited.insert(User).second)
|
|
return;
|
|
for (const Value *TheNextUser : User->materialized_users())
|
|
if (Callback(TheNextUser))
|
|
forEachUser(TheNextUser, Visited, Callback);
|
|
}
|
|
|
|
void Verifier::visitGlobalValue(const GlobalValue &GV) {
|
|
Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
|
|
"Global is external, but doesn't have external or weak linkage!", &GV);
|
|
|
|
Assert(GV.getAlignment() <= Value::MaximumAlignment,
|
|
"huge alignment values are unsupported", &GV);
|
|
Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
|
|
"Only global variables can have appending linkage!", &GV);
|
|
|
|
if (GV.hasAppendingLinkage()) {
|
|
const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
|
|
Assert(GVar && GVar->getValueType()->isArrayTy(),
|
|
"Only global arrays can have appending linkage!", GVar);
|
|
}
|
|
|
|
if (GV.isDeclarationForLinker())
|
|
Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
|
|
|
|
if (GV.hasDLLImportStorageClass()) {
|
|
Assert(!GV.isDSOLocal(),
|
|
"GlobalValue with DLLImport Storage is dso_local!", &GV);
|
|
|
|
Assert((GV.isDeclaration() && GV.hasExternalLinkage()) ||
|
|
GV.hasAvailableExternallyLinkage(),
|
|
"Global is marked as dllimport, but not external", &GV);
|
|
}
|
|
|
|
if (GV.hasLocalLinkage())
|
|
Assert(GV.isDSOLocal(),
|
|
"GlobalValue with private or internal linkage must be dso_local!",
|
|
&GV);
|
|
|
|
if (!GV.hasDefaultVisibility() && !GV.hasExternalWeakLinkage())
|
|
Assert(GV.isDSOLocal(),
|
|
"GlobalValue with non default visibility must be dso_local!", &GV);
|
|
|
|
forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
|
|
if (const Instruction *I = dyn_cast<Instruction>(V)) {
|
|
if (!I->getParent() || !I->getParent()->getParent())
|
|
CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
|
|
I);
|
|
else if (I->getParent()->getParent()->getParent() != &M)
|
|
CheckFailed("Global is referenced in a different module!", &GV, &M, I,
|
|
I->getParent()->getParent(),
|
|
I->getParent()->getParent()->getParent());
|
|
return false;
|
|
} else if (const Function *F = dyn_cast<Function>(V)) {
|
|
if (F->getParent() != &M)
|
|
CheckFailed("Global is used by function in a different module", &GV, &M,
|
|
F, F->getParent());
|
|
return false;
|
|
}
|
|
return true;
|
|
});
|
|
}
|
|
|
|
void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
|
|
if (GV.hasInitializer()) {
|
|
Assert(GV.getInitializer()->getType() == GV.getValueType(),
|
|
"Global variable initializer type does not match global "
|
|
"variable type!",
|
|
&GV);
|
|
// If the global has common linkage, it must have a zero initializer and
|
|
// cannot be constant.
|
|
if (GV.hasCommonLinkage()) {
|
|
Assert(GV.getInitializer()->isNullValue(),
|
|
"'common' global must have a zero initializer!", &GV);
|
|
Assert(!GV.isConstant(), "'common' global may not be marked constant!",
|
|
&GV);
|
|
Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
|
|
}
|
|
}
|
|
|
|
if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
|
|
GV.getName() == "llvm.global_dtors")) {
|
|
Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
|
|
"invalid linkage for intrinsic global variable", &GV);
|
|
// Don't worry about emitting an error for it not being an array,
|
|
// visitGlobalValue will complain on appending non-array.
|
|
if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
|
|
StructType *STy = dyn_cast<StructType>(ATy->getElementType());
|
|
PointerType *FuncPtrTy =
|
|
FunctionType::get(Type::getVoidTy(Context), false)->getPointerTo();
|
|
// FIXME: Reject the 2-field form in LLVM 4.0.
|
|
Assert(STy &&
|
|
(STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
|
|
STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
|
|
STy->getTypeAtIndex(1) == FuncPtrTy,
|
|
"wrong type for intrinsic global variable", &GV);
|
|
if (STy->getNumElements() == 3) {
|
|
Type *ETy = STy->getTypeAtIndex(2);
|
|
Assert(ETy->isPointerTy() &&
|
|
cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
|
|
"wrong type for intrinsic global variable", &GV);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (GV.hasName() && (GV.getName() == "llvm.used" ||
|
|
GV.getName() == "llvm.compiler.used")) {
|
|
Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
|
|
"invalid linkage for intrinsic global variable", &GV);
|
|
Type *GVType = GV.getValueType();
|
|
if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
|
|
PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
|
|
Assert(PTy, "wrong type for intrinsic global variable", &GV);
|
|
if (GV.hasInitializer()) {
|
|
const Constant *Init = GV.getInitializer();
|
|
const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
|
|
Assert(InitArray, "wrong initalizer for intrinsic global variable",
|
|
Init);
|
|
for (Value *Op : InitArray->operands()) {
|
|
Value *V = Op->stripPointerCastsNoFollowAliases();
|
|
Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
|
|
isa<GlobalAlias>(V),
|
|
"invalid llvm.used member", V);
|
|
Assert(V->hasName(), "members of llvm.used must be named", V);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Visit any debug info attachments.
|
|
SmallVector<MDNode *, 1> MDs;
|
|
GV.getMetadata(LLVMContext::MD_dbg, MDs);
|
|
for (auto *MD : MDs) {
|
|
if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
|
|
visitDIGlobalVariableExpression(*GVE);
|
|
else
|
|
AssertDI(false, "!dbg attachment of global variable must be a "
|
|
"DIGlobalVariableExpression");
|
|
}
|
|
|
|
if (!GV.hasInitializer()) {
|
|
visitGlobalValue(GV);
|
|
return;
|
|
}
|
|
|
|
// Walk any aggregate initializers looking for bitcasts between address spaces
|
|
visitConstantExprsRecursively(GV.getInitializer());
|
|
|
|
visitGlobalValue(GV);
|
|
}
|
|
|
|
void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
|
|
SmallPtrSet<const GlobalAlias*, 4> Visited;
|
|
Visited.insert(&GA);
|
|
visitAliaseeSubExpr(Visited, GA, C);
|
|
}
|
|
|
|
void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
|
|
const GlobalAlias &GA, const Constant &C) {
|
|
if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
|
|
Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
|
|
&GA);
|
|
|
|
if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
|
|
Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
|
|
|
|
Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
|
|
&GA);
|
|
} else {
|
|
// Only continue verifying subexpressions of GlobalAliases.
|
|
// Do not recurse into global initializers.
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (const auto *CE = dyn_cast<ConstantExpr>(&C))
|
|
visitConstantExprsRecursively(CE);
|
|
|
|
for (const Use &U : C.operands()) {
|
|
Value *V = &*U;
|
|
if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
|
|
visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
|
|
else if (const auto *C2 = dyn_cast<Constant>(V))
|
|
visitAliaseeSubExpr(Visited, GA, *C2);
|
|
}
|
|
}
|
|
|
|
void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
|
|
Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
|
|
"Alias should have private, internal, linkonce, weak, linkonce_odr, "
|
|
"weak_odr, or external linkage!",
|
|
&GA);
|
|
const Constant *Aliasee = GA.getAliasee();
|
|
Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
|
|
Assert(GA.getType() == Aliasee->getType(),
|
|
"Alias and aliasee types should match!", &GA);
|
|
|
|
Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
|
|
"Aliasee should be either GlobalValue or ConstantExpr", &GA);
|
|
|
|
visitAliaseeSubExpr(GA, *Aliasee);
|
|
|
|
visitGlobalValue(GA);
|
|
}
|
|
|
|
void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
|
|
// There used to be various other llvm.dbg.* nodes, but we don't support
|
|
// upgrading them and we want to reserve the namespace for future uses.
|
|
if (NMD.getName().startswith("llvm.dbg."))
|
|
AssertDI(NMD.getName() == "llvm.dbg.cu",
|
|
"unrecognized named metadata node in the llvm.dbg namespace",
|
|
&NMD);
|
|
for (const MDNode *MD : NMD.operands()) {
|
|
if (NMD.getName() == "llvm.dbg.cu")
|
|
AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
|
|
|
|
if (!MD)
|
|
continue;
|
|
|
|
visitMDNode(*MD);
|
|
}
|
|
}
|
|
|
|
void Verifier::visitMDNode(const MDNode &MD) {
|
|
// Only visit each node once. Metadata can be mutually recursive, so this
|
|
// avoids infinite recursion here, as well as being an optimization.
|
|
if (!MDNodes.insert(&MD).second)
|
|
return;
|
|
|
|
switch (MD.getMetadataID()) {
|
|
default:
|
|
llvm_unreachable("Invalid MDNode subclass");
|
|
case Metadata::MDTupleKind:
|
|
break;
|
|
#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
|
|
case Metadata::CLASS##Kind: \
|
|
visit##CLASS(cast<CLASS>(MD)); \
|
|
break;
|
|
#include "llvm/IR/Metadata.def"
|
|
}
|
|
|
|
for (const Metadata *Op : MD.operands()) {
|
|
if (!Op)
|
|
continue;
|
|
Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
|
|
&MD, Op);
|
|
if (auto *N = dyn_cast<MDNode>(Op)) {
|
|
visitMDNode(*N);
|
|
continue;
|
|
}
|
|
if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
|
|
visitValueAsMetadata(*V, nullptr);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Check these last, so we diagnose problems in operands first.
|
|
Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
|
|
Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
|
|
}
|
|
|
|
void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
|
|
Assert(MD.getValue(), "Expected valid value", &MD);
|
|
Assert(!MD.getValue()->getType()->isMetadataTy(),
|
|
"Unexpected metadata round-trip through values", &MD, MD.getValue());
|
|
|
|
auto *L = dyn_cast<LocalAsMetadata>(&MD);
|
|
if (!L)
|
|
return;
|
|
|
|
Assert(F, "function-local metadata used outside a function", L);
|
|
|
|
// If this was an instruction, bb, or argument, verify that it is in the
|
|
// function that we expect.
|
|
Function *ActualF = nullptr;
|
|
if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
|
|
Assert(I->getParent(), "function-local metadata not in basic block", L, I);
|
|
ActualF = I->getParent()->getParent();
|
|
} else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
|
|
ActualF = BB->getParent();
|
|
else if (Argument *A = dyn_cast<Argument>(L->getValue()))
|
|
ActualF = A->getParent();
|
|
assert(ActualF && "Unimplemented function local metadata case!");
|
|
|
|
Assert(ActualF == F, "function-local metadata used in wrong function", L);
|
|
}
|
|
|
|
void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
|
|
Metadata *MD = MDV.getMetadata();
|
|
if (auto *N = dyn_cast<MDNode>(MD)) {
|
|
visitMDNode(*N);
|
|
return;
|
|
}
|
|
|
|
// Only visit each node once. Metadata can be mutually recursive, so this
|
|
// avoids infinite recursion here, as well as being an optimization.
|
|
if (!MDNodes.insert(MD).second)
|
|
return;
|
|
|
|
if (auto *V = dyn_cast<ValueAsMetadata>(MD))
|
|
visitValueAsMetadata(*V, F);
|
|
}
|
|
|
|
static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
|
|
static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
|
|
static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
|
|
|
|
void Verifier::visitDILocation(const DILocation &N) {
|
|
AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
|
|
"location requires a valid scope", &N, N.getRawScope());
|
|
if (auto *IA = N.getRawInlinedAt())
|
|
AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
|
|
if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
|
|
AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
|
|
}
|
|
|
|
void Verifier::visitGenericDINode(const GenericDINode &N) {
|
|
AssertDI(N.getTag(), "invalid tag", &N);
|
|
}
|
|
|
|
void Verifier::visitDIScope(const DIScope &N) {
|
|
if (auto *F = N.getRawFile())
|
|
AssertDI(isa<DIFile>(F), "invalid file", &N, F);
|
|
}
|
|
|
|
void Verifier::visitDISubrange(const DISubrange &N) {
|
|
AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
|
|
auto Count = N.getCount();
|
|
AssertDI(Count, "Count must either be a signed constant or a DIVariable",
|
|
&N);
|
|
AssertDI(!Count.is<ConstantInt*>() ||
|
|
Count.get<ConstantInt*>()->getSExtValue() >= -1,
|
|
"invalid subrange count", &N);
|
|
}
|
|
|
|
void Verifier::visitDIEnumerator(const DIEnumerator &N) {
|
|
AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
|
|
}
|
|
|
|
void Verifier::visitDIBasicType(const DIBasicType &N) {
|
|
AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
|
|
N.getTag() == dwarf::DW_TAG_unspecified_type,
|
|
"invalid tag", &N);
|
|
}
|
|
|
|
void Verifier::visitDIDerivedType(const DIDerivedType &N) {
|
|
// Common scope checks.
|
|
visitDIScope(N);
|
|
|
|
AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
|
|
N.getTag() == dwarf::DW_TAG_pointer_type ||
|
|
N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
|
|
N.getTag() == dwarf::DW_TAG_reference_type ||
|
|
N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
|
|
N.getTag() == dwarf::DW_TAG_const_type ||
|
|
N.getTag() == dwarf::DW_TAG_volatile_type ||
|
|
N.getTag() == dwarf::DW_TAG_restrict_type ||
|
|
N.getTag() == dwarf::DW_TAG_atomic_type ||
|
|
N.getTag() == dwarf::DW_TAG_member ||
|
|
N.getTag() == dwarf::DW_TAG_inheritance ||
|
|
N.getTag() == dwarf::DW_TAG_friend,
|
|
"invalid tag", &N);
|
|
if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
|
|
AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
|
|
N.getRawExtraData());
|
|
}
|
|
|
|
AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
|
|
AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
|
|
N.getRawBaseType());
|
|
|
|
if (N.getDWARFAddressSpace()) {
|
|
AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
|
|
N.getTag() == dwarf::DW_TAG_reference_type,
|
|
"DWARF address space only applies to pointer or reference types",
|
|
&N);
|
|
}
|
|
}
|
|
|
|
/// Detect mutually exclusive flags.
|
|
static bool hasConflictingReferenceFlags(unsigned Flags) {
|
|
return ((Flags & DINode::FlagLValueReference) &&
|
|
(Flags & DINode::FlagRValueReference)) ||
|
|
((Flags & DINode::FlagTypePassByValue) &&
|
|
(Flags & DINode::FlagTypePassByReference));
|
|
}
|
|
|
|
void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
|
|
auto *Params = dyn_cast<MDTuple>(&RawParams);
|
|
AssertDI(Params, "invalid template params", &N, &RawParams);
|
|
for (Metadata *Op : Params->operands()) {
|
|
AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
|
|
&N, Params, Op);
|
|
}
|
|
}
|
|
|
|
void Verifier::visitDICompositeType(const DICompositeType &N) {
|
|
// Common scope checks.
|
|
visitDIScope(N);
|
|
|
|
AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
|
|
N.getTag() == dwarf::DW_TAG_structure_type ||
|
|
N.getTag() == dwarf::DW_TAG_union_type ||
|
|
N.getTag() == dwarf::DW_TAG_enumeration_type ||
|
|
N.getTag() == dwarf::DW_TAG_class_type ||
|
|
N.getTag() == dwarf::DW_TAG_variant_part,
|
|
"invalid tag", &N);
|
|
|
|
AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
|
|
AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
|
|
N.getRawBaseType());
|
|
|
|
AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
|
|
"invalid composite elements", &N, N.getRawElements());
|
|
AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
|
|
N.getRawVTableHolder());
|
|
AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
|
|
"invalid reference flags", &N);
|
|
|
|
if (N.isVector()) {
|
|
const DINodeArray Elements = N.getElements();
|
|
AssertDI(Elements.size() == 1 &&
|
|
Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
|
|
"invalid vector, expected one element of type subrange", &N);
|
|
}
|
|
|
|
if (auto *Params = N.getRawTemplateParams())
|
|
visitTemplateParams(N, *Params);
|
|
|
|
if (N.getTag() == dwarf::DW_TAG_class_type ||
|
|
N.getTag() == dwarf::DW_TAG_union_type) {
|
|
AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),
|
|
"class/union requires a filename", &N, N.getFile());
|
|
}
|
|
|
|
if (auto *D = N.getRawDiscriminator()) {
|
|
AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
|
|
"discriminator can only appear on variant part");
|
|
}
|
|
}
|
|
|
|
void Verifier::visitDISubroutineType(const DISubroutineType &N) {
|
|
AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
|
|
if (auto *Types = N.getRawTypeArray()) {
|
|
AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
|
|
for (Metadata *Ty : N.getTypeArray()->operands()) {
|
|
AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
|
|
}
|
|
}
|
|
AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
|
|
"invalid reference flags", &N);
|
|
}
|
|
|
|
void Verifier::visitDIFile(const DIFile &N) {
|
|
AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
|
|
Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
|
|
if (Checksum) {
|
|
AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
|
|
"invalid checksum kind", &N);
|
|
size_t Size;
|
|
switch (Checksum->Kind) {
|
|
case DIFile::CSK_MD5:
|
|
Size = 32;
|
|
break;
|
|
case DIFile::CSK_SHA1:
|
|
Size = 40;
|
|
break;
|
|
}
|
|
AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
|
|
AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
|
|
"invalid checksum", &N);
|
|
}
|
|
}
|
|
|
|
void Verifier::visitDICompileUnit(const DICompileUnit &N) {
|
|
AssertDI(N.isDistinct(), "compile units must be distinct", &N);
|
|
AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
|
|
|
|
// Don't bother verifying the compilation directory or producer string
|
|
// as those could be empty.
|
|
AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
|
|
N.getRawFile());
|
|
AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
|
|
N.getFile());
|
|
|
|
AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
|
|
"invalid emission kind", &N);
|
|
|
|
if (auto *Array = N.getRawEnumTypes()) {
|
|
AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
|
|
for (Metadata *Op : N.getEnumTypes()->operands()) {
|
|
auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
|
|
AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
|
|
"invalid enum type", &N, N.getEnumTypes(), Op);
|
|
}
|
|
}
|
|
if (auto *Array = N.getRawRetainedTypes()) {
|
|
AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
|
|
for (Metadata *Op : N.getRetainedTypes()->operands()) {
|
|
AssertDI(Op && (isa<DIType>(Op) ||
|
|
(isa<DISubprogram>(Op) &&
|
|
!cast<DISubprogram>(Op)->isDefinition())),
|
|
"invalid retained type", &N, Op);
|
|
}
|
|
}
|
|
if (auto *Array = N.getRawGlobalVariables()) {
|
|
AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
|
|
for (Metadata *Op : N.getGlobalVariables()->operands()) {
|
|
AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
|
|
"invalid global variable ref", &N, Op);
|
|
}
|
|
}
|
|
if (auto *Array = N.getRawImportedEntities()) {
|
|
AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
|
|
for (Metadata *Op : N.getImportedEntities()->operands()) {
|
|
AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
|
|
&N, Op);
|
|
}
|
|
}
|
|
if (auto *Array = N.getRawMacros()) {
|
|
AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
|
|
for (Metadata *Op : N.getMacros()->operands()) {
|
|
AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
|
|
}
|
|
}
|
|
CUVisited.insert(&N);
|
|
}
|
|
|
|
void Verifier::visitDISubprogram(const DISubprogram &N) {
|
|
AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
|
|
AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
|
|
if (auto *F = N.getRawFile())
|
|
AssertDI(isa<DIFile>(F), "invalid file", &N, F);
|
|
else
|
|
AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
|
|
if (auto *T = N.getRawType())
|
|
AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
|
|
AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
|
|
N.getRawContainingType());
|
|
if (auto *Params = N.getRawTemplateParams())
|
|
visitTemplateParams(N, *Params);
|
|
if (auto *S = N.getRawDeclaration())
|
|
AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
|
|
"invalid subprogram declaration", &N, S);
|
|
if (auto *RawVars = N.getRawVariables()) {
|
|
auto *Vars = dyn_cast<MDTuple>(RawVars);
|
|
AssertDI(Vars, "invalid variable list", &N, RawVars);
|
|
for (Metadata *Op : Vars->operands()) {
|
|
AssertDI(Op && isa<DILocalVariable>(Op), "invalid local variable", &N,
|
|
Vars, Op);
|
|
}
|
|
}
|
|
AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
|
|
"invalid reference flags", &N);
|
|
|
|
auto *Unit = N.getRawUnit();
|
|
if (N.isDefinition()) {
|
|
// Subprogram definitions (not part of the type hierarchy).
|
|
AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
|
|
AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
|
|
AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
|
|
} else {
|
|
// Subprogram declarations (part of the type hierarchy).
