llvm-project/llvm/lib/Support/Windows/Process.inc

505 lines
16 KiB
C++

//===- Win32/Process.cpp - Win32 Process Implementation ------- -*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file provides the Win32 specific implementation of the Process class.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/Allocator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ConvertUTF.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/StringSaver.h"
#include "llvm/Support/WindowsError.h"
#include <malloc.h>
// The Windows.h header must be after LLVM and standard headers.
#include "llvm/Support/Windows/WindowsSupport.h"
#include <direct.h>
#include <io.h>
#include <psapi.h>
#include <shellapi.h>
#if !defined(__MINGW32__)
#pragma comment(lib, "psapi.lib")
#pragma comment(lib, "shell32.lib")
#endif
//===----------------------------------------------------------------------===//
//=== WARNING: Implementation here must contain only Win32 specific code
//=== and must not be UNIX code
//===----------------------------------------------------------------------===//
#ifdef __MINGW32__
// This ban should be lifted when MinGW 1.0+ has defined this value.
# define _HEAPOK (-2)
#endif
using namespace llvm;
Process::Pid Process::getProcessId() {
static_assert(sizeof(Pid) >= sizeof(DWORD),
"Process::Pid should be big enough to store DWORD");
return Pid(::GetCurrentProcessId());
}
// This function retrieves the page size using GetNativeSystemInfo() and is
// present solely so it can be called once to initialize the self_process member
// below.
static unsigned computePageSize() {
// GetNativeSystemInfo() provides the physical page size which may differ
// from GetSystemInfo() in 32-bit applications running under WOW64.
SYSTEM_INFO info;
GetNativeSystemInfo(&info);
// FIXME: FileOffset in MapViewOfFile() should be aligned to not dwPageSize,
// but dwAllocationGranularity.
return static_cast<unsigned>(info.dwPageSize);
}
Expected<unsigned> Process::getPageSize() {
static unsigned Ret = computePageSize();
return Ret;
}
size_t
Process::GetMallocUsage()
{
_HEAPINFO hinfo;
hinfo._pentry = NULL;
size_t size = 0;
while (_heapwalk(&hinfo) == _HEAPOK)
size += hinfo._size;
return size;
}
void Process::GetTimeUsage(TimePoint<> &elapsed, std::chrono::nanoseconds &user_time,
std::chrono::nanoseconds &sys_time) {
elapsed = std::chrono::system_clock::now();;
FILETIME ProcCreate, ProcExit, KernelTime, UserTime;
if (GetProcessTimes(GetCurrentProcess(), &ProcCreate, &ProcExit, &KernelTime,
&UserTime) == 0)
return;
user_time = toDuration(UserTime);
sys_time = toDuration(KernelTime);
}
// Some LLVM programs such as bugpoint produce core files as a normal part of
// their operation. To prevent the disk from filling up, this configuration
// item does what's necessary to prevent their generation.
void Process::PreventCoreFiles() {
// Windows does have the concept of core files, called minidumps. However,
// disabling minidumps for a particular application extends past the lifetime
// of that application, which is the incorrect behavior for this API.
// Additionally, the APIs require elevated privileges to disable and re-
// enable minidumps, which makes this untenable. For more information, see
// WerAddExcludedApplication and WerRemoveExcludedApplication (Vista and
// later).
//
// Windows also has modal pop-up message boxes. As this method is used by
// bugpoint, preventing these pop-ups is additionally important.
SetErrorMode(SEM_FAILCRITICALERRORS |
SEM_NOGPFAULTERRORBOX |
SEM_NOOPENFILEERRORBOX);
coreFilesPrevented = true;
}
/// Returns the environment variable \arg Name's value as a string encoded in
/// UTF-8. \arg Name is assumed to be in UTF-8 encoding.
Optional<std::string> Process::GetEnv(StringRef Name) {
// Convert the argument to UTF-16 to pass it to _wgetenv().
SmallVector<wchar_t, 128> NameUTF16;
if (windows::UTF8ToUTF16(Name, NameUTF16))
return None;
// Environment variable can be encoded in non-UTF8 encoding, and there's no
// way to know what the encoding is. The only reliable way to look up
// multibyte environment variable is to use GetEnvironmentVariableW().
SmallVector<wchar_t, MAX_PATH> Buf;
size_t Size = MAX_PATH;
do {
Buf.reserve(Size);
SetLastError(NO_ERROR);
Size =
GetEnvironmentVariableW(NameUTF16.data(), Buf.data(), Buf.capacity());
if (Size == 0 && GetLastError() == ERROR_ENVVAR_NOT_FOUND)
return None;
// Try again with larger buffer.