|
|
AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
|
|
}
|
|
|
|
if (auto *RawThrownTypes = N.getRawThrownTypes()) {
|
|
auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
|
|
AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
|
|
for (Metadata *Op : ThrownTypes->operands())
|
|
AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
|
|
Op);
|
|
}
|
|
}
|
|
|
|
void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
|
|
AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
|
|
AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
|
|
"invalid local scope", &N, N.getRawScope());
|
|
if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
|
|
AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
|
|
}
|
|
|
|
void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
|
|
visitDILexicalBlockBase(N);
|
|
|
|
AssertDI(N.getLine() || !N.getColumn(),
|
|
"cannot have column info without line info", &N);
|
|
}
|
|
|
|
void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
|
|
visitDILexicalBlockBase(N);
|
|
}
|
|
|
|
void Verifier::visitDINamespace(const DINamespace &N) {
|
|
AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
|
|
if (auto *S = N.getRawScope())
|
|
AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
|
|
}
|
|
|
|
void Verifier::visitDIMacro(const DIMacro &N) {
|
|
AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
|
|
N.getMacinfoType() == dwarf::DW_MACINFO_undef,
|
|
"invalid macinfo type", &N);
|
|
AssertDI(!N.getName().empty(), "anonymous macro", &N);
|
|
if (!N.getValue().empty()) {
|
|
assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
|
|
}
|
|
}
|
|
|
|
void Verifier::visitDIMacroFile(const DIMacroFile &N) {
|
|
AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
|
|
"invalid macinfo type", &N);
|
|
if (auto *F = N.getRawFile())
|
|
AssertDI(isa<DIFile>(F), "invalid file", &N, F);
|
|
|
|
if (auto *Array = N.getRawElements()) {
|
|
AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
|
|
for (Metadata *Op : N.getElements()->operands()) {
|
|
AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Verifier::visitDIModule(const DIModule &N) {
|
|
AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
|
|
AssertDI(!N.getName().empty(), "anonymous module", &N);
|
|
}
|
|
|
|
void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
|
|
AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
|
|
}
|
|
|
|
void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
|
|
visitDITemplateParameter(N);
|
|
|
|
AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
|
|
&N);
|
|
}
|
|
|
|
void Verifier::visitDITemplateValueParameter(
|
|
const DITemplateValueParameter &N) {
|
|
visitDITemplateParameter(N);
|
|
|
|
AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
|
|
N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
|
|
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
|
|
"invalid tag", &N);
|
|
}
|
|
|
|
void Verifier::visitDIVariable(const DIVariable &N) {
|
|
if (auto *S = N.getRawScope())
|
|
AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
|
|
if (auto *F = N.getRawFile())
|
|
AssertDI(isa<DIFile>(F), "invalid file", &N, F);
|
|
}
|
|
|
|
void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
|
|
// Checks common to all variables.
|
|
visitDIVariable(N);
|
|
|
|
AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
|
|
AssertDI(!N.getName().empty(), "missing global variable name", &N);
|
|
AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
|
|
AssertDI(N.getType(), "missing global variable type", &N);
|
|
if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
|
|
AssertDI(isa<DIDerivedType>(Member),
|
|
"invalid static data member declaration", &N, Member);
|
|
}
|
|
}
|
|
|
|
void Verifier::visitDILocalVariable(const DILocalVariable &N) {
|
|
// Checks common to all variables.
|
|
visitDIVariable(N);
|
|
|
|
AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
|
|
AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
|
|
AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
|
|
"local variable requires a valid scope", &N, N.getRawScope());
|
|
}
|
|
|
|
void Verifier::visitDIExpression(const DIExpression &N) {
|
|
AssertDI(N.isValid(), "invalid expression", &N);
|
|
}
|
|
|
|
void Verifier::visitDIGlobalVariableExpression(
|
|
const DIGlobalVariableExpression &GVE) {
|
|
AssertDI(GVE.getVariable(), "missing variable");
|
|
if (auto *Var = GVE.getVariable())
|
|
visitDIGlobalVariable(*Var);
|
|
if (auto *Expr = GVE.getExpression()) {
|
|
visitDIExpression(*Expr);
|
|
if (auto Fragment = Expr->getFragmentInfo())
|
|
verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
|
|
}
|
|
}
|
|
|
|
void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
|
|
AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
|
|
if (auto *T = N.getRawType())
|
|
AssertDI(isType(T), "invalid type ref", &N, T);
|
|
if (auto *F = N.getRawFile())
|
|
AssertDI(isa<DIFile>(F), "invalid file", &N, F);
|
|
}
|
|
|
|
void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
|
|
AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
|
|
N.getTag() == dwarf::DW_TAG_imported_declaration,
|
|
"invalid tag", &N);
|
|
if (auto *S = N.getRawScope())
|
|
AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
|
|
AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
|
|
N.getRawEntity());
|
|
}
|
|
|
|
void Verifier::visitComdat(const Comdat &C) {
|
|
// The Module is invalid if the GlobalValue has private linkage. Entities
|
|
// with private linkage don't have entries in the symbol table.
|
|
if (const GlobalValue *GV = M.getNamedValue(C.getName()))
|
|
Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
|
|
GV);
|
|
}
|
|
|
|
void Verifier::visitModuleIdents(const Module &M) {
|
|
const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
|
|
if (!Idents)
|
|
return;
|
|
|
|
// llvm.ident takes a list of metadata entry. Each entry has only one string.
|
|
// Scan each llvm.ident entry and make sure that this requirement is met.
|
|
for (const MDNode *N : Idents->operands()) {
|
|
Assert(N->getNumOperands() == 1,
|
|
"incorrect number of operands in llvm.ident metadata", N);
|
|
Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
|
|
("invalid value for llvm.ident metadata entry operand"
|
|
"(the operand should be a string)"),
|
|
N->getOperand(0));
|
|
}
|
|
}
|
|
|
|
void Verifier::visitModuleFlags(const Module &M) {
|
|
const NamedMDNode *Flags = M.getModuleFlagsMetadata();
|
|
if (!Flags) return;
|
|
|
|
// Scan each flag, and track the flags and requirements.
|
|
DenseMap<const MDString*, const MDNode*> SeenIDs;
|
|
SmallVector<const MDNode*, 16> Requirements;
|
|
for (const MDNode *MDN : Flags->operands())
|
|
visitModuleFlag(MDN, SeenIDs, Requirements);
|
|
|
|
// Validate that the requirements in the module are valid.
|
|
for (const MDNode *Requirement : Requirements) {
|
|
const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
|
|
const Metadata *ReqValue = Requirement->getOperand(1);
|
|
|
|
const MDNode *Op = SeenIDs.lookup(Flag);
|
|
if (!Op) {
|
|
CheckFailed("invalid requirement on flag, flag is not present in module",
|
|
Flag);
|
|
continue;
|
|
}
|
|
|
|
if (Op->getOperand(2) != ReqValue) {
|
|
CheckFailed(("invalid requirement on flag, "
|
|
"flag does not have the required value"),
|
|
Flag);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
Verifier::visitModuleFlag(const MDNode *Op,
|
|
DenseMap<const MDString *, const MDNode *> &SeenIDs,
|
|
SmallVectorImpl<const MDNode *> &Requirements) {
|
|
// Each module flag should have three arguments, the merge behavior (a
|
|
// constant int), the flag ID (an MDString), and the value.
|
|
Assert(Op->getNumOperands() == 3,
|
|
"incorrect number of operands in module flag", Op);
|
|
Module::ModFlagBehavior MFB;
|
|
if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
|
|
Assert(
|
|
mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
|
|
"invalid behavior operand in module flag (expected constant integer)",
|
|
Op->getOperand(0));
|
|
Assert(false,
|
|
"invalid behavior operand in module flag (unexpected constant)",
|
|
Op->getOperand(0));
|
|
}
|
|
MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
|
|
Assert(ID, "invalid ID operand in module flag (expected metadata string)",
|
|
Op->getOperand(1));
|
|
|
|
// Sanity check the values for behaviors with additional requirements.
|
|
switch (MFB) {
|
|
case Module::Error:
|
|
case Module::Warning:
|
|
case Module::Override:
|
|
// These behavior types accept any value.
|
|
break;
|
|
|
|
case Module::Max: {
|
|
Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
|
|
"invalid value for 'max' module flag (expected constant integer)",
|
|
Op->getOperand(2));
|
|
break;
|
|
}
|
|
|
|
case Module::Require: {
|
|
// The value should itself be an MDNode with two operands, a flag ID (an
|
|
// MDString), and a value.
|
|
MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
|
|
Assert(Value && Value->getNumOperands() == 2,
|
|
"invalid value for 'require' module flag (expected metadata pair)",
|
|
Op->getOperand(2));
|
|
Assert(isa<MDString>(Value->getOperand(0)),
|
|
("invalid value for 'require' module flag "
|
|
"(first value operand should be a string)"),
|
|
Value->getOperand(0));
|
|
|
|
// Append it to the list of requirements, to check once all module flags are
|
|
// scanned.
|
|
Requirements.push_back(Value);
|
|
break;
|
|
}
|
|
|
|
case Module::Append:
|
|
case Module::AppendUnique: {
|
|
// These behavior types require the operand be an MDNode.
|
|
Assert(isa<MDNode>(Op->getOperand(2)),
|
|
"invalid value for 'append'-type module flag "
|
|
"(expected a metadata node)",
|
|
Op->getOperand(2));
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Unless this is a "requires" flag, check the ID is unique.
|
|
if (MFB != Module::Require) {
|
|
bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
|
|
Assert(Inserted,
|
|
"module flag identifiers must be unique (or of 'require' type)", ID);
|
|
}
|
|
|
|
if (ID->getString() == "wchar_size") {
|
|
ConstantInt *Value
|
|
= mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
|
|
Assert(Value, "wchar_size metadata requires constant integer argument");
|
|
}
|
|
|
|
if (ID->getString() == "Linker Options") {
|
|
// If the llvm.linker.options named metadata exists, we assume that the
|
|
// bitcode reader has upgraded the module flag. Otherwise the flag might
|
|
// have been created by a client directly.
|
|
Assert(M.getNamedMetadata("llvm.linker.options"),
|
|
"'Linker Options' named metadata no longer supported");
|
|
}
|
|
}
|
|
|
|
/// Return true if this attribute kind only applies to functions.
|
|
static bool isFuncOnlyAttr(Attribute::AttrKind Kind) {
|
|
switch (Kind) {
|
|
case Attribute::NoReturn:
|
|
case Attribute::NoCfCheck:
|
|
case Attribute::NoUnwind:
|
|
case Attribute::NoInline:
|
|
case Attribute::AlwaysInline:
|
|
case Attribute::OptimizeForSize:
|
|
case Attribute::StackProtect:
|
|
case Attribute::StackProtectReq:
|
|
case Attribute::StackProtectStrong:
|
|
case Attribute::SafeStack:
|
|
case Attribute::NoRedZone:
|
|
case Attribute::NoImplicitFloat:
|
|
case Attribute::Naked:
|
|
case Attribute::InlineHint:
|
|
case Attribute::StackAlignment:
|
|
case Attribute::UWTable:
|
|
case Attribute::NonLazyBind:
|
|
case Attribute::ReturnsTwice:
|
|
case Attribute::SanitizeAddress:
|
|
case Attribute::SanitizeHWAddress:
|
|
case Attribute::SanitizeThread:
|
|
case Attribute::SanitizeMemory:
|
|
case Attribute::MinSize:
|
|
case Attribute::NoDuplicate:
|
|
case Attribute::Builtin:
|
|
case Attribute::NoBuiltin:
|
|
case Attribute::Cold:
|
|
case Attribute::OptimizeNone:
|
|
case Attribute::JumpTable:
|
|
case Attribute::Convergent:
|
|
case Attribute::ArgMemOnly:
|
|
case Attribute::NoRecurse:
|
|
case Attribute::InaccessibleMemOnly:
|
|
case Attribute::InaccessibleMemOrArgMemOnly:
|
|
case Attribute::AllocSize:
|
|
case Attribute::Speculatable:
|
|
case Attribute::StrictFP:
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Return true if this is a function attribute that can also appear on
|
|
/// arguments.
|
|
static bool isFuncOrArgAttr(Attribute::AttrKind Kind) {
|
|
return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly ||
|
|
Kind == Attribute::ReadNone;
|
|
}
|
|
|
|
void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
|
|
const Value *V) {
|
|
for (Attribute A : Attrs) {
|
|
if (A.isStringAttribute())
|
|
continue;
|
|
|
|
if (isFuncOnlyAttr(A.getKindAsEnum())) {
|
|
if (!IsFunction) {
|
|
CheckFailed("Attribute '" + A.getAsString() +
|
|
"' only applies to functions!",
|
|
V);
|
|
return;
|
|
}
|
|
} else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) {
|
|
CheckFailed("Attribute '" + A.getAsString() +
|
|
"' does not apply to functions!",
|
|
V);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// VerifyParameterAttrs - Check the given attributes for an argument or return
|
|
// value of the specified type. The value V is printed in error messages.
|
|
void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
|
|
const Value *V) {
|
|
if (!Attrs.hasAttributes())
|
|
return;
|
|
|
|
verifyAttributeTypes(Attrs, /*IsFunction=*/false, V);
|
|
|
|
// Check for mutually incompatible attributes. Only inreg is compatible with
|
|
// sret.
|
|
unsigned AttrCount = 0;
|
|
AttrCount += Attrs.hasAttribute(Attribute::ByVal);
|
|
AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
|
|
AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
|
|
Attrs.hasAttribute(Attribute::InReg);
|
|
AttrCount += Attrs.hasAttribute(Attribute::Nest);
|
|
Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
|
|
"and 'sret' are incompatible!",
|
|
V);
|
|
|
|
Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&
|
|
Attrs.hasAttribute(Attribute::ReadOnly)),
|
|
"Attributes "
|
|
"'inalloca and readonly' are incompatible!",
|
|
V);
|
|
|
|
Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&
|
|
Attrs.hasAttribute(Attribute::Returned)),
|
|
"Attributes "
|
|
"'sret and returned' are incompatible!",
|
|
V);
|
|
|
|
Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&
|
|
Attrs.hasAttribute(Attribute::SExt)),
|
|
"Attributes "
|
|
"'zeroext and signext' are incompatible!",
|
|
V);
|
|
|
|
Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
|
|
Attrs.hasAttribute(Attribute::ReadOnly)),
|
|
"Attributes "
|
|
"'readnone and readonly' are incompatible!",
|
|
V);
|
|
|
|
Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
|
|
Attrs.hasAttribute(Attribute::WriteOnly)),
|
|
"Attributes "
|
|
"'readnone and writeonly' are incompatible!",
|
|
V);
|
|
|
|
Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
|
|
Attrs.hasAttribute(Attribute::WriteOnly)),
|
|
"Attributes "
|
|
"'readonly and writeonly' are incompatible!",
|
|
V);
|
|
|
|
Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&
|
|
Attrs.hasAttribute(Attribute::AlwaysInline)),
|
|
"Attributes "
|
|
"'noinline and alwaysinline' are incompatible!",
|
|
V);
|
|
|
|
AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
|
|
Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs),
|
|
"Wrong types for attribute: " +
|
|
AttributeSet::get(Context, IncompatibleAttrs).getAsString(),
|
|
V);
|
|
|
|
if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
|
|
SmallPtrSet<Type*, 4> Visited;
|
|
if (!PTy->getElementType()->isSized(&Visited)) {
|
|
Assert(!Attrs.hasAttribute(Attribute::ByVal) &&
|
|
!Attrs.hasAttribute(Attribute::InAlloca),
|
|
"Attributes 'byval' and 'inalloca' do not support unsized types!",
|
|
V);
|
|
}
|
|
if (!isa<PointerType>(PTy->getElementType()))
|
|
Assert(!Attrs.hasAttribute(Attribute::SwiftError),
|
|
"Attribute 'swifterror' only applies to parameters "
|
|
"with pointer to pointer type!",
|
|
V);
|
|
} else {
|
|
Assert(!Attrs.hasAttribute(Attribute::ByVal),
|
|
"Attribute 'byval' only applies to parameters with pointer type!",
|
|
V);
|
|
Assert(!Attrs.hasAttribute(Attribute::SwiftError),
|
|
"Attribute 'swifterror' only applies to parameters "
|
|
"with pointer type!",
|
|
V);
|
|
}
|
|
}
|
|
|
|
// Check parameter attributes against a function type.
|
|
// The value V is printed in error messages.
|
|
void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
|
|
const Value *V) {
|
|
if (Attrs.isEmpty())
|
|
return;
|
|
|
|
bool SawNest = false;
|
|
bool SawReturned = false;
|
|
bool SawSRet = false;
|
|
bool SawSwiftSelf = false;
|
|
bool SawSwiftError = false;
|
|
|
|
// Verify return value attributes.
|
|
AttributeSet RetAttrs = Attrs.getRetAttributes();
|
|
Assert((!RetAttrs.hasAttribute(Attribute::ByVal) &&
|
|
!RetAttrs.hasAttribute(Attribute::Nest) &&
|
|
!RetAttrs.hasAttribute(Attribute::StructRet) &&
|
|
!RetAttrs.hasAttribute(Attribute::NoCapture) &&
|
|
!RetAttrs.hasAttribute(Attribute::Returned) &&
|
|
!RetAttrs.hasAttribute(Attribute::InAlloca) &&
|
|
!RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
|
|
!RetAttrs.hasAttribute(Attribute::SwiftError)),
|
|
"Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
|
|
"'returned', 'swiftself', and 'swifterror' do not apply to return "
|
|
"values!",
|
|
V);
|
|
Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
|
|
!RetAttrs.hasAttribute(Attribute::WriteOnly) &&
|
|
!RetAttrs.hasAttribute(Attribute::ReadNone)),
|
|
"Attribute '" + RetAttrs.getAsString() +
|
|
"' does not apply to function returns",
|
|
V);
|
|
verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
|
|
|
|
// Verify parameter attributes.
|
|
for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
|
|
Type *Ty = FT->getParamType(i);
|
|
AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
|
|
|
|
verifyParameterAttrs(ArgAttrs, Ty, V);
|
|
|
|
if (ArgAttrs.hasAttribute(Attribute::Nest)) {
|
|
Assert(!SawNest, "More than one parameter has attribute nest!", V);
|
|
SawNest = true;
|
|
}
|
|
|
|
if (ArgAttrs.hasAttribute(Attribute::Returned)) {
|
|
Assert(!SawReturned, "More than one parameter has attribute returned!",
|
|
V);
|
|
Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
|
|
"Incompatible argument and return types for 'returned' attribute",
|
|
V);
|
|
SawReturned = true;
|
|
}
|
|
|
|
if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
|
|
Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
|
|
Assert(i == 0 || i == 1,
|
|
"Attribute 'sret' is not on first or second parameter!", V);
|
|
SawSRet = true;
|
|
}
|
|
|
|
if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
|
|
Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
|
|
SawSwiftSelf = true;
|
|
}
|
|
|
|
if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
|
|
Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
|
|
V);
|
|
SawSwiftError = true;
|
|
}
|
|
|
|
if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
|
|
Assert(i == FT->getNumParams() - 1,
|
|
"inalloca isn't on the last parameter!", V);
|
|
}
|
|
}
|
|
|
|
if (!Attrs.hasAttributes(AttributeList::FunctionIndex))
|
|
return;
|
|
|
|
verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V);
|
|
|
|
Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
|
|
Attrs.hasFnAttribute(Attribute::ReadOnly)),
|
|
"Attributes 'readnone and readonly' are incompatible!", V);
|
|
|
|
Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
|
|
Attrs.hasFnAttribute(Attribute::WriteOnly)),
|
|
"Attributes 'readnone and writeonly' are incompatible!", V);
|
|
|
|
Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
|
|
Attrs.hasFnAttribute(Attribute::WriteOnly)),
|
|
"Attributes 'readonly and writeonly' are incompatible!", V);
|
|
|
|
Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
|
|
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),
|
|
"Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
|
|
"incompatible!",
|
|
V);
|
|
|
|
Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
|
|
Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),
|
|
"Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
|
|
|
|
Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
|
|
Attrs.hasFnAttribute(Attribute::AlwaysInline)),
|
|
"Attributes 'noinline and alwaysinline' are incompatible!", V);
|
|
|
|
if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
|
|
Assert(Attrs.hasFnAttribute(Attribute::NoInline),
|
|
"Attribute 'optnone' requires 'noinline'!", V);
|
|
|
|
Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),
|
|
"Attributes 'optsize and optnone' are incompatible!", V);
|
|
|
|
Assert(!Attrs.hasFnAttribute(Attribute::MinSize),
|
|
"Attributes 'minsize and optnone' are incompatible!", V);
|
|
}
|
|
|
|
if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
|
|
const GlobalValue *GV = cast<GlobalValue>(V);
|
|
Assert(GV->hasGlobalUnnamedAddr(),
|
|
"Attribute 'jumptable' requires 'unnamed_addr'", V);
|
|
}
|
|
|
|
if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
|
|
std::pair<unsigned, Optional<unsigned>> Args =
|
|
Attrs.getAllocSizeArgs(AttributeList::FunctionIndex);
|
|
|
|
auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
|
|
if (ParamNo >= FT->getNumParams()) {
|
|
CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
|
|
return false;
|
|
}
|
|
|
|
if (!FT->getParamType(ParamNo)->isIntegerTy()) {
|
|
CheckFailed("'allocsize' " + Name +
|
|
" argument must refer to an integer parameter",
|
|
V);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
};
|
|
|
|
if (!CheckParam("element size", Args.first))
|
|
return;
|
|
|
|
if (Args.second && !CheckParam("number of elements", *Args.second))
|
|
return;
|
|
}
|
|
}
|
|
|
|
void Verifier::verifyFunctionMetadata(
|
|
ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
|
|
for (const auto &Pair : MDs) {
|
|
if (Pair.first == LLVMContext::MD_prof) {
|
|
MDNode *MD = Pair.second;
|
|
Assert(MD->getNumOperands() >= 2,
|
|
"!prof annotations should have no less than 2 operands", MD);
|
|
|
|
// Check first operand.
|
|
Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
|
|
MD);
|
|
Assert(isa<MDString>(MD->getOperand(0)),
|
|
"expected string with name of the !prof annotation", MD);
|
|
MDString *MDS = cast<MDString>(MD->getOperand(0));
|
|
StringRef ProfName = MDS->getString();
|
|
Assert(ProfName.equals("function_entry_count") ||
|
|
ProfName.equals("synthetic_function_entry_count"),
|
|
"first operand should be 'function_entry_count'"
|
|
" or 'synthetic_function_entry_count'",
|
|
MD);
|
|
|
|
// Check second operand.
|
|
Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
|
|
MD);
|
|
Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
|
|
"expected integer argument to function_entry_count", MD);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
|
|
if (!ConstantExprVisited.insert(EntryC).second)
|
|
return;
|
|
|
|
SmallVector<const Constant *, 16> Stack;
|
|
Stack.push_back(EntryC);
|
|
|
|
while (!Stack.empty()) {
|
|
const Constant *C = Stack.pop_back_val();
|
|
|
|
// Check this constant expression.
|
|
if (const auto *CE = dyn_cast<ConstantExpr>(C))
|
|
visitConstantExpr(CE);
|
|
|
|
if (const auto *GV = dyn_cast<GlobalValue>(C)) {
|
|
// Global Values get visited separately, but we do need to make sure
|
|
// that the global value is in the correct module
|
|
Assert(GV->getParent() == &M, "Referencing global in another module!",
|
|
EntryC, &M, GV, GV->getParent());
|
|
continue;
|
|
}
|
|
|
|
// Visit all sub-expressions.
|
|
for (const Use &U : C->operands()) {
|
|
const auto *OpC = dyn_cast<Constant>(U);
|
|
if (!OpC)
|
|
continue;
|
|
if (!ConstantExprVisited.insert(OpC).second)
|
|
continue;
|
|
Stack.push_back(OpC);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Verifier::visitConstantExpr(const ConstantExpr *CE) {
|
|
if (CE->getOpcode() == Instruction::BitCast)
|
|
Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
|
|
CE->getType()),
|
|
"Invalid bitcast", CE);
|
|
|
|
if (CE->getOpcode() == Instruction::IntToPtr ||
|
|
CE->getOpcode() == Instruction::PtrToInt) {
|
|
auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
|
|
? CE->getType()
|
|
: CE->getOperand(0)->getType();
|
|
StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
|
|
? "inttoptr not supported for non-integral pointers"
|
|
: "ptrtoint not supported for non-integral pointers";
|
|
Assert(
|
|
!DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),
|
|
Msg);
|
|
}
|
|
}
|
|
|
|
bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
|
|
// There shouldn't be more attribute sets than there are parameters plus the
|
|
// function and return value.
|
|
return Attrs.getNumAttrSets() <= Params + 2;
|
|
}
|
|
|
|
/// Verify that statepoint intrinsic is well formed.
|
|
void Verifier::verifyStatepoint(ImmutableCallSite CS) {
|
|
assert(CS.getCalledFunction() &&
|
|
CS.getCalledFunction()->getIntrinsicID() ==
|
|
Intrinsic::experimental_gc_statepoint);
|
|
|
|
const Instruction &CI = *CS.getInstruction();
|
|
|
|
Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() &&
|
|
!CS.onlyAccessesArgMemory(),
|
|
"gc.statepoint must read and write all memory to preserve "
|
|
"reordering restrictions required by safepoint semantics",
|
|
&CI);
|
|
|
|
const Value *IDV = CS.getArgument(0);
|
|
Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer",
|
|
&CI);
|
|
|
|
const Value *NumPatchBytesV = CS.getArgument(1);
|
|
Assert(isa<ConstantInt>(NumPatchBytesV),
|
|
"gc.statepoint number of patchable bytes must be a constant integer",
|
|
&CI);
|
|
const int64_t NumPatchBytes =
|
|
cast<ConstantInt>(NumPatchBytesV)->getSExtValue();
|
|
assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
|
|
Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be "
|
|
"positive",
|
|
&CI);
|
|
|
|
const Value *Target = CS.getArgument(2);
|
|
auto *PT = dyn_cast<PointerType>(Target->getType());
|
|
Assert(PT && PT->getElementType()->isFunctionTy(),
|
|
"gc.statepoint callee must be of function pointer type", &CI, Target);
|
|
FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
|
|
|
|
const Value *NumCallArgsV = CS.getArgument(3);
|
|
Assert(isa<ConstantInt>(NumCallArgsV),
|
|
"gc.statepoint number of arguments to underlying call "
|
|
"must be constant integer",
|
|
&CI);
|
|
const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
|
|
Assert(NumCallArgs >= 0,
|
|
"gc.statepoint number of arguments to underlying call "
|
|
"must be positive",
|
|
&CI);
|
|
const int NumParams = (int)TargetFuncType->getNumParams();
|
|
if (TargetFuncType->isVarArg()) {
|
|
Assert(NumCallArgs >= NumParams,
|
|
"gc.statepoint mismatch in number of vararg call args", &CI);
|
|
|
|
// TODO: Remove this limitation
|
|
Assert(TargetFuncType->getReturnType()->isVoidTy(),
|
|
"gc.statepoint doesn't support wrapping non-void "
|
|
"vararg functions yet",
|
|
&CI);
|
|
} else
|
|
Assert(NumCallArgs == NumParams,
|
|
"gc.statepoint mismatch in number of call args", &CI);
|
|
|
|
const Value *FlagsV = CS.getArgument(4);
|
|
Assert(isa<ConstantInt>(FlagsV),
|
|
"gc.statepoint flags must be constant integer", &CI);
|
|
const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue();
|
|
Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
|
|
"unknown flag used in gc.statepoint flags argument", &CI);
|
|
|
|
// Verify that the types of the call parameter arguments match
|
|
// the type of the wrapped callee.
|
|
for (int i = 0; i < NumParams; i++) {
|
|
Type *ParamType = TargetFuncType->getParamType(i);
|
|
Type *ArgType = CS.getArgument(5 + i)->getType();
|
|
Assert(ArgType == ParamType,
|
|
"gc.statepoint call argument does not match wrapped "
|
|
"function type",
|
|
&CI);
|
|
}
|
|
|
|
const int EndCallArgsInx = 4 + NumCallArgs;
|
|
|
|
const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1);
|
|
Assert(isa<ConstantInt>(NumTransitionArgsV),
|
|
"gc.statepoint number of transition arguments "
|
|
"must be constant integer",
|
|
&CI);
|
|
const int NumTransitionArgs =
|
|
cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
|
|
Assert(NumTransitionArgs >= 0,
|
|
"gc.statepoint number of transition arguments must be positive", &CI);
|
|
const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
|
|
|
|
const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1);
|
|
Assert(isa<ConstantInt>(NumDeoptArgsV),
|
|
"gc.statepoint number of deoptimization arguments "
|
|
"must be constant integer",
|
|
&CI);
|
|
const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
|
|
Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "
|
|
"must be positive",
|
|
&CI);
|
|
|
|
const int ExpectedNumArgs =
|
|
7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
|
|
Assert(ExpectedNumArgs <= (int)CS.arg_size(),
|
|
"gc.statepoint too few arguments according to length fields", &CI);
|
|
|
|
// Check that the only uses of this gc.statepoint are gc.result or
|
|
// gc.relocate calls which are tied to this statepoint and thus part
|
|
// of the same statepoint sequence
|
|
for (const User *U : CI.users()) {
|
|
const CallInst *Call = dyn_cast<const CallInst>(U);
|
|
Assert(Call, "illegal use of statepoint token", &CI, U);
|
|
if (!Call) continue;
|
|
Assert(isa<GCRelocateInst>(Call) || isa<GCResultInst>(Call),
|
|
"gc.result or gc.relocate are the only value uses "
|
|
"of a gc.statepoint",
|
|
&CI, U);
|
|
if (isa<GCResultInst>(Call)) {
|
|
Assert(Call->getArgOperand(0) == &CI,
|
|
"gc.result connected to wrong gc.statepoint", &CI, Call);
|
|
} else if (isa<GCRelocateInst>(Call)) {
|
|
Assert(Call->getArgOperand(0) == &CI,
|
|
"gc.relocate connected to wrong gc.statepoint", &CI, Call);
|
|
}
|
|
}
|
|
|
|
// Note: It is legal for a single derived pointer to be listed multiple
|
|
// times. It's non-optimal, but it is legal. It can also happen after
|
|
// insertion if we strip a bitcast away.
|
|
// Note: It is really tempting to check that each base is relocated and
|
|
// that a derived pointer is never reused as a base pointer. This turns
|
|
// out to be problematic since optimizations run after safepoint insertion
|
|
// can recognize equality properties that the insertion logic doesn't know
|
|
// about. See example statepoint.ll in the verifier subdirectory
|
|
}
|
|
|
|
void Verifier::verifyFrameRecoverIndices() {
|
|
for (auto &Counts : FrameEscapeInfo) {
|
|
Function *F = Counts.first;
|
|
unsigned EscapedObjectCount = Counts.second.first;
|
|
unsigned MaxRecoveredIndex = Counts.second.second;
|
|
Assert(MaxRecoveredIndex <= EscapedObjectCount,
|
|
"all indices passed to llvm.localrecover must be less than the "
|
|
"number of arguments passed ot llvm.localescape in the parent "
|
|
"function",
|
|
F);
|
|
}
|
|
}
|
|
|
|
static Instruction *getSuccPad(TerminatorInst *Terminator) {
|
|
BasicBlock *UnwindDest;
|
|
if (auto *II = dyn_cast<InvokeInst>(Terminator))
|
|
UnwindDest = II->getUnwindDest();
|
|
else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
|
|
UnwindDest = CSI->getUnwindDest();
|
|
else
|
|
UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
|
|
return UnwindDest->getFirstNonPHI();
|
|
}
|
|
|
|
void Verifier::verifySiblingFuncletUnwinds() {
|
|
SmallPtrSet<Instruction *, 8> Visited;
|
|
SmallPtrSet<Instruction *, 8> Active;
|
|
for (const auto &Pair : SiblingFuncletInfo) {
|
|
Instruction *PredPad = Pair.first;
|
|
if (Visited.count(PredPad))
|
|
continue;
|
|
Active.insert(PredPad);
|
|
TerminatorInst *Terminator = Pair.second;
|
|
do {
|
|
Instruction *SuccPad = getSuccPad(Terminator);
|
|
if (Active.count(SuccPad)) {
|
|
// Found a cycle; report error
|
|
Instruction *CyclePad = SuccPad;
|
|
SmallVector<Instruction *, 8> CycleNodes;
|
|
do {
|
|
CycleNodes.push_back(CyclePad);
|
|
TerminatorInst *CycleTerminator = SiblingFuncletInfo[CyclePad];
|
|
if (CycleTerminator != CyclePad)
|
|
CycleNodes.push_back(CycleTerminator);
|
|
CyclePad = getSuccPad(CycleTerminator);
|
|
} while (CyclePad != SuccPad);
|
|
Assert(false, "EH pads can't handle each other's exceptions",
|
|
ArrayRef<Instruction *>(CycleNodes));
|
|
}
|
|
// Don't re-walk a node we've already checked
|
|
if (!Visited.insert(SuccPad).second)
|
|
break;
|
|
// Walk to this successor if it has a map entry.
|
|
PredPad = SuccPad;
|
|
auto TermI = SiblingFuncletInfo.find(PredPad);
|
|
if (TermI == SiblingFuncletInfo.end())
|
|
break;
|
|
Terminator = TermI->second;
|
|
Active.insert(PredPad);
|
|
} while (true);
|
|
// Each node only has one successor, so we've walked all the active
|
|
// nodes' successors.
|
|
Active.clear();
|
|
}
|
|
}
|
|
|
|
// visitFunction - Verify that a function is ok.
|
|
//
|
|
void Verifier::visitFunction(const Function &F) {
|
|
visitGlobalValue(F);
|
|
|
|
// Check function arguments.
|
|
FunctionType *FT = F.getFunctionType();
|
|
unsigned NumArgs = F.arg_size();
|
|
|
|
Assert(&Context == &F.getContext(),
|
|
"Function context does not match Module context!", &F);
|
|
|
|
Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
|
|
Assert(FT->getNumParams() == NumArgs,
|
|
"# formal arguments must match # of arguments for function type!", &F,
|
|
FT);
|
|
Assert(F.getReturnType()->isFirstClassType() ||
|
|
F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
|
|
"Functions cannot return aggregate values!", &F);
|
|
|
|
Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
|
|
"Invalid struct return type!", &F);
|
|
|
|
AttributeList Attrs = F.getAttributes();
|
|
|
|
Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
|
|
"Attribute after last parameter!", &F);
|
|
|
|
// Check function attributes.
|
|
verifyFunctionAttrs(FT, Attrs, &F);
|
|
|
|
// On function declarations/definitions, we do not support the builtin
|
|
// attribute. We do not check this in VerifyFunctionAttrs since that is
|
|
// checking for Attributes that can/can not ever be on functions.
|
|
Assert(!Attrs.hasFnAttribute(Attribute::Builtin),
|
|
"Attribute 'builtin' can only be applied to a callsite.", &F);
|
|
|
|
// Check that this function meets the restrictions on this calling convention.
|
|
// Sometimes varargs is used for perfectly forwarding thunks, so some of these
|
|
// restrictions can be lifted.
|
|
switch (F.getCallingConv()) {
|
|
default:
|
|
case CallingConv::C:
|
|
break;
|
|
case CallingConv::AMDGPU_KERNEL:
|
|
case CallingConv::SPIR_KERNEL:
|
|
Assert(F.getReturnType()->isVoidTy(),
|
|
"Calling convention requires void return type", &F);
|
|
LLVM_FALLTHROUGH;
|
|
case CallingConv::AMDGPU_VS:
|
|
case CallingConv::AMDGPU_HS:
|
|
case CallingConv::AMDGPU_GS:
|
|
case CallingConv::AMDGPU_PS:
|
|
case CallingConv::AMDGPU_CS:
|
|
Assert(!F.hasStructRetAttr(),
|
|
"Calling convention does not allow sret", &F);
|
|
LLVM_FALLTHROUGH;
|
|
case CallingConv::Fast:
|
|
case CallingConv::Cold:
|
|
case CallingConv::Intel_OCL_BI:
|
|
case CallingConv::PTX_Kernel:
|
|
case CallingConv::PTX_Device:
|
|
Assert(!F.isVarArg(), "Calling convention does not support varargs or "
|
|
"perfect forwarding!",
|
|
&F);
|
|
break;
|
|
}
|
|
|
|
bool isLLVMdotName = F.getName().size() >= 5 &&
|
|
F.getName().substr(0, 5) == "llvm.";
|
|
|
|
// Check that the argument values match the function type for this function...
|
|
unsigned i = 0;
|
|
for (const Argument &Arg : F.args()) {
|
|
Assert(Arg.getType() == FT->getParamType(i),
|
|
"Argument value does not match function argument type!", &Arg,
|
|
FT->getParamType(i));
|
|
Assert(Arg.getType()->isFirstClassType(),
|
|
"Function arguments must have first-class types!", &Arg);
|
|
if (!isLLVMdotName) {
|
|
Assert(!Arg.getType()->isMetadataTy(),
|
|
"Function takes metadata but isn't an intrinsic", &Arg, &F);
|
|
Assert(!Arg.getType()->isTokenTy(),
|
|
"Function takes token but isn't an intrinsic", &Arg, &F);
|
|
}
|
|
|
|
// Check that swifterror argument is only used by loads and stores.
|
|
if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
|
|
verifySwiftErrorValue(&Arg);
|
|
}
|
|
++i;
|
|
}
|
|
|
|
if (!isLLVMdotName)
|
|
Assert(!F.getReturnType()->isTokenTy(),
|
|
"Functions returns a token but isn't an intrinsic", &F);
|
|
|
|
// Get the function metadata attachments.
|
|
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
|
|
F.getAllMetadata(MDs);
|
|
assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
|
|
verifyFunctionMetadata(MDs);
|
|
|
|
// Check validity of the personality function
|
|
if (F.hasPersonalityFn()) {
|
|
auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
|
|
if (Per)
|
|
Assert(Per->getParent() == F.getParent(),
|
|
"Referencing personality function in another module!",
|
|
&F, F.getParent(), Per, Per->getParent());
|
|
}
|
|
|
|
if (F.isMaterializable()) {
|
|
// Function has a body somewhere we can't see.
|
|
Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
|
|
MDs.empty() ? nullptr : MDs.front().second);
|
|
} else if (F.isDeclaration()) {
|
|
for (const auto &I : MDs) {
|
|
AssertDI(I.first != LLVMContext::MD_dbg,
|
|
"function declaration may not have a !dbg attachment", &F);
|
|
Assert(I.first != LLVMContext::MD_prof,
|
|
"function declaration may not have a !prof attachment", &F);
|
|
|
|
// Verify the metadata itself.
|
|
visitMDNode(*I.second);
|
|
}
|
|
Assert(!F.hasPersonalityFn(),
|
|
"Function declaration shouldn't have a personality routine", &F);
|
|
} else {
|
|
// Verify that this function (which has a body) is not named "llvm.*". It
|
|
// is not legal to define intrinsics.
|
|
Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
|
|
|
|
// Check the entry node
|
|
const BasicBlock *Entry = &F.getEntryBlock();
|
|
Assert(pred_empty(Entry),
|
|
"Entry block to function must not have predecessors!", Entry);
|
|
|
|
// The address of the entry block cannot be taken, unless it is dead.
|
|
if (Entry->hasAddressTaken()) {
|
|
Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
|
|
"blockaddress may not be used with the entry block!", Entry);
|
|
}
|
|
|
|
unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
|
|
// Visit metadata attachments.
|
|
for (const auto &I : MDs) {
|
|
// Verify that the attachment is legal.
|
|
switch (I.first) {
|
|
default:
|
|
break;
|
|
case LLVMContext::MD_dbg: {
|
|
++NumDebugAttachments;
|
|
AssertDI(NumDebugAttachments == 1,
|
|
"function must have a single !dbg attachment", &F, I.second);
|
|
AssertDI(isa<DISubprogram>(I.second),
|
|
"function !dbg attachment must be a subprogram", &F, I.second);
|
|
auto *SP = cast<DISubprogram>(I.second);
|
|
const Function *&AttachedTo = DISubprogramAttachments[SP];
|
|
AssertDI(!AttachedTo || AttachedTo == &F,
|
|
"DISubprogram attached to more than one function", SP, &F);
|
|
AttachedTo = &F;
|
|
break;
|
|
}
|
|
case LLVMContext::MD_prof:
|
|
++NumProfAttachments;
|
|
Assert(NumProfAttachments == 1,
|
|
"function must have a single !prof attachment", &F, I.second);
|
|
break;
|
|
}
|
|
|
|
// Verify the metadata itself.
|
|
visitMDNode(*I.second);
|
|
}
|
|
}
|
|
|
|
// If this function is actually an intrinsic, verify that it is only used in
|
|
// direct call/invokes, never having its "address taken".
|
|
// Only do this if the module is materialized, otherwise we don't have all the
|
|
// uses.
|
|
if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
|
|
const User *U;
|
|
if (F.hasAddressTaken(&U))
|
|
Assert(false, "Invalid user of intrinsic instruction!", U);
|
|
}
|
|
|
|
auto *N = F.getSubprogram();
|
|
HasDebugInfo = (N != nullptr);
|
|
if (!HasDebugInfo)
|
|
return;
|
|
|
|
// Check that all !dbg attachments lead to back to N (or, at least, another
|
|
// subprogram that describes the same function).
|
|
//
|
|
// FIXME: Check this incrementally while visiting !dbg attachments.
|
|
// FIXME: Only check when N is the canonical subprogram for F.
|
|
SmallPtrSet<const MDNode *, 32> Seen;
|
|
for (auto &BB : F)
|
|
for (auto &I : BB) {
|
|
// Be careful about using DILocation here since we might be dealing with
|
|
// broken code (this is the Verifier after all).
|
|
DILocation *DL =
|
|
dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
|
|
if (!DL)
|
|
continue;
|
|
if (!Seen.insert(DL).second)
|
|
continue;
|
|
|
|
DILocalScope *Scope = DL->getInlinedAtScope();
|
|
if (Scope && !Seen.insert(Scope).second)
|
|
continue;
|
|
|
|
DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
|
|
|
|
// Scope and SP could be the same MDNode and we don't want to skip
|
|
// validation in that case
|
|
if (SP && ((Scope != SP) && !Seen.insert(SP).second))
|
|
continue;
|
|
|
|
// FIXME: Once N is canonical, check "SP == &N".
|
|
AssertDI(SP->describes(&F),
|
|
"!dbg attachment points at wrong subprogram for function", N, &F,
|
|
&I, DL, Scope, SP);
|
|
}
|
|
}
|
|
|
|
// verifyBasicBlock - Verify that a basic block is well formed...
|
|
//
|
|
void Verifier::visitBasicBlock(BasicBlock &BB) {
|
|
InstsInThisBlock.clear();
|
|
|
|
// Ensure that basic blocks have terminators!
|
|
Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
|
|
|
|
// Check constraints that this basic block imposes on all of the PHI nodes in
|
|
// it.
|
|
if (isa<PHINode>(BB.front())) {
|
|
SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
|
|
SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
|
|
std::sort(Preds.begin(), Preds.end());
|
|
for (const PHINode &PN : BB.phis()) {
|
|
// Ensure that PHI nodes have at least one entry!
|
|
Assert(PN.getNumIncomingValues() != 0,
|
|
"PHI nodes must have at least one entry. If the block is dead, "
|
|
"the PHI should be removed!",
|
|
&PN);
|
|
Assert(PN.getNumIncomingValues() == Preds.size(),
|
|
"PHINode should have one entry for each predecessor of its "
|
|
"parent basic block!",
|
|
&PN);
|
|
|
|
// Get and sort all incoming values in the PHI node...
|
|
Values.clear();
|
|
Values.reserve(PN.getNumIncomingValues());
|
|
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
|
|
Values.push_back(
|
|
std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
|
|
std::sort(Values.begin(), Values.end());
|
|
|
|
for (unsigned i = 0, e = Values.size(); i != e; ++i) {
|
|
// Check to make sure that if there is more than one entry for a
|
|
// particular basic block in this PHI node, that the incoming values are
|
|
// all identical.