} while (Size > Buf.capacity());
Buf.set_size(Size);
// Convert the result from UTF-16 to UTF-8.
SmallVector<char, MAX_PATH> Res;
if (windows::UTF16ToUTF8(Buf.data(), Size, Res))
return None;
return std::string(Res.data());
}
/// Perform wildcard expansion of Arg, or just push it into Args if it doesn't
/// have wildcards or doesn't match any files.
static std::error_code WildcardExpand(StringRef Arg,
SmallVectorImpl<const char *> &Args,
StringSaver &Saver) {
std::error_code EC;
// Don't expand Arg if it does not contain any wildcard characters. This is
// the common case. Also don't wildcard expand /?. Always treat it as an
// option.
if (Arg.find_first_of("*?") == StringRef::npos || Arg == "/?" ||
Arg == "-?") {
Args.push_back(Arg.data());
return EC;
}
// Convert back to UTF-16 so we can call FindFirstFileW.
SmallVector<wchar_t, MAX_PATH> ArgW;
EC = windows::UTF8ToUTF16(Arg, ArgW);
if (EC)
return EC;
// Search for matching files.
// FIXME: This assumes the wildcard is only in the file name and not in the
// directory portion of the file path. For example, it doesn't handle
// "*\foo.c" nor "s?c\bar.cpp".
WIN32_FIND_DATAW FileData;
HANDLE FindHandle = FindFirstFileW(ArgW.data(), &FileData);
if (FindHandle == INVALID_HANDLE_VALUE) {
Args.push_back(Arg.data());
return EC;
}
// Extract any directory part of the argument.
SmallString<MAX_PATH> Dir = Arg;
sys::path::remove_filename(Dir);
const int DirSize = Dir.size();
do {
SmallString<MAX_PATH> FileName;
EC = windows::UTF16ToUTF8(FileData.cFileName, wcslen(FileData.cFileName),
FileName);
if (EC)
break;
// Append FileName to Dir, and remove it afterwards.
llvm::sys::path::append(Dir, FileName);
Args.push_back(Saver.save(StringRef(Dir)).data());
Dir.resize(DirSize);
} while (FindNextFileW(FindHandle, &FileData));
FindClose(FindHandle);
return EC;
}
static std::error_code GetExecutableName(SmallVectorImpl<char> &Filename) {
// The first argument may contain just the name of the executable (e.g.,
// "clang") rather than the full path, so swap it with the full path.
wchar_t ModuleName[MAX_PATH];
size_t Length = ::GetModuleFileNameW(NULL, ModuleName, MAX_PATH);
if (Length == 0 || Length == MAX_PATH) {
return mapWindowsError(GetLastError());
}
// If the first argument is a shortened (8.3) name (which is possible even
// if we got the module name), the driver will have trouble distinguishing it
// (e.g., clang.exe v. clang++.exe), so expand it now.
Length = GetLongPathNameW(ModuleName, ModuleName, MAX_PATH);
if (Length == 0)
return mapWindowsError(GetLastError());
if (Length > MAX_PATH) {
// We're not going to try to deal with paths longer than MAX_PATH, so we'll
// treat this as an error. GetLastError() returns ERROR_SUCCESS, which
// isn't useful, so we'll hardcode an appropriate error value.