|
|
//
|
|
Assert(i == 0 || Values[i].first != Values[i - 1].first ||
|
|
Values[i].second == Values[i - 1].second,
|
|
"PHI node has multiple entries for the same basic block with "
|
|
"different incoming values!",
|
|
&PN, Values[i].first, Values[i].second, Values[i - 1].second);
|
|
|
|
// Check to make sure that the predecessors and PHI node entries are
|
|
// matched up.
|
|
Assert(Values[i].first == Preds[i],
|
|
"PHI node entries do not match predecessors!", &PN,
|
|
Values[i].first, Preds[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check that all instructions have their parent pointers set up correctly.
|
|
for (auto &I : BB)
|
|
{
|
|
Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
|
|
}
|
|
}
|
|
|
|
void Verifier::visitTerminatorInst(TerminatorInst &I) {
|
|
// Ensure that terminators only exist at the end of the basic block.
|
|
Assert(&I == I.getParent()->getTerminator(),
|
|
"Terminator found in the middle of a basic block!", I.getParent());
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitBranchInst(BranchInst &BI) {
|
|
if (BI.isConditional()) {
|
|
Assert(BI.getCondition()->getType()->isIntegerTy(1),
|
|
"Branch condition is not 'i1' type!", &BI, BI.getCondition());
|
|
}
|
|
visitTerminatorInst(BI);
|
|
}
|
|
|
|
void Verifier::visitReturnInst(ReturnInst &RI) {
|
|
Function *F = RI.getParent()->getParent();
|
|
unsigned N = RI.getNumOperands();
|
|
if (F->getReturnType()->isVoidTy())
|
|
Assert(N == 0,
|
|
"Found return instr that returns non-void in Function of void "
|
|
"return type!",
|
|
&RI, F->getReturnType());
|
|
else
|
|
Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
|
|
"Function return type does not match operand "
|
|
"type of return inst!",
|
|
&RI, F->getReturnType());
|
|
|
|
// Check to make sure that the return value has necessary properties for
|
|
// terminators...
|
|
visitTerminatorInst(RI);
|
|
}
|
|
|
|
void Verifier::visitSwitchInst(SwitchInst &SI) {
|
|
// Check to make sure that all of the constants in the switch instruction
|
|
// have the same type as the switched-on value.
|
|
Type *SwitchTy = SI.getCondition()->getType();
|
|
SmallPtrSet<ConstantInt*, 32> Constants;
|
|
for (auto &Case : SI.cases()) {
|
|
Assert(Case.getCaseValue()->getType() == SwitchTy,
|
|
"Switch constants must all be same type as switch value!", &SI);
|
|
Assert(Constants.insert(Case.getCaseValue()).second,
|
|
"Duplicate integer as switch case", &SI, Case.getCaseValue());
|
|
}
|
|
|
|
visitTerminatorInst(SI);
|
|
}
|
|
|
|
void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
|
|
Assert(BI.getAddress()->getType()->isPointerTy(),
|
|
"Indirectbr operand must have pointer type!", &BI);
|
|
for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
|
|
Assert(BI.getDestination(i)->getType()->isLabelTy(),
|
|
"Indirectbr destinations must all have pointer type!", &BI);
|
|
|
|
visitTerminatorInst(BI);
|
|
}
|
|
|
|
void Verifier::visitSelectInst(SelectInst &SI) {
|
|
Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
|
|
SI.getOperand(2)),
|
|
"Invalid operands for select instruction!", &SI);
|
|
|
|
Assert(SI.getTrueValue()->getType() == SI.getType(),
|
|
"Select values must have same type as select instruction!", &SI);
|
|
visitInstruction(SI);
|
|
}
|
|
|
|
/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
|
|
/// a pass, if any exist, it's an error.
|
|
///
|
|
void Verifier::visitUserOp1(Instruction &I) {
|
|
Assert(false, "User-defined operators should not live outside of a pass!", &I);
|
|
}
|
|
|
|
void Verifier::visitTruncInst(TruncInst &I) {
|
|
// Get the source and destination types
|
|
Type *SrcTy = I.getOperand(0)->getType();
|
|
Type *DestTy = I.getType();
|
|
|
|
// Get the size of the types in bits, we'll need this later
|
|
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
|
|
unsigned DestBitSize = DestTy->getScalarSizeInBits();
|
|
|
|
Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
|
|
Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
|
|
Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
|
|
"trunc source and destination must both be a vector or neither", &I);
|
|
Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitZExtInst(ZExtInst &I) {
|
|
// Get the source and destination types
|
|
Type *SrcTy = I.getOperand(0)->getType();
|
|
Type *DestTy = I.getType();
|
|
|
|
// Get the size of the types in bits, we'll need this later
|
|
Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
|
|
Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
|
|
Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
|
|
"zext source and destination must both be a vector or neither", &I);
|
|
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
|
|
unsigned DestBitSize = DestTy->getScalarSizeInBits();
|
|
|
|
Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitSExtInst(SExtInst &I) {
|
|
// Get the source and destination types
|
|
Type *SrcTy = I.getOperand(0)->getType();
|
|
Type *DestTy = I.getType();
|
|
|
|
// Get the size of the types in bits, we'll need this later
|
|
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
|
|
unsigned DestBitSize = DestTy->getScalarSizeInBits();
|
|
|
|
Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
|
|
Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
|
|
Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
|
|
"sext source and destination must both be a vector or neither", &I);
|
|
Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitFPTruncInst(FPTruncInst &I) {
|
|
// Get the source and destination types
|
|
Type *SrcTy = I.getOperand(0)->getType();
|
|
Type *DestTy = I.getType();
|
|
// Get the size of the types in bits, we'll need this later
|
|
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
|
|
unsigned DestBitSize = DestTy->getScalarSizeInBits();
|
|
|
|
Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
|
|
Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
|
|
Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
|
|
"fptrunc source and destination must both be a vector or neither", &I);
|
|
Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitFPExtInst(FPExtInst &I) {
|
|
// Get the source and destination types
|
|
Type *SrcTy = I.getOperand(0)->getType();
|
|
Type *DestTy = I.getType();
|
|
|
|
// Get the size of the types in bits, we'll need this later
|
|
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
|
|
unsigned DestBitSize = DestTy->getScalarSizeInBits();
|
|
|
|
Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
|
|
Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
|
|
Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
|
|
"fpext source and destination must both be a vector or neither", &I);
|
|
Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitUIToFPInst(UIToFPInst &I) {
|
|
// Get the source and destination types
|
|
Type *SrcTy = I.getOperand(0)->getType();
|
|
Type *DestTy = I.getType();
|
|
|
|
bool SrcVec = SrcTy->isVectorTy();
|
|
bool DstVec = DestTy->isVectorTy();
|
|
|
|
Assert(SrcVec == DstVec,
|
|
"UIToFP source and dest must both be vector or scalar", &I);
|
|
Assert(SrcTy->isIntOrIntVectorTy(),
|
|
"UIToFP source must be integer or integer vector", &I);
|
|
Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
|
|
&I);
|
|
|
|
if (SrcVec && DstVec)
|
|
Assert(cast<VectorType>(SrcTy)->getNumElements() ==
|
|
cast<VectorType>(DestTy)->getNumElements(),
|
|
"UIToFP source and dest vector length mismatch", &I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitSIToFPInst(SIToFPInst &I) {
|
|
// Get the source and destination types
|
|
Type *SrcTy = I.getOperand(0)->getType();
|
|
Type *DestTy = I.getType();
|
|
|
|
bool SrcVec = SrcTy->isVectorTy();
|
|
bool DstVec = DestTy->isVectorTy();
|
|
|
|
Assert(SrcVec == DstVec,
|
|
"SIToFP source and dest must both be vector or scalar", &I);
|
|
Assert(SrcTy->isIntOrIntVectorTy(),
|
|
"SIToFP source must be integer or integer vector", &I);
|
|
Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
|
|
&I);
|
|
|
|
if (SrcVec && DstVec)
|
|
Assert(cast<VectorType>(SrcTy)->getNumElements() ==
|
|
cast<VectorType>(DestTy)->getNumElements(),
|
|
"SIToFP source and dest vector length mismatch", &I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitFPToUIInst(FPToUIInst &I) {
|
|
// Get the source and destination types
|
|
Type *SrcTy = I.getOperand(0)->getType();
|
|
Type *DestTy = I.getType();
|
|
|
|
bool SrcVec = SrcTy->isVectorTy();
|
|
bool DstVec = DestTy->isVectorTy();
|
|
|
|
Assert(SrcVec == DstVec,
|
|
"FPToUI source and dest must both be vector or scalar", &I);
|
|
Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
|
|
&I);
|
|
Assert(DestTy->isIntOrIntVectorTy(),
|
|
"FPToUI result must be integer or integer vector", &I);
|
|
|
|
if (SrcVec && DstVec)
|
|
Assert(cast<VectorType>(SrcTy)->getNumElements() ==
|
|
cast<VectorType>(DestTy)->getNumElements(),
|
|
"FPToUI source and dest vector length mismatch", &I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitFPToSIInst(FPToSIInst &I) {
|
|
// Get the source and destination types
|
|
Type *SrcTy = I.getOperand(0)->getType();
|
|
Type *DestTy = I.getType();
|
|
|
|
bool SrcVec = SrcTy->isVectorTy();
|
|
bool DstVec = DestTy->isVectorTy();
|
|
|
|
Assert(SrcVec == DstVec,
|
|
"FPToSI source and dest must both be vector or scalar", &I);
|
|
Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
|
|
&I);
|
|
Assert(DestTy->isIntOrIntVectorTy(),
|
|
"FPToSI result must be integer or integer vector", &I);
|
|
|
|
if (SrcVec && DstVec)
|
|
Assert(cast<VectorType>(SrcTy)->getNumElements() ==
|
|
cast<VectorType>(DestTy)->getNumElements(),
|
|
"FPToSI source and dest vector length mismatch", &I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
|
|
// Get the source and destination types
|
|
Type *SrcTy = I.getOperand(0)->getType();
|
|
Type *DestTy = I.getType();
|
|
|
|
Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
|
|
|
|
if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
|
|
Assert(!DL.isNonIntegralPointerType(PTy),
|
|
"ptrtoint not supported for non-integral pointers");
|
|
|
|
Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
|
|
Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
|
|
&I);
|
|
|
|
if (SrcTy->isVectorTy()) {
|
|
VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
|
|
VectorType *VDest = dyn_cast<VectorType>(DestTy);
|
|
Assert(VSrc->getNumElements() == VDest->getNumElements(),
|
|
"PtrToInt Vector width mismatch", &I);
|
|
}
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
|
|
// Get the source and destination types
|
|
Type *SrcTy = I.getOperand(0)->getType();
|
|
Type *DestTy = I.getType();
|
|
|
|
Assert(SrcTy->isIntOrIntVectorTy(),
|
|
"IntToPtr source must be an integral", &I);
|
|
Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
|
|
|
|
if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
|
|
Assert(!DL.isNonIntegralPointerType(PTy),
|
|
"inttoptr not supported for non-integral pointers");
|
|
|
|
Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
|
|
&I);
|
|
if (SrcTy->isVectorTy()) {
|
|
VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
|
|
VectorType *VDest = dyn_cast<VectorType>(DestTy);
|
|
Assert(VSrc->getNumElements() == VDest->getNumElements(),
|
|
"IntToPtr Vector width mismatch", &I);
|
|
}
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitBitCastInst(BitCastInst &I) {
|
|
Assert(
|
|
CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
|
|
"Invalid bitcast", &I);
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
|
|
Type *SrcTy = I.getOperand(0)->getType();
|
|
Type *DestTy = I.getType();
|
|
|
|
Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
|
|
&I);
|
|
Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
|
|
&I);
|
|
Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
|
|
"AddrSpaceCast must be between different address spaces", &I);
|
|
if (SrcTy->isVectorTy())
|
|
Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
|
|
"AddrSpaceCast vector pointer number of elements mismatch", &I);
|
|
visitInstruction(I);
|
|
}
|
|
|
|
/// visitPHINode - Ensure that a PHI node is well formed.
|
|
///
|
|
void Verifier::visitPHINode(PHINode &PN) {
|
|
// Ensure that the PHI nodes are all grouped together at the top of the block.
|
|
// This can be tested by checking whether the instruction before this is
|
|
// either nonexistent (because this is begin()) or is a PHI node. If not,
|
|
// then there is some other instruction before a PHI.
|
|
Assert(&PN == &PN.getParent()->front() ||
|
|
isa<PHINode>(--BasicBlock::iterator(&PN)),
|
|
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
|
|
|
|
// Check that a PHI doesn't yield a Token.
|
|
Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
|
|
|
|
// Check that all of the values of the PHI node have the same type as the
|
|
// result, and that the incoming blocks are really basic blocks.
|
|
for (Value *IncValue : PN.incoming_values()) {
|
|
Assert(PN.getType() == IncValue->getType(),
|
|
"PHI node operands are not the same type as the result!", &PN);
|
|
}
|
|
|
|
// All other PHI node constraints are checked in the visitBasicBlock method.
|
|
|
|
visitInstruction(PN);
|
|
}
|
|
|
|
void Verifier::verifyCallSite(CallSite CS) {
|
|
Instruction *I = CS.getInstruction();
|
|
|
|
Assert(CS.getCalledValue()->getType()->isPointerTy(),
|
|
"Called function must be a pointer!", I);
|
|
PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
|
|
|
|
Assert(FPTy->getElementType()->isFunctionTy(),
|
|
"Called function is not pointer to function type!", I);
|
|
|
|
Assert(FPTy->getElementType() == CS.getFunctionType(),
|
|
"Called function is not the same type as the call!", I);
|
|
|
|
FunctionType *FTy = CS.getFunctionType();
|
|
|
|
// Verify that the correct number of arguments are being passed
|
|
if (FTy->isVarArg())
|
|
Assert(CS.arg_size() >= FTy->getNumParams(),
|
|
"Called function requires more parameters than were provided!", I);
|
|
else
|
|
Assert(CS.arg_size() == FTy->getNumParams(),
|
|
"Incorrect number of arguments passed to called function!", I);
|
|
|
|
// Verify that all arguments to the call match the function type.
|
|
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
|
|
Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),
|
|
"Call parameter type does not match function signature!",
|
|
CS.getArgument(i), FTy->getParamType(i), I);
|
|
|
|
AttributeList Attrs = CS.getAttributes();
|
|
|
|
Assert(verifyAttributeCount(Attrs, CS.arg_size()),
|
|
"Attribute after last parameter!", I);
|
|
|
|
if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) {
|
|
// Don't allow speculatable on call sites, unless the underlying function
|
|
// declaration is also speculatable.
|
|
Function *Callee
|
|
= dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
|
|
Assert(Callee && Callee->isSpeculatable(),
|
|
"speculatable attribute may not apply to call sites", I);
|
|
}
|
|
|
|
// Verify call attributes.
|
|
verifyFunctionAttrs(FTy, Attrs, I);
|
|
|
|
// Conservatively check the inalloca argument.
|
|
// We have a bug if we can find that there is an underlying alloca without
|
|
// inalloca.
|
|
if (CS.hasInAllocaArgument()) {
|
|
Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
|
|
if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
|
|
Assert(AI->isUsedWithInAlloca(),
|
|
"inalloca argument for call has mismatched alloca", AI, I);
|
|
}
|
|
|
|
// For each argument of the callsite, if it has the swifterror argument,
|
|
// make sure the underlying alloca/parameter it comes from has a swifterror as
|
|
// well.
|
|
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
|
|
if (CS.paramHasAttr(i, Attribute::SwiftError)) {
|
|
Value *SwiftErrorArg = CS.getArgument(i);
|
|
if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
|
|
Assert(AI->isSwiftError(),
|
|
"swifterror argument for call has mismatched alloca", AI, I);
|
|
continue;
|
|
}
|
|
auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
|
|
Assert(ArgI, "swifterror argument should come from an alloca or parameter", SwiftErrorArg, I);
|
|
Assert(ArgI->hasSwiftErrorAttr(),
|
|
"swifterror argument for call has mismatched parameter", ArgI, I);
|
|
}
|
|
|
|
if (FTy->isVarArg()) {
|
|
// FIXME? is 'nest' even legal here?
|
|
bool SawNest = false;
|
|
bool SawReturned = false;
|
|
|
|
for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
|
|
if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
|
|
SawNest = true;
|
|
if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
|
|
SawReturned = true;
|
|
}
|
|
|
|
// Check attributes on the varargs part.
|
|
for (unsigned Idx = FTy->getNumParams(); Idx < CS.arg_size(); ++Idx) {
|
|
Type *Ty = CS.getArgument(Idx)->getType();
|
|
AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
|
|
verifyParameterAttrs(ArgAttrs, Ty, I);
|
|
|
|
if (ArgAttrs.hasAttribute(Attribute::Nest)) {
|
|
Assert(!SawNest, "More than one parameter has attribute nest!", I);
|
|
SawNest = true;
|
|
}
|
|
|
|
if (ArgAttrs.hasAttribute(Attribute::Returned)) {
|
|
Assert(!SawReturned, "More than one parameter has attribute returned!",
|
|
I);
|
|
Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
|
|
"Incompatible argument and return types for 'returned' "
|
|
"attribute",
|
|
I);
|
|
SawReturned = true;
|
|
}
|
|
|
|
Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
|
|
"Attribute 'sret' cannot be used for vararg call arguments!", I);
|
|
|
|
if (ArgAttrs.hasAttribute(Attribute::InAlloca))
|
|
Assert(Idx == CS.arg_size() - 1, "inalloca isn't on the last argument!",
|
|
I);
|
|
}
|
|
}
|
|
|
|
// Verify that there's no metadata unless it's a direct call to an intrinsic.
|
|
if (CS.getCalledFunction() == nullptr ||
|
|
!CS.getCalledFunction()->getName().startswith("llvm.")) {
|
|
for (Type *ParamTy : FTy->params()) {
|
|
Assert(!ParamTy->isMetadataTy(),
|
|
"Function has metadata parameter but isn't an intrinsic", I);
|
|
Assert(!ParamTy->isTokenTy(),
|
|
"Function has token parameter but isn't an intrinsic", I);
|
|
}
|
|
}
|
|
|
|
// Verify that indirect calls don't return tokens.
|
|
if (CS.getCalledFunction() == nullptr)
|
|
Assert(!FTy->getReturnType()->isTokenTy(),
|
|
"Return type cannot be token for indirect call!");
|
|
|
|
if (Function *F = CS.getCalledFunction())
|
|
if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
|
|
visitIntrinsicCallSite(ID, CS);
|
|
|
|
// Verify that a callsite has at most one "deopt", at most one "funclet" and
|
|
// at most one "gc-transition" operand bundle.
|
|
bool FoundDeoptBundle = false, FoundFuncletBundle = false,
|
|
FoundGCTransitionBundle = false;
|
|
for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) {
|
|
OperandBundleUse BU = CS.getOperandBundleAt(i);
|
|
uint32_t Tag = BU.getTagID();
|
|
if (Tag == LLVMContext::OB_deopt) {
|
|
Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I);
|
|
FoundDeoptBundle = true;
|
|
} else if (Tag == LLVMContext::OB_gc_transition) {
|
|
Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
|
|
I);
|
|
FoundGCTransitionBundle = true;
|
|
} else if (Tag == LLVMContext::OB_funclet) {
|
|
Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I);
|
|
FoundFuncletBundle = true;
|
|
Assert(BU.Inputs.size() == 1,
|
|
"Expected exactly one funclet bundle operand", I);
|
|
Assert(isa<FuncletPadInst>(BU.Inputs.front()),
|
|
"Funclet bundle operands should correspond to a FuncletPadInst",
|
|
I);
|
|
}
|
|
}
|
|
|
|
// Verify that each inlinable callsite of a debug-info-bearing function in a
|
|
// debug-info-bearing function has a debug location attached to it. Failure to
|
|
// do so causes assertion failures when the inliner sets up inline scope info.
|
|
if (I->getFunction()->getSubprogram() && CS.getCalledFunction() &&
|
|
CS.getCalledFunction()->getSubprogram())
|
|
AssertDI(I->getDebugLoc(), "inlinable function call in a function with "
|
|
"debug info must have a !dbg location",
|
|
I);
|
|
|
|
visitInstruction(*I);
|
|
}
|
|
|
|
/// Two types are "congruent" if they are identical, or if they are both pointer
|
|
/// types with different pointee types and the same address space.
|
|
static bool isTypeCongruent(Type *L, Type *R) {
|
|
if (L == R)
|
|
return true;
|
|
PointerType *PL = dyn_cast<PointerType>(L);
|
|
PointerType *PR = dyn_cast<PointerType>(R);
|
|
if (!PL || !PR)
|
|
return false;
|
|
return PL->getAddressSpace() == PR->getAddressSpace();
|
|
}
|
|
|
|
static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) {
|
|
static const Attribute::AttrKind ABIAttrs[] = {
|
|
Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
|
|
Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
|
|
Attribute::SwiftError};
|
|
AttrBuilder Copy;
|
|
for (auto AK : ABIAttrs) {
|
|
if (Attrs.hasParamAttribute(I, AK))
|
|
Copy.addAttribute(AK);
|
|
}
|
|
if (Attrs.hasParamAttribute(I, Attribute::Alignment))
|
|
Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
|
|
return Copy;
|
|
}
|
|
|
|
void Verifier::verifyMustTailCall(CallInst &CI) {
|
|
Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
|
|
|
|
// - The caller and callee prototypes must match. Pointer types of
|
|
// parameters or return types may differ in pointee type, but not
|
|
// address space.
|
|
Function *F = CI.getParent()->getParent();
|
|
FunctionType *CallerTy = F->getFunctionType();
|
|
FunctionType *CalleeTy = CI.getFunctionType();
|
|
if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
|
|
Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
|
|
"cannot guarantee tail call due to mismatched parameter counts",
|
|
&CI);
|
|
for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
|
|
Assert(
|
|
isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
|
|
"cannot guarantee tail call due to mismatched parameter types", &CI);
|
|
}
|
|
}
|
|
Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
|
|
"cannot guarantee tail call due to mismatched varargs", &CI);
|
|
Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
|
|
"cannot guarantee tail call due to mismatched return types", &CI);
|
|
|
|
// - The calling conventions of the caller and callee must match.
|
|
Assert(F->getCallingConv() == CI.getCallingConv(),
|
|
"cannot guarantee tail call due to mismatched calling conv", &CI);
|
|
|
|
// - All ABI-impacting function attributes, such as sret, byval, inreg,
|
|
// returned, and inalloca, must match.
|
|
AttributeList CallerAttrs = F->getAttributes();
|
|
AttributeList CalleeAttrs = CI.getAttributes();
|
|
for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
|
|
AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
|
|
AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
|
|
Assert(CallerABIAttrs == CalleeABIAttrs,
|
|
"cannot guarantee tail call due to mismatched ABI impacting "
|
|
"function attributes",
|
|
&CI, CI.getOperand(I));
|
|
}
|
|
|
|
// - The call must immediately precede a :ref:`ret <i_ret>` instruction,
|
|
// or a pointer bitcast followed by a ret instruction.
|
|
// - The ret instruction must return the (possibly bitcasted) value
|
|
// produced by the call or void.
|
|
Value *RetVal = &CI;
|
|
Instruction *Next = CI.getNextNode();
|
|
|
|
// Handle the optional bitcast.
|
|
if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
|
|
Assert(BI->getOperand(0) == RetVal,
|
|
"bitcast following musttail call must use the call", BI);
|
|
RetVal = BI;
|
|
Next = BI->getNextNode();
|
|
}
|
|
|
|
// Check the return.
|
|
ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
|
|
Assert(Ret, "musttail call must be precede a ret with an optional bitcast",
|
|
&CI);
|
|
Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
|
|
"musttail call result must be returned", Ret);
|
|
}
|
|
|
|
void Verifier::visitCallInst(CallInst &CI) {
|
|
verifyCallSite(&CI);
|
|
|
|
if (CI.isMustTailCall())
|
|
verifyMustTailCall(CI);
|
|
}
|
|
|
|
void Verifier::visitInvokeInst(InvokeInst &II) {
|
|
verifyCallSite(&II);
|
|
|
|
// Verify that the first non-PHI instruction of the unwind destination is an
|
|
// exception handling instruction.
|
|
Assert(
|
|
II.getUnwindDest()->isEHPad(),
|
|
"The unwind destination does not have an exception handling instruction!",
|
|
&II);
|
|
|
|
visitTerminatorInst(II);
|
|
}
|
|
|
|
/// visitBinaryOperator - Check that both arguments to the binary operator are
|
|
/// of the same type!
|
|
///
|
|
void Verifier::visitBinaryOperator(BinaryOperator &B) {
|
|
Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
|
|
"Both operands to a binary operator are not of the same type!", &B);
|
|
|
|
switch (B.getOpcode()) {
|
|
// Check that integer arithmetic operators are only used with
|
|
// integral operands.
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
case Instruction::Mul:
|
|
case Instruction::SDiv:
|
|
case Instruction::UDiv:
|
|
case Instruction::SRem:
|
|
case Instruction::URem:
|
|
Assert(B.getType()->isIntOrIntVectorTy(),
|
|
"Integer arithmetic operators only work with integral types!", &B);
|
|
Assert(B.getType() == B.getOperand(0)->getType(),
|
|
"Integer arithmetic operators must have same type "
|
|
"for operands and result!",
|
|
&B);
|
|
break;
|
|
// Check that floating-point arithmetic operators are only used with
|
|
// floating-point operands.
|
|
case Instruction::FAdd:
|
|
case Instruction::FSub:
|
|
case Instruction::FMul:
|
|
case Instruction::FDiv:
|
|
case Instruction::FRem:
|
|
Assert(B.getType()->isFPOrFPVectorTy(),
|
|
"Floating-point arithmetic operators only work with "
|
|
"floating-point types!",
|
|
&B);
|
|
Assert(B.getType() == B.getOperand(0)->getType(),
|
|
"Floating-point arithmetic operators must have same type "
|
|
"for operands and result!",
|
|
&B);
|
|
break;
|
|
// Check that logical operators are only used with integral operands.
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
Assert(B.getType()->isIntOrIntVectorTy(),
|
|
"Logical operators only work with integral types!", &B);
|
|
Assert(B.getType() == B.getOperand(0)->getType(),
|
|
"Logical operators must have same type for operands and result!",
|
|
&B);
|
|
break;
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
Assert(B.getType()->isIntOrIntVectorTy(),
|
|
"Shifts only work with integral types!", &B);
|
|
Assert(B.getType() == B.getOperand(0)->getType(),
|
|
"Shift return type must be same as operands!", &B);
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unknown BinaryOperator opcode!");
|
|
}
|
|
|
|
visitInstruction(B);
|
|
}
|
|
|
|
void Verifier::visitICmpInst(ICmpInst &IC) {
|
|
// Check that the operands are the same type
|
|
Type *Op0Ty = IC.getOperand(0)->getType();
|
|
Type *Op1Ty = IC.getOperand(1)->getType();
|
|
Assert(Op0Ty == Op1Ty,
|
|
"Both operands to ICmp instruction are not of the same type!", &IC);
|
|
// Check that the operands are the right type
|
|
Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
|
|
"Invalid operand types for ICmp instruction", &IC);
|
|
// Check that the predicate is valid.
|
|
Assert(IC.isIntPredicate(),
|
|
"Invalid predicate in ICmp instruction!", &IC);
|
|
|
|
visitInstruction(IC);
|
|
}
|
|
|
|
void Verifier::visitFCmpInst(FCmpInst &FC) {
|
|
// Check that the operands are the same type
|
|
Type *Op0Ty = FC.getOperand(0)->getType();
|
|
Type *Op1Ty = FC.getOperand(1)->getType();
|
|
Assert(Op0Ty == Op1Ty,
|
|
"Both operands to FCmp instruction are not of the same type!", &FC);
|
|
// Check that the operands are the right type
|
|
Assert(Op0Ty->isFPOrFPVectorTy(),
|
|
"Invalid operand types for FCmp instruction", &FC);
|
|
// Check that the predicate is valid.
|
|
Assert(FC.isFPPredicate(),
|
|
"Invalid predicate in FCmp instruction!", &FC);
|
|
|
|
visitInstruction(FC);
|
|
}
|
|
|
|
void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
|
|
Assert(
|
|
ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
|
|
"Invalid extractelement operands!", &EI);
|
|
visitInstruction(EI);
|
|
}
|
|
|
|
void Verifier::visitInsertElementInst(InsertElementInst &IE) {
|
|
Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
|
|
IE.getOperand(2)),
|
|
"Invalid insertelement operands!", &IE);
|
|
visitInstruction(IE);
|
|
}
|
|
|
|
void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
|
|
Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
|
|
SV.getOperand(2)),
|
|
"Invalid shufflevector operands!", &SV);
|
|
visitInstruction(SV);
|
|
}
|
|
|
|
void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
|
|
Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
|
|
|
|
Assert(isa<PointerType>(TargetTy),
|
|
"GEP base pointer is not a vector or a vector of pointers", &GEP);
|
|
Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
|
|
|
|
SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
|
|
Assert(all_of(
|
|
Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),
|
|
"GEP indexes must be integers", &GEP);
|
|
Type *ElTy =
|
|
GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
|
|
Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
|
|
|
|
Assert(GEP.getType()->isPtrOrPtrVectorTy() &&
|
|
GEP.getResultElementType() == ElTy,
|
|
"GEP is not of right type for indices!", &GEP, ElTy);
|
|
|
|
if (GEP.getType()->isVectorTy()) {
|
|
// Additional checks for vector GEPs.
|
|
unsigned GEPWidth = GEP.getType()->getVectorNumElements();
|
|
if (GEP.getPointerOperandType()->isVectorTy())
|
|
Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
|
|
"Vector GEP result width doesn't match operand's", &GEP);
|
|
for (Value *Idx : Idxs) {
|
|
Type *IndexTy = Idx->getType();
|
|
if (IndexTy->isVectorTy()) {
|
|
unsigned IndexWidth = IndexTy->getVectorNumElements();
|
|
Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
|
|
}
|
|
Assert(IndexTy->isIntOrIntVectorTy(),
|
|
"All GEP indices should be of integer type");
|
|
}
|
|
}
|
|
visitInstruction(GEP);
|
|
}
|
|
|
|
static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
|
|
return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
|
|
}
|
|
|
|
void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
|
|
assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
|
|
"precondition violation");
|
|
|
|
unsigned NumOperands = Range->getNumOperands();
|
|
Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
|
|
unsigned NumRanges = NumOperands / 2;
|
|
Assert(NumRanges >= 1, "It should have at least one range!", Range);
|
|
|
|
ConstantRange LastRange(1); // Dummy initial value
|
|
for (unsigned i = 0; i < NumRanges; ++i) {
|
|
ConstantInt *Low =
|
|
mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
|
|
Assert(Low, "The lower limit must be an integer!", Low);
|
|
ConstantInt *High =
|
|
mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
|
|
Assert(High, "The upper limit must be an integer!", High);
|
|
Assert(High->getType() == Low->getType() && High->getType() == Ty,
|
|
"Range types must match instruction type!", &I);
|
|
|
|
APInt HighV = High->getValue();
|
|
APInt LowV = Low->getValue();
|
|
ConstantRange CurRange(LowV, HighV);
|
|
Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
|
|
"Range must not be empty!", Range);
|
|
if (i != 0) {
|
|
Assert(CurRange.intersectWith(LastRange).isEmptySet(),
|
|
"Intervals are overlapping", Range);
|
|
Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
|
|
Range);
|
|
Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
|
|
Range);
|
|
}
|
|
LastRange = ConstantRange(LowV, HighV);
|
|
}
|
|
if (NumRanges > 2) {
|
|
APInt FirstLow =
|
|
mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
|
|
APInt FirstHigh =
|
|
mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
|
|
ConstantRange FirstRange(FirstLow, FirstHigh);
|
|
Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
|
|
"Intervals are overlapping", Range);
|
|
Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
|
|
Range);
|
|
}
|
|
}
|
|
|
|
void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
|
|
unsigned Size = DL.getTypeSizeInBits(Ty);
|
|
Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
|
|
Assert(!(Size & (Size - 1)),
|
|
"atomic memory access' operand must have a power-of-two size", Ty, I);
|
|
}
|
|
|
|
void Verifier::visitLoadInst(LoadInst &LI) {
|
|
PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
|
|
Assert(PTy, "Load operand must be a pointer.", &LI);
|
|
Type *ElTy = LI.getType();
|
|
Assert(LI.getAlignment() <= Value::MaximumAlignment,
|
|
"huge alignment values are unsupported", &LI);
|
|
Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
|
|
if (LI.isAtomic()) {
|
|
Assert(LI.getOrdering() != AtomicOrdering::Release &&
|
|
LI.getOrdering() != AtomicOrdering::AcquireRelease,
|
|
"Load cannot have Release ordering", &LI);
|
|
Assert(LI.getAlignment() != 0,
|
|
"Atomic load must specify explicit alignment", &LI);
|
|
Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
|
|
ElTy->isFloatingPointTy(),
|
|
"atomic load operand must have integer, pointer, or floating point "
|
|
"type!",
|
|
ElTy, &LI);
|
|
checkAtomicMemAccessSize(ElTy, &LI);
|
|
} else {
|
|
Assert(LI.getSyncScopeID() == SyncScope::System,
|
|
"Non-atomic load cannot have SynchronizationScope specified", &LI);
|
|
}
|
|
|
|
visitInstruction(LI);
|
|
}
|
|
|
|
void Verifier::visitStoreInst(StoreInst &SI) {
|
|
PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
|
|
Assert(PTy, "Store operand must be a pointer.", &SI);
|
|
Type *ElTy = PTy->getElementType();
|
|
Assert(ElTy == SI.getOperand(0)->getType(),
|
|
"Stored value type does not match pointer operand type!", &SI, ElTy);
|
|
Assert(SI.getAlignment() <= Value::MaximumAlignment,
|
|
"huge alignment values are unsupported", &SI);
|
|
Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
|
|
if (SI.isAtomic()) {
|
|
Assert(SI.getOrdering() != AtomicOrdering::Acquire &&
|
|
SI.getOrdering() != AtomicOrdering::AcquireRelease,
|
|
"Store cannot have Acquire ordering", &SI);
|
|
Assert(SI.getAlignment() != 0,
|
|
"Atomic store must specify explicit alignment", &SI);
|
|
Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
|
|
ElTy->isFloatingPointTy(),
|
|
"atomic store operand must have integer, pointer, or floating point "
|
|
"type!",
|
|
ElTy, &SI);
|
|
checkAtomicMemAccessSize(ElTy, &SI);
|
|
} else {
|
|
Assert(SI.getSyncScopeID() == SyncScope::System,
|
|
"Non-atomic store cannot have SynchronizationScope specified", &SI);
|
|
}
|
|
visitInstruction(SI);
|
|
}
|
|
|
|
/// Check that SwiftErrorVal is used as a swifterror argument in CS.
|
|
void Verifier::verifySwiftErrorCallSite(CallSite CS,
|
|
const Value *SwiftErrorVal) {
|
|
unsigned Idx = 0;
|
|
for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
|
|
I != E; ++I, ++Idx) {
|
|
if (*I == SwiftErrorVal) {
|
|
Assert(CS.paramHasAttr(Idx, Attribute::SwiftError),
|
|
"swifterror value when used in a callsite should be marked "
|
|
"with swifterror attribute",
|
|
SwiftErrorVal, CS);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
|
|
// Check that swifterror value is only used by loads, stores, or as
|
|
// a swifterror argument.
|
|
for (const User *U : SwiftErrorVal->users()) {
|
|
Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
|
|
isa<InvokeInst>(U),
|
|
"swifterror value can only be loaded and stored from, or "
|
|
"as a swifterror argument!",
|
|
SwiftErrorVal, U);
|
|
// If it is used by a store, check it is the second operand.
|
|
if (auto StoreI = dyn_cast<StoreInst>(U))
|
|
Assert(StoreI->getOperand(1) == SwiftErrorVal,
|
|
"swifterror value should be the second operand when used "
|
|
"by stores", SwiftErrorVal, U);
|
|
if (auto CallI = dyn_cast<CallInst>(U))
|
|
verifySwiftErrorCallSite(const_cast<CallInst*>(CallI), SwiftErrorVal);
|
|
if (auto II = dyn_cast<InvokeInst>(U))
|
|
verifySwiftErrorCallSite(const_cast<InvokeInst*>(II), SwiftErrorVal);
|
|
}
|
|
}
|
|
|
|
void Verifier::visitAllocaInst(AllocaInst &AI) {
|
|
SmallPtrSet<Type*, 4> Visited;
|
|
PointerType *PTy = AI.getType();
|
|
// TODO: Relax this restriction?
|
|
Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(),
|
|
"Allocation instruction pointer not in the stack address space!",
|
|
&AI);
|
|
Assert(AI.getAllocatedType()->isSized(&Visited),
|
|
"Cannot allocate unsized type", &AI);
|
|
Assert(AI.getArraySize()->getType()->isIntegerTy(),
|
|
"Alloca array size must have integer type", &AI);
|
|
Assert(AI.getAlignment() <= Value::MaximumAlignment,
|
|
"huge alignment values are unsupported", &AI);
|
|
|
|
if (AI.isSwiftError()) {
|
|
verifySwiftErrorValue(&AI);
|
|
}
|
|
|
|
visitInstruction(AI);
|
|
}
|
|
|
|
void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
|
|
|
|
// FIXME: more conditions???
|
|
Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,
|
|
"cmpxchg instructions must be atomic.", &CXI);
|
|
Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,
|
|
"cmpxchg instructions must be atomic.", &CXI);
|
|
Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,
|
|
"cmpxchg instructions cannot be unordered.", &CXI);
|
|
Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,
|
|
"cmpxchg instructions cannot be unordered.", &CXI);
|
|
Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),
|
|
"cmpxchg instructions failure argument shall be no stronger than the "
|
|
"success argument",
|
|
&CXI);
|
|
Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&
|
|
CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,
|
|
"cmpxchg failure ordering cannot include release semantics", &CXI);
|
|
|
|
PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
|
|
Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
|
|
Type *ElTy = PTy->getElementType();
|
|
Assert(ElTy->isIntegerTy() || ElTy->isPointerTy(),
|
|
"cmpxchg operand must have integer or pointer type",
|
|
ElTy, &CXI);
|
|
checkAtomicMemAccessSize(ElTy, &CXI);
|
|
Assert(ElTy == CXI.getOperand(1)->getType(),
|
|
"Expected value type does not match pointer operand type!", &CXI,
|
|
ElTy);
|
|
Assert(ElTy == CXI.getOperand(2)->getType(),
|
|
"Stored value type does not match pointer operand type!", &CXI, ElTy);
|
|
visitInstruction(CXI);
|
|
}
|
|
|
|
void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
|
|
Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,
|
|
"atomicrmw instructions must be atomic.", &RMWI);
|
|
Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,
|
|
"atomicrmw instructions cannot be unordered.", &RMWI);
|
|
PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
|
|
Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
|
|
Type *ElTy = PTy->getElementType();
|
|
Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",
|
|
&RMWI, ElTy);
|
|
checkAtomicMemAccessSize(ElTy, &RMWI);
|
|
Assert(ElTy == RMWI.getOperand(1)->getType(),
|
|
"Argument value type does not match pointer operand type!", &RMWI,
|
|
ElTy);
|
|
Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
|
|
RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
|
|
"Invalid binary operation!", &RMWI);
|
|
visitInstruction(RMWI);
|
|
}
|
|
|
|
void Verifier::visitFenceInst(FenceInst &FI) {
|
|
const AtomicOrdering Ordering = FI.getOrdering();
|
|
Assert(Ordering == AtomicOrdering::Acquire ||
|
|
Ordering == AtomicOrdering::Release ||
|
|
Ordering == AtomicOrdering::AcquireRelease ||
|
|
Ordering == AtomicOrdering::SequentiallyConsistent,
|
|
"fence instructions may only have acquire, release, acq_rel, or "
|
|
"seq_cst ordering.",
|
|
&FI);
|
|
visitInstruction(FI);
|
|
}
|
|
|
|
void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
|
|
Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
|
|
EVI.getIndices()) == EVI.getType(),
|
|
"Invalid ExtractValueInst operands!", &EVI);
|
|
|
|
visitInstruction(EVI);
|
|
}
|
|
|
|
void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
|
|
Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
|
|
IVI.getIndices()) ==
|
|
IVI.getOperand(1)->getType(),
|
|
"Invalid InsertValueInst operands!", &IVI);
|
|
|
|
visitInstruction(IVI);
|
|
}
|
|
|
|
static Value *getParentPad(Value *EHPad) {
|
|
if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
|
|
return FPI->getParentPad();
|
|
|
|
return cast<CatchSwitchInst>(EHPad)->getParentPad();
|
|
}
|
|
|
|
void Verifier::visitEHPadPredecessors(Instruction &I) {
|
|
assert(I.isEHPad());
|
|
|
|
BasicBlock *BB = I.getParent();
|
|
Function *F = BB->getParent();
|
|
|
|
Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
|
|
|
|
if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
|
|
// The landingpad instruction defines its parent as a landing pad block. The
|
|
// landing pad block may be branched to only by the unwind edge of an
|
|
// invoke.
|
|
for (BasicBlock *PredBB : predecessors(BB)) {
|
|
const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
|
|
Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
|
|
"Block containing LandingPadInst must be jumped to "
|
|
"only by the unwind edge of an invoke.",
|
|
LPI);
|
|
}
|
|
return;
|
|
}
|
|
if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
|
|
if (!pred_empty(BB))
|
|
Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
|
|
"Block containg CatchPadInst must be jumped to "
|
|
"only by its catchswitch.",
|
|
CPI);
|
|
Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
|
|
"Catchswitch cannot unwind to one of its catchpads",
|
|
CPI->getCatchSwitch(), CPI);
|
|
return;
|
|
}
|
|
|
|
// Verify that each pred has a legal terminator with a legal to/from EH
|
|
// pad relationship.
|
|
Instruction *ToPad = &I;
|
|
Value *ToPadParent = getParentPad(ToPad);
|
|
for (BasicBlock *PredBB : predecessors(BB)) {
|
|
TerminatorInst *TI = PredBB->getTerminator();
|
|
Value *FromPad;
|
|
if (auto *II = dyn_cast<InvokeInst>(TI)) {
|
|
Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
|
|
"EH pad must be jumped to via an unwind edge", ToPad, II);
|
|
if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
|
|
FromPad = Bundle->Inputs[0];
|
|
else
|
|
FromPad = ConstantTokenNone::get(II->getContext());
|
|
} else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
|
|
FromPad = CRI->getOperand(0);
|
|
Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
|
|
} else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
|
|
FromPad = CSI;
|
|
} else {
|
|
Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
|
|
}
|
|
|
|
// The edge may exit from zero or more nested pads.
|
|
SmallSet<Value *, 8> Seen;
|
|
for (;; FromPad = getParentPad(FromPad)) {
|
|
Assert(FromPad != ToPad,
|
|
"EH pad cannot handle exceptions raised within it", FromPad, TI);
|
|
if (FromPad == ToPadParent) {
|
|
// This is a legal unwind edge.
|
|
break;
|
|
}
|
|
Assert(!isa<ConstantTokenNone>(FromPad),
|
|
"A single unwind edge may only enter one EH pad", TI);
|
|
Assert(Seen.insert(FromPad).second,
|
|
"EH pad jumps through a cycle of pads", FromPad);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
|
|
// The landingpad instruction is ill-formed if it doesn't have any clauses and
|
|
// isn't a cleanup.