return mapWindowsError(ERROR_INSUFFICIENT_BUFFER);
}
std::error_code EC = windows::UTF16ToUTF8(ModuleName, Length, Filename);
if (EC)
return EC;
StringRef Base = sys::path::filename(Filename.data());
Filename.assign(Base.begin(), Base.end());
return std::error_code();
}
std::error_code
windows::GetCommandLineArguments(SmallVectorImpl<const char *> &Args,
BumpPtrAllocator &Alloc) {
const wchar_t *CmdW = GetCommandLineW();
assert(CmdW);
std::error_code EC;
SmallString<MAX_PATH> Cmd;
EC = windows::UTF16ToUTF8(CmdW, wcslen(CmdW), Cmd);
if (EC)
return EC;
SmallVector<const char *, 20> TmpArgs;
StringSaver Saver(Alloc);
cl::TokenizeWindowsCommandLine(Cmd, Saver, TmpArgs, /*MarkEOLs=*/false);
for (const char *Arg : TmpArgs) {
EC = WildcardExpand(Arg, Args, Saver);
if (EC)
return EC;
}
SmallVector<char, MAX_PATH> Arg0(Args[0], Args[0] + strlen(Args[0]));
SmallVector<char, MAX_PATH> Filename;
sys::path::remove_filename(Arg0);
EC = GetExecutableName(Filename);
if (EC)
return EC;
sys::path::append(Arg0, Filename);
Args[0] = Saver.save(Arg0).data();
return std::error_code();
}
std::error_code Process::FixupStandardFileDescriptors() {
return std::error_code();
}
std::error_code Process::SafelyCloseFileDescriptor(int FD) {
if (::close(FD) < 0)
return std::error_code(errno, std::generic_category());
return std::error_code();
}
bool Process::StandardInIsUserInput() {
return FileDescriptorIsDisplayed(0);
}
bool Process::StandardOutIsDisplayed() {
return FileDescriptorIsDisplayed(1);
}
bool Process::StandardErrIsDisplayed() {
return FileDescriptorIsDisplayed(2);
}
bool Process::FileDescriptorIsDisplayed(int fd) {
DWORD Mode; // Unused
return (GetConsoleMode((HANDLE)_get_osfhandle(fd), &Mode) != 0);
}
unsigned Process::StandardOutColumns() {
unsigned Columns = 0;
CONSOLE_SCREEN_BUFFER_INFO csbi;
if (GetConsoleScreenBufferInfo(GetStdHandle(STD_OUTPUT_HANDLE), &csbi))
Columns = csbi.dwSize.X;
return Columns;
}
unsigned Process::StandardErrColumns() {
unsigned Columns = 0;
CONSOLE_SCREEN_BUFFER_INFO csbi;
if (GetConsoleScreenBufferInfo(GetStdHandle(STD_ERROR_HANDLE), &csbi))
Columns = csbi.dwSize.X;
return Columns;
}
// The terminal always has colors.
bool Process::FileDescriptorHasColors(int fd) {
return FileDescriptorIsDisplayed(fd);
}
bool Process::StandardOutHasColors() {
return FileDescriptorHasColors(1);
}
bool Process::StandardErrHasColors() {
return FileDescriptorHasColors(2);
}
static bool UseANSI = false;
void Process::UseANSIEscapeCodes(bool enable) {
#if defined(ENABLE_VIRTUAL_TERMINAL_PROCESSING)
if (enable) {
HANDLE Console = GetStdHandle(STD_OUTPUT_HANDLE);
DWORD Mode;
GetConsoleMode(Console, &Mode);
Mode |= ENABLE_VIRTUAL_TERMINAL_PROCESSING;
SetConsoleMode(Console, Mode);
}
#endif
UseANSI = enable;
}
namespace {
class DefaultColors
{
private:
WORD defaultColor;
public:
DefaultColors()
:defaultColor(GetCurrentColor()) {}
static unsigned GetCurrentColor() {
CONSOLE_SCREEN_BUFFER_INFO csbi;
if (GetConsoleScreenBufferInfo(GetStdHandle(STD_OUTPUT_HANDLE), &csbi))
return csbi.wAttributes;
return 0;
}
WORD operator()() const { return defaultColor; }
};
DefaultColors defaultColors;
WORD fg_color(WORD color) {
return color & (FOREGROUND_BLUE | FOREGROUND_GREEN |
FOREGROUND_INTENSITY | FOREGROUND_RED);
}
WORD bg_color(WORD color) {
return color & (BACKGROUND_BLUE | BACKGROUND_GREEN |
BACKGROUND_INTENSITY | BACKGROUND_RED);
}
}
bool Process::ColorNeedsFlush() {
return !UseANSI;
}
const char *Process::OutputBold(bool bg) {
if (UseANSI) return "\033[1m";
WORD colors = DefaultColors::GetCurrentColor();
if (bg)
colors |= BACKGROUND_INTENSITY;
else
colors |= FOREGROUND_INTENSITY;
SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE), colors);
return 0;
}
const char *Process::OutputColor(char code, bool bold, bool bg) {