|
|
Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
|
|
"LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
|
|
|
|
visitEHPadPredecessors(LPI);
|
|
|
|
if (!LandingPadResultTy)
|
|
LandingPadResultTy = LPI.getType();
|
|
else
|
|
Assert(LandingPadResultTy == LPI.getType(),
|
|
"The landingpad instruction should have a consistent result type "
|
|
"inside a function.",
|
|
&LPI);
|
|
|
|
Function *F = LPI.getParent()->getParent();
|
|
Assert(F->hasPersonalityFn(),
|
|
"LandingPadInst needs to be in a function with a personality.", &LPI);
|
|
|
|
// The landingpad instruction must be the first non-PHI instruction in the
|
|
// block.
|
|
Assert(LPI.getParent()->getLandingPadInst() == &LPI,
|
|
"LandingPadInst not the first non-PHI instruction in the block.",
|
|
&LPI);
|
|
|
|
for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
|
|
Constant *Clause = LPI.getClause(i);
|
|
if (LPI.isCatch(i)) {
|
|
Assert(isa<PointerType>(Clause->getType()),
|
|
"Catch operand does not have pointer type!", &LPI);
|
|
} else {
|
|
Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
|
|
Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
|
|
"Filter operand is not an array of constants!", &LPI);
|
|
}
|
|
}
|
|
|
|
visitInstruction(LPI);
|
|
}
|
|
|
|
void Verifier::visitResumeInst(ResumeInst &RI) {
|
|
Assert(RI.getFunction()->hasPersonalityFn(),
|
|
"ResumeInst needs to be in a function with a personality.", &RI);
|
|
|
|
if (!LandingPadResultTy)
|
|
LandingPadResultTy = RI.getValue()->getType();
|
|
else
|
|
Assert(LandingPadResultTy == RI.getValue()->getType(),
|
|
"The resume instruction should have a consistent result type "
|
|
"inside a function.",
|
|
&RI);
|
|
|
|
visitTerminatorInst(RI);
|
|
}
|
|
|
|
void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
|
|
BasicBlock *BB = CPI.getParent();
|
|
|
|
Function *F = BB->getParent();
|
|
Assert(F->hasPersonalityFn(),
|
|
"CatchPadInst needs to be in a function with a personality.", &CPI);
|
|
|
|
Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
|
|
"CatchPadInst needs to be directly nested in a CatchSwitchInst.",
|
|
CPI.getParentPad());
|
|
|
|
// The catchpad instruction must be the first non-PHI instruction in the
|
|
// block.
|
|
Assert(BB->getFirstNonPHI() == &CPI,
|
|
"CatchPadInst not the first non-PHI instruction in the block.", &CPI);
|
|
|
|
visitEHPadPredecessors(CPI);
|
|
visitFuncletPadInst(CPI);
|
|
}
|
|
|
|
void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
|
|
Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
|
|
"CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
|
|
CatchReturn.getOperand(0));
|
|
|
|
visitTerminatorInst(CatchReturn);
|
|
}
|
|
|
|
void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
|
|
BasicBlock *BB = CPI.getParent();
|
|
|
|
Function *F = BB->getParent();
|
|
Assert(F->hasPersonalityFn(),
|
|
"CleanupPadInst needs to be in a function with a personality.", &CPI);
|
|
|
|
// The cleanuppad instruction must be the first non-PHI instruction in the
|
|
// block.
|
|
Assert(BB->getFirstNonPHI() == &CPI,
|
|
"CleanupPadInst not the first non-PHI instruction in the block.",
|
|
&CPI);
|
|
|
|
auto *ParentPad = CPI.getParentPad();
|
|
Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
|
|
"CleanupPadInst has an invalid parent.", &CPI);
|
|
|
|
visitEHPadPredecessors(CPI);
|
|
visitFuncletPadInst(CPI);
|
|
}
|
|
|
|
void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
|
|
User *FirstUser = nullptr;
|
|
Value *FirstUnwindPad = nullptr;
|
|
SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
|
|
SmallSet<FuncletPadInst *, 8> Seen;
|
|
|
|
while (!Worklist.empty()) {
|
|
FuncletPadInst *CurrentPad = Worklist.pop_back_val();
|
|
Assert(Seen.insert(CurrentPad).second,
|
|
"FuncletPadInst must not be nested within itself", CurrentPad);
|
|
Value *UnresolvedAncestorPad = nullptr;
|
|
for (User *U : CurrentPad->users()) {
|
|
BasicBlock *UnwindDest;
|
|
if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
|
|
UnwindDest = CRI->getUnwindDest();
|
|
} else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
|
|
// We allow catchswitch unwind to caller to nest
|
|
// within an outer pad that unwinds somewhere else,
|
|
// because catchswitch doesn't have a nounwind variant.
|
|
// See e.g. SimplifyCFGOpt::SimplifyUnreachable.
|
|
if (CSI->unwindsToCaller())
|
|
continue;
|
|
UnwindDest = CSI->getUnwindDest();
|
|
} else if (auto *II = dyn_cast<InvokeInst>(U)) {
|
|
UnwindDest = II->getUnwindDest();
|
|
} else if (isa<CallInst>(U)) {
|
|
// Calls which don't unwind may be found inside funclet
|
|
// pads that unwind somewhere else. We don't *require*
|
|
// such calls to be annotated nounwind.
|
|
continue;
|
|
} else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
|
|
// The unwind dest for a cleanup can only be found by
|
|
// recursive search. Add it to the worklist, and we'll
|
|
// search for its first use that determines where it unwinds.
|
|
Worklist.push_back(CPI);
|
|
continue;
|
|
} else {
|
|
Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
|
|
continue;
|
|
}
|
|
|
|
Value *UnwindPad;
|
|
bool ExitsFPI;
|
|
if (UnwindDest) {
|
|
UnwindPad = UnwindDest->getFirstNonPHI();
|
|
if (!cast<Instruction>(UnwindPad)->isEHPad())
|
|
continue;
|
|
Value *UnwindParent = getParentPad(UnwindPad);
|
|
// Ignore unwind edges that don't exit CurrentPad.
|
|
if (UnwindParent == CurrentPad)
|
|
continue;
|
|
// Determine whether the original funclet pad is exited,
|
|
// and if we are scanning nested pads determine how many
|
|
// of them are exited so we can stop searching their
|
|
// children.
|
|
Value *ExitedPad = CurrentPad;
|
|
ExitsFPI = false;
|
|
do {
|
|
if (ExitedPad == &FPI) {
|
|
ExitsFPI = true;
|
|
// Now we can resolve any ancestors of CurrentPad up to
|
|
// FPI, but not including FPI since we need to make sure
|
|
// to check all direct users of FPI for consistency.
|
|
UnresolvedAncestorPad = &FPI;
|
|
break;
|
|
}
|
|
Value *ExitedParent = getParentPad(ExitedPad);
|
|
if (ExitedParent == UnwindParent) {
|
|
// ExitedPad is the ancestor-most pad which this unwind
|
|
// edge exits, so we can resolve up to it, meaning that
|
|
// ExitedParent is the first ancestor still unresolved.
|
|
UnresolvedAncestorPad = ExitedParent;
|
|
break;
|
|
}
|
|
ExitedPad = ExitedParent;
|
|
} while (!isa<ConstantTokenNone>(ExitedPad));
|
|
} else {
|
|
// Unwinding to caller exits all pads.
|
|
UnwindPad = ConstantTokenNone::get(FPI.getContext());
|
|
ExitsFPI = true;
|
|
UnresolvedAncestorPad = &FPI;
|
|
}
|
|
|
|
if (ExitsFPI) {
|
|
// This unwind edge exits FPI. Make sure it agrees with other
|
|
// such edges.
|
|
if (FirstUser) {
|
|
Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
|
|
"pad must have the same unwind "
|
|
"dest",
|
|
&FPI, U, FirstUser);
|
|
} else {
|
|
FirstUser = U;
|
|
FirstUnwindPad = UnwindPad;
|
|
// Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
|
|
if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
|
|
getParentPad(UnwindPad) == getParentPad(&FPI))
|
|
SiblingFuncletInfo[&FPI] = cast<TerminatorInst>(U);
|
|
}
|
|
}
|
|
// Make sure we visit all uses of FPI, but for nested pads stop as
|
|
// soon as we know where they unwind to.
|
|
if (CurrentPad != &FPI)
|
|
break;
|
|
}
|
|
if (UnresolvedAncestorPad) {
|
|
if (CurrentPad == UnresolvedAncestorPad) {
|
|
// When CurrentPad is FPI itself, we don't mark it as resolved even if
|
|
// we've found an unwind edge that exits it, because we need to verify
|
|
// all direct uses of FPI.
|
|
assert(CurrentPad == &FPI);
|
|
continue;
|
|
}
|
|
// Pop off the worklist any nested pads that we've found an unwind
|
|
// destination for. The pads on the worklist are the uncles,
|
|
// great-uncles, etc. of CurrentPad. We've found an unwind destination
|
|
// for all ancestors of CurrentPad up to but not including
|
|
// UnresolvedAncestorPad.
|
|
Value *ResolvedPad = CurrentPad;
|
|
while (!Worklist.empty()) {
|
|
Value *UnclePad = Worklist.back();
|
|
Value *AncestorPad = getParentPad(UnclePad);
|
|
// Walk ResolvedPad up the ancestor list until we either find the
|
|
// uncle's parent or the last resolved ancestor.
|
|
while (ResolvedPad != AncestorPad) {
|
|
Value *ResolvedParent = getParentPad(ResolvedPad);
|
|
if (ResolvedParent == UnresolvedAncestorPad) {
|
|
break;
|
|
}
|
|
ResolvedPad = ResolvedParent;
|
|
}
|
|
// If the resolved ancestor search didn't find the uncle's parent,
|
|
// then the uncle is not yet resolved.
|
|
if (ResolvedPad != AncestorPad)
|
|
break;
|
|
// This uncle is resolved, so pop it from the worklist.
|
|
Worklist.pop_back();
|
|
}
|
|
}
|
|
}
|
|
|
|
if (FirstUnwindPad) {
|
|
if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
|
|
BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
|
|
Value *SwitchUnwindPad;
|
|
if (SwitchUnwindDest)
|
|
SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
|
|
else
|
|
SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
|
|
Assert(SwitchUnwindPad == FirstUnwindPad,
|
|
"Unwind edges out of a catch must have the same unwind dest as "
|
|
"the parent catchswitch",
|
|
&FPI, FirstUser, CatchSwitch);
|
|
}
|
|
}
|
|
|
|
visitInstruction(FPI);
|
|
}
|
|
|
|
void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
|
|
BasicBlock *BB = CatchSwitch.getParent();
|
|
|
|
Function *F = BB->getParent();
|
|
Assert(F->hasPersonalityFn(),
|
|
"CatchSwitchInst needs to be in a function with a personality.",
|
|
&CatchSwitch);
|
|
|
|
// The catchswitch instruction must be the first non-PHI instruction in the
|
|
// block.
|
|
Assert(BB->getFirstNonPHI() == &CatchSwitch,
|
|
"CatchSwitchInst not the first non-PHI instruction in the block.",
|
|
&CatchSwitch);
|
|
|
|
auto *ParentPad = CatchSwitch.getParentPad();
|
|
Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
|
|
"CatchSwitchInst has an invalid parent.", ParentPad);
|
|
|
|
if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
|
|
Instruction *I = UnwindDest->getFirstNonPHI();
|
|
Assert(I->isEHPad() && !isa<LandingPadInst>(I),
|
|
"CatchSwitchInst must unwind to an EH block which is not a "
|
|
"landingpad.",
|
|
&CatchSwitch);
|
|
|
|
// Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
|
|
if (getParentPad(I) == ParentPad)
|
|
SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
|
|
}
|
|
|
|
Assert(CatchSwitch.getNumHandlers() != 0,
|
|
"CatchSwitchInst cannot have empty handler list", &CatchSwitch);
|
|
|
|
for (BasicBlock *Handler : CatchSwitch.handlers()) {
|
|
Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
|
|
"CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
|
|
}
|
|
|
|
visitEHPadPredecessors(CatchSwitch);
|
|
visitTerminatorInst(CatchSwitch);
|
|
}
|
|
|
|
void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
|
|
Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
|
|
"CleanupReturnInst needs to be provided a CleanupPad", &CRI,
|
|
CRI.getOperand(0));
|
|
|
|
if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
|
|
Instruction *I = UnwindDest->getFirstNonPHI();
|
|
Assert(I->isEHPad() && !isa<LandingPadInst>(I),
|
|
"CleanupReturnInst must unwind to an EH block which is not a "
|
|
"landingpad.",
|
|
&CRI);
|
|
}
|
|
|
|
visitTerminatorInst(CRI);
|
|
}
|
|
|
|
void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
|
|
Instruction *Op = cast<Instruction>(I.getOperand(i));
|
|
// If the we have an invalid invoke, don't try to compute the dominance.
|
|
// We already reject it in the invoke specific checks and the dominance
|
|
// computation doesn't handle multiple edges.
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
|
|
if (II->getNormalDest() == II->getUnwindDest())
|
|
return;
|
|
}
|
|
|
|
// Quick check whether the def has already been encountered in the same block.
|
|
// PHI nodes are not checked to prevent accepting preceeding PHIs, because PHI
|
|
// uses are defined to happen on the incoming edge, not at the instruction.
|
|
//
|
|
// FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
|
|
// wrapping an SSA value, assert that we've already encountered it. See
|
|
// related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
|
|
if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
|
|
return;
|
|
|
|
const Use &U = I.getOperandUse(i);
|
|
Assert(DT.dominates(Op, U),
|
|
"Instruction does not dominate all uses!", Op, &I);
|
|
}
|
|
|
|
void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
|
|
Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
|
|
"apply only to pointer types", &I);
|
|
Assert(isa<LoadInst>(I),
|
|
"dereferenceable, dereferenceable_or_null apply only to load"
|
|
" instructions, use attributes for calls or invokes", &I);
|
|
Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
|
|
"take one operand!", &I);
|
|
ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
|
|
Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
|
|
"dereferenceable_or_null metadata value must be an i64!", &I);
|
|
}
|
|
|
|
/// verifyInstruction - Verify that an instruction is well formed.
|
|
///
|
|
void Verifier::visitInstruction(Instruction &I) {
|
|
BasicBlock *BB = I.getParent();
|
|
Assert(BB, "Instruction not embedded in basic block!", &I);
|
|
|
|
if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
|
|
for (User *U : I.users()) {
|
|
Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
|
|
"Only PHI nodes may reference their own value!", &I);
|
|
}
|
|
}
|
|
|
|
// Check that void typed values don't have names
|
|
Assert(!I.getType()->isVoidTy() || !I.hasName(),
|
|
"Instruction has a name, but provides a void value!", &I);
|
|
|
|
// Check that the return value of the instruction is either void or a legal
|
|
// value type.
|
|
Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
|
|
"Instruction returns a non-scalar type!", &I);
|
|
|
|
// Check that the instruction doesn't produce metadata. Calls are already
|
|
// checked against the callee type.
|
|
Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
|
|
"Invalid use of metadata!", &I);
|
|
|
|
// Check that all uses of the instruction, if they are instructions
|
|
// themselves, actually have parent basic blocks. If the use is not an
|
|
// instruction, it is an error!
|
|
for (Use &U : I.uses()) {
|
|
if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
|
|
Assert(Used->getParent() != nullptr,
|
|
"Instruction referencing"
|
|
" instruction not embedded in a basic block!",
|
|
&I, Used);
|
|
else {
|
|
CheckFailed("Use of instruction is not an instruction!", U);
|
|
return;
|
|
}
|
|
}
|
|
|
|
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
|
|
Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
|
|
|
|
// Check to make sure that only first-class-values are operands to
|
|
// instructions.
|
|
if (!I.getOperand(i)->getType()->isFirstClassType()) {
|
|
Assert(false, "Instruction operands must be first-class values!", &I);
|
|
}
|
|
|
|
if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
|
|
// Check to make sure that the "address of" an intrinsic function is never
|
|
// taken.
|
|
Assert(
|
|
!F->isIntrinsic() ||
|
|
i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),
|
|
"Cannot take the address of an intrinsic!", &I);
|
|
Assert(
|
|
!F->isIntrinsic() || isa<CallInst>(I) ||
|
|
F->getIntrinsicID() == Intrinsic::donothing ||
|
|
F->getIntrinsicID() == Intrinsic::coro_resume ||
|
|
F->getIntrinsicID() == Intrinsic::coro_destroy ||
|
|
F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
|
|
F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
|
|
F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,
|
|
"Cannot invoke an intrinsic other than donothing, patchpoint, "
|
|
"statepoint, coro_resume or coro_destroy",
|
|
&I);
|
|
Assert(F->getParent() == &M, "Referencing function in another module!",
|
|
&I, &M, F, F->getParent());
|
|
} else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
|
|
Assert(OpBB->getParent() == BB->getParent(),
|
|
"Referring to a basic block in another function!", &I);
|
|
} else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
|
|
Assert(OpArg->getParent() == BB->getParent(),
|
|
"Referring to an argument in another function!", &I);
|
|
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
|
|
Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
|
|
&M, GV, GV->getParent());
|
|
} else if (isa<Instruction>(I.getOperand(i))) {
|
|
verifyDominatesUse(I, i);
|
|
} else if (isa<InlineAsm>(I.getOperand(i))) {
|
|
Assert((i + 1 == e && isa<CallInst>(I)) ||
|
|
(i + 3 == e && isa<InvokeInst>(I)),
|
|
"Cannot take the address of an inline asm!", &I);
|
|
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
|
|
if (CE->getType()->isPtrOrPtrVectorTy() ||
|
|
!DL.getNonIntegralAddressSpaces().empty()) {
|
|
// If we have a ConstantExpr pointer, we need to see if it came from an
|
|
// illegal bitcast. If the datalayout string specifies non-integral
|
|
// address spaces then we also need to check for illegal ptrtoint and
|
|
// inttoptr expressions.
|
|
visitConstantExprsRecursively(CE);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
|
|
Assert(I.getType()->isFPOrFPVectorTy(),
|
|
"fpmath requires a floating point result!", &I);
|
|
Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
|
|
if (ConstantFP *CFP0 =
|
|
mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
|
|
const APFloat &Accuracy = CFP0->getValueAPF();
|
|
Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
|
|
"fpmath accuracy must have float type", &I);
|
|
Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
|
|
"fpmath accuracy not a positive number!", &I);
|
|
} else {
|
|
Assert(false, "invalid fpmath accuracy!", &I);
|
|
}
|
|
}
|
|
|
|
if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
|
|
Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
|
|
"Ranges are only for loads, calls and invokes!", &I);
|
|
visitRangeMetadata(I, Range, I.getType());
|
|
}
|
|
|
|
if (I.getMetadata(LLVMContext::MD_nonnull)) {
|
|
Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
|
|
&I);
|
|
Assert(isa<LoadInst>(I),
|
|
"nonnull applies only to load instructions, use attributes"
|
|
" for calls or invokes",
|
|
&I);
|
|
}
|
|
|
|
if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
|
|
visitDereferenceableMetadata(I, MD);
|
|
|
|
if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
|
|
visitDereferenceableMetadata(I, MD);
|
|
|
|
if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
|
|
TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
|
|
|
|
if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
|
|
Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
|
|
&I);
|
|
Assert(isa<LoadInst>(I), "align applies only to load instructions, "
|
|
"use attributes for calls or invokes", &I);
|
|
Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
|
|
ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
|
|
Assert(CI && CI->getType()->isIntegerTy(64),
|
|
"align metadata value must be an i64!", &I);
|
|
uint64_t Align = CI->getZExtValue();
|
|
Assert(isPowerOf2_64(Align),
|
|
"align metadata value must be a power of 2!", &I);
|
|
Assert(Align <= Value::MaximumAlignment,
|
|
"alignment is larger that implementation defined limit", &I);
|
|
}
|
|
|
|
if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
|
|
AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
|
|
visitMDNode(*N);
|
|
}
|
|
|
|
if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I))
|
|
verifyFragmentExpression(*DII);
|
|
|
|
InstsInThisBlock.insert(&I);
|
|
}
|
|
|
|
/// Allow intrinsics to be verified in different ways.
|
|
void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
|
|
Function *IF = CS.getCalledFunction();
|
|
Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
|
|
IF);
|
|
|
|
// Verify that the intrinsic prototype lines up with what the .td files
|
|
// describe.
|
|
FunctionType *IFTy = IF->getFunctionType();
|
|
bool IsVarArg = IFTy->isVarArg();
|
|
|
|
SmallVector<Intrinsic::IITDescriptor, 8> Table;
|
|
getIntrinsicInfoTableEntries(ID, Table);
|
|
ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
|
|
|
|
SmallVector<Type *, 4> ArgTys;
|
|
Assert(!Intrinsic::matchIntrinsicType(IFTy->getReturnType(),
|
|
TableRef, ArgTys),
|
|
"Intrinsic has incorrect return type!", IF);
|
|
for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
|
|
Assert(!Intrinsic::matchIntrinsicType(IFTy->getParamType(i),
|
|
TableRef, ArgTys),
|
|
"Intrinsic has incorrect argument type!", IF);
|
|
|
|
// Verify if the intrinsic call matches the vararg property.
|
|
if (IsVarArg)
|
|
Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
|
|
"Intrinsic was not defined with variable arguments!", IF);
|
|
else
|
|
Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
|
|
"Callsite was not defined with variable arguments!", IF);
|
|
|
|
// All descriptors should be absorbed by now.
|
|
Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
|
|
|
|
// Now that we have the intrinsic ID and the actual argument types (and we
|
|
// know they are legal for the intrinsic!) get the intrinsic name through the
|
|
// usual means. This allows us to verify the mangling of argument types into
|
|
// the name.
|
|
const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
|
|
Assert(ExpectedName == IF->getName(),
|
|
"Intrinsic name not mangled correctly for type arguments! "
|
|
"Should be: " +
|
|
ExpectedName,
|
|
IF);
|
|
|
|
// If the intrinsic takes MDNode arguments, verify that they are either global
|
|
// or are local to *this* function.
|
|
for (Value *V : CS.args())
|
|
if (auto *MD = dyn_cast<MetadataAsValue>(V))
|
|
visitMetadataAsValue(*MD, CS.getCaller());
|
|
|
|
switch (ID) {
|
|
default:
|
|
break;
|
|
case Intrinsic::coro_id: {
|
|
auto *InfoArg = CS.getArgOperand(3)->stripPointerCasts();
|
|
if (isa<ConstantPointerNull>(InfoArg))
|
|
break;
|
|
auto *GV = dyn_cast<GlobalVariable>(InfoArg);
|
|
Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
|
|
"info argument of llvm.coro.begin must refer to an initialized "
|
|
"constant");
|
|
Constant *Init = GV->getInitializer();
|
|
Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
|
|
"info argument of llvm.coro.begin must refer to either a struct or "
|
|
"an array");
|
|
break;
|
|
}
|
|
case Intrinsic::ctlz: // llvm.ctlz
|
|
case Intrinsic::cttz: // llvm.cttz
|
|
Assert(isa<ConstantInt>(CS.getArgOperand(1)),
|
|
"is_zero_undef argument of bit counting intrinsics must be a "
|
|
"constant int",
|
|
CS);
|
|
break;
|
|
case Intrinsic::experimental_constrained_fadd:
|
|
case Intrinsic::experimental_constrained_fsub:
|
|
case Intrinsic::experimental_constrained_fmul:
|
|
case Intrinsic::experimental_constrained_fdiv:
|
|
case Intrinsic::experimental_constrained_frem:
|
|
case Intrinsic::experimental_constrained_fma:
|
|
case Intrinsic::experimental_constrained_sqrt:
|
|
case Intrinsic::experimental_constrained_pow:
|
|
case Intrinsic::experimental_constrained_powi:
|
|
case Intrinsic::experimental_constrained_sin:
|
|
case Intrinsic::experimental_constrained_cos:
|
|
case Intrinsic::experimental_constrained_exp:
|
|
case Intrinsic::experimental_constrained_exp2:
|
|
case Intrinsic::experimental_constrained_log:
|
|
case Intrinsic::experimental_constrained_log10:
|
|
case Intrinsic::experimental_constrained_log2:
|
|
case Intrinsic::experimental_constrained_rint:
|
|
case Intrinsic::experimental_constrained_nearbyint:
|
|
visitConstrainedFPIntrinsic(
|
|
cast<ConstrainedFPIntrinsic>(*CS.getInstruction()));
|
|
break;
|
|
case Intrinsic::dbg_declare: // llvm.dbg.declare
|
|
Assert(isa<MetadataAsValue>(CS.getArgOperand(0)),
|
|
"invalid llvm.dbg.declare intrinsic call 1", CS);
|
|
visitDbgIntrinsic("declare", cast<DbgInfoIntrinsic>(*CS.getInstruction()));
|
|
break;
|
|
case Intrinsic::dbg_addr: // llvm.dbg.addr
|
|
visitDbgIntrinsic("addr", cast<DbgInfoIntrinsic>(*CS.getInstruction()));
|
|
break;
|
|
case Intrinsic::dbg_value: // llvm.dbg.value
|
|
visitDbgIntrinsic("value", cast<DbgInfoIntrinsic>(*CS.getInstruction()));
|
|
break;
|
|
case Intrinsic::memcpy:
|
|
case Intrinsic::memmove:
|
|
case Intrinsic::memset: {
|
|
const auto *MI = cast<MemIntrinsic>(CS.getInstruction());
|
|
auto IsValidAlignment = [&](unsigned Alignment) -> bool {
|
|
return Alignment == 0 || isPowerOf2_32(Alignment);
|
|
};
|
|
Assert(IsValidAlignment(MI->getDestAlignment()),
|
|
"alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
|
|
CS);
|
|
if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
|
|
Assert(IsValidAlignment(MTI->getSourceAlignment()),
|
|
"alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
|
|
CS);
|
|
}
|
|
Assert(isa<ConstantInt>(CS.getArgOperand(3)),
|
|
"isvolatile argument of memory intrinsics must be a constant int",
|
|
CS);
|
|
break;
|
|
}
|
|
case Intrinsic::memcpy_element_unordered_atomic: {
|
|
const AtomicMemCpyInst *MI = cast<AtomicMemCpyInst>(CS.getInstruction());
|
|
|
|
ConstantInt *ElementSizeCI =
|
|
dyn_cast<ConstantInt>(MI->getRawElementSizeInBytes());
|
|
Assert(ElementSizeCI,
|
|
"element size of the element-wise unordered atomic memory "
|
|
"intrinsic must be a constant int",
|
|
CS);
|
|
const APInt &ElementSizeVal = ElementSizeCI->getValue();
|
|
Assert(ElementSizeVal.isPowerOf2(),
|
|
"element size of the element-wise atomic memory intrinsic "
|
|
"must be a power of 2",
|
|
CS);
|
|
|
|
if (auto *LengthCI = dyn_cast<ConstantInt>(MI->getLength())) {
|
|
uint64_t Length = LengthCI->getZExtValue();
|
|
uint64_t ElementSize = MI->getElementSizeInBytes();
|
|
Assert((Length % ElementSize) == 0,
|
|
"constant length must be a multiple of the element size in the "
|
|
"element-wise atomic memory intrinsic",
|
|
CS);
|
|
}
|
|
|
|
auto IsValidAlignment = [&](uint64_t Alignment) {
|
|
return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
|
|
};
|
|
uint64_t DstAlignment = CS.getParamAlignment(0),
|
|
SrcAlignment = CS.getParamAlignment(1);
|
|
Assert(IsValidAlignment(DstAlignment),
|
|
"incorrect alignment of the destination argument", CS);
|
|
Assert(IsValidAlignment(SrcAlignment),
|
|
"incorrect alignment of the source argument", CS);
|
|
break;
|
|
}
|
|
case Intrinsic::memmove_element_unordered_atomic: {
|
|
auto *MI = cast<AtomicMemMoveInst>(CS.getInstruction());
|
|
|
|
ConstantInt *ElementSizeCI =
|
|
dyn_cast<ConstantInt>(MI->getRawElementSizeInBytes());
|
|
Assert(ElementSizeCI,
|
|
"element size of the element-wise unordered atomic memory "
|
|
"intrinsic must be a constant int",
|
|
CS);
|
|
const APInt &ElementSizeVal = ElementSizeCI->getValue();
|
|
Assert(ElementSizeVal.isPowerOf2(),
|
|
"element size of the element-wise atomic memory intrinsic "
|
|
"must be a power of 2",
|
|
CS);
|
|
|
|
if (auto *LengthCI = dyn_cast<ConstantInt>(MI->getLength())) {
|
|
uint64_t Length = LengthCI->getZExtValue();
|
|
uint64_t ElementSize = MI->getElementSizeInBytes();
|
|
Assert((Length % ElementSize) == 0,
|
|
"constant length must be a multiple of the element size in the "
|
|
"element-wise atomic memory intrinsic",
|
|
CS);
|
|
}
|
|
|
|
auto IsValidAlignment = [&](uint64_t Alignment) {
|
|
return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
|
|
};
|
|
uint64_t DstAlignment = CS.getParamAlignment(0),
|
|
SrcAlignment = CS.getParamAlignment(1);
|
|
Assert(IsValidAlignment(DstAlignment),
|
|
"incorrect alignment of the destination argument", CS);
|
|
Assert(IsValidAlignment(SrcAlignment),
|
|
"incorrect alignment of the source argument", CS);
|
|
break;
|
|
}
|
|
case Intrinsic::memset_element_unordered_atomic: {
|
|
auto *MI = cast<AtomicMemSetInst>(CS.getInstruction());
|
|
|
|
ConstantInt *ElementSizeCI =
|
|
dyn_cast<ConstantInt>(MI->getRawElementSizeInBytes());
|
|
Assert(ElementSizeCI,
|
|
"element size of the element-wise unordered atomic memory "
|
|
"intrinsic must be a constant int",
|
|
CS);
|
|
const APInt &ElementSizeVal = ElementSizeCI->getValue();
|
|
Assert(ElementSizeVal.isPowerOf2(),
|
|
"element size of the element-wise atomic memory intrinsic "
|
|
"must be a power of 2",
|
|
CS);
|
|
|
|
if (auto *LengthCI = dyn_cast<ConstantInt>(MI->getLength())) {
|
|
uint64_t Length = LengthCI->getZExtValue();
|
|
uint64_t ElementSize = MI->getElementSizeInBytes();
|
|
Assert((Length % ElementSize) == 0,
|
|
"constant length must be a multiple of the element size in the "
|
|
"element-wise atomic memory intrinsic",
|
|
CS);
|
|
}
|
|
|
|
auto IsValidAlignment = [&](uint64_t Alignment) {
|
|
return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
|
|
};
|
|
uint64_t DstAlignment = CS.getParamAlignment(0);
|
|
Assert(IsValidAlignment(DstAlignment),
|
|
"incorrect alignment of the destination argument", CS);
|
|
break;
|
|
}
|
|
case Intrinsic::gcroot:
|
|
case Intrinsic::gcwrite:
|
|
case Intrinsic::gcread:
|
|
if (ID == Intrinsic::gcroot) {
|
|
AllocaInst *AI =
|
|
dyn_cast<AllocaInst>(CS.getArgOperand(0)->stripPointerCasts());
|
|
Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS);
|
|
Assert(isa<Constant>(CS.getArgOperand(1)),
|
|
"llvm.gcroot parameter #2 must be a constant.", CS);
|
|
if (!AI->getAllocatedType()->isPointerTy()) {
|
|
Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)),
|
|
"llvm.gcroot parameter #1 must either be a pointer alloca, "
|
|
"or argument #2 must be a non-null constant.",
|
|
CS);
|
|
}
|
|
}
|
|
|
|
Assert(CS.getParent()->getParent()->hasGC(),
|
|
"Enclosing function does not use GC.", CS);
|
|
break;
|
|
case Intrinsic::init_trampoline:
|
|
Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()),
|
|
"llvm.init_trampoline parameter #2 must resolve to a function.",
|
|
CS);
|
|
break;
|
|
case Intrinsic::prefetch:
|
|
Assert(isa<ConstantInt>(CS.getArgOperand(1)) &&
|
|
isa<ConstantInt>(CS.getArgOperand(2)) &&
|
|
cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 &&
|
|
cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4,
|
|
"invalid arguments to llvm.prefetch", CS);
|
|
break;
|
|
case Intrinsic::stackprotector:
|
|
Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()),
|
|
"llvm.stackprotector parameter #2 must resolve to an alloca.", CS);
|
|
break;
|
|
case Intrinsic::lifetime_start:
|
|
case Intrinsic::lifetime_end:
|
|
case Intrinsic::invariant_start:
|
|
Assert(isa<ConstantInt>(CS.getArgOperand(0)),
|
|
"size argument of memory use markers must be a constant integer",
|
|
CS);
|
|
break;
|
|
case Intrinsic::invariant_end:
|
|
Assert(isa<ConstantInt>(CS.getArgOperand(1)),
|
|
"llvm.invariant.end parameter #2 must be a constant integer", CS);
|
|
break;
|
|
|
|
case Intrinsic::localescape: {
|
|
BasicBlock *BB = CS.getParent();
|
|
Assert(BB == &BB->getParent()->front(),
|
|
"llvm.localescape used outside of entry block", CS);
|
|
Assert(!SawFrameEscape,
|
|
"multiple calls to llvm.localescape in one function", CS);
|
|
for (Value *Arg : CS.args()) {
|
|
if (isa<ConstantPointerNull>(Arg))
|
|
continue; // Null values are allowed as placeholders.
|
|
auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
|
|
Assert(AI && AI->isStaticAlloca(),
|
|
"llvm.localescape only accepts static allocas", CS);
|
|
}
|
|
FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands();
|
|
SawFrameEscape = true;
|
|
break;
|
|
}
|
|
case Intrinsic::localrecover: {
|
|
Value *FnArg = CS.getArgOperand(0)->stripPointerCasts();
|
|
Function *Fn = dyn_cast<Function>(FnArg);
|
|
Assert(Fn && !Fn->isDeclaration(),
|
|
"llvm.localrecover first "
|
|
"argument must be function defined in this module",
|
|
CS);
|
|
auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2));
|
|
Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int",
|
|
CS);
|
|
auto &Entry = FrameEscapeInfo[Fn];
|
|
Entry.second = unsigned(
|
|
std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
|
|
break;
|
|
}
|
|
|
|
case Intrinsic::experimental_gc_statepoint:
|
|
Assert(!CS.isInlineAsm(),
|
|
"gc.statepoint support for inline assembly unimplemented", CS);
|
|
Assert(CS.getParent()->getParent()->hasGC(),
|
|
"Enclosing function does not use GC.", CS);
|
|
|
|
verifyStatepoint(CS);
|
|
break;
|
|
case Intrinsic::experimental_gc_result: {
|
|
Assert(CS.getParent()->getParent()->hasGC(),
|
|
"Enclosing function does not use GC.", CS);
|
|
// Are we tied to a statepoint properly?
|
|
CallSite StatepointCS(CS.getArgOperand(0));
|
|
const Function *StatepointFn =
|
|
StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
|
|
Assert(StatepointFn && StatepointFn->isDeclaration() &&
|
|
StatepointFn->getIntrinsicID() ==
|
|
Intrinsic::experimental_gc_statepoint,
|
|
"gc.result operand #1 must be from a statepoint", CS,
|
|
CS.getArgOperand(0));
|
|
|
|
// Assert that result type matches wrapped callee.
|
|
const Value *Target = StatepointCS.getArgument(2);
|
|
auto *PT = cast<PointerType>(Target->getType());
|
|
auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
|
|
Assert(CS.getType() == TargetFuncType->getReturnType(),
|
|
"gc.result result type does not match wrapped callee", CS);
|
|
break;
|
|
}
|
|
case Intrinsic::experimental_gc_relocate: {
|
|
Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS);
|
|
|
|
Assert(isa<PointerType>(CS.getType()->getScalarType()),
|
|
"gc.relocate must return a pointer or a vector of pointers", CS);
|
|
|
|
// Check that this relocate is correctly tied to the statepoint
|
|
|
|
// This is case for relocate on the unwinding path of an invoke statepoint
|
|
if (LandingPadInst *LandingPad =
|
|
dyn_cast<LandingPadInst>(CS.getArgOperand(0))) {
|
|
|
|
const BasicBlock *InvokeBB =
|
|
LandingPad->getParent()->getUniquePredecessor();
|
|
|
|
// Landingpad relocates should have only one predecessor with invoke
|
|
// statepoint terminator
|
|
Assert(InvokeBB, "safepoints should have unique landingpads",
|
|
LandingPad->getParent());
|
|
Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
|
|
InvokeBB);
|
|
Assert(isStatepoint(InvokeBB->getTerminator()),
|
|
"gc relocate should be linked to a statepoint", InvokeBB);
|
|
}
|
|
else {
|
|
// In all other cases relocate should be tied to the statepoint directly.
|
|
// This covers relocates on a normal return path of invoke statepoint and
|
|
// relocates of a call statepoint.
|
|
auto Token = CS.getArgOperand(0);
|
|
Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
|
|
"gc relocate is incorrectly tied to the statepoint", CS, Token);
|
|
}
|
|
|
|
// Verify rest of the relocate arguments.
|
|
|
|
ImmutableCallSite StatepointCS(
|
|
cast<GCRelocateInst>(*CS.getInstruction()).getStatepoint());
|
|
|
|
// Both the base and derived must be piped through the safepoint.
|
|
Value* Base = CS.getArgOperand(1);
|
|
Assert(isa<ConstantInt>(Base),
|
|
"gc.relocate operand #2 must be integer offset", CS);
|
|
|
|
Value* Derived = CS.getArgOperand(2);
|
|
Assert(isa<ConstantInt>(Derived),
|
|
"gc.relocate operand #3 must be integer offset", CS);
|
|
|
|
const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
|
|
const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
|
|
// Check the bounds
|
|
Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),
|
|
"gc.relocate: statepoint base index out of bounds", CS);
|
|
Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),
|
|
"gc.relocate: statepoint derived index out of bounds", CS);
|
|
|
|
// Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
|
|
// section of the statepoint's argument.
|
|
Assert(StatepointCS.arg_size() > 0,
|
|
"gc.statepoint: insufficient arguments");
|
|
Assert(isa<ConstantInt>(StatepointCS.getArgument(3)),
|
|
"gc.statement: number of call arguments must be constant integer");
|
|
const unsigned NumCallArgs =
|
|
cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue();
|
|
Assert(StatepointCS.arg_size() > NumCallArgs + 5,
|
|
"gc.statepoint: mismatch in number of call arguments");
|
|
Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)),
|
|
"gc.statepoint: number of transition arguments must be "
|
|
"a constant integer");
|
|
const int NumTransitionArgs =
|
|
cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5))
|
|
->getZExtValue();
|
|
const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
|
|
Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)),
|
|
"gc.statepoint: number of deoptimization arguments must be "
|
|
"a constant integer");
|
|
const int NumDeoptArgs =
|
|
cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))
|
|
->getZExtValue();
|
|
const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
|
|
const int GCParamArgsEnd = StatepointCS.arg_size();
|
|
Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
|
|
"gc.relocate: statepoint base index doesn't fall within the "
|
|
"'gc parameters' section of the statepoint call",
|
|
CS);
|
|
Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
|
|
"gc.relocate: statepoint derived index doesn't fall within the "
|
|
"'gc parameters' section of the statepoint call",
|
|
CS);
|
|
|
|
// Relocated value must be either a pointer type or vector-of-pointer type,
|
|
// but gc_relocate does not need to return the same pointer type as the
|
|
// relocated pointer. It can be casted to the correct type later if it's
|
|
// desired. However, they must have the same address space and 'vectorness'
|
|
GCRelocateInst &Relocate = cast<GCRelocateInst>(*CS.getInstruction());
|
|
Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),
|
|
"gc.relocate: relocated value must be a gc pointer", CS);
|
|
|
|
auto ResultType = CS.getType();
|
|
auto DerivedType = Relocate.getDerivedPtr()->getType();
|
|
Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
|
|
"gc.relocate: vector relocates to vector and pointer to pointer",
|
|
CS);
|
|
Assert(
|
|
ResultType->getPointerAddressSpace() ==
|
|
DerivedType->getPointerAddressSpace(),
|
|
"gc.relocate: relocating a pointer shouldn't change its address space",
|
|
CS);
|
|
break;
|
|
}
|
|
case Intrinsic::eh_exceptioncode:
|
|
case Intrinsic::eh_exceptionpointer: {
|
|
Assert(isa<CatchPadInst>(CS.getArgOperand(0)),
|
|
"eh.exceptionpointer argument must be a catchpad", CS);
|
|
break;
|
|
}
|
|
case Intrinsic::masked_load: {
|
|
Assert(CS.getType()->isVectorTy(), "masked_load: must return a vector", CS);
|
|
|
|
Value *Ptr = CS.getArgOperand(0);
|
|
//Value *Alignment = CS.getArgOperand(1);
|
|
Value *Mask = CS.getArgOperand(2);
|
|
Value *PassThru = CS.getArgOperand(3);
|
|
Assert(Mask->getType()->isVectorTy(),
|
|
"masked_load: mask must be vector", CS);
|
|
|
|
// DataTy is the overloaded type
|
|
Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
|
|
Assert(DataTy == CS.getType(),
|
|
"masked_load: return must match pointer type", CS);
|
|
Assert(PassThru->getType() == DataTy,
|
|
"masked_load: pass through and data type must match", CS);
|
|
Assert(Mask->getType()->getVectorNumElements() ==
|
|
DataTy->getVectorNumElements(),
|
|
"masked_load: vector mask must be same length as data", CS);
|
|
break;
|
|
}
|
|
case Intrinsic::masked_store: {
|
|
Value *Val = CS.getArgOperand(0);
|
|
Value *Ptr = CS.getArgOperand(1);
|
|
//Value *Alignment = CS.getArgOperand(2);
|
|
Value *Mask = CS.getArgOperand(3);
|
|
Assert(Mask->getType()->isVectorTy(),
|
|
"masked_store: mask must be vector", CS);
|
|
|
|
// DataTy is the overloaded type
|
|
Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
|
|
Assert(DataTy == Val->getType(),
|
|
"masked_store: storee must match pointer type", CS);
|
|
Assert(Mask->getType()->getVectorNumElements() ==
|
|
DataTy->getVectorNumElements(),
|
|
"masked_store: vector mask must be same length as data", CS);
|
|
break;
|
|
}
|
|
|
|
case Intrinsic::experimental_guard: {
|
|
Assert(CS.isCall(), "experimental_guard cannot be invoked", CS);
|
|
Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
|
|
"experimental_guard must have exactly one "
|
|
"\"deopt\" operand bundle");
|
|
break;
|
|
}
|
|
|
|
case Intrinsic::experimental_deoptimize: {
|
|
Assert(CS.isCall(), "experimental_deoptimize cannot be invoked", CS);
|
|
Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
|
|
"experimental_deoptimize must have exactly one "
|
|
"\"deopt\" operand bundle");
|
|
Assert(CS.getType() == CS.getInstruction()->getFunction()->getReturnType(),
|
|
"experimental_deoptimize return type must match caller return type");
|
|
|
|
if (CS.isCall()) {
|
|
auto *DeoptCI = CS.getInstruction();
|
|
auto *RI = dyn_cast<ReturnInst>(DeoptCI->getNextNode());
|
|
Assert(RI,
|
|
"calls to experimental_deoptimize must be followed by a return");
|
|
|
|
if (!CS.getType()->isVoidTy() && RI)
|
|
Assert(RI->getReturnValue() == DeoptCI,
|
|
"calls to experimental_deoptimize must be followed by a return "
|
|
"of the value computed by experimental_deoptimize");
|
|
}
|
|
|
|
break;
|
|
}
|
|
};
|
|
}
|
|
|
|
/// \brief Carefully grab the subprogram from a local scope.