if (UseANSI) return colorcodes[bg?1:0][bold?1:0][code&7];
WORD current = DefaultColors::GetCurrentColor();
WORD colors;
if (bg) {
colors = ((code&1) ? BACKGROUND_RED : 0) |
((code&2) ? BACKGROUND_GREEN : 0 ) |
((code&4) ? BACKGROUND_BLUE : 0);
if (bold)
colors |= BACKGROUND_INTENSITY;
colors |= fg_color(current);
} else {
colors = ((code&1) ? FOREGROUND_RED : 0) |
((code&2) ? FOREGROUND_GREEN : 0 ) |
((code&4) ? FOREGROUND_BLUE : 0);
if (bold)
colors |= FOREGROUND_INTENSITY;
colors |= bg_color(current);
}
SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE), colors);
return 0;
}
static WORD GetConsoleTextAttribute(HANDLE hConsoleOutput) {
CONSOLE_SCREEN_BUFFER_INFO info;
GetConsoleScreenBufferInfo(GetStdHandle(STD_OUTPUT_HANDLE), &info);
return info.wAttributes;
}
const char *Process::OutputReverse() {
if (UseANSI) return "\033[7m";
const WORD attributes
= GetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE));
const WORD foreground_mask = FOREGROUND_BLUE | FOREGROUND_GREEN |
FOREGROUND_RED | FOREGROUND_INTENSITY;
const WORD background_mask = BACKGROUND_BLUE | BACKGROUND_GREEN |
BACKGROUND_RED | BACKGROUND_INTENSITY;
const WORD color_mask = foreground_mask | background_mask;
WORD new_attributes =
((attributes & FOREGROUND_BLUE )?BACKGROUND_BLUE :0) |
((attributes & FOREGROUND_GREEN )?BACKGROUND_GREEN :0) |
((attributes & FOREGROUND_RED )?BACKGROUND_RED :0) |
((attributes & FOREGROUND_INTENSITY)?BACKGROUND_INTENSITY:0) |
((attributes & BACKGROUND_BLUE )?FOREGROUND_BLUE :0) |
((attributes & BACKGROUND_GREEN )?FOREGROUND_GREEN :0) |
((attributes & BACKGROUND_RED )?FOREGROUND_RED :0) |
((attributes & BACKGROUND_INTENSITY)?FOREGROUND_INTENSITY:0) |
0;
new_attributes = (attributes & ~color_mask) | (new_attributes & color_mask);
SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE), new_attributes);
return 0;
}
const char *Process::ResetColor() {
if (UseANSI) return "\033[0m";
SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE), defaultColors());
return 0;
}
static unsigned GetRandomNumberSeed() {
// Generate a random number seed from the millisecond-resolution Windows
// system clock and the current process id.
FILETIME Time;
GetSystemTimeAsFileTime(&Time);
DWORD Pid = GetCurrentProcessId();
return hash_combine(Time.dwHighDateTime, Time.dwLowDateTime, Pid);
}
static unsigned GetPseudoRandomNumber() {
// Arrange to call srand once when this function is first used, and
// otherwise (if GetRandomNumber always succeeds in using
// CryptGenRandom) don't bother at all.
static int x = (static_cast<void>(::srand(GetRandomNumberSeed())), 0);
(void)x;
return ::rand();
}
unsigned Process::GetRandomNumber() {
// Try to use CryptGenRandom.
HCRYPTPROV HCPC;
if (::CryptAcquireContextW(&HCPC, NULL, NULL, PROV_RSA_FULL,
CRYPT_VERIFYCONTEXT)) {
ScopedCryptContext CryptoProvider(HCPC);
unsigned Ret;
if (::CryptGenRandom(CryptoProvider, sizeof(Ret),
reinterpret_cast<BYTE *>(&Ret)))
return Ret;
}
// If that fails, fall back to pseudo-random numbers.
return GetPseudoRandomNumber();
}
typedef NTSTATUS(WINAPI* RtlGetVersionPtr)(PRTL_OSVERSIONINFOW);
#define STATUS_SUCCESS ((NTSTATUS)0x00000000L)
llvm::VersionTuple llvm::GetWindowsOSVersion() {
HMODULE hMod = ::GetModuleHandleW(L"ntdll.dll");
if (hMod) {
auto getVer = (RtlGetVersionPtr)::GetProcAddress(hMod, "RtlGetVersion");
if (getVer) {
RTL_OSVERSIONINFOEXW info{};
info.dwOSVersionInfoSize = sizeof(info);
if (getVer((PRTL_OSVERSIONINFOW)&info) == STATUS_SUCCESS) {
return llvm::VersionTuple(info.dwMajorVersion, info.dwMinorVersion, 0,
info.dwBuildNumber);
}
}
}
return llvm::VersionTuple(0, 0, 0, 0);
}
bool llvm::RunningWindows8OrGreater() {
// Windows 8 is version 6.2, service pack 0.
return GetWindowsOSVersion() >= llvm::VersionTuple(6, 2, 0, 0);
}