|
|
///
|
|
/// This carefully grabs the subprogram from a local scope, avoiding the
|
|
/// built-in assertions that would typically fire.
|
|
static DISubprogram *getSubprogram(Metadata *LocalScope) {
|
|
if (!LocalScope)
|
|
return nullptr;
|
|
|
|
if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
|
|
return SP;
|
|
|
|
if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
|
|
return getSubprogram(LB->getRawScope());
|
|
|
|
// Just return null; broken scope chains are checked elsewhere.
|
|
assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
|
|
return nullptr;
|
|
}
|
|
|
|
void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
|
|
unsigned NumOperands = FPI.getNumArgOperands();
|
|
Assert(((NumOperands == 5 && FPI.isTernaryOp()) ||
|
|
(NumOperands == 3 && FPI.isUnaryOp()) || (NumOperands == 4)),
|
|
"invalid arguments for constrained FP intrinsic", &FPI);
|
|
Assert(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands-1)),
|
|
"invalid exception behavior argument", &FPI);
|
|
Assert(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands-2)),
|
|
"invalid rounding mode argument", &FPI);
|
|
Assert(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid,
|
|
"invalid rounding mode argument", &FPI);
|
|
Assert(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic::ebInvalid,
|
|
"invalid exception behavior argument", &FPI);
|
|
}
|
|
|
|
void Verifier::visitDbgIntrinsic(StringRef Kind, DbgInfoIntrinsic &DII) {
|
|
auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
|
|
AssertDI(isa<ValueAsMetadata>(MD) ||
|
|
(isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
|
|
"invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
|
|
AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
|
|
"invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
|
|
DII.getRawVariable());
|
|
AssertDI(isa<DIExpression>(DII.getRawExpression()),
|
|
"invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
|
|
DII.getRawExpression());
|
|
|
|
// Ignore broken !dbg attachments; they're checked elsewhere.
|
|
if (MDNode *N = DII.getDebugLoc().getAsMDNode())
|
|
if (!isa<DILocation>(N))
|
|
return;
|
|
|
|
BasicBlock *BB = DII.getParent();
|
|
Function *F = BB ? BB->getParent() : nullptr;
|
|
|
|
// The scopes for variables and !dbg attachments must agree.
|
|
DILocalVariable *Var = DII.getVariable();
|
|
DILocation *Loc = DII.getDebugLoc();
|
|
AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
|
|
&DII, BB, F);
|
|
|
|
DISubprogram *VarSP = getSubprogram(Var->getRawScope());
|
|
DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
|
|
if (!VarSP || !LocSP)
|
|
return; // Broken scope chains are checked elsewhere.
|
|
|
|
AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
|
|
" variable and !dbg attachment",
|
|
&DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
|
|
Loc->getScope()->getSubprogram());
|
|
|
|
verifyFnArgs(DII);
|
|
}
|
|
|
|
void Verifier::verifyFragmentExpression(const DbgInfoIntrinsic &I) {
|
|
DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
|
|
DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
|
|
|
|
// We don't know whether this intrinsic verified correctly.
|
|
if (!V || !E || !E->isValid())
|
|
return;
|
|
|
|
// Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
|
|
auto Fragment = E->getFragmentInfo();
|
|
if (!Fragment)
|
|
return;
|
|
|
|
// The frontend helps out GDB by emitting the members of local anonymous
|
|
// unions as artificial local variables with shared storage. When SROA splits
|
|
// the storage for artificial local variables that are smaller than the entire
|
|
// union, the overhang piece will be outside of the allotted space for the
|
|
// variable and this check fails.
|
|
// FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
|
|
if (V->isArtificial())
|
|
return;
|
|
|
|
verifyFragmentExpression(*V, *Fragment, &I);
|
|
}
|
|
|
|
template <typename ValueOrMetadata>
|
|
void Verifier::verifyFragmentExpression(const DIVariable &V,
|
|
DIExpression::FragmentInfo Fragment,
|
|
ValueOrMetadata *Desc) {
|
|
// If there's no size, the type is broken, but that should be checked
|
|
// elsewhere.
|
|
auto VarSize = V.getSizeInBits();
|
|
if (!VarSize)
|
|
return;
|
|
|
|
unsigned FragSize = Fragment.SizeInBits;
|
|
unsigned FragOffset = Fragment.OffsetInBits;
|
|
AssertDI(FragSize + FragOffset <= *VarSize,
|
|
"fragment is larger than or outside of variable", Desc, &V);
|
|
AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
|
|
}
|
|
|
|
void Verifier::verifyFnArgs(const DbgInfoIntrinsic &I) {
|
|
// This function does not take the scope of noninlined function arguments into
|
|
// account. Don't run it if current function is nodebug, because it may
|
|
// contain inlined debug intrinsics.
|
|
if (!HasDebugInfo)
|
|
return;
|
|
|
|
// For performance reasons only check non-inlined ones.
|
|
if (I.getDebugLoc()->getInlinedAt())
|
|
return;
|
|
|
|
DILocalVariable *Var = I.getVariable();
|
|
AssertDI(Var, "dbg intrinsic without variable");
|
|
|
|
unsigned ArgNo = Var->getArg();
|
|
if (!ArgNo)
|
|
return;
|
|
|
|
// Verify there are no duplicate function argument debug info entries.
|
|
// These will cause hard-to-debug assertions in the DWARF backend.
|
|
if (DebugFnArgs.size() < ArgNo)
|
|
DebugFnArgs.resize(ArgNo, nullptr);
|
|
|
|
auto *Prev = DebugFnArgs[ArgNo - 1];
|
|
DebugFnArgs[ArgNo - 1] = Var;
|
|
AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
|
|
Prev, Var);
|
|
}
|
|
|
|
void Verifier::verifyCompileUnits() {
|
|
// When more than one Module is imported into the same context, such as during
|
|
// an LTO build before linking the modules, ODR type uniquing may cause types
|
|
// to point to a different CU. This check does not make sense in this case.
|
|
if (M.getContext().isODRUniquingDebugTypes())
|
|
return;
|
|
auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
|
|
SmallPtrSet<const Metadata *, 2> Listed;
|
|
if (CUs)
|
|
Listed.insert(CUs->op_begin(), CUs->op_end());
|
|
for (auto *CU : CUVisited)
|
|
AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
|
|
CUVisited.clear();
|
|
}
|
|
|
|
void Verifier::verifyDeoptimizeCallingConvs() {
|
|
if (DeoptimizeDeclarations.empty())
|
|
return;
|
|
|
|
const Function *First = DeoptimizeDeclarations[0];
|
|
for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
|
|
Assert(First->getCallingConv() == F->getCallingConv(),
|
|
"All llvm.experimental.deoptimize declarations must have the same "
|
|
"calling convention",
|
|
First, F);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Implement the public interfaces to this file...
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
|
|
Function &F = const_cast<Function &>(f);
|
|
|
|
// Don't use a raw_null_ostream. Printing IR is expensive.
|
|
Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
|
|
|
|
// Note that this function's return value is inverted from what you would
|
|
// expect of a function called "verify".
|
|
return !V.verify(F);
|
|
}
|
|
|
|
bool llvm::verifyModule(const Module &M, raw_ostream *OS,
|
|
bool *BrokenDebugInfo) {
|
|
// Don't use a raw_null_ostream. Printing IR is expensive.
|
|
Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
|
|
|
|
bool Broken = false;
|
|
for (const Function &F : M)
|
|
Broken |= !V.verify(F);
|
|
|
|
Broken |= !V.verify();
|
|
if (BrokenDebugInfo)
|
|
*BrokenDebugInfo = V.hasBrokenDebugInfo();
|
|
// Note that this function's return value is inverted from what you would
|
|
// expect of a function called "verify".
|
|
return Broken;
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct VerifierLegacyPass : public FunctionPass {
|
|
static char ID;
|
|
|
|
std::unique_ptr<Verifier> V;
|
|
bool FatalErrors = true;
|
|
|
|
VerifierLegacyPass() : FunctionPass(ID) {
|
|
initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
explicit VerifierLegacyPass(bool FatalErrors)
|
|
: FunctionPass(ID),
|
|
FatalErrors(FatalErrors) {
|
|
initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool doInitialization(Module &M) override {
|
|
V = llvm::make_unique<Verifier>(
|
|
&dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
|
|
return false;
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override {
|
|
if (!V->verify(F) && FatalErrors)
|
|
report_fatal_error("Broken function found, compilation aborted!");
|
|
|
|
return false;
|
|
}
|
|
|
|
bool doFinalization(Module &M) override {
|
|
bool HasErrors = false;
|
|
for (Function &F : M)
|
|
if (F.isDeclaration())
|
|
HasErrors |= !V->verify(F);
|
|
|
|
HasErrors |= !V->verify();
|
|
if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
|
|
report_fatal_error("Broken module found, compilation aborted!");
|
|
return false;
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesAll();
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// Helper to issue failure from the TBAA verification
|
|
template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
|
|
if (Diagnostic)
|
|
return Diagnostic->CheckFailed(Args...);
|
|
}
|
|
|
|
#define AssertTBAA(C, ...) \
|
|
do { \
|
|
if (!(C)) { \
|
|
CheckFailed(__VA_ARGS__); \
|
|
return false; \
|
|
} \
|
|
} while (false)
|
|
|
|
/// Verify that \p BaseNode can be used as the "base type" in the struct-path
|
|
/// TBAA scheme. This means \p BaseNode is either a scalar node, or a
|
|
/// struct-type node describing an aggregate data structure (like a struct).
|
|
TBAAVerifier::TBAABaseNodeSummary
|
|
TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
|
|
bool IsNewFormat) {
|
|
if (BaseNode->getNumOperands() < 2) {
|
|
CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
|
|
return {true, ~0u};
|
|
}
|
|
|
|
auto Itr = TBAABaseNodes.find(BaseNode);
|
|
if (Itr != TBAABaseNodes.end())
|
|
return Itr->second;
|
|
|
|
auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
|
|
auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
|
|
(void)InsertResult;
|
|
assert(InsertResult.second && "We just checked!");
|
|
return Result;
|
|
}
|
|
|
|
TBAAVerifier::TBAABaseNodeSummary
|
|
TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
|
|
bool IsNewFormat) {
|
|
const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
|
|
|
|
if (BaseNode->getNumOperands() == 2) {
|
|
// Scalar nodes can only be accessed at offset 0.
|
|
return isValidScalarTBAANode(BaseNode)
|
|
? TBAAVerifier::TBAABaseNodeSummary({false, 0})
|
|
: InvalidNode;
|
|
}
|
|
|
|
if (IsNewFormat) {
|
|
if (BaseNode->getNumOperands() % 3 != 0) {
|
|
CheckFailed("Access tag nodes must have the number of operands that is a "
|
|
"multiple of 3!", BaseNode);
|
|
return InvalidNode;
|
|
}
|
|
} else {
|
|
if (BaseNode->getNumOperands() % 2 != 1) {
|
|
CheckFailed("Struct tag nodes must have an odd number of operands!",
|
|
BaseNode);
|
|
return InvalidNode;
|
|
}
|
|
}
|
|
|
|
// Check the type size field.
|
|
if (IsNewFormat) {
|
|
auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
|
|
BaseNode->getOperand(1));
|
|
if (!TypeSizeNode) {
|
|
CheckFailed("Type size nodes must be constants!", &I, BaseNode);
|
|
return InvalidNode;
|
|
}
|
|
}
|
|
|
|
// Check the type name field. In the new format it can be anything.
|
|
if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
|
|
CheckFailed("Struct tag nodes have a string as their first operand",
|
|
BaseNode);
|
|
return InvalidNode;
|
|
}
|
|
|
|
bool Failed = false;
|
|
|
|
Optional<APInt> PrevOffset;
|
|
unsigned BitWidth = ~0u;
|
|
|
|
// We've already checked that BaseNode is not a degenerate root node with one
|
|
// operand in \c verifyTBAABaseNode, so this loop should run at least once.
|
|
unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
|
|
unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
|
|
for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
|
|
Idx += NumOpsPerField) {
|
|
const MDOperand &FieldTy = BaseNode->getOperand(Idx);
|
|
const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
|
|
if (!isa<MDNode>(FieldTy)) {
|
|
CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
|
|
Failed = true;
|
|
continue;
|
|
}
|
|
|
|
auto *OffsetEntryCI =
|
|
mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
|
|
if (!OffsetEntryCI) {
|
|
CheckFailed("Offset entries must be constants!", &I, BaseNode);
|
|
Failed = true;
|
|
continue;
|
|
}
|
|
|
|
if (BitWidth == ~0u)
|
|
BitWidth = OffsetEntryCI->getBitWidth();
|
|
|
|
if (OffsetEntryCI->getBitWidth() != BitWidth) {
|
|
CheckFailed(
|
|
"Bitwidth between the offsets and struct type entries must match", &I,
|
|
BaseNode);
|
|
Failed = true;
|
|
continue;
|
|
}
|
|
|
|
// NB! As far as I can tell, we generate a non-strictly increasing offset
|
|
// sequence only from structs that have zero size bit fields. When
|
|
// recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
|
|
// pick the field lexically the latest in struct type metadata node. This
|
|
// mirrors the actual behavior of the alias analysis implementation.
|
|
bool IsAscending =
|
|
!PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
|
|
|
|
if (!IsAscending) {
|
|
CheckFailed("Offsets must be increasing!", &I, BaseNode);
|
|
Failed = true;
|
|
}
|
|
|
|
PrevOffset = OffsetEntryCI->getValue();
|
|
|
|
if (IsNewFormat) {
|
|
auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
|
|
BaseNode->getOperand(Idx + 2));
|
|
if (!MemberSizeNode) {
|
|
CheckFailed("Member size entries must be constants!", &I, BaseNode);
|
|
Failed = true;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
return Failed ? InvalidNode
|
|
: TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
|
|
}
|
|
|
|
static bool IsRootTBAANode(const MDNode *MD) {
|
|
return MD->getNumOperands() < 2;
|
|
}
|
|
|
|
static bool IsScalarTBAANodeImpl(const MDNode *MD,
|
|
SmallPtrSetImpl<const MDNode *> &Visited) {
|
|
if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
|
|
return false;
|
|
|
|
if (!isa<MDString>(MD->getOperand(0)))
|
|
return false;
|
|
|
|
if (MD->getNumOperands() == 3) {
|
|
auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
|
|
if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
|
|
return false;
|
|
}
|
|
|
|
auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
|
|
return Parent && Visited.insert(Parent).second &&
|
|
(IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
|
|
}
|
|
|
|
bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
|
|
auto ResultIt = TBAAScalarNodes.find(MD);
|
|
if (ResultIt != TBAAScalarNodes.end())
|
|
return ResultIt->second;
|
|
|
|
SmallPtrSet<const MDNode *, 4> Visited;
|
|
bool Result = IsScalarTBAANodeImpl(MD, Visited);
|
|
auto InsertResult = TBAAScalarNodes.insert({MD, Result});
|
|
(void)InsertResult;
|
|
assert(InsertResult.second && "Just checked!");
|
|
|
|
return Result;
|
|
}
|
|
|
|
/// Returns the field node at the offset \p Offset in \p BaseNode. Update \p
|
|
/// Offset in place to be the offset within the field node returned.
|
|
///
|
|
/// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
|
|
MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
|
|
const MDNode *BaseNode,
|
|
APInt &Offset,
|
|
bool IsNewFormat) {
|
|
assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
|
|
|
|
// Scalar nodes have only one possible "field" -- their parent in the access
|
|
// hierarchy. Offset must be zero at this point, but our caller is supposed
|
|
// to Assert that.
|
|
if (BaseNode->getNumOperands() == 2)
|
|
return cast<MDNode>(BaseNode->getOperand(1));
|
|
|
|
unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
|
|
unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
|
|
for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
|
|
Idx += NumOpsPerField) {
|
|
auto *OffsetEntryCI =
|
|
mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
|
|
if (OffsetEntryCI->getValue().ugt(Offset)) {
|
|
if (Idx == FirstFieldOpNo) {
|
|
CheckFailed("Could not find TBAA parent in struct type node", &I,
|
|
BaseNode, &Offset);
|
|
return nullptr;
|
|
}
|
|
|
|
unsigned PrevIdx = Idx - NumOpsPerField;
|
|
auto *PrevOffsetEntryCI =
|
|
mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
|
|
Offset -= PrevOffsetEntryCI->getValue();
|
|
return cast<MDNode>(BaseNode->getOperand(PrevIdx));
|
|
}
|
|
}
|
|
|
|
unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
|
|
auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
|
|
BaseNode->getOperand(LastIdx + 1));
|
|
Offset -= LastOffsetEntryCI->getValue();
|
|
return cast<MDNode>(BaseNode->getOperand(LastIdx));
|
|
}
|
|
|
|
static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
|
|
if (!Type || Type->getNumOperands() < 3)
|
|
return false;
|
|
|
|
// In the new format type nodes shall have a reference to the parent type as
|
|
// its first operand.
|
|
MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0));
|
|
if (!Parent)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
|
|
AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
|
|
isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
|
|
isa<AtomicCmpXchgInst>(I),
|
|
"This instruction shall not have a TBAA access tag!", &I);
|
|
|
|
bool IsStructPathTBAA =
|
|
isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
|
|
|
|
AssertTBAA(
|
|
IsStructPathTBAA,
|
|
"Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I);
|
|
|
|
MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
|
|
MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
|
|
|
|
bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
|
|
|
|
if (IsNewFormat) {
|
|
AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
|
|
"Access tag metadata must have either 4 or 5 operands", &I, MD);
|
|
} else {
|
|
AssertTBAA(MD->getNumOperands() < 5,
|
|
"Struct tag metadata must have either 3 or 4 operands", &I, MD);
|
|
}
|
|
|
|
// Check the access size field.
|
|
if (IsNewFormat) {
|
|
auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
|
|
MD->getOperand(3));
|
|
AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
|
|
}
|
|
|
|
// Check the immutability flag.
|
|
unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
|
|
if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
|
|
auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
|
|
MD->getOperand(ImmutabilityFlagOpNo));
|
|
AssertTBAA(IsImmutableCI,
|
|
"Immutability tag on struct tag metadata must be a constant",
|
|
&I, MD);
|
|
AssertTBAA(
|
|
IsImmutableCI->isZero() || IsImmutableCI->isOne(),
|
|
"Immutability part of the struct tag metadata must be either 0 or 1",
|
|
&I, MD);
|
|
}
|
|
|
|
AssertTBAA(BaseNode && AccessType,
|
|
"Malformed struct tag metadata: base and access-type "
|
|
"should be non-null and point to Metadata nodes",
|
|
&I, MD, BaseNode, AccessType);
|
|
|
|
if (!IsNewFormat) {
|
|
AssertTBAA(isValidScalarTBAANode(AccessType),
|
|
"Access type node must be a valid scalar type", &I, MD,
|
|
AccessType);
|
|
}
|
|
|
|
auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
|
|
AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
|
|
|
|
APInt Offset = OffsetCI->getValue();
|
|
bool SeenAccessTypeInPath = false;
|
|
|
|
SmallPtrSet<MDNode *, 4> StructPath;
|
|
|
|
for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
|
|
BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
|
|
IsNewFormat)) {
|
|
if (!StructPath.insert(BaseNode).second) {
|
|
CheckFailed("Cycle detected in struct path", &I, MD);
|
|
return false;
|
|
}
|
|
|
|
bool Invalid;
|
|
unsigned BaseNodeBitWidth;
|
|
std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
|
|
IsNewFormat);
|
|
|
|
// If the base node is invalid in itself, then we've already printed all the
|
|
// errors we wanted to print.
|
|
if (Invalid)
|
|
return false;
|
|
|
|
SeenAccessTypeInPath |= BaseNode == AccessType;
|
|
|
|
if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
|
|
AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",
|
|
&I, MD, &Offset);
|
|
|
|
AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
|
|
(BaseNodeBitWidth == 0 && Offset == 0) ||
|
|
(IsNewFormat && BaseNodeBitWidth == ~0u),
|
|
"Access bit-width not the same as description bit-width", &I, MD,
|
|
BaseNodeBitWidth, Offset.getBitWidth());
|
|
|
|
if (IsNewFormat && SeenAccessTypeInPath)
|
|
break;
|
|
}
|
|
|
|
AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",
|
|
&I, MD);
|
|
return true;
|
|
}
|
|
|
|
char VerifierLegacyPass::ID = 0;
|
|
INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
|
|
|
|
FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
|
|
return new VerifierLegacyPass(FatalErrors);
|
|
}
|
|
|
|
AnalysisKey VerifierAnalysis::Key;
|
|
VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
|
|
ModuleAnalysisManager &) {
|
|
Result Res;
|
|
Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
|
|
return Res;
|
|
}
|
|
|
|
VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
|
|
FunctionAnalysisManager &) {
|
|
return { llvm::verifyFunction(F, &dbgs()), false };
|
|
}
|
|
|
|
PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
|
|
auto Res = AM.getResult<VerifierAnalysis>(M);
|
|
if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
|
|
report_fatal_error("Broken module found, compilation aborted!");
|
|
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
|
|
auto res = AM.getResult<VerifierAnalysis>(F);
|
|
if (res.IRBroken && FatalErrors)
|
|
report_fatal_error("Broken function found, compilation aborted!");
|
|
|
|
return PreservedAnalyses::all();
|
|
}
|